
ON THE HOMOGENIZATION

OF OSCILLATORY SOLUTIONS

TO NONLINEAR CONVECTION-DIFFUSION EQUATIONS1

Eitan Tadmor and Tamir Tassa

Abstract
We study the behavior of oscillatory solutions to convection-diffusion problems, subject

to initial and forcing data with modulated oscillations. We quantify the weak convergence in
W−1,∞ to the ’expected’ averages and obtain a sharp W−1,∞-convergence rate of order O(ε)
– the small scale of the modulated oscillations. Moreover, in case the solution operator of
the equation is compact, this weak convergence is translated into a strong one. Examples
include nonlinear conservation laws, equations with nonlinear degenerate diffusion, etc. In
this context, we show how the regularizing effect built-in such compact cases smoothes out
initial oscillations and, in particular, outpaces the persisting generation of oscillations due
to the source term. This yields a precise description of the weakly convergent initial layer
which filters out the initial oscillations and enables the strong convergence in later times.

In memory of Haim Nessyahu, a dearest friend and research colleague.

1 Introduction

In this paper we study the behavior of oscillatory solutions for equations of the form

ut = K(u, ux)x + h(x, t), (x, t) ∈ R× R+ , (1.1)

where K = K(u, p), is a nondecreasing function in p := ux,

Kp ≥ 0 ∀(u, p) . (1.2)

1Research supported by ONR Grants #N0014-91-J-1343 ,#N00014-92-J- 1890, NSF Grant #DMS-91-
03104 and GIF Grant #I-0318-195.06/93.



This large family includes equations which mix both types – hyperbolic equations domi-
nated by purely convective terms (Kp ≡ 0), or, parabolic equations dominated by possibly
degenerate diffusive terms (Kp ≥ 0). Due to the possible degeneracy, weak entropy solu-
tions are sought; i.e., u = limδ↓0 uδ, where uδ is the classical solution which corresponds to
Kδ = K + δp.

We are concerned with the initial value problem for (1.1) where the initial data, uε
0(x),

and the forcing data, hε(x, t), are subject to modulated oscillations. Specifically, we are
interested in the behavior of uε, the entropy solution of

uε
t = K(uε, uε

x)x + hε(x, t), uε(x, 0) = uε
0(x), (1.3)

where the modulation of the initial and forcing data takes the form

uε
0(x) = u0(x,

x

ε
), hε(x, t) =

1

ελ
h(x,

x

ε
, t) , fixed λ ∈ [0, 1), ε ↓ 0. (1.4)

Assumptions.
{i} smoothness. The data, u0 and h, are assumed to have a minimal necessary amount of
smoothness. Thus, throughout the paper we assume u0(x, y) ∈ BVx(Ω×[0, 1]) and h(x, y, t) ∈
BVx(Ω(t)× [0, 1]), where Ω, Ω(t) denote bounded intervals in Rx, and BVx(Ω× [0, 1]) denotes
the space of all bounded functions which are 1-periodic in y, have a bounded variation in
x and are constant for x /∈ Ω (the last assumption covers the case of compactly supported
data).
{ii} compatibility. There holds

λ · h̄(x, t) ≡ 0, h̄(x, t) =
∫ 1

0
h(x, y, t)dy.

Thus, in the case of ’amplified’ modulation (λ > 0), the average h̄(x, t) is assumed to vanish
– a necessary compatibility requirement for the convergence statements stated below.

As ε ↓ 0, uε
0(x) and hε(x, t) approach the corresponding averages,

uε
0(x) ⇀ ū0(x) :=

∫ 1

0
u0(x, y)dy, hε(x, t) ⇀ h̄(x, t) :=

∫ 1

0
h(x, y, t)dy .

Note that this convergence statement (and similarly, the ones that follow), makes sense for
λ > 0 only when h̄(x, t) ≡ 0. Then, the entropy solution, uε(x, t), is shown to approach the
corresponding entropy solution of the homogenized problem

ut = K(u, ux)x + h̄(x, t), u(x, 0) = ū0(x) . (1.5)

We quantify the convergence rate of uε towards u in the weak W−1,∞-topology2. Furthermore,
in case the solution operator is compact, we are able to translate this weak convergence into
a strong one, with Lp-convergence rate estimates for every t > 0. We also provide a precise

2‖g‖W−1,r(a,b) := ‖ ∫ x

a
g‖Lr(a,b), r ∈ [1,∞]. In case we do not specify the interval we refer to the whole

real line.



description of the initial layer in which the weakly convergent oscillations are filtered out to
enable the strong convergence which follows.

The paper is organized as follows. In §2 we show the W−1,∞-convergence of uε to u,
proving a sharp convergence rate estimate of order O(ε1−λ) (Theorem 2.1). The proof is
based upon two ingredients: a precise W−1,∞-error estimate for modulated limits (Lemma
2.1), and a familiar W−1,∞-stability of (1.1) with respect to both the initial and forcing data
(Proposition 2.1).

This weak W−1,∞-convergence need not imply strong convergence unless the solution
operators associated with (1.3) and (1.5) are compact. Specifically, we seek solution operators
which are W s,r-regular, in the sense that they map initial data in L∞-bounded sets into
bounded sets in W s,r

loc , s > 0, r ∈ [1,∞] 3. Such a regularizing effect is clearly linked to the
nonlinear nature of the equations and is responsible for the immediate cancellation of initial
oscillations, as well as the forcing oscillations.

In §3 we note that if we are granted such regularizing property (mapping L∞ → W s,r, s >
0), then we may interpolate our weak W−1,∞-error estimate and the W s,r

loc -bound to obtain
strong Lp-convergence, uε(·, t) → u(·, t), t > 0, as well as convergence rate estimates. We
are therefore led to study the regularizing effect of convective-diffusive equations. There are
numerous works in this direction and we refer to [12] for a recent contribution and for a
partial list of relevant references.

In the next sections we demonstrate our results for a variety of convection-diffusion
equations (1.1) which are equipped with a certain W s,r-regularity. We begin, in §4, with
convex hyperbolic conservation laws which render BV -regular solutions. In §4.1 we deal
with the homogeneous case (no forcing term, h ≡ 0). Here, we obtain Lp-convergence
rate estimates of uε(·, t) to u(·, t) for a fixed t > 0, as well as a precise description of the
initial layer t ∼ 0. In §4.2 we study the inhomogeneous case. We show how the nonlinear
regularizing effect outpaces the persisting generation of modulated oscillations due to the
oscillatory forcing term, ε−λh(x, x/ε, t), and still yields strong convergence, though of a
slower rate than in the homogeneous case.

In §5 we consider various types of nonlinear, mixed convection-diffusion equations with
possibly degenerate diffusion, and we link their nonlinearity to an appropriate W s,r-regularity.
Our first examples, in §5.1, consist of degenerate parabolic equations augmenting a convex
hyperbolic flux. These equations are BV -regular and therefore admit convergence rate es-
timates similar to the ones obtained in §4 for the purely convective conservation laws. In
§5.2 we extend these results to a rather general class of nonlinear convective fluxes, where
convexity is relaxed by requiring only a non-vanishing high-order(≥ 2) derivative. Next, we
focus on the regularizing effect due to the nonlinearity of the degenerate diffusivity. In §5.3
we deal with the prototype porous media equation, ut = (um)xx, m > 1, u ≥ 0. In the
context of its regularizing effect, we identify m = 2 as a critical exponent: when m > 2 the
equation is known to posses W s,∞-regularity with s = 1

m−1
< 1, consult [1]; when m ≤ 2,

however, we have an improved W 2,1-regularity which results in better convergence rate esti-
mates. We close this section, in §5.4, with a revisit of the general mixed convection-diffusion
equations, this time quantifying their regularizing effect (and hence convergence estimates)

3Throughout this paper we identify W s,r with the homogeneous space Ẇ s,r, e.g. (for s < 1), the space
equipped with the seminorm ‖g‖W s,r := (

∫ ∫ |g(x)− g(y)|r/|x− y|1+srdxdy)1/r.



due to the nonlinearity of the degenerate diffusion. The W s,r- regularity of the general mixed
convective-diffusive case is analyzed in terms of the velocity averaging lemma along the lines
of [12].

Finally, in §6, we provide illustrated examples for our convergence analysis.

2 W−1,∞-Stability and Convergence

In this section we prove that uε, the solution of the oscillatory equation (1.3)–(1.4), converges
in W−1,∞ to u, the solution of the homogenized equation (1.5). To this end we start by
proving the following fundamental lemma which is interesting for its own sake:

Lemma 2.1 Assume that g(x, y) ∈ BVx(Ω × [0, 1]), Ω being a possibly unbounded interval
in Rx, and let gε(x) := g(x, x

ε
) and ḡ(x) :=

∫ 1
0 g(x, y)dy . Then

‖gε(x)− ḡ(x)‖W−1,∞ ≤ Cε, C = ‖g‖L1([0,1];BV (Rx)). (2.1)

Proof. For each fixed x0 ∈ Ω we let a = a(x0, ε) denote the largest value in the left
complement of Ω for which n := x0−a

ε
is integral (a = −∞ if Ω is left unbounded). This

enables us to break the primitive of gε(x)− ḡ(x) over consecutive intervals of size ε as follows:

∫ x0

−∞
(gε(x)− ḡ(x))dx =

n∑

j=−∞

∫

Ij

(gε(x)− ḡ(x))dx, Ij = [aj−1, aj], aj := a + jε.

Change of variable and the 1-periodicity of g(x, ·) yield that

∫

Ij

gε(x)dx = ε
∫ j+a/ε

j−1+a/ε
g(εy, y)dy = ε

∫ 1

0
g(yj, y

ε)dy, yj := aj−1 + εy ∈ Ij, yε :=
a

ε
+ y.

The 1-periodicity of g(x, ·) enables us to express ḡ(x) as ḡ(x) =
∫ 1
0 g(x, yε)dy; using Fubini’s

Theorem we get that

∫

Ij

ḡ(x)dx =
∫

Ij

∫ 1

0
g(x, yε)dydx =

∫ 1

0

∫

Ij

g(x, yε)dxdy =
∫ 1

0
εg̃j(y

ε)dy ,

where g̃j(y
ε) is some intermediate value in [ess infIj

g(·, yε), ess supIj
g(·, yε)]. Finally, using

the last three equalities, we conclude that

|
∫ x0

−∞
(gε(x)− ḡ(x))dx| ≤ ε

∫ 1

0

n∑

j=−∞
|g(yj, y

ε)− g̃j(y
ε)|dy ≤

ε
∫ 1

0

n∑

j=−∞
‖g(·, yε)‖BV (Ij) ≤ ‖g‖L1([0,1];BV (Rx)) · ε .

¤



Remarks.

1. Let f(x) ∈ BV and g(x, y) ∈ BVx(Ω × [0, 1]) have a zero average,
∫ 1
0 g(x, y)dy ≡ 0 .

Applying Lemma 2.1 to G(x, y) = f(x)g(x, y), we conclude that for every a and b there
exists a constant C such that

∣∣∣∣∣
∫ b

a
f(x)g(x,

x

ε
)dx

∣∣∣∣∣ ≤ Cε .

This result plays a key role in previous works on homogenization by B. Engquist and
T.Y. Hou (e.g., [6, Lemma 2.1], [9, Lemma 2.1]). Here we improve in both generality
and simplicity: the corresponding result in [6, 9] was restricted to f(x), g(x, y) ∈ C1.

2. The sharpness of estimate (2.1) is illustrated by the following example. Assume that
α(x) ∈ BV and β(y) is a bounded 2π-periodic function. Let ᾱ, β̄ denote, respectively,
the averages of α and β in [0, 2π]. Then, by taking g(x, y) = α(x)β(y) and ε = 1/n, it
follows from Lemma 2.1 that

lim
n→∞

1

2π

∫ 2π

0
α(x)β(nx)dx = ᾱ · β̄ ,

and furthermore, thanks to the bounded variation of α,

∣∣∣∣
1

2π

∫ 2π

0
α(x)β(nx)dx− ᾱ · β̄

∣∣∣∣ ≤
Const

n
.

This result generalizes and illuminates the Riemann-Lebesgue Lemma, where β(y) =
eiy (see also [21, Theorem (4.15)]).

3. In the simpler case with no x-dependence, i.e, for gε(x) = g(x
ε
), a shorter alternative

proof of O(ε) error estimate is provided in Theorem 8.1 in Appendix B below.

We proceed with a brief proof of the W−1,∞-stability of the solution operator associated
with (1.1) with respect to both the initial and forcing data. This W−1,∞-stability agrees with
the L∞-stability for viscosity solutions of Hamilton-Jacobi equations, consult M.G. Crandall,
H. Ishii and P.L. Lions [2]. We also refer the reader to [10] for (a qualitative statement of)
W−1,∞-stability in the context of of hyperbolic conservation laws.

Proposition 2.1 (W−1,∞-Stability). Let u and v be entropy solutions of the following equa-
tions:

ut = K(u, ux)x + g(x, t) ; (2.2)

vt = K(v, vx)x + h(x, t) . (2.3)

Then, for t > 0,

‖u(·, t)− v(·, t)‖W−1,∞ ≤ ‖u(·, 0)− v(·, 0)‖W−1,∞ +
∫ t

0
‖g(·, τ)− h(·, τ)‖W−1,∞dτ . (2.4)



Proof. Let uδ and vδ, δ > 0, be the corresponding regularized solutions, associated with
Kδ = K+δp. The primitive of the error, Eδ :=

∫ x
−∞(uδ−vδ), satisfies the convection-diffusion

equation
Eδ

t = q1 · Eδ
x + (q2 + δ) · Eδ

xx + D . (2.5)

Here, q1 = Ku(w1, u
δ
x), q2 = Kp(v

δ, w2), with appropriate mid-values wj, j = 1, 2, and
D =

∫ x
−∞(g(ξ, t)− h(ξ, t))dξ . Since, in view of (1.2), q2 ≥ 0, we conclude that

d

dt
‖Eδ(·, t)‖L∞ ≤ ‖D(·, t)‖L∞ ,

which, by letting δ go to zero, implies (2.4). ¤

Finally, combining Proposition 2.1 and Lemma 2.1, we conclude the following:

Theorem 2.1 (W−1,∞-Convergence). Let uε be the entropy solution of

uε
t = K(uε, uε

x)x + hε(x, t), uε(x, 0) = uε
0(x), (2.6)

with modulated initial and forcing data, uε
0(x) and hε(x, t), outlined in (1.4). Let u be the

entropy solution of the corresponding homogenized equation

ut = K(u, ux)x + h̄(x, t), u(x, 0) = ū0(x), (2.7)

associated with the respective averages,

ū0(x) =
∫ 1

0
u0(x, y)dy, h̄(x, t) =

∫ 1

0
h(x, y, t)dy .

Then, for every t > 0 there exists a constant C(t) > 0 such that

‖uε(·, t)− u(·, t)‖W−1,∞ ≤ C(t)ε1−λ . (2.8)

Moreover, in the homogeneous case (where h ≡ 0 and λ = 0) the constant C(t) does not
depend on t and we have

‖uε(·, t)− u(·, t)‖W−1,∞ ≤ Cε . (2.9)

Proof. Lemma 2.1 with g(x, y) = u0(x, y) and g(x, y) = h(x, y, t) with fixed t > 0, tells
us that

‖uε
0(x)− ū0(x)‖W−1,∞ ≤ Cε ; ‖ 1

ελ
h(x,

x

ε
, t)− 1

ελ
h̄(x, t)‖W−1,∞ ≤ 1

ελ
· c(t)ε .

By our assumption, since either λ or h̄ vanish, we have ε−λh̄ = h̄; hence

‖hε(x, t)− h̄‖W−1,∞ ≤ c(t)ε1−λ .

Finally, (2.8) and (2.9) follow in view of Proposition 2.1 with C(t) = C +
∫ t
0 c(τ)dτ . ¤

Remark. We may extend Theorem 2.1 by allowing amplified initial data; i.e., uε
0 =

ε−µu0(x, x
ε
) with fixed µ ∈ [0, 1) such that µ · ū0 ≡ 0. In that case, the W−1,∞-error in

(2.8) would be of order O(ε1−max(µ,λ)).



3 Strong Convergence to the Homogenized Solution

Our aim in this section is to translate the weak W−1,∞-convergence rate estimate, (2.8),
into strong Lp-convergence rate estimates. To this end we focus our attention on nonlinear
equations for which the solution operator is compact. Specifically, we concentrate on solution
operators, S(t) : u(·, 0) 7→ u(·, t), which map bounded sets in L∞ into bounded sets in the
regularity spaces, W s,r

loc , s > 0, 1 ≤ r ≤ ∞. This compactness is clearly of a nonlinear nature
and it implies that the solution operator immediately cancels out oscillations which may
have been present at t = 0. For future reference, we refer to such equations as W s,r-regular.
We remark that nonlinearity is essential for such W s,r-regularity in the scalar case. For
the interaction of a linearly degenerate field with oscillatory nonlinear fields in hyperbolic
systems, we refer to [3],[15] and the error estimate in [8].

The following theorem translates, for W s,r-regular equations, the weak W−1,∞-convergence
into strong Lp-convergence rate estimates.

Theorem 3.1 Let uε be the solution of equation (2.6) subject to modulated data, (1.4), and
assume that the equation possesses a W s,r-regularizing effect. Then, uε converges to u – the
solution of the homogenized equation (2.7), and the following error estimates hold

‖uε(·, t)− u(·, t)‖Lp(Ω) ≤ C ·Bs,r
ε (t)1−θ · εθ(1−λ) ∀p ∈ [1, (

1

r
− s)−1

+ ] . (3.1)

Here, θ, p∗ and Bs,r
ε are given by

θ =
1
p∗
− 1

r
+ s

1− 1
r

+ s
∈ [0, 1], p∗ := max{p, r(s + 1)} , (3.2)

Bs,r
ε (t) = ‖uε(·, t)− u(·, t)‖W s,r , (3.3)

and C is some constant which depends on p, |Ω| 1p− 1
p∗ and t.

Proof. By Gagliardo-Nirenberg inequality, e.g., [7, Theorem 9.3], interpolation between
the W−1,∞ and W s,r-bounds yields for the intermediate Lp-norms,

‖v‖Lp ≤ cp · ‖v‖θ
W−1,∞‖v‖1−θ

W s,r , θ =
1
p
− 1

r
+ s

1− 1
r

+ s
; (3.4)

this inequality holds for all p ∈ [r(s + 1), (1
r
− s)−1

+ ]. Since by our assumption the solution
operator associated with (2.6) is W s,r-regular, so does the solution operator associated with
(2.7), and hence their difference is bounded, (3.3). We may now use (3.4) with v = uε(·, t)−
u(·, t), together with the W−1,∞-error estimate, (2.8), to conclude the Lp-error estimate
(3.1) for all p ≥ r(s + 1) in the relevant range. For the remaining values of p < r(s + 1),
the Lp-errors are dominated by the one obtained already for the Lr(s+1)-norm, ‖ · ‖Lp(Ω) ≤
|Ω| 1p− 1

r(s+1)‖ · ‖Lr(s+1)(Ω) . ¤Moreover, on p,

The particular homogeneous case, h ≡ 0, where the oscillations are introduced only at
t = 0 via the initial data, is of special interest. In this case, the solution operator of (2.6) does



not depend on ε and coincides with that of (2.7). Since the initial data for those equations,
u0(x, x

ε
) and ū0(x), are uniformly bounded in L∞, we conclude that Bs,r

ε (t), given in (3.3),
is uniformly bounded with respect to ε. Hence, we arrive at the following simplified version
of Theorem 3.1 for homogeneous problems:

Corollary 3.1 (Initial Oscillations). Under the assumptions of Theorem 2.1, if equations
(2.6) and (2.7) are homogeneous and W s,r-regular, then for every t > 0 and p ∈ [1, (1

r
−s)−1

+ ]
there exists a constant C such that

‖uε(·, t)− u(·, t)‖Lp(Ω) ≤ C · εθ , (3.5)

where θ is given in (3.2).

In the inhomogeneous case, the solution operator of (2.6) depends on ε. Hence, due to
the persisting generation of oscillations by the oscillatory source term, ε−λh(x, x/ε, t), the
W s,r-bound, Bs,r

ε (t), may grow when ε ↓ 0. Therefore, in order to have strong convergence
in this case, we need a moderate growth of Bs,r

ε (t) so that Bs,r
ε (t)1−θεθ(1−λ) −→

ε→0
0 .

In the following sections we give examples of equations, both hyperbolic and parabolic,
homogeneous and inhomogeneous, which are W s,r- regular and derive strong convergence
estimates for them.

4 Applications to Hyperbolic Conservation Laws

In this section we demonstrate our results in the context of hyperbolic conservation laws
with convex flux f ,

ut + f(u)x = h, f ′′ ≥ α > 0 .

The convexity of the flux f implies that these equations are BV - regular – consult Proposition
4.1 below. Granted this BV -regularity which we identify with the W 1,1-regularity, we may
invoke the Lp-error estimates (3.1)–(3.3) which now read,

‖uε(·, t)− u(·, t)‖Lp(Ω) ≤ C ·Bε(t)
1− 1

p∗ · ε 1−λ
p∗ ∀p ∈ [1,∞) ; p∗ := max{p, 2}. (4.1)

Here, Bε(t) abbreviates the BV -size of the difference,

Bε(t) = B1,1
ε (t) = ‖uε(·, t)− u(·, t)‖BV , (4.2)

and the constant C depends on p, |Ω| 1p− 1
p∗ , and (in the inhomogeneous case) also on t.

In the remaining of this section we take a closer look at the convergence rate estimate (4.1).
In §4.1 we study the homogeneous case (h ≡ 0); §4.2 is devoted for the more intricate case
with inhomogeneous oscillatory data.



4.1 The Homogeneous Case

Let uε and u be the entropy solutions of the corresponding initial value problems,

uε
t + f(uε)x = 0, uε(x, 0) = u0(x,

x

ε
) , (4.3)

ut + f(u)x = 0, u(x, 0) = ū0(x) =
∫ 1

0
u0(x, y)dy , (4.4)

where, as usual, u0 ∈ BVx(Ω× [0, 1]). Since uε(·, 0)−u(·, 0) vanish outside Ω, uε(·, t)−u(·, t)
is compactly supported, say on Ω(t),∀t > 0 (thanks to the finite speed of propagation), and
therefore,

Bε(t) = ‖uε(·, t)− u(·, t)‖BV ≤ ‖uε(·, t)‖BV (Ω(t)) + ‖u(·, t)‖BV (Ω(t)) . (4.5)

If we let D denote the difference between the far right and far left values of u(·, t) and
uε(·, t), then the BV -norms of uε(·, t) and of u(·, t) can be upper-bounded in terms of their
Lip+-(semi)-norms,4

‖uε(·, t)‖BV (Ω(t)) ≤ D + 2|Ω(t)| · ‖uε(·, t)‖Lip+ , ‖u(·, t)‖BV (Ω(t)) ≤ D + 2|Ω(t)| · ‖u(·, t)‖Lip+ ,
(4.6)

and since f ′′ ≥ α > 0, both u and uε are Lip+-stable – consult e.g. [16],

‖u(·, t)‖Lip+ ≤ (‖u(·, 0)‖−1
Lip+ + αt)−1 , ‖uε(·, t)‖Lip+ ≤ (‖uε(·, 0)‖−1

Lip+ + αt)−1 . (4.7)

Finally, since ‖u(·, 0)‖Lip+ ≤ O(1) and ‖uε(·, 0)‖Lip+ ≤ O(ε−1), we conclude by (4.5)–(4.7),
that the term Bε(t) in (4.1) does not exceed

Bε(t) ≤ 2D + Const · |Ω(t)| · (αt +O(ε))−1 . (4.8)

We now distinguish between three different regimes:

(1) Small t > 0 – the initial layer.
For small values of t we get by (4.1) and (4.8) that

‖uε(·, t)− u(·, t)‖Lp ∼ (t + ε)
1

p∗−1 · ε 1
p∗ ∀p ∈ [1,∞).

Hence, for a fixed value of ε > 0, the initial layer is of width O(ε). More precisely, the width

of the initial layer in which there is no strong Lp-convergence is O(ε
1

p∗−1 ).

(2) Fixed t > 0 – cancellation of oscillations.
B. Engquist and W. E proved the strong convergence, uε(·, t) → u(·, t) in L1

loc(R), ∀t > 0,
[5, Theorem 4.1]. Here, we are able to quantify the convergence rate in Lp, 1 ≤ p ≤ ∞,
whenever the flux f is convex: the convergence rate implied by (4.1) and (4.8) is bounded
by

‖uε(·, t)− u(·, t)‖Lp ≤ Const · ε 1
p∗ p∗ = max{p, 2} ∀p ∈ [1,∞) . (4.9)

4Lip+ abbreviates the semi-norm, ‖w‖Lip+ := supx 6=y

(
w(x)−w(y)

x−y

)
+
.



Remarks.

1. The convergence result in [5, §4] assumes the nonlinearity of f to be weaker than
convexity. An extension of the W s,r-regularity (which in turn implies strong Lp-
convergence estimates) to a larger family of nonlinear fluxes in the spirit of [5] is
outlined in §5.2 below.

2. A further improvement of (4.9) is available whereever the homogenized solution is
smooth. To this end we employ a localized version of a one-sided interpolation in-
equality due to [18], stating that

‖v‖L∞
loc
≤ Const · ‖v‖

1
2

W−1,∞
loc

‖v‖
1
2

Lip+
loc

. (4.10)

We remark that (4.10) is the analogue of Gagliardo-Nirenberg inequality (3.4) with p =
r = ∞, s = 1. However, here only one-sided bound (on the first derivative) is assumed.
Such local error estimates in the presence of one-sided bounds were first used in [16,
§4].
Equipped with (4.10), we conclude that in any interval of C1- smoothness of u(·, t),
the one-sided Lip+-bound of the difference ‖uε(·, t) − u(·, t)‖Lip+(Ω) is bounded inde-
pendently of ε. This, together with (2.9) imply that

|uε(x, t)− u(x, t)| ≤ Const · |u(·, t)|C1
loc(x)

· ε 1
2 ,

which improves estimate (4.9).

The one-sided inequality (4.10) may be used similarly to localize the strong error
estimates discussed below. We omit the details.

(3) Large t > 0 – asymptotic behavior.
We fix ε > 0 and consider large values of t > 0. For simplicity, let us concentrate on

the case where the initial data admits the same constant value outside (the left and right of
–) Ω, say u0|Ωc ≡ A. In this case, the constant D in (4.8) vanishes, and the time decay of
‖uε(·, t)‖BV implies that the solution tends to its constant initial average, uε(·, t ↑ ∞) → A.
The error estimates (4.1) and (4.8) then imply that

‖uε(·, t)− u(·, t)‖Lp ∼ |Ω(t)|1+ 1
p
− 2

p∗ t
1

p∗−1 ∀p ∈ [1,∞]. (4.11)

Since |Ω(t)| = |Ω(0)|+O(t
1
2 ), e.g. [11], we conclude that

‖uε(·, t)− u(·, t)‖Lp ≤ O(t
1
2
( 1

p
−1)) ∀p ∈ [1,∞]. (4.12)

In particular, (4.12) with p = ∞ yields a uniform error estimate of order O(t−
1
2 ). In fact,

this reflects the uniform large time decay of ‖u(·, t)− A‖L∞ and ‖uε(·, t)− A‖L∞ – each of

which decays like O(t−
1
2 ).



4.2 The Inhomogeneous Case

Let uε and u be the entropy solutions of the following initial value problems,

uε
t + f(uε)x =

1

ελ
h(x,

x

ε
, t), uε(x, 0) = u0(x,

x

ε
) ; (4.13)

ut + f(u)x = h̄(x, t) :=
∫ 1

0
h(x, y, t)dy, u(x, 0) = ū0(x) :=

∫ 1

0
u0(x, y)dy , (4.14)

with u0(x, y), h(x, y, t) as in (1.4) and f ′′ ≥ α > 0. Recall our assumption that either
λ or h̄ vanish, and in any case, λ < 1. The case λ = 1 is different, consult [4]: in this
context, E and Serre provided a rigorous justification of the asymptotic expansion (under
extra compatibility requirements), uε(x, t) ∼ U(x, x/ε, t).

We begin by studying the Lip+-behavior in the presence of an oscillatory force. To
this end we state the following Lip+-stability estimate for inhomogeneous conservation laws,
which is a special case of Proposition 7.1 in §7.

Proposition 4.1 Let v be the entropy solution of

vt + f(v)x = g(x, t), f ′′(v) ≥ α , (4.15)

subject to the initial condition v(x, 0) = v0(x). Then

‖v(·, t)‖Lip+ ≤ c · ‖v0‖Lip+ + c + (‖v0‖Lip+ − c)e−2αct

‖v0‖Lip+ + c− (‖v0‖Lip+ − c)e−2αct
≤ c · 1 + e−2αct

1− e−2αct
, (4.16)

where

c = c(t) := max
0≤τ≤t

√
‖g(·, τ)‖Lip+

α
. (4.17)

Remarks.

1. In the particular case of homogeneous data, g ≡ c = 0, Proposition 4.1 recovers the
usual homogeneous Lip+-decay (4.7).

2. Key features of Proposition 4.1 to be used later are
{i} that the dependence of the Lip+-bound on the inhomogeneous term, ‖g‖Lip+ , is

proportional to the square root of the latter, c ∼
√
‖g‖Lip+ , rather than the expected

‖g‖Lip+ .
{ii} that the second upper bound for ‖v(·, t)‖Lip+ on the right of (4.16) is independent
of the initial data (and hence, even if the initial data was Lip+-unbounded, the solution
v(·, t) will be Lip+-bounded for all t > 0.)



Corollary 4.1 (Lip+-estimate). Let uε be the entropy solution of (4.13). Then for any fixed
t > 0 it holds that

‖uε(·, t)‖Lip+ ≤ O(ε−
1+λ

2 ) . (4.18)

Proof. Since ‖uε(·, 0)‖Lip+ ≤ O(ε−1) and, for any fixed t > 0, ‖ε−λh(·, ·/ε, t)‖Lip+ ≤
O(ε−(1+λ)), (4.18) follows from (4.16). ¤

Remark. We recall that in the absence of a forcing term, the convexity of f implies
according to (4.7), that ‖uε(·, t)‖Lip+ ≤ O(1). If, on the other hand, f does not render
any regularizing effect (such as linear f ’s), then the presence of such an oscillatory forcing
term implies ‖uε(·, t)‖Lip+ ∼ O(ε−(1+λ). With this in mind, Corollary 4.1 states that the
O(ε−(1+λ))-modulated oscillations due to the forcing term are relaxed, thanks to the convexity

of the equation, resulting in Lip+ bound of order O(ε−
1+λ

2 ).

Since ‖u(·, t)‖Lip+ is independent of ε we conclude, in view of (4.5), (4.6) and Corollary
4.1, the BV -upper bound

Bε(t) = ‖uε − u‖BV ≤ O(ε−
1+λ

2 ) . (4.19)

Though estimate (4.19) does not provide a Bε(t)-bound which remains bounded as ε ↓ 0,
it suffices in order to obtain strong Lp-convergence. Indeed, combining it with the Lp-error
estimates (4.1) we conclude the following.

Proposition 4.2 Let uε and u be the entropy solutions of (4.13) and (4.14), respectively.
Then the following Lp-error estimates hold for every fixed t > 0:

‖uε(·, t)− u(·, t)‖Lp ≤ Const · ε 3−λ
2p∗ −

1+λ
2 p∗ = max{p, 2}, (4.20)

We conclude with the following remarks.

{i} In case λ = 0 we obtain an error bound of order O(ε
3

2p∗−
1
2 ). Comparing this to the

analogous estimate in the homogeneous case, (4.9), we see that the oscillatory source term,
h(x, x

ε
, t), decelerates the rate of convergence; moreover, the error bound in (4.20) (with

λ = 0) is limited to strong Lp-convergence as long as p < 3.
{ii} In case the forcing oscillations are amplified (λ > 0) we obtain an L2-estimate of

order O(ε
1−3λ

4 ). In this case (4.20) is limited to strong L2-convergence as long as 0 < λ < 1
3
.

In general, (4.20) is limited to strong Lp-convergence as long as p∗ < 3−λ
1+λ

.
{iii} A final note on the initial layer: using (4.16)– (4.17), we may study the behavior of

‖uε(·, t)‖Lip+ and, therefore, also of Bε(t) as t ↓ 0 and find that Bε(t ∼ εη) ∼ ε−max(η,(1+λ)/2).
With that and (4.1) it is possible to determine the width of the initial layer near t = 0, in
which there is no strong Lp-convergence. A simple though tedious computation which we

omit shows that the width of the initial layer is O(ε
1−λ
p∗−1 ) (where p∗ < 3−λ

1+λ
). Note that when

λ = 0, it is of the same order as in the homogeneous case, namely, O(ε
1

p∗−1 ).



5 Applications to Convection-Diffusion Equations

Here we demonstrate our results in the context of convection-diffusion equations of the form,

uε
t + f(uε)x = Q(uε, pε)x , Qp ≥ 0 ; uε(x, 0) = u0(x,

x

ε
). (5.1)

Thus, here we rewrite (1.1) with K(u, p) = Q(u, p)− f(u) where we distinguish between the
convective flux, f(u), and the diffusive part, Q(u, p). We concentrate on the homogeneous
case and obtain strong convergence rate estimates of the entropy solution which corresponds
to the oscillatory initial data,uε(·, t), to the entropy solution which corresponds to the aver-
aged data, u(·, t). equations A similar program can be carried out for convection-diffusion
equations in the presence of oscillatory forcing terms.

Note that in case of uniform parabolicity, Qp ≥ Const > 0, the solution becomes C∞-
smooth at t > 0 and therefore equation (5.1) is W s,∞-regular for all s > 0. This optimal
regularity implies, in view of Theorem 3.1, the full recovery of strong convergence of first-
order,

‖uε(·, t)− u(·, t)‖L∞
loc
≤ Const · ε .

Consequently, our main concern below is with degenerate diffusivity, where we separate our
discussion to two types of equations: those dominated by a nonlinear convective flux (in §5.1
and §5.2), and those whose regularizing effect is due to a degenerate diffusive term (in §5.3
and §5.4).

5.1 Convection-diffusion equations with convex flux

We begin with examples of convective-diffusive equations which are dominated by a convex
flux, f ′′ ≥ α > 0. The convexity of the convective flux enables us to prove, in §7 below, the
Lip+-stability of those equations. As in §4, this Lip+-stability implies BV -regularity which
in turn yields error estimate (4.9),

‖uε(·, t)− u(·, t)‖Lp ≤ Const · ε 1
p∗ p∗ = max{p, 2} ∀p ∈ [1,∞) . (5.2)

Let us quote two examples. First, convex conservation laws augmented with possibly
degenerate viscosity,

ut + f(u)x = Q(u)xx, f ′′ ≥ α > 0 , Q′ ≥ 0 ≥ Q′′′. (5.3)

For instance, the convective porous media equation which consists of a convex flux augmented
with subquadratic diffusion, Q(u) = cum, 1 ≤ m ≤ 2 (u ≥ 0), falls into this category.
As a second example we mention conservation laws with degenerate pseudo-viscosity, [14],

ut + f(u)x = Q(ux)x, f ′′ ≥ α > 0 , Q′ ≥ 0 . (5.4)

The Lip+-stability of (5.3) and (5.4) is a consequence of Proposition 7.1, with K(u, p) =
Q′(u)p− f(u) in the first case and K(u, p) = Q(p)− f(u) in the second case; in both cases
Kuu ≤ −α < 0 for all p ≥ 0 so that the requirement (7.3) for Lip+-stability holds.



5.2 Convection-diffusion equations with general nonlinear flux

We consider the viscous conservation law (5.3),

ut + f(u)x = Q(u)xx, Q′ ≥ 0. (5.5)

This time, convexity is relaxed by assuming the following:
Assumption (nonlinear hyperbolic flux). The flux f is nonlinear in the sense it has some
high-order nonvanishing derivative; i.e., there exists k ≥ 2 such that

f (k)(v) 6= 0 ∀v. (5.6)

According to [12, Theorem 4], the convection-diffusion equation (5.1) is W s,1-regular with
s = 1

2k−1
, and Corollary 3.1 yields the error estimate

‖uε(·, t)− u(·, t)‖Lp ≤ Const.





ε
s

s+1 ∀p ∈ [1, s + 1) ,

ε
1−p(1−s)

sp ∀p ∈ [s + 1, 1
1−s

) .

(5.7)

Remark. The regularity result stated above is not sharp: as noted in [12] one expects
W s,1-regularity of order s = 1

k−1
. In this case one obtains an L1-error estimate of order

O(ε
1
k ). Also, for convex fluxes (k = 2, s = 1), one recovers the Lp-error estimate of order

O(ε
1

p∗ ) stated in (5.2).

5.3 The Porous Media Equation

Here, we consider the porous media equation,

ut = (um)xx , u ≥ 0 , m > 1 , (5.8)

as a prototype model example for parabolic, ’convection-free’ equations with degenerate
diffusion.

D.G. Aronson, [1], proved that for every t > 0, u(·, t) is uniformly Hölder continuous
with Hölder exponent s = min{1, (m− 1)−1} (a generalization for convective porous media
type equations can be found in [19]).

In case m ≥ 2, it implies that (5.8) is W s,∞- regular, s = (m − 1)−1 < 1. With this
Hölder W s,∞-regularity, the Lp-error estimates (3.1)–(3.3) take the form:

‖uε(·, t)− u(·, t)‖Lp(Ω) ≤ C ·Bε(t)
1

s+1 · ε s
s+1 ∀p ∈ [1,∞], (5.9)

where Bε(t) = ‖uε(·, t)− u(·, t)‖W s,∞ and the constant C depends on p and |Ω| 1p . Since the
last upper-bound is independent of p, we summarize the case of m ≥ 2 with a uniform error
estimate

‖uε(·, t)− u(·, t)‖L∞(Ω) ≤ Const · ε 1
m m ≥ 2. (5.10)



The case m ≤ 2 is different (note that m = 2 is already hinted as a critical exponent
in example (5.3) where Q(u) = cum satisfies the condition Q′′′ ≤ 0 only if m ≤ 2). In this
case, Aronson’s result tells us that the porous media equation with subquadratic diffusion
is W 1,∞-regular. We claim that in fact more is true, namely, that the solution operator of
(5.8) with m ≤ 2 is even W 2,1-regular:

Proposition 5.1 Let u ≥ 0 be the entropy solution of

ut = (um)xx , m ≤ 2 , u(·, 0) = u0 ∈ L∞(Ω) , (5.11)

where, as usual, u0

∣∣∣
Ωc
≡ Const. Then, for every t > 0, ‖uxx(·, t)‖L1 < ∞.

Proof. We recall that the pressure, v := m
m−1

um−1, satisfies the one sided estimate [20,
Proposition 5]

vxx ≥ − 1

(m + 1)t
. (5.12)

Next, we invoke the identity,

vxx = mum−2uxx + m(m− 2)um−3u2
x . (5.13)

Since m ≤ 2, the second term on the right of (5.13) is nonpositive. Hence, we conclude in
view of (5.12) and (5.13) that

um−2uxx ≥ − 1

m(m + 1)t
. (5.14)

Using the maximum principle and, once more, that m ≤ 2, we conclude by (5.14) that

uxx ≥ − u2−m

m(m + 1)t
≥ − ‖u0‖2−m

L∞

m(m + 1)t
. (5.15)

The fact that equation (5.11) is conservative – which we express as
∫
R(uxx)+dx =

∫
R(uxx)−dx,

implies

‖uxx(·, t)‖L1 = 2
∫

R
|(uxx)−|dx . (5.16)

Due to the finite speed of propagation, u(·, t) is constant outside some bounded interval Ω(t)
and therefore uxx(·, t) is compactly supported on Ω(t). Hence, (5.15) and (5.16) imply

‖uxx(·, t)‖L1 = 2
∫

Ω(t)
|(uxx)−|dx ≤ 2|Ω(t)| ‖u0‖2−m

L∞

m(m + 1)t
(5.17)

and we are done. ¤

Equipped with the W 2,1-regularity derived in Proposition 5.1, the Lp-error estimates
(3.1)–(3.3) take the form

‖uε(·, t)− u(·, t)‖Lp(Ω) ≤ C ·Bε(t)
1− 1

p∗
2 · ε

1+ 1
p∗
2 , p∗ := max{p, 3} ∀p ∈ [1,∞], (5.18)



where Bε(t) = ‖uε(·, t)− u(·, t)‖W 2,1 , and the constant C depends on p and |Ω| 1p− 1
p∗ . Hence,

for any fixed t > 0, it holds that

‖uε(·, t)− u(·, t)‖Lp(Ω) ≤ Const · ε p∗+1
2p∗ , p∗ = max{p, 3} ∀p ∈ [1,∞] . (5.19)

Finally, we combine the two error estimates, (5.10) for m ≥ 2 and (5.19) for m ≤ 2, as
follows:

Theorem 5.1 Let uε and u be an oscillatory and the corresponding homogenized solutions
of the porous media equation (5.8). Then for any fixed t > 0 it holds that

‖uε(·, t)− u(·, t)‖L∞(Ω) ≤ Const · εmin{ 1
m

, 1
2
}. (5.20)

5.4 Convection-diffusion equations with nonlinear diffusion

We revisit the viscous conservation law,

ut + f(u)x = Q(u)xx, Q′ ≥ 0. (5.21)

This time the C1 flux f could be arbitrary and the nonlinearity of the equation is related to
the possibly degenerate diffusion – nonlinearity quantified by:

Assumption (Nonlinear diffusion). The diffusion term, Q(u), is nonlinear in the sense that

∃α ∈ (0, 1) , δ0 > 0 : meas{u : 0 ≤ Q′(u) ≤ δ} ≤ Const · δα, ∀δ ≤ δ0 . (5.22)

If (5.22) holds then equation (5.21) is at least W s,1-regular with s = 2α
α+4

, by arguing along
the lines of [12, §4-5]. Hence, we end up with Lp error estimate

‖uε(·, t)− u(·, t)‖Lp ≤ Const ·





ε
s

s+1 ∀p ∈ [1, s + 1) ,

ε
1−p(1−s)

sp ∀p ∈ [s + 1, 1
1−s

) .

(5.23)

Remark. As before, we do not claim this regularity to be sharp: by borrowing a bootstrap
argument from [12], one obtains W s,1-regularity of order s = min{1, 8α

3α+4
}. An even sharper

regularity result of order W 2α,1 is expected in this case, [17]. For example, for the porous
media equation (where Q(u) ∼ um, with m > 2 and consequently α = 1

m−1
< 1), a regularity

of order W s,1 with s = 2
m−1

yields L1-error estimate of order O(ε
2

m+1 ). Note that when
m → 2+, this L1-error estimate coincides with the one in (5.18).



6 Examples

In the first two examples, we consider the inhomogeneous Burgers’ equation,

uε
t + f(uε)x =

1

2ελ
sin(2π

x

ε
) , f(u) =

u2

2
, (6.1)

with oscillatory initial data,

uε(x, 0) = x + cos(2π
x

ε
) x ∈ [0, 1] , uε(x + 1, 0) = uε(x, 0) , (6.2)

(the value of ε in all examples is ε = 0.0408). The corresponding homogenized problem is

ut + f(u)x = 0 (6.3)

u(x, 0) = x x ∈ [0, 1] , u(x + 1, 0) = u(x, 0) . (6.4)

First, we consider the case where the forcing data are not amplified, i.e., λ = 0. In
Figure 1 we plot the oscillatory solution, uε(·, t), and the homogenized one, u(·, t) (in solid
and dashed lines, respectively) for four values of t. The cancellation of the oscillations is
reflected in the figures and we note that at t = 0.04 ≈ ε, the two solutions are close in the
strong L∞-norm.

In Figure 2 we depict the two solutions when the oscillatory solution is subject to ampli-
fied forcing data, λ = 1

2
. The effect of that amplification is notable at t = 0.1.

Finally, we consider the porous media equation,

ut = (|u|m−1u)xx m = 2 . (6.5)

Here, uε is the solution of (6.5) subject to the oscillatory initial data,

uε(x, 0) =
{

x

ε

}
· cos(2πx) , (6.6)

where {y} is the fractional part of y. Since
∫ 1
0 {y}dy = 1

2
, uε approaches u, the solution of

(6.5) with the averaged initial data,

u(x, 0) =
1

2
cos(2πx) . (6.7)

Both solutions are depicted in Figure 3.

The numerical results were obtained by the non-oscillatory high order central difference
scheme in [13].
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7 Appendix A: Lip+-Stability

In this section we prove the Lip+-stability of some (possibly degenerate) parabolic equations
which were discussed in §5.

Proposition 7.1 Consider the convective-diffusive equation (1.1),

ut = K(u, p)x + h(x, t), Kp ≥ 0, (x, t) ∈ R× R+, (7.1)

with a Lip+-bounded source term,

hx(x, t) ≤ c(t) < ∞ ∀(x, t) ∈ R× R+, (7.2)

and assume that K(u, p ≥ 0) is concave in u,

−Kuu(u, p) ≥ α > 0 ∀(u, p) ∈ R× R+. (7.3)

Then the equation is Lip+-stable and, for all T > 0, ‖u(·, T )‖Lip+ is bounded independently
of the initial data as follows:

‖u(·, T )‖Lip+ ≤ c · ‖u(·, 0)‖Lip+ + c + (‖u(·, 0)‖Lip+ − c)e−2αcT

‖u(·, 0)‖Lip+ + c− (‖u(·, 0)‖Lip+ − c)e−2αcT
≤ c · 1 + e−2αcT

1− e−2αcT
, (7.4)

where c = cT := max
0≤t≤T

√
c(t)+

α
.

Proof. We assume that Kp > 0; the degenerate case, Kp ≥ 0, is treated by the standard
procedure of replacing K by Kδ = K + δp, δ ↓ 0.

Differentiating (7.1) with respect to x we find that p = ux is governed by

pt = Ku · px + (Kuu · p + Kup · px) · p + Kp · pxx +
dKp

dx
· px + hx .

Since Kp > 0, it follows that nonnegative maximal values of p satisfy

dp

dt
≤ Kuu · p2 + hx .

Hence, by (7.2) and (7.3), we get that in positive local maximal points,

dp

dt
≤ −αp2 + c(t) .

Finally, estimate (7.4) follows from the last inequality in view of Lemma 7.1 below. ¤

For the sake of completeness, we now prove an upper-bound estimate for a general Riccati
ODE of the type encountered above.



Lemma 7.1 Assume that p = p(t) satisfies the Riccati-type inequality

dp

dt
≤ −a(t)p2 + b(t)p + c(t) , (7.5)

where a(t) is uniformly positive,

a(t) ≥ α > 0 ∀t ≥ 0, (7.6)

and b(t), c(t) are locally upper bounded functions. Then p(t)+, t > 0, is upper-bounded
independently of the initial value p(0)+, and the following estimate holds for all T > 0:

p(T )+ ≤ b + c · p(0)+ − b + c + (p(0)+ − b− c)e−2αcT

p(0)+ − b + c− (p(0)+ − b− c)e−2αcT
≤ b + c · 1 + e−2αcT

1− e−2αcT
, (7.7)

where

b = bT :=
1

2α
max
0≤t≤T

b(t), c = cT := max
0≤t≤T

√
b2
T +

c(t)+

α
. (7.8)

Proof. We fix T > 0 and denote by βT and γT the upper bounds of b(t) and c(t)+,
respectively, in [0, T ]:

βT := max
0≤t≤T

b(t) , γT := max
0≤t≤T

c(t)+ . (7.9)

Using (7.6) and (7.9) in (7.5) we conclude that

dp

dt
≤ −αp2 + b(t)p + γT ∀t ∈ [0, T ] . (7.10)

By standard arguments (which we omit), the positive part of p(t) is majorized by P (t),
p(t)+ ≤ P (t), where

dP

dt
= −αP 2 + βT P + γT t ∈ [0, T ] , (7.11)

subject to the same initial value, P (0) = p(0)+. Equation (7.11) may be now rewritten in
the equivalent form

dP

dt
= −α(P − bT )2 + αc2

T t ∈ [0, T ] , (7.12)

where the constants, b = bT and c = cT , are specified in (7.8). The solution of this equation
gives

P (t) = b + c · P (0)− b + c + (P (0)− b− c)e−2αct

P (0)− b + c− (P (0)− b− c)e−2αct
t ∈ [0, T ] . (7.13)

We conclude that p(T )+, being dominated by P (T ), is bounded by

p(T )+ ≤ b + c · p(0)+ − b + c + (p(0)+ − b− c)e−2αcT

p(0)+ − b + c− (p(0)+ − b− c)e−2αcT
. (7.14)

Finally, we observe that the right hand side of (7.14) may be upper-bounded independently
of p(0)+ and, consequently,

p(T )+ ≤ b + c · 1 + e−2αcT

1− e−2αcT
, (7.15)

which completes the proof. ¤



8 Appendix B

Here, we would like to concentrate on the special case where there is no explicit dependence
on x in (2.6),

uε
t = K(uε, uε

x)x + h(
x

ε
, t), uε(x, 0) = u0(

x

ε
) ,

and propose an alternative simpler proof of Theorem 2.1 (for the sake of simplicity we
concentrate on the case λ = 0; the case of amplified modulations, 0 < λ < 1, may be easily
treated in the same manner as before). In this case, the solution uε(·, t) is ε-periodic for all
t ≥ 0 (since uε(·, 0) is and the equation remains invariant under translations x 7→ x + ε).
The homogenized problem takes the form (compare to (2.7))

ut = K(u, ux)x + h̄(t), u(x, 0) = ū0 ,

where

h̄(t) =
∫ 1

0
h(y, t)dy and ū0 =

∫ 1

0
u0(y)dy .

The solution of that problem does not depend on x and is given by

u(x, t) = u(t) = ū0 +
∫ t

0
h̄(τ)dτ .

This value of the homogenized solution at time t equals, as can be easily seen, to the averaged
value of the oscillatory solution at the same time, i.e.,

u(·, t) =
1

ε

∫ x+ε

x
uε(y, t)dy .

Therefore, the W−1,∞-error estimate, (2.8), is a direct consequence in this case of the
following simple proposition:

Proposition 8.1 Let g(y) be a bounded 1-periodic function; let ḡ denote its average, ḡ :=∫ 1
0 g(y)dy, and gε(x) := g(x

ε
). Then there exists a constant C > 0, independent of ε, such

that for all 1 ≤ p ≤ ∞:
‖gε(x)− ḡ‖W−1,p[0,1] ≤ C · ε . (8.1)

Before proving this proposition, we state and prove a useful lemma which is interesting
for its own:

Lemma 8.1 Let w(x) be a function in Lp(I) where I = (a, b) is a (possibly unbounded)
interval in R and 1 ≤ p ≤ ∞. Let W (x) :=

∫ x
a w(ξ)dξ be the primitive of w. Consider the

division of I into subintervals, Ij, induced by the zeroes of W , i.e.,

I = ·∪j∈J Ij Ij = [xj, xj+1)

where, for all j ∈ J ,

W (xj) = 0 and W (x) 6= 0 ∀x ∈ (xj, xj+1) .

Then
‖w‖W−1,p(I) ≤ max

j∈J
|Ij| · ‖w‖Lp(I) . (8.2)



Proof. For any p < ∞ (– the conclusion for p ↑ ∞ is thus straightforward) we have

‖w‖p
W−1,p(I) =

∑

j∈J

∫

Ij

|W (x)|pdx =
∑

j∈J

∫

Ij

∣∣∣∣∣
∫ x

xj

w(y)dy

∣∣∣∣∣
p

dx ≤ ∑

j∈J

∫

Ij

(∫ x

xj

|w(y)|dy

)p

dx.

If we let K denote the size of the maximal subinterval, K = maxj∈J |Ij|, we get by Hölder
inequality that for x ∈ Ij,

∫ x

xj

|w(y)|dy ≤
∫

Ij

|w(y)|dy ≤ K
1
p′ ‖w‖Lp(Ij),

1

p
+

1

p′
= 1.

Combining the two last inequalities, we obtain the desired result (8.2):

‖w‖p
W−1,p(I) ≤

∑

j∈J

∫

Ij

K
p
p′ ‖w‖p

Lp(Ij)
dx ≤ ∑

j∈J

K
p
p′+1‖w‖p

Lp(Ij)
= Kp‖w‖p

Lp(I) .

Proof of Proposition 8.1. Denote wε(x) := gε(x) − ḡ. It can be easily seen that for all
1 ≤ p ≤ ∞,

‖wε‖Lp[0,1] ≤ 2‖g‖Lp[0,1] + |ḡ| ≤ C, C := 3‖g‖L∞[0,1].

The key point is that due to the 1-periodicity of g(x), the primitive Wε(x) :=
∫ x
0 wε vanishes

at the points jε for any integer j. Hence, (8.1) follows from the simplest version of (8.2)
with equidistant zeroes at a distance of |Ij| = ε. ¤
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