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The performance of machine learning algorithms can be considerably improved when trained over larger

datasets. In many domains, such as medicine and finance, larger datasets can be obtained if several parties,

each having access to limited amounts of data, collaborate and share their data. However, such data sharing

introduces significant privacy challenges. While multiple recent studies have investigated methods for private

collaborative machine learning, the fairness of such collaborative algorithms was overlooked. In this work we

suggest a feasible privacy-preserving pre-process mechanism for enhancing fairness of collaborative machine

learning algorithms. An extensive evaluation of the proposed method shows that it is able to enhance fairness

considerably with only a minor compromise in accuracy.

CCS Concepts: • Security and privacy→ Privacy-preserving protocols; • Computing methodologies
→Artificial intelligence;Machine learning; • Information systems→ Information systems applica-
tions.

Additional Key Words and Phrases: Privacy, Algorithmic Fairness, Collaborative Machine Learning, Federated

learning, Secure Multi-Party Computation

1 INTRODUCTION
Machine learning (ML) is one of the most prominent technological developments in recent years,

rapidly becoming a central part of our life. Applications of ML are all around us, ranging from

traffic prediction and virtual personal assistants to automated radiology and autonomous vehicles.

The performance of ML models inherently depends on the availability of a large quantity of

useful training data. In neural network learning, for example, recent studies have shown that

accuracy can be improved considerably by having access to large datasets [1]. In many applications,

however, data is scattered and held by multiple different parties that may be reluctant to share their

information for multiple reasons such as commercial competition, privacy concerns, and in some

domains even legal constraints. For example, the Health Insurance Portability and Accountability

Act (HIPAA) in the United States places strict constraints on the ability of health care providers to

share patient data [2].

As a result, a variety of methods have been recently proposed to allow multiple parties to

collaboratively train ML models while preventing the disclosure of private information. Hereinafter,

we refer to this setting as private collaborative machine learning (PCML). While these methods

address a very similar problem, they are often associated with different (though overlapping)

research domains including privacy-preserving data mining [3, 4], privacy-preserving machine
learning [5], collaborative machine learning [6, 7], and federated machine learning [8].

These methods take two main approaches for preserving privacy. The first approach is based

on perturbation [4], which incorporates noise to the training data in order to obscure sensitive

information. Differential privacy [9] is perhaps the most prominent perturbation technique. The

main limitation of this approach is that incorporating noise to the data may yield an inferior

model. The second approach is based on secure multi-party computation (MPC) [3]. MPC achieves
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privacy protection by applying cryptographic techniques that enable several parties to perform

a joint computation on private data that is distributed among them, where only the outcome of

the computation is revealed to the parties, but no other information is exposed [10]. In contrast to

perturbation, MPC does not change the data, and therefore the output issued by such algorithms

is identical to the output of their non-privacy-preserving counterparts. However, since in many

cases, a generic and perfectly secure MPC solution is infeasible [11], lower security requirements

are typically accepted for the sake of higher efficiency [12].

Despite the growing number of studies proposing algorithms for PCML, the fairness of such

algorithms was overlooked. Since many automated decisions (including which individuals will

receive jobs, loans, medication, bail or parole) can significantly impact peoples’ lives, there is great

importance in assessing and improving the fairness of the decisions made by such algorithms.

Indeed, in recent years, the concern for algorithmic fairness has made headlines. One of the most

prominent examples was in the field of criminal justice, where recent revelations have shown

that an algorithm used by the United States criminal justice system had falsely predicted future

criminality among African-Americans at twice the rate as its parallel predictions for white people

[13]. These lines of evidence and concerns about algorithmic fairness have led to growing interest

in the literature on defining, evaluating and improving fairness in ML algorithms (see a recent

review in [14, 15]). All of these studies, however, focused on centralized settings.

In this paper, we consider a learning setting similar to the PCML setting described above,

where data is scattered among several parties, who wish to engage in a joint ML procedure,

without disclosing their private information. Our setting, however, also adds a fairness requirement,

mandating that the learnt model satisfies a certain level of fairness.

To address the new fairness requirement, we suggest a privacy-preserving pre-process mecha-

nism for enhancing fairness of collaborative ML algorithms. Similarly to the pre-process fairness

mechanism suggested in [16], our method improves fairness through decreasing distances between

the distributions of attributes of the privileged and unprivileged groups. Our approach is not

tailored to a specific algorithm, and therefore can be used with any PCML algorithm. In contrast

to [16], our method was designed to allow privacy-preserving enhancements, which are obtained

through MPC techniques.

An extensive evaluation that we conducted over real-world datasets shows that the proposed

method is able to improve fairness considerably, with almost no compromise in accuracy. Further-

more, we show that the runtime of the proposed method is feasible, especially considering that it is

executed once as a pre-process procedure.

The paper is organized as follows. We begin with a review of related work in Section 2. In Section

3 we define the problem that we study and present relevant notations that we shall be using. In

Section 4 we describe our solution to this problem — a privacy-preserving fairness-enhancing

mechanism. We present our experimental evaluation in Section 5, and conclude in Section 6.

2 RELATEDWORK
We organize the survey of relevant related work as follows. In Section 2.1 we survey related studies

that deal with algorithmic fairness in centralized settings. In Section 2.2 we review literature on

private collaborative machine learning. We conclude, in Section 2.3, with a discussion of recent

research efforts on private and fair machine learning. We note that all of the latter studies focused

on either a centralized setting or a distributed setting which is non-collaborative, while we consider

in this work a distributed collaborative setting.
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2.1 Algorithmic Fairness in Centralized Settings
Fairness Definitions and Measures
The law makes a distinction between two types of discrimination: i) Disparate treatment [17,
18]: intentionally treating an individual differently based on his/her membership in a protected

class/unprivileged group (direct discrimination); and ii)Disparate impact [18, 19]: negatively affecting
members of a protected class/privileged group, more than others, even if by a seemingly neutral

policy (indirect discrimination).
Put in our context, it is important to note that algorithms trained with data that do not include

sensitive attributes (i.e., attributes that explicitly identify the privileged and unprivileged groups)

are unlikely to produce disparate treatment, but may still induce unintentional discrimination in

the form of disparate impact [20].
In the algorithmic fairness literature, multiple measures were suggested. (The reader is referred to

[14, 15, 21] for a comprehensive review of fairness definitions and measures.) The most prominent

measures include demographic parity [22, 23] and equalized odds [24]. Demographic parity ensures

that the proportion of the positive predictions is similar across groups. For example, if a positive

prediction represents acceptance for a job, then the demographic parity condition requires the

proportion of accepted applicants to be similar across groups. One disadvantage of this measure is

that a fully accurate classifier may be considered unfair, when the base rates (i.e., the proportion of

actual positive outcomes) of the various groups are considerably different. Moreover, in order to

satisfy demographic parity, two similar individuals may be treated differently since they belong to

two different groups, and in some cases, such treatment is prohibited by law.

In this paper we focus on a variation of the equalized odds measure. This measure was devised

by [24] to overcome the disadvantages of measures such as demographic parity. It was designed
to assess the difference between the two groups by measuring the difference between the false

positive rates (FPR) in the two groups, as well as the difference between the false negative rates

(FNR) in the two groups.

In contrast to the demographic parity measure, a fully accurate classifier will necessarily satisfy

the two equalized odds constraints. Nevertheless, since equalized odds relies on the actual ground

truth, it assumes that the base rates of the two groups are representative and were not obtained in

a biased manner.

It is important to note that there is an inherent trade-off between accuracy and fairness: as we

pursue a higher degree of fairness, we may compromise accuracy (see, for example, [20]).

Mechanisms for Enhancing Fairness
Fairness-enhancing mechanisms are broadly categorized into three types: pre-process, in-process

and post-process. Pre-process mechanisms involve changing the training data before feeding it

into the ML algorithm [16, 25–29]. For example, [16] suggested to modify the attributes in the

dataset, so that the distributions for both privileged and unprivileged groups become closer, and

therefore making it more difficult for the algorithm to differentiate between the two groups. In-

process mechanisms involve modifying ML algorithms to account for fairness during training time

[22, 27, 29–39]. For example, [30] suggested adding a regularization term to the objective function

that penalizes the mutual information between the sensitive attribute and the model’s predictions.

Post-process mechanisms perform post-processing to the output scores of the model to make

decisions fairer [24, 40–42]. For example, [24] proposed a technique for flipping some decisions of

the model in order to enhance equalized odds. Similarly, [40] suggested to select a threshold for

each group separately, in a manner that maximizes accuracy and minimizes demographic parity.
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The different mechanism types are associated with the following advantages and disadvantages

[14, 15]. Pre-processmechanisms can be advantageous since they can be usedwith anyML algorithm.

However, since they are not tailored to a specific algorithm, there is no guarantee on the level

of accuracy that such a mechanism may yield at the end of the process. Similar to pre-process

mechanisms, post-process mechanisms may be used with any ML algorithm. However, due to the

relatively late stage in the learning process in which they are applied, post-process mechanisms

typically obtain inferior results [31]. Another danger of post-process mechanisms is that they may

treat entirely differently two individuals who are very similar across all attributes except for the

group to which they belong. In-process mechanisms are beneficial since they can explicitly impose

the required trade-off between accuracy and fairness in the objective function. However, such

mechanisms are tightly coupled with the ML algorithm.

Note that the above mentioned papers focused on a centralized setting, in which all information

is held by one party, and therefore did not have to deal with privacy considerations.

2.2 Private Collaborative Machine Learning
The Setting
We consider a setting in which several parties wish to collaboratively train ML models on data

that is distributed among them, while preventing the disclosure of private information. We refer to

this setting as private collaborative machine learning (PCML). While many methods were proposed

in the literature to address this same (or very similar) setting, they are often associated with

different (though overlapping) research domains including privacy-preserving data mining [3, 4],

privacy-preserving machine learning [5], collaborative machine learning [6, 7], and federated machine
learning [8].

The manner in which data is distributed among the collaborating parties is typically categorized

as either vertical, horizontal or mixed. In a vertical distribution, each party holds all records with

a different subset of attributes, whereas in a horizontal distribution each party holds a subset of

the records with all attributes [11]. The mixed scenario refers to an arbitrary partition of the data

among the collaborating parties.

When analyzing the privacy preservation of the protocol, it is common to distinguish between

two types of adversaries: semi-honest and malicious. A semi-honest adversary is a party that follows

the protocol correctly, but tries to infer sensitive information of other parties from intermediate

messages that are received during the protocol. A malicious adversary, on the other hand, may

deviate from the prescribed protocol in an attempt to learn sensitive information on others. Protocols

in the semi-honest model offer weaker security than protocols in the malicious model, as they

prevent inadvertent leakage of information between the collaborating parties, and are thus useful

for application scenarios in which those are the realistic threats [43]. Protocols in the semi-honest

model are viewed as a first step towards achieving higher levels of security. On the other hand,

achieving security against malicious parties entails significantly higher costs than achieving security

against semi-honest parties. Hence, most of the protocols in the malicious model are protocols

that are designed for basic functionalities (such as Oblivious Polynomial Evaluation or Private

Set Intersection), while the vast majority of studies on applied privacy-preserving data mining or

machine learning (e.g. [44–50]) adopt the semi-honest model.

The two main approaches for achieving privacy in the aforementioned setting are perturbation
and secure multi-party computation as we proceed to describe.
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Perturbation
The idea underlying the perturbation approach (e.g. [4]) is to modify the values of attributes

randomly, so that privacy will be maintained, while the results of the desired query or analysis

on the perturbed data will still be close to the original ones. This technique is at the base of the

paradigm called differential privacy [9]. An algorithm is considered differentially private if the

addition or removal of a single record from the dataset does not significantly affect the output of

the algorithm. Typically, differential privacy is obtained by incorporating a Laplacian noise to the

results of the data analysis [11].

Application examples of PCML methods that are based on perturbation include classification

[5, 51–55], collaborative filtering [56, 57], stochastic gradient descent [58, 59] and deep learning

[6, 60–62].

It is important to note that methods that are based on incorporating noise and randomness to the

data may perform poorer compared to their non-private counterparts. This problem becomes even

more acute in distributed collaborative settings, since in such settings, each party must add noise

to the data it holds independently. Such distributed incorporation of noise may result in adding

excessive amounts of noise during the training process, and that may yield a considerably inferior

model [5, 6].

Secure Multi-Party Computation
In the general setting of secure multi-party computation (MPC) [10], 𝐿 mutually distrustful parties,

𝑃1, . . . , 𝑃𝐿 , that hold private inputs, 𝑋1, . . . , 𝑋𝐿 , wish to compute some joint function on their inputs,

i.e., 𝑓 (𝑋1, . . . , 𝑋𝐿). Ideally, no party should gain during the computation process any information

on other parties’ inputs, beyond what can be inferred from its own input and the joint function

output.

Theoretical results show that such perfect privacy is achievable for any problem of MPC by

invoking generic solutions such as Yao’s garbled circuit construction [10]. In that approach, one

represents the function 𝑓 as a circuit, either a Boolean one (consisting of XOR and AND gates) or

an arithmetic one (consisting of addition and multiplication gates). The input wires to the circuit

bring in the inputs that the parties hold, while the output wires convey the desired output of the

computation. Subsequently, the parties run a protocol that emulates the circuit’s operation in a

secure manner. The circuit-based approach is general and can be used to compute any function on

the distributed inputs.

However, as the computational costs are proportional to the size of the circuit, such generic

solutions are practical only to rather simple functions. When dealing with more involved functions,

such as the ones encountered inML, such generic solutions become impractical, andmore specialized

solutions, that are tailored to the function of interest, should be developed. For the sake of higher

efficiency, such specialized solutions typically relax the notion of perfect privacy, but do so in a

manner that the leaked information is deemed benign.

Application examples of PCML methods that are based on MPC include clustering [63–65],

association rule mining [46, 66–68], classification [3, 5, 6, 69–71], and collaborative filtering [49, 72,

73].

2.3 Privacy and Fairness
While many recent studies have investigated algorithms for PCML, the fairness of such algorithms

was overlooked. There were, however, several recent studies that incorporated both privacy and

fairness considerations to ML algorithms in non-collaborative settings. Most of these studies have

investigated the case of a centralized setting, in which all of the dataset is held by a single party
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[74–79]. The goal of those studies was to train an ML model over the centralized dataset, making

sure that the released model and its future outputs are fair, as well as private, in the sense that one

cannot infer from them (meaningful) information about individual data records of the dataset.

A few other studies have investigated a distributed setting which is non-collaborative in the

following sense. Their distributed setting includes a “main” party that wishes to train a fair ML

model over the data it holds, and a third party to which the sensitive attributes are outsourced. The

motivation behind this setting is that while the sensitive attributes should not be exposed to the

main party, they should still be used in the training process of the MLmodel (in a privacy-preserving

manner) to ensure that the resulting model is fair. To obtain this goal, these studies used either

random projections [80, 81] or MPC techniques [82].

There are few other studies that combine fairness with federated learning. These studies dealt

with in-process fairness mechanisms in horizontal federated learning with a single server, in which

additional fairness constraints are introduced into ML training optimization procedures [83–88].

These methods are limited in their applicability to only certain ML algorithms, mainly those with

non-convex loss functions [83, 84]. Moreover, some of these methods can leak private information

due to the need to share excessive information with the server that coordinates the computation

[85–87]. An exception in this line of work is the study of Liu et al. [89], that focuses on vertical

federated learning. They propose a method to train a fair learning model in the vertical setting in a

manner that balances between fairness, accuracy and privacy.

In this paper, we propose a collaborative private pre-process fairness-enhancing mechanism

based on MPC, that does not require any third party or server. As a pre-process mechanism, our

method is not limited to a specific algorithm, and therefore it can be used with any collaborative

ML algorithm.

A concluding remark. The term “fairness" is used in the literature also in another meaning, that

inherently differs from algorithmic fairness that we consider herein. In algorithmic fairness the goal

is to mitigate unintentional biases in the computed machine learning model for the sake of future

individuals on which the learnt model will be applied. In contrast, the other meaning of “fairness"

is concerned with the interests of the data owners who contribute data to the collaborative learning

process and what they expect to get from that collaboration. In cryptography, an MPC protocol is

considered fair if it ensures that either all parties receive their designated outputs, or none of them

does [11]. In federated learning, it relates to what the data owners, who contribute data of varying

quantity and quality and have different computational and communication resources, expect to

receive in return from the data federation that they join [90].

3 PROBLEM STATEMENT AND PRELIMINARIES
Let𝑊 be a population consisting of 𝑛 individuals, and let 𝐴 be a set of attributes or features that
relate to each of those individuals. We considers tabular datasets 𝐷 that describe the individuals in

𝑊 in the following manner: each row in 𝐷 relates to a single individual in𝑊 , while each column in

𝐷 relates to a single attribute in𝐴. The (𝑖, 𝑗)-entry in 𝐷 equals the value of the 𝑗 th attribute/feature

of the 𝑖th individual.

We are interested in the case where 𝐷 is distributed horizontally among 𝐿 parties, 𝑃ℓ , ℓ ∈ (︀𝐿⌋︀ ∶=

{1, . . . , 𝐿}. Namely, party 𝑃ℓ holds a subset of the rows in 𝐷 , which we denote by 𝐷ℓ , and the

subsets are disjoint (in the sense that each individual record appears exactly in one of those partial

datasets). They wish to engage in a fair collaborative ML classification process over the entire dataset
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𝐷 = ⊍ℓ∈(︀𝐿⌋︀𝐷ℓ
1
without disclosing to other parties information on the confidential information (𝐷ℓ ,

ℓ ∈ (︀𝐿⌋︀) that they hold, beyond what can be naturally deduced from the computed classifier.

In this study we focus on pre-process mechanisms for enhancing fairness in such a distributed

setting (as opposed to in-process or post-process, as described in Section 2.1). We consider two

adversarial models: one in which the parties are semi-honest, and another in which the parties are

malicious (see Section 2.2).

We proceed to introduce the basic notations that will be used throughout the paper.We distinguish

between three types of attributes (columns):

● 𝑆 represents a sensitive attribute (e.g., race or gender). In this work we focus on a binary

attribute 𝑆 that attains one of two possible values, 𝑆 ∈ {𝑈 ,𝑉 }, where 𝑈 means unprivileged and 𝑉
means privileged. (By abuse of notation, we are using 𝑆 to denote the attribute, as well as its values

in different rows of the dataset.)

● 𝑋 stands for the collection of all non-sensitive attributes. To simplify our discussion, we shall

assume that 𝑋 consists of a single attribute. When 𝑋 consists of several non-sensitive attributes,

we will apply the same pre-process mechanism that we describe below on each such attribute,

independently. We shall also assume hereinafter that 𝑋 is a numerical attribute.

● 𝑌 is the binary class that needs to be predicted (e.g. "hire/no hire").

The set of rows, or𝑊 , is split in two different manners. The first split is as induced by the

sensitive attribute 𝑆 . Namely,𝑊 =𝑊𝑈
⊍𝑊

𝑉
, where𝑊𝑈

is the subset of all individuals in𝑊 that

are unprivileged (i.e., 𝑆 =𝑈 for them) and𝑊𝑉 =𝑊 ∖𝑊𝑈
is the complementary set of privileged

individuals. For each 𝑆 ∈ {𝑈 ,𝑉 } we let 𝑛𝑆 ∶= ⋃︀𝑊 𝑆 ⋃︀.

The other manner in which𝑊 is split is according to the distribution of the records of 𝐷 among

the 𝐿 parties. Namely,𝑊 = ⊍ℓ∈(︀𝐿⌋︀𝑊ℓ , where𝑊ℓ is the subset of individuals whose information is

held by the party 𝑃ℓ , ℓ ∈ (︀𝐿⌋︀. For each ℓ ∈ (︀𝐿⌋︀ we let 𝑛ℓ ∶= ⋃︀𝑊ℓ ⋃︀.

Finally, we let 𝑛𝑆ℓ denote the size of𝑊
𝑆
ℓ ∶=𝑊

𝑆
⋂𝑊ℓ , namely, the number of individuals in𝑊 𝑆

whose records are held by 𝑃ℓ , 𝑆 ∈ {𝑈 ,𝑉 }, ℓ ∈ (︀𝐿⌋︀. Then:

𝑛 = ∑
𝑆∈{𝑈 ,𝑉}

𝑛𝑆 = ∑
ℓ∈(︀𝐿⌋︀

𝑛ℓ = ∑
𝑆∈{𝑈 ,𝑉}

∑
ℓ∈(︀𝐿⌋︀

𝑛𝑆ℓ . (1)

We shall adopt these superscript and subscript conventions hereinafter. Namely, a superscript 𝑆

will denote a restriction to the subset𝑊 𝑆
, 𝑆 ∈ {𝑈 ,𝑉 }; a subscript ℓ will denote a restriction to the

subset𝑊ℓ , ℓ ∈ (︀𝐿⌋︀; a combination of the two will denote a restriction to𝑊 𝑆
ℓ ; and no superscript 𝑆

or subscript ℓ mean that we relate to the entire population𝑊 .

In addition, we let 𝐷(𝑋) denote the collection of all values appearing in the 𝑋 -column of 𝐷 .

Similarly, 𝐷𝑆(𝑋), 𝐷ℓ(𝑋) and 𝐷
𝑆
ℓ (𝑋) denote the collection of all values appearing in the 𝑋 -column

of 𝐷 , restricted to the rows in𝑊 𝑆
,𝑊ℓ or𝑊

𝑆
ℓ , respectively. We assume that 𝐷𝑆

ℓ (𝑋), for any 𝑆 and ℓ ,

are multisets; namely, they may contain repeated values.

4 THE PROPOSED METHOD
In this section we propose a private pre-process fairness-enhancing mechanism based on MPC for

the problem described in Section 3. In Section 4.1 we introduce our pre-process fairness-enhancing

mechanism. We do that for a centralized setting, in which all information is held by one party (i.e.,

𝐿 = 1); in such a setting privacy is irrelevant. Then, in Section 4.2 we show how to implement that

fairness mechanism in the (horizontally) distributed setting, 𝐿 > 1, in a manner that offers privacy

to the interacting parties 𝑃ℓ , ℓ ∈ (︀𝐿⌋︀. Our protocol invokes a general purpose MPC sub-protocol

for computing the 𝑘th-ranked element in distributed databases which we describe in Section 4.3.

1⊍ denotes a disjoint union
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Fig. 1. The distribution of SAT scores within each sub-population (left), and the success rate as a function of
the SAT score, within each sub-population (right).

In Section 4.4 we discuss the privacy guarantees of our fairness enhancing mechanism, and we

conclude with a communication and computational cost analysize in Section 4.5.

4.1 A Pre-Process Fairness-Enhancing Mechanism
Inspired by [16], we devise a methodology that improves fairness through decreasing distances

between the distributions of attributes of the privileged and unprivileged groups, in a pre-process

stage. The goal in performing such a repair is to reduce the dependency of the ML model on the

group to which an individual belongs, even when that dependency is not a direct one but rather

an indirect one through proxy variables. That is, we obfuscate the ability to differentiate between

groups using the presumably legitimate non-sensitive variables. In contrast to [16], our method is

designed specifically to be suitable for privacy-preserving enhancements, as we do in Section 4.2.

To illustrate the intuition behind the proposed method, consider the example depicted in Figure

1. The figure illustrates a case in which SAT scores of individuals are used to predict their success

(or failure) in a given job. The plot on the left shows the distribution of SAT scores, within the

two sub-populations in the dataset — the privileged group and the unprivileged group. The plot

on the right shows the job success rate as a function of the SAT score, within each of those two

sub-populations.

In this example, SAT scores may be used to predict the success (or failure) of candidates in a given

job, since the higher the SAT score is, the higher is the probability for success. However, relying

solely on the SAT scores, while ignoring the group to which the candidates belong, may create

an undesired bias. More specifically, as can be seen from the figure, unprivileged candidates with

SAT scores of approximately 1100 perform just as well as privileged candidates with SAT scores

of 1200 (e.g., since they may have encountered harder challenges along their way for achieving

their scores). Therefore, if SAT scores were used for hiring, for example by just placing a threshold,

unprivileged candidates with high potential would be excluded, whereas lower potential candidates

from the privileged group would be hired instead. The goal of the pre-process mechanism that we

suggest herein is to rectify this bias.
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For each group 𝑆 ∈ {𝑈 ,𝑉 }, we first partition the multiset of values in 𝐷𝑆(𝑋) into (nearly)

equal-sized bins of sequential values. Namely, if we let 𝐵 denote the number of bins, then we

partition 𝐷𝑆(𝑋) into 𝐷𝑆(𝑋) = ⊍
𝐵
𝑖=1
𝑏𝑆
(𝑖)

, where (a) for all 𝑖 ∈ (︀𝐵−1⌋︀,𝑦 ∈ 𝑏𝑆
(𝑖)

and𝑦′ ∈ 𝑏𝑆
(𝑖+1)

, we have

𝑦 ≤ 𝑦′2, and (b) the bins are of (nearly) equal sizes, in the sense that the sizes of the bins (viewed as

multisets) are either ⟨︀𝑛𝑆⇑𝐵⧹︀ or [︂𝑛𝑆⇑𝐵⌉︂. These two conditions simply state that the resulting bins

are the 𝐵-quantiles of 𝐷𝑆(𝑋). Below we provide the precise manner in which those bins/quantiles

are computed.

After completing the binning process, we proceed to compute the minimal values in each of the

𝐵 bins, for each group 𝑆 ∈ {𝑈 ,𝑉 },

𝑚𝑆
(𝑖) ∶= min{𝑏𝑆

(𝑖)} , 𝑆 ∈ {𝑈 ,𝑉 } , 𝑖 ∈ (︀𝐵⌋︀ , (2)

and also the maximal value in the last bin,

𝑚𝑆
(𝐵+1)

∶= max{𝑏𝑆
(𝐵)} , 𝑆 ∈ {𝑈 ,𝑉 } . (3)

Those values enable us to perform a repair of 𝐷𝑉 (𝑋), as follows: for every bin 𝑏𝑉
(𝑖)

in 𝐷𝑉 (𝑋),

𝑖 ∈ (︀𝐵⌋︀, we shift all values in it “towards" the values in the corresponding bin in 𝐷𝑈 (𝑋), according

to the repair rule described in Eq. (4) below.

𝑥 = (1 − 𝜆) ⋅ 𝑥 + 𝜆 ⋅
⎛

⎝
𝑚𝑈
(𝑖) +

⎛

⎝

𝑥 −𝑚𝑉
(𝑖)

𝑚𝑉
(𝑖+1)

−𝑚𝑉
(𝑖)

⎞

⎠
⋅ (𝑚𝑈

(𝑖+1)
−𝑚𝑈

(𝑖))
⎞

⎠
, 𝑖 ∈ (︀𝐵⌋︀, 𝑥 ∈ 𝑏𝑉

(𝑖) . (4)

Here, 𝑥 is an original value extracted from the bin 𝑏𝑉
(𝑖)
, while 𝑥 is its repaired value. This repair

procedure represents a linear mapping that performs min-max scaling of the values in each bin of

the privileged group to the range of values in the corresponding bin in the unprivileged group. The

computation brings the distributions of both groups closer.

The repair tuning parameter 𝜆 ∈ (︀0, 1⌋︀ controls the strength of the repair. If 𝜆 = 0 then we perform

no repair, since then 𝑥 = 𝑥 . If 𝜆 = 1 then we get a full repair, since then all values in 𝑏𝑉
(𝑖)

are replaced

with values in the range of the corresponding bin 𝑏𝑈
(𝑖)
, while keeping a similar distribution as

the original ones in 𝑏𝑉
(𝑖)

. Note that if 𝑏𝑉
(𝑖)

elements are all the same, then both the numerator and

denominator in the fraction on the right hand side of Eq. (4) are zero. In such a case we interpret

that fraction as 1⇑2. Such a setting implies that all the (equal) values in 𝑏𝑉
(𝑖)

will be mapped to the

same value in the middle of the range of the corresponding bin 𝑏𝑈
(𝑖)

, namely (𝑚𝑈
(𝑖+1)

+𝑚𝑈
(𝑖)
) ⇑2.

At the completion of the repair pre-process procedure, an ML model is trained with the repaired

dataset. The steps of the above described method are illustrated in Figure 2.

To illustrate the effects of the two main parameters that our mechanism uses, i.e., 𝜆 and 𝐵, recall

the example presented in Figure 1. Figure 3 shows the effect of varying 𝜆 values. The higher is the

value of 𝜆 (with a fixed number of bins, 𝐵 = 3), the closer the distributions are.

Figure 4 shows the effect of varying 𝐵 values. The figure shows that higher value of 𝐵 (with a

fixed value of 𝜆 = 0.9), yield closer distributions.

In both cases, making the distributions closer means that the two groups will be treated more

similarly by the ML model, and, hence, making it harder for the model to distinguish between the

two groups. In other words, when using higher values of 𝜆 and 𝐵, the model will be less likely

to make decisions that depend on the group through other presumably legitimate non-sensitive

attributes.

2
We use subscripts in parentheses for any indexing purpose that does not relate to the distribution between the 𝐿 parties.
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Performing the repair

Binning non-sensitive 
attributes

Training a machine 
learning classifier

Fig. 2. General steps of the proposed method
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Fig. 3. The effect of the repair tuning parameter 𝜆

To conclude this section, we proceed to provide the formal details of the above-described binning

scheme. Let us first order all values in 𝐷𝑆(𝑋), the size of which is 𝑛𝑆 , in a non-decreasing manner,

as follows:

𝐷𝑆
(𝑋) = (𝑥1, . . . , 𝑥𝑛𝑆 ) , where 𝑥1 ≤ 𝑥2 ≤ ⋯ ≤ 𝑥𝑛𝑆 . (5)

Next, we define a set of indices in the ordered multiset 𝐷𝑆(𝑋) in the following manner:

𝐾𝑆
∶= {𝑘

(0)
∶= 0 < 𝑘

(1)
< ⋯ < 𝑘

(𝐵−1)
< 𝑘
(𝐵) ∶= 𝑛

𝑆
} (6)

Assume next that 𝑛𝑆 = 𝑞𝑆 ⋅ 𝐵 + 𝑟𝑆 , where 𝑟𝑆 ∈ (︀0, 𝐵) (i.e., 𝑞𝑆 and 𝑟𝑆 are the quotient and remainder,

respectively, when dividing 𝑛𝑆 by 𝐵). Then the sequence of indices 𝑘
(𝑖), 𝑖 ∈ (︀𝐵⌋︀, is defined by the

following equation,

𝑘
(0)
= 0 ; 𝑘

(𝑖) = 𝑘(𝑖−1)
+ Δ , where Δ = {

𝑞𝑆 + 1 if 𝑖 ≤ 𝑟𝑆

𝑞𝑆 if 𝑖 > 𝑟𝑆
, 𝑖 ∈ (︀𝐵⌋︀ . (7)
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Fig. 4. The effect of the number of bins 𝐵

It is easy to verify that 𝑘
(𝐵) = 𝑛

𝑆
. Finally, the bins in 𝐷𝑆(𝑋), Eq. (5), are defined by 𝐾𝑆

as follows:

𝑏𝑆
(𝑖) ∶= {𝑥 𝑗 ∶ 𝑘(𝑖−1)

+ 1 ≤ 𝑗 ≤ 𝑘
(𝑖)} , 𝑖 ∈ (︀𝐵⌋︀ . (8)

We see, in view of Eq. (8), that the size of the first 𝑟𝑆 bins is 𝑞𝑆 + 1, while all other bins are of size

𝑞𝑆 . Moreover,𝑚𝑆
(𝑖)
= min{𝑏𝑆

(𝑖)
} (Eq. (2)) equals the (𝑘

(𝑖−1)
+ 1)-th ranked element in 𝐷𝑆(𝑋), for all

𝑖 ∈ (︀𝐵⌋︀ and 𝑆 ∈ {𝑈 ,𝑉 }, while𝑚𝑆
(𝐵+1)

∶= max{𝑏𝑆
(𝐵)
} (Eq. (3)), equals the maximal element in 𝐷𝑆(𝑋),

𝑆 ∈ {𝑈 ,𝑉 },

4.2 Secure Multi-Party Algorithm for Enhancing Fairness
In section 4.1 we described our fairness-enhancing mechanism in a centralized setting, i.e. when all

of 𝐷 is held by a single party. We now revisit that algorithm and devise a secure implementation of

it, given that the dataset 𝐷 is horizontally distributed among 𝐿 parties, as described in Section 3.

To that end, let us go back to Figure 2. The step that poses a challenge when privacy is of concern

is the first one: dividing the non-sensitive attribute into equal-sized bins for each group 𝑆 ∈ {𝑈 ,𝑉 },

i.e., 𝐷𝑆(𝑋) = ⊍
𝐵
𝑖=1
𝑏𝑆
(𝑖)
, and then compute the boundaries of those bins, 𝑚𝑆

(𝑖)
∶= min{𝑏𝑆

(𝑖)
} and

𝑚𝑆
(𝐵+1)

∶= max{𝑏𝑆
(𝐵)

, for 𝑆 ∈ {𝑈 ,𝑉 } and 𝑖 ∈ (︀𝐵⌋︀, see Eqs. (2)-(3). Performing those computations

poses a challenge in the distributed setting, since they depend on data that is distributed among

the 𝐿 parties and cannot be shared due to privacy concerns.

The second step in Figure 2 poses no problem since it can be carried out by each party locally,

independently of others, once the bin boundaries𝑚𝑆
(𝑖)

, 𝑖 ∈ (︀𝐵 + 1⌋︀, 𝑆 ∈ {𝑈 ,𝑉 }, are computed. Even

though in that step the parties do not collaborate, they must agree upfront on 𝜆 (the repair tuning

parameter), see Eq. (4). Note that at this step, every 𝑃ℓ , ℓ ∈ (︀𝐿⌋︀, repairs the values of 𝐷
𝑉
ℓ (𝑋) that it

possesses, but it does not share the repaired values with anyone else.

As for the last step in Figure 2, there the parties need to learn a classifier on distributed data,

without sharing that data. Since this is, again, a computational problem that involves all of the

distributed dataset, privacy issues kick in. However, for such problems of privacy-preserving

distributed ML classification there are existing MPC-based solutions, e.g. [3, 69–71, 91].
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Protocol 1 provides a pseudo-code that summarizes our mechanism for fairness-driven collabo-

rative machine learning. It begins with the 𝐿 parties computing in a secure manner the sizes of the

two distributed datasets, 𝐷𝑈
and 𝐷𝑉

(Line 1). They do so without revealing information on the

sizes of the partial datasets that each party holds; we explain how this computation is carried out

in Section 4.3. Then, they agree on the two parameters that control the repair procedure — 𝐵 and

𝛿 (Line 2). Afterwards, they repair the non-sensitive attributes in each of the two groups (Lines

3-8). The main challenge here is to compute the bin boundaries (Line 5). That computation relies

on an MPC sub-protocol for computing the 𝑘th-ranked element in a distributed dataset. Such a

sub-protocol is described in Section 4.3. Finally, the parties perform the desired distributed machine

learning computation on the repaired version of the unified dataset (Line 9).

Protocol 1 A fairness-driven protocol for collaborative machine learning.

1: The 𝐿 collaborating parties, 𝑃1, . . . , 𝑃𝐿 , compute the number of individuals in the underlying

population𝑊 in each of the two groups — 𝑛𝑈 and 𝑛𝑉 .

2: The parties agree on the number of bins, 𝐵, and the repair tuning parameter 𝜆.

3: for all group 𝑆 ∈ {𝑈 ,𝑉 } do
4: for all non-sensitive attribute 𝑋 do
5: The parties engage in an MPC computation of the (𝐵 + 1) bin boundaries of the unified

multiset 𝐷𝑆(𝑋) (see Eqs. (2)+(3)).

6: Each party 𝑃ℓ , ℓ ∈ (︀𝐿⌋︀, repairs the values in 𝐷
𝑉
ℓ (𝑋) according to Eq. (4) and the computed

bin boundaries.

7: end for
8: end for
9: The parties engage in a distributed machine learning computation over the repaired datasets.

Therefore, we focus in the next section on the problem of privacy-preserving binning of a

distributed dataset. That computation consists of two MPC protocols: a simple one for computing

the number of entries in a distributed dataset (as done in Line 1 of Protocol 1) and a more involved

one for computing the 𝑘th-ranked element in such a dataset (as done (𝐵 + 1) times in Line 5 of

Protocol 1). In our discussion of those two MPC sub-protocols we omit the superscript that denotes

the group, since the computation is carried out in the same manner for each the two groups.

We conclude by noting that as cryptographic protocols usually operate over finite fields, it is

essential to convert all real data into integers before subjecting them to such computations. To

that end we apply the following simple procedure to convert real values into integers (with some

precision loss), prior to executing the protocol. If we are interested in preserving a precision of 𝑑

digits after the decimal point, we multiply each real value by 10
𝑑
and round the resulting value to

the nearest integer. After executing our mechanism, we divide the values by 10
𝑑
.

4.3 A protocol for computing the 𝑘th-ranked element in distributed datasets
4.3.1 Overview. In our setting there are 𝐿 parties, 𝑃ℓ , ℓ ∈ (︀𝐿⌋︀, each one holding a private dataset
𝐷ℓ that consists of 𝑛ℓ scalars. Let 𝑛 = ∑ℓ∈(︀𝐿⌋︀ 𝑛ℓ and let 𝑘 ∈ (︀𝑛⌋︀. The parties wish to compute in a

secure manner the 𝑘th-ranked element in 𝐷 = ⋃ℓ∈(︀𝐿⌋︀𝐷ℓ ; namely, the value 𝑥 ∈ 𝐷 such that exactly

𝑘 − 1 elements in 𝐷 are less than or equal to 𝑥 while 𝑛 − 𝑘 elements in 𝐷 are greater than or equal

to 𝑥 . Protocol 2 that is described below solves that problem. That is the protocol which is called

𝐵 + 1 times in Line 5 of Protocol 1 in order to compute the 𝑘th-ranked elements that constitute the

boundaries of the 𝐵 bins.
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The 𝐵 + 1 relevant values of 𝑘 are described in Section 4.1, see the last paragraph there and Eq.

(7). As we can see, those values of 𝑘 depend on 𝐵, as well as on 𝑛 = ∑ℓ∈(︀𝐿⌋︀ 𝑛ℓ . We, however, assume

that the sizes of the private datasets, 𝑛ℓ , ℓ ∈ (︀𝐿⌋︀ are kept secret. Below we clarify how the parties

securely compute 𝑛, without leaking any further information on 𝑛ℓ , ℓ ∈ (︀𝐿⌋︀.

Protocol 2, which we describe in the following, is based on the protocol template that was offered

by Aggarwal et al. in [92]. That protocol template left some MPC components unspecified, and we

suggest in Protocol 2 specific implementations of those components. Moreover, the protocol in [92]

assumed that the sizes of the private datasets, 𝑛ℓ , ℓ ∈ (︀𝐿⌋︀, are public. Our Protocol 2 keeps those

values private.

The main cryptographic shield on which Protocol 2 bases its security is secret sharing [93].

Specifically, each party 𝑃ℓ , ℓ ∈ (︀𝐿⌋︀, secret shares its private information (which are counts of records

in its own private dataset 𝐷ℓ ) among all parties using Shamir’s secret sharing scheme with the

threshold set to

𝑡 = ⟨︀(𝐿 + 1)⇑2⧹︀ . (9)

All subsequent computations are carried out on those secret shares by invoking suitable MPC

sub-protocols. With such a setting of the threshold, the protocol is secure under the assumption

of an honest majority; namely, that if some of the parties collude in attempt to recover the secret

shared information then their number is less than 𝐿⇑2.

Protocol 2 is designed to deal with both semi-honest and malicious parties (see Section 2.2 for

the definition of those notions). Specifically, Protocol 2 in its entirety solves the problem in a secure

manner for the malicious case, while if we remove from it Lines 3, 10, 15, and 18 that are marked

by [Mal.], the protocol solves the problem securely in the semi-honest case.

4.3.2 In preparation for running the protocol. Before running Protocol 2, each party 𝑃ℓ secret shares

𝑛ℓ among all parties using 𝑡-out-of-𝐿 Shamir’s threshold secret sharing scheme, with 𝑡 as in Eq. (9).

Then, each of the parties adds up all shares that it got in 𝑛ℓ for all ℓ ∈ (︀𝐿⌋︀. Owing to the linearity of

secret sharing, the parties obtain that way a 𝑡-out-of-𝐿 secret sharing of 𝑛 = ∑ℓ∈(︀𝐿⌋︀ 𝑛ℓ . Now, they

can publicly use any 𝑡 of those shares in order to reconstruct 𝑛. Hence, 𝑛ℓ , ℓ ∈ (︀𝐿⌋︀, are kept secret,

but 𝑛 is computed and made public. That is the computation that the parties perform in Line 1 of

Protocol 1.

In addition, the parties agree on the number of bins 𝐵. Once 𝑛 and 𝐵 are known, the sequence of

𝐵 + 1 ranks 𝑘 that determine the bin boundaries can be computed. (See Line 2 of Protocol 1.)

Finally, the parties jointly determine apriori lower and upper bounds, 𝛼 and 𝛽 , on all elements of

𝐷 . Now all is ready for the execution of Protocol 2 (which is executed in Line 5 of Protocol 1).

4.3.3 Semi-honest parties. We begin by describing the protocol for the semi-honest case; namely,

we ignore for now the lines marked by [Mal.].

The protocol computes the 𝑘th-ranked element by implementing a privacy-preserving binary

search. The lower and upper bounds of the search interval, denoted 𝑎 and 𝑏, are initialized in Line

1. A Boolean flag called ‘found’ is set to false in Line 2; it will be set to true once the 𝑘th-ranked
element is found and then the search will stop.

The main loop takes place in Lines 4-20. First,𝑚 is publicly set by all parties to the middle of the

current search interval (Line 5). Then, each party counts how many elements in its own private

dataset are smaller than𝑚 and how many are larger than𝑚; those two private counters are denoted

𝑥ℓ and 𝑦ℓ , respectively (Line 7). Subsequently, each party 𝑃ℓ performs secret sharing of those two

private counters among all parties (Line 8); as stated earlier, the secret sharing scheme is Shamir’s

𝑡-out-of-𝐿 scheme with 𝑡 as in Eq. (9).
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Protocol 2 Computing the 𝑘th-ranked element in a distributed dataset.

1: Set 𝑎 = 𝛼 , 𝑏 = 𝛽 .

2: Set found = false.
3: [Mal.] Set 𝑋ℓ = 𝑌ℓ = 0 for all ℓ ∈ (︀𝐿⌋︀.

4: repeat
5: Set𝑚 ← [︂(𝑎 + 𝑏)⇑2⌉︂.

6: for all ℓ ∈ (︀𝐿⌋︀ do
7: 𝑃ℓ sets 𝑥ℓ = ⋃︀{𝑢 ∈ 𝐷ℓ ∶ 𝑢 <𝑚}⋃︀ and 𝑦ℓ = ⋃︀{𝑢 ∈ 𝐷ℓ ∶ 𝑢 >𝑚}⋃︀.

8: 𝑃ℓ secret shares 𝑥ℓ and 𝑦ℓ among all parties.

9: end for
10: [Mal.] For each ℓ ∈ (︀𝐿⌋︀ the parties securely verify that 𝑥ℓ +𝑦ℓ ≤ 𝑛ℓ , 𝑥ℓ ≥ 𝑋ℓ , and 𝑦ℓ ≥ 𝑌ℓ .

11: if ∑ℓ∈(︀𝐿⌋︀ 𝑥ℓ ≤ 𝑘 − 1 and ∑ℓ∈(︀𝐿⌋︀𝑦ℓ ≤ 𝑛 − 𝑘 then
12: Set found = true.
13: else if ∑ℓ∈(︀𝐿⌋︀ 𝑥ℓ ≥ 𝑘 then
14: Set 𝑏 =𝑚 − 1.

15: [Mal.] Set 𝑌ℓ = 𝑛ℓ − 𝑥ℓ .

16: else if ∑ℓ∈(︀𝐿⌋︀𝑦ℓ ≥ 𝑛 − 𝑘 + 1 then
17: Set 𝑎 =𝑚 + 1.

18: [Mal.] Set 𝑋ℓ = 𝑛ℓ −𝑦ℓ .

19: end if
20: until found
21: Output𝑚.

Then (Line 11), the parties engage in an MPC sub-protocol to verify two inequalities. We defer

to a later stage the details of that sub-protocol. If both inequalities are verified then the current

value of𝑚 is the sought-after 𝑘th-ranked element. Therefore, we set the value of the Boolean flag

found to true so that the repeat loop will stop and issue the current value of𝑚 as the output.

Otherwise, the parties securely verify the inequality in Line 13. If it is verified then the overall

number of elements in the unified dataset 𝐷 that are smaller than𝑚 is at least 𝑘 . In that case we

can safely deduce that the value of the 𝑘th-ranked element is smaller than𝑚. Hence, we modify

the value of the upper bound on the 𝑘th-ranked element (Line 14) and stay in the repeat loop for

another iteration. Similarly, if the inequality in Line 16 is verified, then the parties update the lower

bound in the binary search (Line 17). The search thus proceeds until convergence.

It is easy to see that if all parties are semi-honest the search will converge to the correct value of

the 𝑘th-ranked element. Furthermore, given that the MPC sub-protocol that is invoked in Lines 11,

13 and 16 is perfectly secure (namely, that it only outputs a single bit that indicates whether the

inequality holds or not, and nothing beyond that), the parties only learn the sequence of updated

lower and upper bounds, 𝑎 and 𝑏. However, such information is implied by the computed output

and the apriori bounds 𝛼 and 𝛽 . Hence, the protocol does not leak any information to the interacting

parties apart from the computed output.

4.3.4 Malicious parties. We now turn our attention to the enhancements in Protocol 2 for the sake

of addressing potential malicious conduct. A malicious party 𝑃ℓ , ℓ ∈ (︀𝐿⌋︀, could sabotage the search

by submitting inconsistent values of 𝑥ℓ or 𝑦ℓ . Such a sabotage could prevent the convergence of the

protocol, or divert it to a wrong output. The added lines in the protocol offer a layer of protection

against such malicious conduct. Those enhancements to the protocol introduce two new counters

that are secret shared among all parties: 𝑋ℓ , that equals, in every stage of the protocol’s run, the
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number of elements in 𝐷ℓ that are smaller than 𝑎, and 𝑌ℓ that equals the number of elements in 𝐷ℓ

that are greater than 𝑏, ℓ ∈ (︀𝐿⌋︀.

Those two counters are initialized to zero (Line 3) since initially 𝑎 and 𝑏 are lower and upper

bounds on all elements in 𝐷ℓ for all ℓ ∈ (︀𝐿⌋︀. When the search interval is shrank to its lower half

(Lines 13-15) only 𝑌ℓ has to be updated. Its new value is set to 𝑛ℓ −𝑥ℓ , since 𝑥ℓ equals the number of

elements in 𝐷ℓ that are less than or equal the new upper bound 𝑏. Similarly, if the search interval is

shrank to its upper half (Lines 16-18), 𝑋ℓ is updated to equal 𝑛ℓ −𝑦ℓ .

The three verifications that are carried out in Line 10 check that all information that was provided

by 𝑃ℓ is consistent. Indeed, 𝑥ℓ +𝑦ℓ is supposed to be the number of elements in 𝐷ℓ that are strictly

smaller or larger than𝑚, and hence it should be at most 𝑛ℓ , which is the size of 𝐷ℓ that 𝑃ℓ had

reported in preparation for running this protocol through the secret shares that it distributed (see

Section 4.3.2). Since 𝑎 ≤𝑚 then {𝑢 ∈ 𝐷ℓ ∶ 𝑢 < 𝑎} ⊆ {𝑢 ∈ 𝐷ℓ ∶ 𝑢 <𝑚}, and therefore we should have

𝑥ℓ ≥ 𝑋ℓ . Same arguments apply for the third inequality that is verified in Line 10, namely, 𝑦ℓ ≥ 𝑌ℓ . It

can be shown that the verification of those three inequalities suffices. Namely, if the protocol ends

successfully and outputs some value𝑚, then the values provided by 𝑃ℓ , for any ℓ ∈ (︀𝐿⌋︀, during the

protocol’s run are consistent with some dataset 𝐷ℓ of size 𝑛ℓ , so that𝑚 is the 𝑘th-ranked element

in 𝐷 = ⋃ℓ∈(︀𝐿⌋︀𝐷ℓ . (See [92, Theorem 5]).

4.3.5 An MPC sub-protocol for verifying inequalities. Each of the four inequalities in Lines 11, 13

and 16 is equivalent to an inequality of the form 𝑣 > 0, where 𝑣 is an integer in which the parties

hold 𝑡-out-of-𝐿 secret shares. Furthermore, in all those inequalities 𝑣 is in the range (︀−𝑛,𝑛⌋︀. Let

us assume that the field Z𝑝 that underlies the secret sharing scheme is sufficiently large, and in

particular that 𝑝 > 2𝑛.

Lemma 4.1. Let 𝑛 > 0 and 𝑣 be two integers so that 𝑣 ∈ (︀−𝑛,𝑛⌋︀ and let 𝑝 > 2𝑛 be a prime. Then 𝑣 > 0

if and only if the LSB of (−2𝑣 mod 𝑝) is 1.

Proof. Assume that 𝑣 > 0, namely, that 𝑣 ∈ (0, 𝑛⌋︀. Hence, −2𝑣 ∈ (︀−2𝑛, 0). Therefore, as 2𝑛 < 𝑝 ,

(−2𝑣 mod 𝑝) = −2𝑣 + 𝑝 . As that number is odd, its LSB is 1. If, on the other hand, 𝑣 ≤ 0, then

𝑣 ∈ (︀−𝑛, 0⌋︀. Hence, −2𝑣 ∈ (︀0, 2𝑛⌋︀ ⊂ (︀0, 𝑝 − 1⌋︀. Therefore, (−2𝑣 mod 𝑝) = −2𝑣 . As that number is

even, its LSB is 0. □

Hence, in order to check that 𝑣 > 0, the parties need to check that the LSB of (−2𝑣 mod 𝑝) is 1.

To that end, Nishide and Ohta [94] suggested an MPC protocol for computing the LSB of a secret

shared value in a secure manner.

To illustrate the above course of action, let us consider the inequality in Line 11,∑ℓ∈(︀𝐿⌋︀ 𝑥ℓ ≤ 𝑘 − 1.

It is equivalent to 𝑣 > 0 where 𝑣 = 𝑘 −∑ℓ∈(︀𝐿⌋︀ 𝑥ℓ . As 𝑣 is a difference between two integers in the

range (︀0, 𝑛⌋︀ we infer that 𝑣 ∈ (︀−𝑛,𝑛⌋︀. Since each party 𝑃 𝑗 holds a share 𝑥ℓ(︀ 𝑗⌋︀ in 𝑥ℓ , for all 𝑗, ℓ ∈ (︀𝐿⌋︀,

then 𝑃 𝑗 can compute 𝑣(︀ 𝑗⌋︀ = 𝑘 −∑ℓ∈(︀𝐿⌋︀ 𝑥ℓ(︀ 𝑗⌋︀ and that would be its share in 𝑣 . Therefore, −2𝑣(︀ 𝑗⌋︀

would be 𝑃 𝑗 ’s share in −2𝑣 , 𝑗 ∈ (︀𝐿⌋︀ (all computations are done in Z𝑝 ). Those will be the shares that
the parties will input to the MPC sub-protocol for computing the LSB of −2𝑣 , which will indicate

whether 𝑣 > 0.

However, in the malicious case we cannot use the above solution since it relies on the assumption

that all secret shared values are smaller than or equal to 𝑛. Indeed, malicious parties may distribute

in Line 8 secret shares in values 𝑥ℓ and 𝑦ℓ where 𝑥ℓ , 𝑦ℓ or 𝑥ℓ +𝑦ℓ are greater than 𝑛, and then such

malicious conduct will sabotage the above suggested method for inequality verification. Hence, in

the malicious case, we suggest using another method for verifying inequalities that was suggested

in [94]. If 𝑢 and 𝑣 are two elements in Z𝑝 that are secret-shared among 𝑃1, . . . , 𝑃𝐿 using 𝑡-out-of-𝐿

Shamir’s threshold scheme, then that method enables the parties to verify the inequality 𝑢 < 𝑣

(when 𝑢 and 𝑣 are viewed as nonnegative integers) without learning any further information on
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those two numbers. That method does not rely on the assumption that 𝑢, 𝑣 ∈ (︀0, 𝑛⌋︀. However, it

involves three invocations of the LSB sub-protocol (instead of just one, as described earlier), hence

it is more costly. We omit further details of that computation; interested readers are referred to [94].

4.4 Privacy Analysis
Our mechanism, which is summarized in Protocol 1, begins with each party 𝑃ℓ , ℓ ∈ (︀𝐿⌋︀, holding its

share of the dataset, 𝐷ℓ , and ends with 𝑃ℓ holding the repaired version of 𝐷ℓ . The information that

needs to be protected is the original set of records 𝐷ℓ .

The only places during Protocol 1 in which the parties exchange messages relating to their

private datasets is in Lines 1 and 5. In Line 1 the parties perform a simple 𝑡-out-of-𝐿 secret sharing

of their private counters 𝑛ℓ (see Section 4.3.2). As the value of the threshold 𝑡 is set in Eq. (9) to be

greater than or equal to 𝐿⇑2, such secret sharing offers perfect security under the assumption of

honest majority.

As for Protocol 2 that is invoked in Line 5 of Protocol 1, both variants of that protocol, for the

semi-honest and for the malicious case, are perfectly secure, as argued in Sections 4.3.3 and 4.3.4.

Namely, the parties are unable to extract from their views during the execution of that protocol

anything beyond the computed output and what can be inferred from that output and their own

input on the private data of other parties. Hence, the only leakage of information in Protocol 1 is

the 𝐵 + 1 bin boundaries for each of the two groups, 𝑆 ∈ {𝑈 ,𝑉 }.

The bin boundaries allow the parties to infer some excessive information on the private data of

their peers. To illustrate the type of such inferences, let us consider one party 𝑃ℓ and bin number

𝑖 ∈ (︀𝐵⌋︀, in which all values are within the interval 𝐼 ∶= (︀𝑚
(𝑖),𝑚(𝑖+1)

⌋︀. The size of the bin is also

publicly known and it equals ⟨︀𝑛⇑𝐵⧹︀ or [︂𝑛⇑𝐵⌉︂. Hence, since 𝑃ℓ knows how many entries in its own

dataset are within the interval 𝐼 , it may infer the number of elements in 𝐷 ∖𝐷ℓ in 𝐼 . However, 𝑃ℓ
cannot make any specific inferences about any of the other parties, as it cannot tell how those

elements are spread between the other private datasets, nor can it link those records to specific

individuals. Hence, such an information leakage is arguably benign.

We observe that the leaked information increases when 𝐵 increases. When 𝐵 = 1, only the

minimal and maximal values in 𝐷(𝑋) are exposed to the collaborating parties, whereas if 𝐵 = 𝑛,

all of the values in 𝐷(𝑋) are exposed (but still, their allocation to parties or individuals is kept

secret). In Section 5, where we evaluate our method, we show that using a small number of bins

(e.g., 𝐵 = 3) enhances fairness considerably, while the marginal contribution of higher values of 𝐵

for fairness-enhancement are insignificant. Hence, it appears that using a small number of bins,

such as 𝐵 = 3, is the preferred choice, as it achieves a considerable enhancement of fairness, while

it entails very benign information leakages, as discussed above, and reduced communication and

computational costs, as it reduces the number of invocations of Protocol 2.

4.5 Computational and Communication Costs
The parameters that determine the computational and communication costs of Protocol 1 are:

● 𝐿 – number of parties.

● 𝑁𝑋 – the number of non-sensitive attributes.

● 𝑀 – a uniform bound on the range of possible values in each of the non-sensitive attributes.

(It is determined by the minimal and maximal values, 𝛼 and 𝛽 , in each of the non-sensitive

attributes).

● 𝑝 – the size of the underlying finite field in which all secret sharing takes place. Note that 𝑝

must be greater than 𝐿 as well as greater than 𝑛 = ⋃︀𝐷 ⋃︀. However, for the sake of performing

the secure comparison sub-protocol, we must select 𝑝 to be greater than 2𝑛 (see Lemma 4.1).
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● 𝐵 – the selected number of bins.

The main operations in Protocol 1 are:

(1) Two secure summation protocols to compute 𝑛𝑈 and 𝑛𝑉 . Each such protocol involves adding

𝐿 secret numbers in Z𝑝 (Line 1).

(2) (𝐵 + 1)𝑁𝑋 invocations of Protocol 2 (Line 5).

The secure summation protocol, for adding 𝐿 secret numbers in Z𝑝 , involves the following costs

per party: 𝐿 evaluations of a polynomial of degree 𝑡 − 1 over Z𝑝 and communicating messages

of 𝑂(𝐿 log𝑝) bits. Finally, it is necessary to perform a single Lagrange interpolation in order to

recover the required sum. As those computations are done just once (in Line 1), their effect on the

overall cost is negligible.

We therefore turn our attention to analyzing Protocol 2. The number of iterations in the repeat

loop is bounded by log𝑀 , as it is a binary search over the range (︀𝛼, 𝛽⌋︀, the size of which is bounded

by𝑀 . In each iteration there are 2𝐿 operations of secret sharing (Line 8) followed by 2-4 inequality

verifications in the semi-honest case (Lines 11,13,16) or 5-7 inequality verifications in the malicious

case (Lines 10,11,13,16).

Hence, the main bottleneck is in the inequality verifications. As explained in Section 4.3.5, such

verifications can be done by performing a single LSB computation over shared values in the semi-

honest case, or three such LSB computations in the malicious case. A single LSB computation of

a shared value in Z𝑝 involves performing 93 log𝑝 + 1 multiplications of two secret shared field

elements [94]. Finally, a single multiplication of two secret shared values requires performing two

secret sharings, each of which has a communication cost of 𝑂(𝐿 log𝑝) bits per party. The above

analysis implies that the overall communication cost is bounded by 𝑂(𝐵𝑁𝑋𝐿 log𝑀 log
2

𝑝). (The

computational cost is analyzed similarly but we omit further details as it would require a detailed

discussion of the LSB protocol and that is beyond the scope of the present work. Interested readers

may refer to [94] for those details.)

4.6 A concluding remark
The fairness enhancing mechanism of [16] is in fact a special case of our mechanism, where the

number of bins is set to 𝐵 = min{𝑛𝑈 , 𝑛𝑉 }. Namely, it equals the size of the smaller of the two groups

— the unprivileged group,𝑊𝑈
, and the privileged one,𝑊𝑉

. Using binning this way totally exposes

all records in the smaller group, and reveals too much information on the larger group. Hence,

such a course of action cannot be taken when privacy is of concern. Moreover, the computational

and communication costs of the mechanism depend linearly on 𝐵, as the number of invocations of

the costly MPC sub-protocol (Section 4.3) depends linearly on 𝐵 (see Section 4.5). Finally, as we

show in our experimental evaluation (see Section 5), using 𝐵 = 3 bins is sufficient for mitigating

unfairness; using larger numbers of bins barely contributes to the decrease in unfairness.

5 EVALUATION
5.1 Experimental Setting
In this section we present the experimental setting in terms of the datasets, the measures we used,

and the parameters’ space, and we also provide several implementation details.

Datasets
We evaluated the proposed method using several real-world datasets: the publicly available ProP-

ublica Recidivism dataset, the ProPublica Violent Recidivism dataset, and the Bank Marketing

dataset.
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Table 1. Confusion matrix

Predicted
"N" "P"

Actual N TN FP

P FN TP

ProPublica Recidivism Dataset. This dataset includes data from the COMPAS risk assessment system

(see [13, 95]). The dataset includes 10 attributes, such as the number of previous felonies, charge

degree, age, race, gender etc., and it has 6167 individual records. The target attribute indicates

whether an individual has recidivated (namely, was arrested again) after two years or not. The

sensitive attribute in this dataset is race. All Caucasians constitute the privileged group, while

all individuals of other races constitute the unprivileged group. We use the pre-processed files

provided by [96].

ProPublica Violent Recidivism Dataset. This dataset (see [13]) is similar to the ProPublica Recidivism

dataset mentioned above. It has the same set of 10 attributes, and the sensitive attribute is race.

However, this dataset contains 4010 individual records, and the target attribute indicates the

recidivism of a violent crime within two years. Here as well, we use the pre-processed files provided

by [96].

The Bank Marketing Dataset. This dataset contains information on subscriptions to term deposits in

a Portuguese banking institution (see [97]). It includes 41,188 individual records with 20 attributes.

In our evaluation we used the 10 attributes out of the 20 which are numeric. The target attribute

indicates whether an individual has subscribed to a term deposit. The sensitive attribute in this

case is the age. Individuals of ages below 25 and above 60 are considered as the unprivileged group

(as in [35]). This dataset is available at the UCI repository [98].

Measures
As mentioned, there is an inherent trade-off between prediction performance and fairness. We wish

to evaluate how this trade-off is reflected in the application of our method. To that end, consider

the confusion matrix shown in Table 1:

Accuracy. Similarly to many studies on algorithmic fairness, we use accuracy as a measure of

prediction performance. Accuracy is measured by the proportion of correct classifications, i.e.

(𝑇𝑁 +𝑇𝑃)⇑(𝑁 + 𝑃).

Fairness. For measuring fairness, we consider a measure based on equalized odds. As mentioned in

Section 2.1, one advantage of this measure (in contrast, for example, to demographic parity), is that

a perfectly accurate classifier will be considered fair. More specifically, we define the unfairness

measure 𝜑 ∶= ⋃︀𝐷𝐹𝑁𝑅⋃︀ + ⋃︀𝐷𝐹𝑃𝑅⋃︀, where ⋃︀𝐷𝐹𝑁𝑅⋃︀ (resp. ⋃︀𝐷𝐹𝑃𝑅⋃︀) is the absolute difference between

the FNR (resp. FPR) of the two groups, and FNR (resp. FPR) is the False Negative Rate (resp. False

Positive Rate) as defined below:

𝐹𝑁𝑅 =
𝐹𝑁

𝑃
=

𝐹𝑁

𝐹𝑁 +𝑇𝑃
, 𝐹𝑃𝑅 =

𝐹𝑃

𝑁
=

𝐹𝑃

𝐹𝑃 +𝑇𝑁
.

While the equalized odds measure dictates two separate measures, we use the sum of their

absolute values in order to obtain a single combined measure. Such a combined measure will allow

us an easier examination of the fairness-accuracy trade-off at later stages, where higher values of 𝜑

indicate lower levels of fairness (or higher levels of unfairness).
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Note that in the two ProPublica datasets, the value of "recidivated" is considered as the “posi-

tive" value, while in the case of the Bank Marketing dataset, a “positive" value indicates that the

corresponding individual has not subscribed to a term deposit service.

Distance. To better understand the repairing mechanism of our method, we also measure the

distances between the distributions of attributes within the two groups. We do so by computing

the earth mover’s distance (EMD) [99], divided by𝑀 (the size of the range of possible values of the

attribute, see Section 4.5).

Parameters’ Space
For our experiments, we examined varying values of parameters, as follows:

● Number of bins: 𝐵 ∈ {1, 2, 3, 4, 6, 8, 10}.

● Repair tuning parameter: 𝜆 ∈ {0.1, 0.2, . . . , 0.9, 1}.
● Number of parties: in the majority of our experiments we applied a procedure based on three

parties (𝐿 = 3); only for the sake of measuring runtimes, we used higher numbers of parties

(𝐿 ∈ {3, 4, 5, 6, 7}). Records were distributed among the 𝐿 parties randomly
3
.

The ML classifier in our experiments was Logistic Regression (for experiments with additional

classifiers we refer the reader to Appendix B). We used a constant ratio to split the dataset into

train set (66.7%) and test set (33.3%); splits were repeated 10 different times in a random manner,

and the reported results are the average over these 10 repetitions.

Implementation Details
Our method was implemented in Python assisted with the Virtual Ideal Functionality Framework

(VIFF) library for secure multi-party computations (see [100]). As noted above, our method was

applied separately on each of the non-sensitive attributes of the considered dataset, prior to the

training of an ML model. For our purpose herein – to examine the effects of our pre-process method,

we used a simple non-distributed non-private implementation of the ML algorithm.

All experiments were executed on a server running Windows Server 2008 R2, having two 6-cores

CPU processors (12 virtual CPUs) with a clock speed of 1.9GHz, and 128GB of RAM.

5.2 Results
We first evaluated the effect of our proposed method on unfairness and accuracy. In order to do so,

we executed the method using varying values of 𝜆 and 𝐵, as mentioned in the previous section,

and measured the resulting unfairness and accuracy values. To better understand the repairing

mechanism of our method, we also measured the resulting distance between the distributions of

attributes within the two groups. Recall that accuracy was measured by the proportion of correct

classifications, unfairness by 𝜑 , and distance by EMD.

Figure 5 shows the effect of the repair tuning parameter 𝜆 on the three considered measures for

each of the three considered datasets. Each row of charts represents a different dataset: ProPublica

Recidivism (top), Propublica Violent Recidivism (center), and Bank Marketing (bottom), while

each column of charts represents a different measure: distance (left), unfairness (center) and

accuracy (right). In each chart, the X-axis represents 𝜆, while the Y-axis represents the value of the

corresponding measure. Colors and line thickness represent the value of 𝐵, where thicker lines

represent higher values of 𝐵. Note that the distances are calculated for each attribute separately

3
Recall that our privacy enhancing mechanism ensures that the results of executing the fairness-enhancing mechanism are

identical to the case of a single non-distributed dataset, and therefore, the manner in which the dataset is distributed does

not matter.
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Fig. 5. The effect of the repair tuning parameter 𝜆 on distance, accuracy and unfairness. Increasing the value
of 𝜆 yields a considerable decrease of distance and, consequently, also a decrease of unfairness, with only a
minor compromise in accuracy.

and are then averaged over the set of attributes in each dataset. For all three measures, the reported

results represent an average over 10 train-test splits.

As can be seen from the figure, by using the proposedmethod with higher values of 𝜆, it is possible

to improve fairness considerably with only a minor compromise in accuracy. The considerable

reduction in unfairness is a result of reducing the distances between the distributions of attributes

within the two groups, as shown in the left column of charts in the figure. For example, in the case

of the ProPublica Recidivism dataset (top row charts), unfairness (top-middle chart) is reduced from

0.29 (𝜆 = 0.0) to 0.08 (𝜆 = 1.0) — a reduction by 72%; this is achieved with almost no compromise in

accuracy (top-right chart) that is reduced by only 1%. Similar behaviour can be seen with the other

datasets.

Figure 6 presents a similar analysis to the one presented in Figure 5 to assess the effect of the

number of bins 𝐵 on the three considered measures. Here, the X-axis of each chart represents the

value of 𝐵, while the Y-axis represents the value of the corresponding measure. Colors and line

thickness represent the value of 𝜆, where thicker lines represent higher values of 𝜆.

As can be seen from the figure, when increasing 𝐵, unfairness is reduced with only a minor

compromise in accuracy. However, increasing 𝐵 beyond 𝐵 = 3 has almost no effect on all three
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Fig. 6. The effect of the number of bins 𝐵 on distance, accuracy and unfairness. Increasing the value of 𝐵
leads to improvement in fairness with only a minor compromise in accuracy. However, increasing 𝐵 has a
diminishing marginal effect, namely, a large number of bins barely contributes to the decrease in unfairness.

measures. In particular, it barely contributes to the decrease in unfairness. For example, in the case

of the ProPublica Recidivism dataset (top row of charts), using 10 bins with 𝜆 ∈ {0.9, 1} obtains

about the same results as with only 3 bins.

The latter analysis indicates that it is preferable to use a small number of bins, around 𝐵 = 3.

Further increasing the number of bins does not contribute towards enhancing fairness, but it does

entail higher computational and communication costs, as well as increased leakage of information,

as discussed in Sections 4.4 and 4.5.

We then turned to evaluate the efficiency of our method, as reflected by its runtimes and

communication costs. Figure 7 shows the effect of 𝐵 on the runtime of our method, when considering

semi-honest parties and setting their number 𝐿 to 3. Specifically, we report the runtime for the

secure distributed computation of bin boundaries, for both of the groups. Again, each row of charts

represents a dataset. In each chart, the X-axis represents 𝐵, while the Y-axis represents runtime in

minutes. Line colors represent the attributes that were repaired in each dataset. In the legend of

each chart we indicate next to each such attribute its range of values. The figure shows that, in

accord with the analysis in Section 4.5, the runtime depends linearly on 𝐵.

In the next experiment (Figure 8) we tested the effect of 𝐿, the number of parties, on the runtime

of our method, in both cases of semi-honest (left column of charts) and malicious parties (right
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Fig. 7. The effect of the number of bins 𝐵 on runtime.

column of charts). In each chart, the X-axis represents 𝐿, while the Y-axis represents runtime in

minutes. Line colors represent the number of bins. For clarity, we present the runtime for repairing

one non-sensitive attribute in each of the datasets. For the ProPublica Recidivism and ProPublica

Violent Recidivism datasets, we selected the attribute “prior count”, while for the Bank Marketing

dataset, we selected the attribute “duration”. The figure shows that, as indicated by the analysis in

Section 4.5, the runtime depends linearly on 𝐿.

Finally, we measured the communication costs and report them in Figure 9, which is structured

similarly to Figure 8. Here too, the measured communication costs show linear dependence on 𝐿,

as analyzed in Section 4.5.

In summary, the runtimes and commuication costs of the proposed method, as demonstrated in

Figures 7–9, are practical, especially considering that the method is applied once as a pre-process

procedure.

To conclude, in the above experiments we showed that our method is able to improve fairness

considerably with only a minor compromise in accuracy, despite their inherent trade-off. We further

showed that privacy is highly maintained and that the information leakage is minimal, considering
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Fig. 8. The effect of the number of parties 𝐿 on runtime in the case of semi-honest parties (left) and malicious
parties (right).

the diminishing effect of the number of bins. Finally, we showed that the runtime of the proposed

method is feasible for a one-time pre-process procedure.

6 CONCLUSIONS
In this paper, we proposed a privacy-preserving pre-process mechanism for enhancing fairness of

collaborative ML algorithms. In particular, our method improves fairness by decreasing distances

between the distributions of attributes of the privileged and unprivileged groups. We use a binning

approach that enables the implementation of privacy-preserving enhancements, by means of MPC.

Being a pre-process mechanism, our method is not limited to a specific algorithm, and therefore it

can be used with any collaborative ML algorithm.
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Fig. 9. The effect of the number of parties 𝐿 on communication costs in the case of semi-honest parties (left)
and malicious parties (right).

An extensive evaluation that was conducted using three real-world datasets, revealed that

the proposed method is able to improve fairness considerably, with only a minor compromise in

accuracy. We also showed that using a small number of bins (e.g., 𝐵 = 3), it is possible to achieve that

considerable improvement of fairness, with very minor and benign leakage of information. Finally,

we demonstrated that the runtime of the proposed method is practical, especially considering that

it is executed once as a pre-process procedure.

Possible future research directions are as follows:

Data distribution. We assumed an horizontal data distribution setting, where each party holds

full records of a subset of the population. Forthcoming work may investigate a vertical distribution

scenario, where each party holds a subset of the information about all individuals, or a mixed

scenario that combines both horizontal and vertical distributions.
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Sensitive attribute. We assumed a single sensitive attribute that attains two possible values.

While the vast majority of studies in the algorithmic fairness literature makes the same assumptions,

future research should consider the case of multiple sensitive attributes that may attain more than

just two values.

Fairness mechanism.We proposed a private version of a pre-process fairness enhancing mech-

anism, inspired by [16]. While it is clear qualitatively how our fairness mechanism’s parameters, 𝐵

and 𝜆, affect fairness, we do not offer theoretical bounds on their effect. Establishing such theoreti-

cal bounds could be a promising direction for future research. Moreover, future efforts should be

invested in developing private versions of additional fairness enhancing mechanisms, including

in-process and post-process mechanisms such as [24, 30, 40].
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A SUMMARY OF NOTATIONS
● 𝐷 - the horizontally distributed dataset.

● 𝐿 - the number of parties.

● 𝑃ℓ - a party, ℓ ∈ (︀𝐿⌋︀ ∶= {1, . . . , 𝐿}.

● 𝑊 - a given population of individuals.

● 𝐴 - a set of attributes that relate to each of the individuals.

● 𝑆 - a sensitive attribute (e.g., race or gender). 𝑆 ∈ {𝑈 ,𝑉 }, where 𝑈 means unprivileged and 𝑉
means privileged.
● 𝑋 - the non-sensitive attribute.

● 𝑌 - the binary class attribute that needs to be predicted (e.g. "hire/no hire").

● 𝑊 𝑆
- the subset of individuals in𝑊 that are associated with group 𝑆 , 𝑆 ∈ {𝑈 ,𝑉 }.

● 𝑊ℓ - the subset of individuals in𝑊 whose information is held by the party 𝑃ℓ , ℓ ∈ (︀𝐿⌋︀.

● 𝑊 𝑆
ℓ -𝑊 𝑆

⋂𝑊ℓ .

● 𝑛 - ⋃︀𝑊 ⋃︀.

● 𝑛𝑆 - ⋃︀𝑊 𝑆 ⋃︀, for each 𝑆 ∈ {𝑈 ,𝑉 }.

● 𝑛ℓ - ⋃︀𝑊ℓ ⋃︀, for each ℓ ∈ (︀𝐿⌋︀.

● 𝑛𝑆ℓ - ⋃︀𝑊
𝑆
ℓ ⋃︀, for each 𝑆 ∈ {𝑈 ,𝑉 }, ℓ ∈ (︀𝐿⌋︀.

● 𝐷(𝑋) - the multiset of values appearing in the 𝑋 -column of 𝐷 .

● 𝐷𝑆(𝑋) - the multiset of values appearing in the 𝑋 -column of 𝐷 , restricted to the rows in𝑊 𝑆
,

for each 𝑆 ∈ {𝑈 ,𝑉 }.

● 𝐷ℓ(𝑋) - the multiset of values appearing in the 𝑋 -column of 𝐷 , restricted to the rows in𝑊ℓ ,

for each ℓ ∈ (︀𝐿⌋︀.

● 𝐷𝑆
ℓ (𝑋) - the multiset of values appearing in the 𝑋 -column of 𝐷 , restricted to the rows in𝑊 𝑆

ℓ ,

for each 𝑆 ∈ {𝑈 ,𝑉 }, ℓ ∈ (︀𝐿⌋︀.

● 𝐵 - the number of bins.

● 𝑏𝑆
(𝑖)

- the 𝑖𝑡ℎ bin in a sorted quantile-based binning scheme, dividing 𝐷𝑆(𝑋) to nearly equal-

sized bins.

● 𝑥 - an original value of an individual.

● 𝑥 - the repaired value of 𝑥 .

● 𝜆 - the repair tuning parameter (𝜆 ∈ (︀0, 1⌋︀).

● 𝐾𝑆
- the list of locations of boundaries for all bins in 𝐷𝑆(𝑋), for each 𝑆 ∈ {𝑈 ,𝑉 }.

● 𝑞𝑆 and 𝑟𝑆 - the quotient and remainder, respectively, when dividing 𝑛𝑆 by 𝐵, for each 𝑆 ∈

{𝑈 ,𝑉 }.

● 𝑚𝑆
(𝑖)

- min{𝑏𝑆
(𝑖)
}, for each 𝑆 ∈ {𝑈 ,𝑉 }, 𝑖 ∈ (︀𝐵⌋︀.

● 𝑚𝑆
(𝐵+1)

- max{𝑏𝑆
(𝐵)
}, for each 𝑆 ∈ {𝑈 ,𝑉 }.

● 𝑑 - the precision of digits after the decimal point.

● (︀𝛼, 𝛽⌋︀ - the range of possible values in 𝐷(𝑋) (after they were multiplied by 10
𝑑
, for some 𝑑

on which the parties agreed upfront, and rounded to the nearest integer).

● 𝑀 - the number of possible values in 𝐷(𝑋), i.e., 𝛽 − 𝛼 + 1.

● ⊍ - a disjoint union.



30 Dana Pessach, Tamir Tassa, and Erez Shmueli

B EXPERIMENTS WITH ADDITIONAL MACHINE LEARNING CLASSIFIERS
In Section 5.2 we presented experiments based on a Logistic Regression classifier. Here we present

results with additional classifiers — Random Forest and Neural Network.
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Fig. 10. The effect of the repair tuning parameter 𝜆 on distance, accuracy and unfairness (based on the
ProPublica dataset). Increasing the value of 𝜆 yields a considerable decrease of distance and, consequently,
also a decrease of unfairness, with only a minor compromise in accuracy.
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Fig. 11. The effect of the number of bins 𝐵 on distance, accuracy and unfairness (based on the ProPublica
dataset). Increasing the value of 𝐵 leads to improvement in fairness with only a minor compromise in accuracy.
However, increasing 𝐵 has a diminishing marginal effect, namely, a large number of bins barely contributes
to the decrease in unfairness.
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