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Abstract

In this study we propose a new paradigm for solving DCOPs, whereby
the agents delegate the computational task to a set of external mediators
who perform the computations for them in an oblivious manner. That is, the
mediators perfectly simulate the operation of the chosen DCOP algorithm,
but without getting access neither to the problem inputs, nor to its outputs.
Specifically, we propose MD-Max-Sum, a mediated implementation of the
Max-Sum algorithm. MD-Max-Sum offers topology, constraint, and deci-
sion privacy, as well as partial agent privacy. Moreover, MD-Max-Sum is
collusion-secure, as long as the set of mediators has an honest majority. We
evaluate the performance of MD-Max-Sum on different benchmarks, prob-
lem sizes, and constraint densities. In particular, we compare its performance
to PC-SyncBB, the only privacy-preserving DCOP algorithm to date that
is collusion-secure, and show the significant advantages of MD-Max-Sum in
terms of runtime. We conclude that MD-Max-Sum can be used in practice
for solving DCOPs when strong privacy guarantees are required. The main
takeaway from this study is a demonstration of the power of mediated com-
puting. It allows either a single party or a set of parties, who may have limited
computational or communication resources, to delegate an intricate computa-
tion to external dedicated servers who can perform the computation for them
in an oblivious manner that protects the privacy of the initiating parties. Such
a model of computation may be beneficial well beyond the realm of DCOPs,
and in particular in federated learning.
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1 Introduction

A Distributed Constraint Optimization Problem (DCOP) [20, 13] is a commonly
accepted and practical mathematical framework for solving coordination challenges
in multi-agent systems. DCOPs are well-suited to handle many real-world problems,
such as meeting scheduling [27], sensor networks [12], and the Internet of Things [24].

A DCOP consists of a set of variables that are controlled by several independent
agents. Each variable can take values in some finite domain. Some subsets of
variables may be dependent in the sense that when they are assigned values from
their respective domains, different combinations of those values may incur costs.
The goal of the agents is to find assignments to their variables so that the sum of
all costs that those assignments incur would be minimal.

Many algorithms were proposed over the years to solve DCOPs. Some of those
algorithms are complete, in the sense that they always issue an optimal solution,
namely, assignment to all variables with an overall minimal cost. Examples for
such algorithms are SyncBB [20], ADOPT [31], OptAPO [28], and DPOP [34].
As DCOPs are NP-hard, complete algorithms are characterized by low scalability
and they are usually limited to small-scale problems. In contrast, incomplete DCOP-
solving algorithms, such as DSA [15], MGM [26], and Max-Sum [12], find solutions
of typically low cost, but those solutions are not necessarily optimal. Such algorithms
are usually much more efficient than complete algorithms and they can be applied
to larger problems.

One of the main motivations for solving constraint optimization problems in a
distributed manner is to preserve the privacy of the interacting agents. For example,
when the agents represent parties that engage in coordinating event scheduling [27],
each party might wish to keep its schedule details hidden from the other parties,
since revealing such information might leak sensitive business data, e.g., meetings
with competitors or with potential partners. Other examples of DCOP applications
with privacy concerns include scheduling devices in smart homes [14] and scheduling
observations in satellite constellations [35]. In Section 2 we survey some of the DCOP
algorithms that preserve privacy.

All existing DCOP algorithms (privacy-preserving or not) are carried out by
the agents themselves. However, some of those algorithms, and in particular the
privacy-preserving ones, require significant computing resources. In addition, all
DCOP algorithms assume that the agents are connected through a communication
network. We propose here a new paradigm in DCOPs: solving them in what is
known in cryptography as the mediated model [2, 3]. Namely, there are external
servers to whom the agents send the problem inputs in some protected manner.
The external servers, whom we call mediators, simulate a DCOP algorithm on those
inputs. At its completion, they send to the agents messages from which the agents
extract the outputs, i.e., the variable assignments. Throughout this process, the
mediators remain oblivious to the problem inputs, to the content of the protected
messages that they exchange, and to the outputs.1

1Note that the external mediators herein should not be confused with the mediators in the
OptAPO algorithm [28, 17], which are regular (internal) agents that perform computations in
their neighborhood as an inherent part of the algorithm.
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Performing the DCOP algorithm in such a mediated manner offers several sig-
nificant advantages:

1. It protects the privacy of the agents, since the agents do not exchange any
messages between themselves, while the mediators work on protected values
(say, on secret sharing of the input values, or on homomorphic encryption of
those values).

2. In settings where the agents cannot efficiently communicate among themselves,
it is hard to run DCOP algorithms, because such algorithms require the agents
to exchange messages. Some of those algorithms (like SyncBB) require all
agents to communicate between themselves. The problem in Max-Sum is
somewhat relaxed, as it requires only pairs of agents that are constrained to
exchange messages. However, if two agents are constrained it does not imply
that they can efficiently communicate. Delegating the computational task to a
set of dedicated servers that are connected among themselves offers a remedy
for this problem.

3. Agents who do not have the computational resources or the expertise to run the
DCOP algorithm may benefit from delegating that computation to external
servers who will perform it for them in a secure manner.

4. While DCOP algorithms depend on having all agents active and cooperative,
the mediated model is much more robust. Once all agents submit their inputs
in a secure manner to the mediators, even if some of them experience a fail-
ure, the mediators can still complete the computation and provide the needed
outputs to all agents that are still operational.

In this work we demonstrate the power of mediated computing by presenting
MD-Max-Sum, a mediated execution of the Max-Sum algorithm [12]. In MD-
Max-Sum, the agents send to the mediators secret shares [37] in their private inputs.
The mediators proceed to execute the Max-Sum computations on the shares of the
problem inputs, while remaining oblivious to the value of the underlying inputs. At
the end, the mediators send to the agents messages from which the agents may infer
the assignments to their variables.

We show that if the mediators have an honest majority, then MD-Max-Sum
provides constraint, topology, and decision privacy, as well as partial agent privacy.
Those security guarantees hold against any collusion among the set of agents.

The outline of this work is as follows. In Section 2 we provide a summary
of the previous work in the field of privacy-preserving DCOP algorithms. Then,
Section 3 covers the relevant DCOP background – definitions and the Max-Sum
algorithm. Later, in Section 4 we provide the necessary cryptographic background –
threshold secret sharing and secure multiparty computation. In particular we focus
on efficient ways for performing secure comparisons, a significant building block of
Md-Max-Sum. In section 5 we provide two collusion attacks on P-Max-Sum [42], a
previously introduced privacy-preserving, yet not collusion-secure, DCOP algorithm
that is based on Max-Sum; the attacks demonstrate the importance of collusion-
secure algorithms. Section 6 holds the main part of this work – the description and
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analysis of MD-Max-Sum, our novel privacy-preserving collusion-secure DCOP
algorithm. Section 7 provides an experimental evaluation of MD-Max-Sum and
a comparison of its performance against Max-Sum and other privacy-preserving
algorithms. We conclude in Section 8.

2 Related work

The study of privacy in the context of Distributed Constraint Satisfaction Problems
(DCSPs) started with the work of Silaghi and Faltings [9], who compared different
solution techniques and arranged them in a hierarchy according to their correspond-
ing level of privacy loss. DCSPs are a private case of DCOPs: while in DCOPs,
combinations of assignments incur a cost in the range [0,∞], in DCSPs all costs are
in {0,∞}. Namely, a combination of assignments is either allowed or prohibited, and
the goal is to find an assignment to all variables with no prohibited combinations.

In a later study, Silaghi and Mitra [38] proposed a privacy-minded solution to
Distributed Weighted Constraint Satisfaction Problems, another framework that is
closely related to DCOPs. Their solution was based on the BGW protocol for a
multiparty secure evaluation of polynomial functions [5], and it was applicable only
to small problems due to its dependency on an exhaustive search over all possible
full assignments.

In order to better describe the privacy guarantees of DCOP algorithms, Léauté
and Faltings [23] suggested four notions of privacy for the DCOP framework: agent,
constraint, topology, and decision privacy. We adhere to those notions and provide
their definition in Section 3.1. Furthermore, they devised three secure versions of
DPOP, each with different runtimes and privacy guarantees: P-DPOP(+), P3/2-
DPOP(+), and P2-DPOP(+).

Grinshpoun and Tassa [18] presented a privacy-preserving version of another
complete algorithm – SyncBB. The resulting method, P-SyncBB, preserves topol-
ogy, constraint, and decision privacy.

Since complete algorithms are not scalable, research efforts were invested also
in designing privacy-preserving implementations of incomplete algorithms. A no-
table example is the GDL-based [1] Max-Sum algorithm [12]. Unlike search-based
algorithms, where the agents systematically search the entire solution space, GDL-
based algorithms require the agents to maintain a set of beliefs. As the protocol
progresses, the agents communicate and update those beliefs and ultimately choose
their assignment according to them. Such schemes are also known as inference-based
algorithms. In the context of DCOPs, Max-Sum was shown to produce high-quality
solutions while keeping runtimes low in comparison with both incomplete or com-
plete algorithms.

Tassa et al. [42] developed the P-Max-Sum algorithm, which runs Max-Sum
with cryptographic enhancements in order to preserve privacy. In P-Max-Sum,
every message between two nodes is secret-shared between the two agents that con-
trol those nodes. The main task is then to use the set of message shares in one
iteration in order to compute from them proper shares in the messages of the next
iteration. Homomorphic encryption is used in order to perform that computation in
a privacy-preserving manner. P-Max-Sum provides constraint, topology, and deci-
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sion privacy, and it may be extended to provide also agent privacy. Grinshpoun et
al. [19] devised another incomplete privacy-preserving algorithm, P-RODA, which
is based on region optimality [21, 22]. P-RODA provides constraint privacy and
partial decision privacy.

All of the above mentioned privacy-preserving DCOP algorithms assume solitary
conduct of the agents. However, if two or more agents collude and combine the
information that they have, they may extract valuable information about other
agents. (In Section 5 we demonstrate such possible attacks in the context of P-Max-
Sum). To address the risk of collusion, Tassa et al. [41] introduced PC-SyncBB,
the first privacy-preserving DCOP algorithm that is collusion-secure. It is secure
under the assumption that is known in cryptogarphy as honest majority, namely,
that the number of colluding agents is smaller than the number of agents outside
the coalition. PC-SyncBB does extensive usage of Secure Multiparty Computation
(MPC) in order to obliviously compare between costs of partial assignments.

In this work we propose MD-Max-Sum, the first incomplete privacy-preserving
DCOP algorithm that is collusion-secure. MD-Max-Sum is also the first DCOP
algorithm that is implemented in the mediated model. We note that one of the
variants of PC-SyncBB [41] suggests exporting some computation to an external
committee of mediators. That is, PC-SyncBB is executed entirely by the agents
but there is one specific computation (the comparison between the cost of the current
partial assignment to the cost of the best full assignment that was found so far in
the search) that could be exported to external mediators. In contrast, MD-Max-
Sum is the first algorithm that is fully mediated, in the sense that it is executed
entirely by the external mediators. The advantages of that model of computation
are discussed in the Introduction and in Section 8.

3 Background: Distributed Constraint Optimiza-

tion Problems

In this section we present the necessary DCOP background: definitions of the DCOP
framework (Section 3.1) and the Max-Sum algorithm (Section 3.2).

3.1 DCOP Definitions

A Distributed Constraint Optimization Problem (DCOP) [20] is a tuple 〈A,X ,D,R〉
where A is a set of agents A1, A2, . . . , AN , X is a set of variables X1, X2, . . . , XN , D
is a set of finite domains D1, D2, . . . , DN , and R is a set of relations (constraints).
Each variable Xn, n ∈ [N ] := {1, 2, . . . , N}, takes values in the domain Dn, and
it is held by the agent An.2 Each constraint C ∈ R defines a non-negative cost
for every possible value combination of some subset of variables, and is of the form
C : Dn1×· · ·×Dnk

→ [0, q], for some 1 ≤ n1 < · · · < nk ≤ N , and a publicly known
maximal constraint cost q.

2We make herein the standard assumption that the number of variables equals the number of
agents, and that each variable is held by a distinct single agent, see e.g. [31, 34].
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An assignment is a pair including a variable and a value from that variable’s
domain. The goal of the agents is to find assignments to their variables so that the
sum of all costs that those assignments incur would be minimal.

We consider here a binary version of DCOPs, in which every C ∈ R constraints
exactly two variables and takes the form Cn,m : Dn ×Dm → [0, q], where 1 ≤ n <
m ≤ N . Such an assumption is customary in DCOP literature, see e.g. [31, 34].
As the domains are finite, they me be ordered. Hence, the binary constraint Cn,m

between Xn and Xm may be described by a matrix, which we also denote by Cn,m, of
dimensions |Dn| × |Dm|; in that matrix, Cn,m(i, j) equals the cost that corresponds
to the assignment of the ith value in Dn to Xn and the jth value in Dm to Xm,
where 1 ≤ i ≤ |Dn| and 1 ≤ j ≤ |Dm|.

The constraint graph G = (V,E) is an undirected graph over the set of variables
V = X , where an edge in E connects two variables if and only if they are constrained.
If we define for every pair of variables (Xn, Xm) /∈ E a constraint matrix Cn,m which
is the zero matrix of dimensions |Dn| × |Dm|, then the set of all such matrices,

C := {Cn,m : 1 ≤ n < m ≤ N} , (1)

fully determines the problem; namely, it encompasses all topology and constraint
information.

Every DCOP is also associated with a so-called factor graph. It is a bipartite
graph G′ = (V ′, E ′) that is defined as follows.

• V ′ has two types of nodes: variable nodes, X1, . . . , XN , and function nodes,
Xe, for each e = (Xn, Xm) ∈ E.

• E ′ has an edge connecting Xn with Xe if and only if e is an edge in G that is
adjacent to Xn.

An example of a DCOP constraint graph and its corresponding factor graph is
given in Figure 1.

Figure 1: A constraint graph G of a DCOP with 4 variable nodes (left) and the
corresponding factor graph G′ that has 4 variable nodes and 3 function nodes (right).

Léauté and Faltings [23] have distinguished between four notions of privacy in
the context of distributed constraints:
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• Agent privacy – hiding from each agent the identity or even the existence of
other agents with whom it is not constrained.

• Topology privacy – hiding from each agent the topological structures in the
constraint graph beyond its own direct neighborhood in the graph.

• Constraint privacy – hiding from each agent the constraints in which it is
not involved. Namely, agent Ak should not know anything about Cn,m(·, ·) if
k /∈ {n,m}.

• Decision privacy – hiding from each agent the final assignments to other vari-
ables.

3.2 The Max-Sum Algorithm

The Max-Sum algorithm [12] operates on the factor graph G′. Each agent An,
n ∈ [N ], controls its corresponding variable node Xn. As for the function nodes,
they are controlled by either of the two agents corresponding to the adjacent variable
nodes; the decision which agent controls each function node is made a-priori. The
Max-Sum algorithm performs synchronous steps (iterations), where in each of them
a couple of messages are sent along each edge ofG′ in both directions. Let us consider
the edge that connects Xn with Xe, where e = (Xn, Xm). The messages, in both
directions, will be vectors of dimension |Dn| and they will be denoted by Qk

n→e and
Rk

e→n, depending on the direction, where k ≥ 0 is the number of the iteration. If
x is one of the elements in Dn then its corresponding entry in the message will be
denoted by Qk

n→e(x) or Rk
e→n(x).

In the k = 0 iteration all messages are zero. After completing the kth iteration,
the messages in the next iteration will be as follows. Fixing a variable node Xn and
letting Vn be the set of function nodes adjacent to Xn in G′, then for each Xe ∈ Vn,
Xn will send to Xe the vector

Qk+1
n→e :=

∑
Xf∈Vn\{Xe}

Rk
f→n . (2)

Fixing a function node Xe, where e = (Xn, Xm), then for each x ∈ Dn,

Rk+1
e→n(x) := min

y∈Dm

[
Cn,m(x, y) +Qk

m→e(y)
]
, (3)

while for each y ∈ Dm,

Rk+1
e→m(y) := min

x∈Dn

[
Cn,m(x, y) +Qk

n→e(x)
]
. (4)

Finally, after completing a preset number K of iterations, each variable node Xn

computes Rn :=
∑

Xe∈Vn
RK

e→n and then selects a value x ∈ Dn for which Rn(x) is
minimal.

During the run of Max-Sum, the entries in the messages Qk and Rk may grow
exponentially. In order to prevent the entries in the messages from growing un-
controllably, it is customary to “normalize” the messages. One manner in which
messages are normalized in Max-Sum is to subtract from each entry in each mes-
sage Qk+1

n→e, where e = (Xn, Xm), the value αk+1
n→e := minx∈Dn Q

k+1
n→e(x) [12].
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4 Background: Cryptographic tools

In this section we describe the cryptographic tools and protocols that we will use in
our privacy-preserving DCOP algorithm. We begin with two general-purpose tools:
threshold secret sharing (Section 4.1) and secure multiparty computation (Section
4.2). We then describe efficient ways for performing a secure comparison. Secure
comparison allows the parties to compare secret-shared values while preventing the
participants from learning anything else (Section 4.3).

4.1 Shamir’s Secret Sharing

Secret sharing schemes [37] are protocols that enable to distribute a secret among a
group of parties, denoted M = {M1, . . . ,ML}, such that each of them is allocated
a random value, called a share, so that some subsets of those shares enable the
reconstruction of the secret. In its most basic form, called Threshold Secret Sharing,
the secret can be reconstructed only when a sufficient number of shares are combined
together, while smaller sets of shares reveal no information at all on the secret.

Shamir’s t-out-of-L threshold secret sharing scheme [37], for some t ≤ L, is a
scheme in which the secret shares enable the recovery of the secret from any subset
of t shares, while any subset of t − 1 or less shares reveals nothing on the secret.
The scheme operates over a finite field Zp, where p > L is a prime sufficiently large
so that all possible secrets may be represented in Zp. It has two procedures: Share
and Reconstruct:

• Sharet,L(x). The procedure samples a uniformly random polynomial f(·) over
Zp, of degree at most t − 1, where the free coefficient is the secret s. That is,
f(x) = s + a1x + a2x

2 + . . . + at−1x
t−1, where aj, 1 ≤ j ≤ t − 1, are selected

independently and uniformly at random from Zp. The procedure outputs L values,
s` = f(`), ` ∈ [L] := {1, . . . , L}, where s` is the share given to M`, ` ∈ [L]. The
entire set {s1, . . . , sL} is called a t-sharing of s, and will be denoted henceforth by
[s]t.

• Reconstructt(s1, . . . , sL). The procedure is given any selection of t shares out of
[s]t. Then it interpolates a polynomial f(·) of degree at most t− 1 using the given
points, and outputs s = f(0). Any selection of t shares out of [s]t will yield the
secret s, as t points determine a unique polynomial of degree at most t− 1. On the
other hand, any selection of t− 1 shares or less reveals nothing about the secret s.

4.2 Secure Multiparty Computation

A Secure Multiparty Computation (MPC) protocol [16, 43] allows a group of parties,
denoted M = {M1, . . . ,ML}, to compute any function f over private inputs that
they hold, x1, . . . , xL, where x` is known only to M`, ` ∈ [L], so that at the end of
the protocol, everyone learns the result of f(x1, . . . , xL), but nothing else beyond
what every party may infer from the final output and its own input.

It is customary to distinguish between semi-honest and malicious parties. Semi-
honest parties follow the prescribed MPC protocol but at the same time they try to
glean more information than allowed from what they receive during the execution
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of the protocol. In contrast, malicious parties may deviate from the prescribed
protocol, or even defect during the protocol. Designing protocols that are secure
against malicious parties is a significantly more intricate task and the resulting
protocols are usually much less efficient. We concentrate here on the case of semi-
honest parties.

It should be noted that while semi-honest parties are trusted to follow the pro-
tocol, some of them may collude in order to combine their inputs and messages
received during the protocol’s execution in order to extract private information on
other parties. A common assumption in studies that consider honest parties is that
of an honest majority. It means that if some of the parties collude, the number of
colluding parties is strictly smaller than half the overall number of parties. We make
that assumption herein.

4.2.1 Circuit representation

MPC protocols require the function f to be represented by a circuit C such that
for every set of inputs, x1, . . . , xL, the output of the circuit, C(x1, . . . , xL), equals
f(x1, . . . , xL). A circuit representation of a function f is essentially a directed acyclic
graph with the following properties. The graph has a leaf node (i.e., a node with in-
degree zero) for every input of f , and a root node (i.e., a node with out-degree zero)
for the output of f . The former nodes are called input gates, while the latter one
is called an output gate. In addition, the graph may have multiple internal nodes
(ones with positive in-degrees and out-degrees) that are called operation gates.

We restrict our attention to circuits in which each gate g has exactly two prede-
cessor gates. Let αl denote the output value of gl, the left predecessor of g, and αr

denote the output value of gr, the right predecessor of g. Then the output of g is a
simple function of those two values, g(αl, αr).

The private values x1, . . . , xL determine the input values to all of the circuit’s
input gates. Then, the following process is performed repeatedly: for each operation
gate g, once both gl and gr are assigned values, say αl and αr, respectively, the gate
g is assigned the value g(αl, αr). This process is repeated until the output gate is
assigned a value. That output value is denoted C(x1, . . . , xL).

Two main types of circuits are discussed in the MPC literature: an arithmetic
circuit, meaning that the values assigned to gates are from an arbitrary finite field
F, and the operation gates are either the addition or the multiplication functions
(over two operands); and a Boolean circuit, meaning that the values assigned to
each gate are from {0, 1}, and the operation gates are either the logical XOR or
AND functions. Both types of circuits can express any function. Since the MPC
computation that we will need to perform in the course of MD-Max-Sum is secure
comparison of secret-shared values, we will focus hereinafter on arithmetic circuits,
which are more suitable for that purpose.

For illustration, consider the arithmetic function f(x1, x2, x3) = x1 · x2 + x2 ·
x3 · (x2 + x3). The circuit C in Figure 2 evaluates that function. It consists of
three layers. The first layer has two multiplication gates that compute x1 · x2 and
x2 · x3, and one addition gate that computes x2 + x3. The second layer has a single
multiplication gate for computing x2 · x3 · (x2 + x3). Finally, the third and last layer
has a single addition gate that issues the desired output.
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Figure 2: An arithmetic circuit C that realizes the function f(x1, x2, x3) = x1 · x2 +
x2 · x3 · (x2 + x3).

4.2.2 Secret-sharing-based MPC

Here we describe a general approach to perform an MPC evaluation of arithmetic cir-
cuits based on Shamir’s secret sharing scheme (Section 4.1). Assume that C(x1, . . . , xh)
is an arithmetic circuit that realizes some polynomial function f(x1, . . . , xh). As-
sume next that each of the inputs xi, i ∈ [h], is secret-shared using t-out-of-L secret
sharing among a set of L parties, M1, . . . ,ML. The goal is to design an MPC proto-
col that will allow the L parties to compute t-out-of-L sharing of the output value
f(x1, . . . , xh).

Since the L parties already have t-out-of-L shares in each of the input values, then
it is necessary to devise sub-protocols that will allow them to emulate arithmetic
gates. Namely, assuming that the parties hold t-out-of-L shares in the two inputs of
a gate, it is necessary to describe a manner in which they will be able to compute t-
out-of-L shares in the gate’s output, without learning in the process any information
on the underlying inputs or output. Clearly, if we can emulate addition gates and
multiplication gates, then it would be possible to emulate the entire circuit, gate by
gate, until the parties get t-out-of-L shares in the final output.

In the circuit shown in Figure 2, the parties have t-out-of-L shares in each of
the input values x1, x2, x3. With those shares they proceed to emulate the circuit
layer by layer, by computing proper t-out-of-L shares in the output wires of the
three gates in the first layer, then proceeding to computing t-out-of-L shares in the
output of the multiplication gate in the second layer, using the already computed
shares in the output wires of two of the gates in the first layer, and finally computing
t-out-of-L shares in the output wire using the computed shares in the output wires
of the multiplication gate in the second layer and the first multiplication gate in the
first layer.

Below, we describe the generic secret-sharing-based protocol of Damg̊ard and
Nielsen [11]. Specifically, we explain the manner in which that protocol emulates
addition and multiplication gates. As the multiplication procedure requires the
parties to generate shares in an unknown random value, we also explain how they
perform that. We would like to note that in our experiments we used that protocol,
with the performance improvements that were proposed by Chida et al. [7].

Hereinafter, we set the secret sharing threshold to be

t := b(L+ 1)/2c . (5)

Namely, in order to reconstruct the secret, at least half of the parties must combine
their shares. We will explain the importance of that setting later on, when we discuss
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the privacy of MD-Max-Sum.

•Addition. Let {a1, . . . , aL} be a t-sharing of the field element a and {b1, . . . , bL}
be a t-sharing of the field element b. Then it is easy to see that {a1 +b1, . . . , aL +bL}
is a t-sharing of the sum a + b. Hence, addition gates can be emulated easily with
no interaction between the parties.

• Random number generation. In emulating multiplication gates, it is nec-
essary for the parties to generate secret shares in a random field number that will
remain unknown to them. To do that, each party M`, ` ∈ [L], generates a uniformly
random field value ρ` and performs t-sharing of it among M1, . . . ,ML. At the com-
pletion of this stage, each M` adds up all the L shares that it had received and gets
a value that we denote by r`. It is easy to see that {r1, . . . , rL} is a t-sharing of the
random value ρ =

∑
`∈[L] ρ`. Clearly, ρ is a uniformly random field element, as it is

a sum of uniformly random independent field elements.
• Multiplication. Let [a]t be a t-sharing of a, which was generated by a poly-

nomial f(·) of degree t− 1; and let [b]t be a t-sharing of b, which was generated by
a polynomial g(·) (also of degree t− 1). The goal is to obtain t-sharing of c = a · b.

First, M` computes c` = a` · b`, ` ∈ [L]. Those values are point values of the
polynomial fg, which is a polynomial of degree 2t − 2. Hence, {c1, . . . , cL} is a
(2t − 1)-sharing of c. Note that as t = b(L + 1)/2c, Eq. (5), then 2t − 1 ≤ L;
therefore, the L parties have a sufficient number of shares in order to recover c.
However, our goal is to obtain a t-sharing of c, namely a set of shares in c, of which
any selection of only t shares can be used to reconstruct c. Hence, we proceed to
describe a manner in which the parties can translate this (2t− 1)-sharing of c into
a t-sharing of c.

To do that, the parties generate two sharings of the same uniformly random (and
unknown) field element R: a t-sharing, denoted {r1, . . . , rL}, and a (2t− 1)-sharing,
denoted {R1, . . . , RL}. Next, each M` computes c̃` = c` +R` and sends the result to
M1. Since {c̃1, . . . , c̃L} is a (2t− 1)-sharing of c+R, M1 can use any 2t− 1 of those
shares in order to reconstruct c̃ := c + R. M1 broadcasts that value to all parties.
Consequently, each M` computes ĉ` = c̃− r`, ` ∈ [L]. Since c̃ is a constant and r` is
a t-out-of-L share in R, then ĉ` is a t-out-of-L share in c̃ − R = c + R − R = c, as
needed. This procedure is perfectly secure since c̃ = c + R reveals no information
on c because R is a uniformly random field element that is unknown to the parties.

4.3 Secure Comparison

Let a and b be two integers smaller than p, which is the size of the underlying field
Zp. Assume that the parties M1, . . . ,ML hold t-out-of-L shares in both a and b.
They wish to compute a t-sharing of the bit 1a<b that indicates whether a < b or
not, without learning any information on a and b. A protocol that does that is
called secure comparison. Such a protocol is instrumental in MD-Max-Sum, and it
is a fundamental building block in other computations as well. (For example, since
max(a, b) = a+ 1a<b · (b− a), then it is possible to compute a t-sharing of max(a, b),
using the t-sharings of a and b, a t-sharing of 1a<b, and the emulation of arithmetic
circuits that we described in Section 4.2.2.)

Secure comparison is an area of active study, and improvements are made rapidly.
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w = 1a< p
2

x = 1b< p
2

y = 1[(a−b) mod p]< p
2

z = 1a<b

T F * T
F T * F
F F F T
F F T F
T T F T
T T T F

Table 1: Truth table for an indirect comparison of a and b using Eq. (6).

An efficient constant-round protocol was considered an open problem for a significant
amount of time. The first efficient solution was introduced by Damg̊ard et al. [10]
by means of bit-decomposition. It required O(` · log(`)) multiplications, where ` =
log2(p). A year later, Nishide and Ohta [33] presented an improved method for
secure comparison. It is based on the following simple observation. If we denote the
bits 1a< p

2
, 1b< p

2
, 1[(a−b) mod p]< p

2
, and 1a<b by w, x, y, z, respectively, then

z = wx̄ ∨ w̄x̄ȳ ∨ wxȳ . (6)

The equality in Eq. (6) can be confirmed by the truth table in Table 1. Next, we
translate the Boolean expression in Eq. (6) to an equivalent arithmetic expression:

z = w(1− x) + (1− w)(1− x)(1− y) + wx(1− y)

= 1− x− y + xy + w(x+ y − 2xy) .
(7)

Hence, we reduced the problem of comparing two secret shared values, a and
b, to computing three other comparison bits, w, x, y, and then evaluating an arith-
metic function of them, Eq. (7). What makes this alternative expression efficiently
computable is the fact that in the three comparison bits, w = 1a< p

2
, x = 1b< p

2
, and

y = 1[(a−b) mod p]< p
2
, the right-hand side is p

2
, as we proceed to explain.

Lemma 1. Given a finite field Zp and a field element q ∈ Zp, then q < p
2

if and
only if the least significant bit (LSB) of (2q mod p) is zero.

Proof. If q < p
2

then 2q < p. Hence, 2q mod p = 2q (there is no modular reduction)
and therefore, as 2q is even, its LSB is 0. On the other hand, if q > p

2
then 2q > p.

Hence, 2q mod p = 2q − p. Since that number is odd, its LSB is 1.

In view of Lemma 1, the parties may compute t-out-of-L shares in 1q< p
2

by
computing shares in the field element 2q and then use those shares in order to
compute shares in the corresponding LSB. The reader is referred to [33] for the
details of that last step in the computation.

We conclude this section by commenting on the complexity of the above de-
scribed secure comparison protocol. Computing shares in the LSB of a shared value
requires 13 rounds of communication and 93` + 1 multiplications. Since we have
to compute three such bits (i.e., w, x, and y) then we can compute shares of those
three bits in 13 rounds and a total of 279` + 3 multiplications. Finally, we should
evaluate the expression in Eq. (7), which entails two additional rounds and two
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additional multiplications. Hence, the total complexity is 15 rounds and 279` + 5
multiplications. In comparison, the cost of the protocol of [10] that was based on
bit decomposition required 44 rounds and 205`+ 188 + log2 ` multiplications.

5 Privacy violating collusion attacks

The original Max-Sum algorithm is implemented by the agents themselves who
perform all computations and communicate with each other. As was shown by Tassa
et al. [42], such an implementation of Max-Sum may leak sensitive information on
the private inputs of the agents. Motivated by the privacy issues that Max-Sum
raises, they introduced P-Max-Sum, a privacy-preserving version of Max-Sum.
That algorithm is still executed as a distributed protocol that the agents execute
on their own, but owing to the cryptographic machinery that it implements, it
preserves topology, constraint, and decision privacy. However, P-Max-Sum is not
secure against collusion: even if only two agents collude, they may learn sensitive
private information on other agents. We demonstrate below two such attacks. In
doing so we use the same notations as in [42].

5.1 Collusion attack 1: Sharing private keys

Consider the setting depicted in Figure 3 and assume that A1 and A2, the agents
corresponding to the two neighboring variable nodes X1 and X2, decide to collude.
Then A1 can send to A2 the private key in E2(·) (which is known to all agents except
A2). After doing so, A2 will be able to recover all Q-messages that emerge from
the variable node X2 and also all R-messages that are sent to X2. Now, assume
that X2 has in G the neighboring variable node X3, and that X3 has no other
neighbors apart from X2. We claim that A2, who now can recover all messages that
its variable node sends and receives, can learn that X3 has degree 1 in G. Indeed,
since X3 has degree 1, all Q-messages that X3 sends to Xe2,3 are zero. Consequently,
the R-messages from Xe2,3 to X2 will be the same in all iterations and will equal
Re2,3→2(x) := miny∈D3 [C2,3(x, y)]. Thus, by examining the R-messages, A2 can
easily deduce the degree of X3.

Figure 3: Sharing private keys between X1 and X2 to attack X3.

5.2 Collusion attack 2: Message recombination

Consider the setting depicted in Figure 4 and assume that agents A1 and A3, who
control X1 and X3 respectively, collude. If they compare the list of neighbors that
they have, they will detect X2 as a common neighbor. Then, A1 and A3 may com-
bine messages that they have in order to infer whether X2 has another neighboring
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variable node apart from them. To this end, A1 and A3 wait for A2 to complete the
execution of Protocol 1 in P-Max-Sum, which computes shares in the Q-messages
that emerge from X2 (see [42]). After the completion of that protocol, that involves
A2 as well as all of its neighboring agents,

• A1 holds Sk+1,1
2→e1,2

= Sk,3
e2,3→2 +

∑
j∈W Sk,j

e2,j→2, and

• A3 holds Sk+1,3
2→e2,3

= Sk,1
e1,2→2 +

∑
j∈W Sk,j

e2,j→2,

where W is the set of indices of all neighbors of X2 apart from X1 and X3. In our
case, W = {4}. Next, A1 sends to A3 the value Sk+1,1

2→e1,2
. If W = ∅ then A3 would see

that it equals Sk,3
e2,3→2. Such equality implies, with very high probability, that indeed

W = ∅. If, similarly, A1 sees that Sk+1,3
2→e2,3

equals Sk,1
e1,2→2, then A1 and A3 can safely

infer that the degree in G of the variable node X2 is two.

Figure 4: Combining messages from X1 and X3 to attack X2

Thus, while P-Max-Sum does respect topology privacy, this privacy holds as
long as their is no collusion among the agents. Even if only two agents collude, they
may infer private topology information on other agents, as shown here.

6 Mediated Max-Sum

In order to implement Max-Sum in a manner that preserves the privacy of the
agents even when some of them collude, we propose herein an implementation of
the algorithm in the mediated model. Let M = {M1, . . . ,ML} be an external
committee of so-called mediators. The agents in A will share their DCOP private
inputs, namely, the topology and constraint information, with the mediators using
a t-out-of-L secret sharing scheme, where t = b(L + 1)/2c (see Eq. (5)). The
agents trust the mediators to have an honest majority, in the sense that if some
of the mediators decide to collude in order to reconstruct the shared private data,
the number of colluding mediators would be smaller than the number of mediators
outside the coalition. Under that assumption, the mediators cannot recover the
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private inputs that were shared with them, since at least t mediators have to collude
in order to be able to reconstruct the shared secrets, and t = b(L+ 1)/2c ≥ L− t.

After the agents had completed sharing all their private inputs with the medi-
ators, they go to rest and the mediators start emulating the performance of the
entire Max-Sum algorithm by implementing MPC techniques on the shared data.
The main challenge in this regard is to design an implementation of Max-Sum that
operates on shared data, namely, in a manner that is oblivious to the underlying
topology and constraint values. When the mediators complete their emulation of
Max-Sum, say by running an agreed preset number of iterations, K, they send to
each of the agents a message from which that agent can infer the assignment of
its variable in the solution that the algorithm had found. We call this algorithm
MD-Max-Sum.

In order to hide the constraint graph topology from the mediators, MD-Max-
Sum operates on an augmented version G+ = (V,E+) of the constraint graph G =
(V,E), which includes, in addition to the actual edges in G, also some phantom
edges (see Section 6.1). As demonstrated in Corollary 4, running Max-Sum over a
constraint graph that is augemented by phantom edges does not change the output
of the algorithm. With such added phantom edges, the mediators cannot tell which
of the edges in the augmented graph are actual ones and which are phantom ones,
so the graph topology is preserved.

6.1 Phantom edges and their effect on Max-Sum

Assume that Xn and Xm are two variables that are not constrained. As discussed in
Section 3.1, the fact that those two variables are not constrained may be represented
by setting a zero constraint matrix Cn,m between them. Namely, one may add to the
constraint graph G an edge e = (Xn, Xm) with a corresponding constraint matrix
Cn,m which is the zero matrix. We refer to such an edge as a phantom edge.

Phantom edges are not needed when executing Max-Sum. However, we will add
phantom edges in the mediated version of Max-Sum, which we present in Section
6.2, in order to hide the topology of the constraint graph. The question which we
address here is the following: does the addition of phantom edges affect the operation
of Max-Sum. We will show that while the content of the messages will be affected
by adding phantom edges, the output of the algorithm will remain unchanged.

Before we start our discussion, we make the following observation. Max-Sum
typically operates over the reals, R. However, one may assume that all constraints
are rational numbers and, consequently, it is possible to translate all of them to
integers so that Max-Sum can operate over the integers Z. Hence, all Q- and R-
messages that are generated in the course of Max-Sum are vectors in ZD for some
D ∈ {|D1|, . . . , |DN |}.

Definition 2. Two vectors u,v ∈ ZD are called equivalent if there exists an integer
w ∈ Z such that u = v+w, where v+w is the vector in which (v+w)(i) = v(i)+w,
for all 1 ≤ i ≤ D. In that case we denote such a relation by u ∼ v.

It is easy to see that ∼ is an equivalence relation. Our main claim is the following.

Theorem 3. Let:
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• G = (V,E) be the constraint graph of a given DCOP;

• G+ = (V,E+) be an augmented graph over the same set of nodes V , where E+

is a superset of E and all edges e ∈ E+ \ E are phantom edges;

• G′ and G′+ be the corresponding factor graphs.

Fix a variable node Xn and an adjacent function node Xe in G′ and G′+, where e
is not a phantom edge. For k ≥ 0, let Qk

n→e, R
k
n→e, Q

k
+,n→e and Rk

+,n→e denote the
Q- and R-messages between those two nodes in the kth iteration of Max-Sum when
operating on G′ and G′+, respectively. Then Qk

+,n→e ∼ Qk
n→e and Rk

+,n→e ∼ Rk
n→e.

Namely, while the addition of phantom edges may change the content of the
messages that Max-Sum generates, the change will be in the form of a constant
shift of the components of each such message.

Proof. At first, we assume that there is only one phantom edge e+. Later, we will
consider the general case of any number of phantom edges.

The proof goes by induction on the iteration number k. Clearly, the claim holds
when k = 0, since then all messages are zero and, consequently, Q0

+,n→e ∼ Q0
n→e

and R0
+,e→n ∼ R0

e→n. Assume next that the claim holds for the kth iteration. We
proceed to prove that it also holds for the subsequent (k + 1)-th iteration.

We start with the R-messages. Let e = (Xn, Xm) be any function node. By Eq.
(3), Rk+1

+,e→n(x) = miny∈Dm [Cn,m(x, y) +Qk
+,m→e(y)]. By the induction hypothesis,

Rk+1
+,e→n(x) = min

y∈Dm

[Cn,m(x, y) +Qk
m→e(y) + w]

= min
y∈Dm

[Cn,m(x, y) +Qk
m→e(y)] + w

= Rk+1
e→n(x) + w ,

for some integer w. We infer that Rk+1
+,e→n ∼ Rk+1

e→n, as required.

Next, we prove the claim for the Q-messages. Here we distinguish between two
cases. In messages emerging from a variable node, Xn, that is not adjacent to the
phantom function node, Xe+ , we get by Eq. (2) that

Qk+1
+,n→e =

∑
Xf∈Vn\{Xe}

Rk
+,f→n , (8)

while, in the original graph, the messages are as in Eq. (2). As, by induction,
Rk

+,f→n ∼ Rk
f→n, we infer that Qk+1

+,n→e ∼ Qk+1
n→e, as required.

As for messages emerging from a variable node Xn that is adjacent to Xe+ , we
observe that the set of adjacent function nodes to Xn in the augmented factor graph
G′+ is V+,n = Vn ∪ {Xe+}. Hence, while Qk+1

n→e is given by Eq. (2), the entries of the
corresponding Q-message in the augmented graph are given by

Qk+1
+,n→e = Rk

+,e+→n +
∑

Xf∈Vn\{Xe}

Rk
+,f→n . (9)
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By induction, the vector sum on the right-hand side of Eq. (9) is equivalent to
Qk+1

n→e, as given by Eq. (2). It remains to prove that the additional vector Rk
+,e+→n

on the right-hand side of Eq. (9) is a constant vector. That vector is given by

Rk
+,e+→n(x) = min

y∈Dm

[Cn,m(x, y) +Qk
+,m→e+

(y)] . (10)

As e+ is a phantom edge, we have Cn,m(x, y) = 0 for all x ∈ Dn and y ∈ Dm. Hence,
Rk

+,e+→n(x) = miny∈Dm [Qk
+,m→e+

(y)]. Since the arguments within the minimum

function do not depend on x, we infer that all entries in the Rk
+,e+→n vector are

equal. That completes the proof, in the case of a single phantom edge.
The generalization of the proof to any number of phantom edges follows by

induction on the number of phantom edges, because the equivalence relation is
transitive.

Corollary 4. Running Max-Sum twice, once on G′ and once on G′+, for the same
number K of iterations, results in the same set of final assignments.

Proof. By Theorem 3, if Xn is any variable node, then Rn ∼ R+,n, where Rn is the
final vector that Xn computes in the execution of Max-Sum on G′, while R+,n is
the final vector that Xn computes in the execution of Max-Sum on G′+. Hence, the
value x ∈ Dn that minimizes Rn is also the one that minimizes R+,n. Therefore, the
two executions yield the same assignment to Xn.

6.1.1 Topology privacy index

Definition 5. Let γ ∈ [0, 1] denote the density of phantom edges. Namely, it is the
fraction of the number of phantom edges in G+ = (V,E+) (i.e., |E+ \ E|) divided
by the number of non-edges in G = (V,E) (i.e.,

(
N
2

)
− |E|). Then γ is called the

topology privacy index.

When γ = 0 we get G+ = G; in that case the topology is fully revealed to the
mediators. When γ = 1, G+ is the complete graph; in that case the topology of
graph G is fully hidden from the mediators.

When 0 < γ < 1 we get an intermediate level of topology privacy. With such
values of γ we still achieve topology privacy, but somewhat weaker, since the me-
diators could infer that all edges in V2 \ E+ are not in the actual constraint graph
topology E. For convenience, in our description below of MD-Max-Sum we will
assume that γ = 1 so that the algorithm operates on the complete graph.

6.2 The MD-Max-Sum algorithm

We assume that all agents know the total number of agents N , and the identifying
index n ∈ [N ] of each agent. In addition, the sizes of all domains, |Dn|, n ∈ [N ],
are also publicly known.
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6.2.1 Distributing to the mediators shares in the problem inputs

In this preliminary stage, the agents share with the mediators the problem inputs,
which, as explained in Section 3.1, are encoded through the set of matrices C, see
Eq. (1). To do so, each agent An, 1 ≤ n ≤ N − 1, shares with the mediators
M the constraint matrices Cn,m ∈ C for all n < m ≤ N , where, as explained in
Section 3.1, the matrix Cn,m is of dimensions |Dn| × |Dm| and it either spells out
the constraint values between those two agents, or, if they are not constrained, it is
the zero matrix. The matrices are shared by performing an independent t-out-of-L
secret sharing for each entry in each of those matrices, where t = b(L + 1)/2c (see
Section 4.2.2). Letting n < m ∈ [N ] be indices of two agents, and ` ∈ [L] be an
index of a mediator, we denote the share of the cost Cn,m(i, j) that the mediator M`

receives by C`
n,m(i, j). The entire matrix of shares that M` receives is denoted

C`
n,m =

(
C`

n,m(i, j) : 1 ≤ i ≤ |Dn|, 1 ≤ j ≤ |Dm|
)
.

After each mediator M`, ` ∈ [L], got its share matrix C`
n,m for all 1 ≤ n < m ≤ N ,

they have all problem inputs and they may now begin an MPC emulation of Max-
Sum over those inputs.

We assume that the set of mediators have an honest majority. That means that
some of the mediators may collude in order to combine the pieces of information
that they got in attempt to extract private information; however, the number of
colluding agents is smaller than L/2 under the assumption of honest majority. As
we use t-out-of-L secret sharing with t = b(L+ 1)/2c, then at least t mediators have
to collude in order to recover the problem inputs. Since t = b(L + 1)/2c ≥ L/2,
such a scenario is impossible under our working assumption of an honest majority.
Hence, the mediators cannot learn any information on the content of the constraint
matrices. Therefore, not only the constraints themselves are kept secret, also the
topology is kept secret, since the mediators cannot tell from their shares whether
Cn,m is the zero matrix or not.

While Max-Sum, as well as P-Max-Sum, operate on the exact factor graph
G′, the mediated algorithm MD-Max-Sum operates on an augmented factor graph,
denoted G′+ = (V ′+, E

′
+), in which every two variable nodes are connected through

a function node, even if some of those function nodes stand for a zero/phantom
constraint (which was introduced only for the purpose of hiding the real topology
of G from the mediators). Figure 5 is an example of an augmented factor graph:
the edges e1,2 and e1,3 are actual constraints between the agents, while e2,3 is a
zero/phantom constraint (and is marked by red). The mediators operating on the
augmented factor graph cannot distinguish between the actual constraints and the
phantom constraints.

After the agents finish distributing to the mediators shares in the problem inputs,
they go to rest and let the mediators do the work. The mediators start an emulation
of each of the iterations in Max-Sum. They do so by producing proper shares in
the true messages that would have been sent along each edge of the factor graph, if
the agents had run the Max-Sum algorithm by themselves.

We proceed to explain in the next sections the details of the MD-Max-Sum
implementation. Specifically, we need to explain how in each iteration of the algo-
rithm, the mediators can create proper shares in the Q- and R-messages that the
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Figure 5: An Augmented Factor Graph: Xe1,2 and Xe1,3 are actual function nodes;
Xe2,3 is a phantom function node.

corresponding Max-Sum algorithm would have generated. In doing so, we focus on
an arbitrary pair of neighboring nodes in the augmented factor graph: a variable
node Xn, n ∈ [N ], and a function node, Xe, where e = (Xn, Xm) and m ∈ [N ]\{n}.

6.2.2 Producing shares in the messages of the initial iteration

In iteration 0, all of the L mediators have to emulate zero messages between Xn and
Xe,

Q0
n→e = (0, . . . , 0) ∈ Z|Dn|

p , R0
e→n = (0, . . . , 0) ∈ Z|Dn|

p . (11)

(Recall that Zp is the underlying field in which all computations take place, see
Section 4.1.) To do so, each mediator M`, ` ∈ [L], creates for himself corresponding
zero share vectors as follows:

Q0,`
n→e = (0, . . . , 0) ∈ Z|Dn|

p , R0,`
e→n = (0, . . . , 0) ∈ Z|Dn|

p . (12)

Note that no interaction between the mediators is needed at this stage, and that
the L vector shares of the Q-messages in Eq. (12) are t-out-of-L vector shares in
the zero Q-messages in Eq. (11), and likewise for the R-vectors.

6.2.3 Producing shares in Q-messages

In iteration k+1, the mediators have to emulate the message Qk+1
n→e from the variable

node Xn to the adjacent function node, Xe, where e = (Xn, Xm). In view of Eq.
(2), and the fact that the mediators already have t-out-of-L shares in R-messages
of the kth iteration, such a computation can be done locally, without interaction
between the mediators, as follows:

Qk+1,`
n→e :=

∑
Xf 6=Xe

Rk,`
f→n . (13)

Note that in Eq. (2), the sum on the right-hand side was over all function nodes
in G′ that are neighbors of the variable node Xn, except for Xe. In Eq. (13), on
the other hand, the sum goes over all N − 2 function nodes, Xf , between Xn and
Xi for any i ∈ [N ] \ {n,m}. This extended summation is a result of the fact that
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MD-Max-Sum operates on the augmented factor graph (where there is a function
node, genuine or phantom, between every pair of variable nodes) and not on the
actual factor graph, as Max-Sum does.

6.2.4 Producing shares in R-messages

Here, we concentrate on the more involved task of computing t-out-of-L shares in
the R-messages, Rk+1

e→n, from the function node, Xe, where e = (Xn, Xm), to the
variable node Xn. We rewrite Eq. (3) in the following manner,

Rk+1
e→n(x) := min

y∈Dm

Bk
n,m(x, y) , x ∈ Dn , (14)

where Bk
n,m(x, y) denotes the sum

Bk
n,m(x, y) := Cn,m(x, y) +Qk

m→e(y) . (15)

The L mediators hold t-out-of-L shares in Cn,m(x, y) for all (x, y) ∈ Dn × Dm

(denoted C`
n,m(x, y), ` ∈ [L]), since such shares were generated and distributed to

them by the agents in the preliminary stage. Moreover, the mediators had computed
in the kth iteration t-out-of-L shares in Qk

m→e(y) for all y ∈ Dm, where M`’s shares
are denoted Qk,`

m→e(y). Hence, C`
n,m(x, y)+Qk,`

m→e(y), which we denote by Bk,`
n,m(x, y),

are t-out-of-L shares in Bk
n,m(x, y), as implied by Eq. (15) and the linearity of secret

sharing. Hence, the main computational challenge is to compute t-out-of-L shares
in the left-hand side of Eq. (14) from the shares that the mediators hold in each of
the terms on the right-hand side of Eq. (14). This task is non-trivial because the
minimum function is non-linear.

Protocol 1, which we describe below, is simultaneously executed by each of the
L mediators. It is executed for each pair of a function node in the augmented factor
graph, Xe, where e = (Xn, Xm), and one of its two adjacent variable nodes, Xn. At
the completion of that protocol, each mediator M` holds a share Rk+1,`

e→n in Rk+1
e→n.

That protocol will be executed in every iteration N(N − 1) times, as there are(
N
2

)
= N(N − 1)/2 function nodes in the augmented factor graph G′+, and each one

of them has two adjacent variable nodes.

Protocol 1: Computing shares in an R-message from the function node
Xe, where e = (Xn, Xm), to the variable node Xn.

Input: Mediator M`, ` ∈ [L], holds a t-out-of-L share, Bk,`
n,m(x, y), in

Bk
n,m(x, y), for every x ∈ Dn and y ∈ Dm = {y1, . . . , y|Dm|}.

1 forall x ∈ Dn do
2 M` sets β`

n,m(x)← Bk,`
n,m(x, y1)

3 forall j = 2, . . . , |Dm| do
4 if COMPARE({Bk,`

n,m(x, yj)}`∈[L], {β`
n,m(x)}`∈[L]) = true then

5 M` sets β`
n,m(x)← Bk,`

n,m(x, yj)

6 M` sets Rk+1,`
e→n (x)← β`

n,m(x)

Output: Mediator M`, ` ∈ [L], gets a t-out-of-L share Rk+1,`
e→n (x) in Rk+1

e→n(x).
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The external loop in the protocol (lines 1-6) is over all values x in the domain Dn,
i.e., over all entries in the vector message Rk+1

e→n. For each such x ∈ Dn, the mediators
have to find the minimum among {Bk

n,m(x, y) : y ∈ Dm}, where each of the values
in that set is shared by a t-out-of-L scheme among them. The t-out-of-L shares
of the minimum will be stored in β`

n,m(x), ` ∈ [L]. First (line 2), each mediator
initiates its β-shares with the shares corresponding to Bk

n,m(x, y1). Then (lines 3-
5), for each yj, j = 2, . . . , |Dm|, the mediators compare Bk

n,m(x, yj) to the current
minimum, in which they have t-out-of-L shares in β`

n,m(x), ` ∈ [L]. The comparisons
are performed in a secure manner by invoking a distributed sub-protocol that all
mediators jointly execute, as will be explained below. If Bk

n,m(x, yj) is smaller than
the current minimum, then each mediator updates its share of the minimum (line
5).

In order to perform comparisons between values that are known to the mediators
only through t-out-of-L shares, without recovering those values and perform the
comparison over those recovered values, Protocol 1 calls upon an MPC sub-protocol
called COMPARE (line 4), which all the mediators run together in a distributed
manner. That sub-protocol assumes that the mediators have t-out-of-L shares in
two values x, y ∈ Zp; it returns true if x < y (when x and y are interpreted as
integers) and false otherwise. Such a sub-protocol was described earlier in Section
4.3. It is perfectly secure in the sense that it reveals to the mediators nothing about
the two compared values beyond the final output bit which indicates which of the
two is smaller.

Finally (line 6), each mediator stores in Rk+1,`
e→n (x) its share in the minimum that

was found above, β`
n,m(x).

6.2.5 Normalizing messages

In order to prevent the entries in the messages from growing uncontrollably, it is
customary to subtract from each entry in each message Qk+1

n→e the value αk+1
n,m :=

minx∈Dn Q
k+1
n→e(x) (see [12]). To perform such normalization, we need to find for

each message Qk+1
n→e the minimum entry αk+1

n,m , and then to subtract it from each of
the entries in Qk+1

n→e.
To find the minimal entry in Qk+1

n→e, a vector of dimension |Dn|, it is necessary
to perform |Dn| − 1 comparisons. As the mediators hold shares in each of those
entries, they may apply the COMPARE sub-protocol |Dn| − 1 times in a similar
manner to the minimum computations in Protocol 1. After finding the minimum,
each mediator will subtract the share that it holds in that minimum from the share
that it holds in each entry in Qk+1

n→e.
To reduce computation time, the normalization procedure could be performed

every K1 iterations, instead of every iteration, for a suitable selection of K1 that
depends on the size p of the underlying field Zp.

Let us find first the maximal number of iterations for which we can be ascertained
that all entries in all messages do not exceed p− 1. Let

q = max
1≤n<m≤N

max
x∈Dn,y∈Dm

Cn,m(x, y) (16)

denote the maximum value of any single constraint, and assume that the maximal
degree in the constraint graph G is d+ 1. It was shown in [42, Theorem 2.1] that all
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entries in all messages in Max-Sum that are sent during the first k iterations are
bounded by q · dh−1

d−1
, where h = bk/2c+ 1. Hence, it is easy to verify that as long as

dh < Γ :=
(d− 1)p

q
+ 1 , (17)

the content of all entries in all messages will be strictly smaller than p. From the
latter inequality we infer that as long as h < log Γ

log d
, or k < 2 log Γ

log d
, no normalization

is needed. In our experiments, we set K1 to be half that upper bound, namely
K1 := b log Γ

log d
c, and we then applied normalization every K1 iterations.

6.2.6 Termination

After completing a preset number of K iterations, the final assignment to Xn, n ∈
[N ], is determined by the minimal entry in Rn =

∑
Xe∈Vn

RK
e→n. To perform that

computation, each agent An, n ∈ [N ], selects a subset of t mediators and asks
them for their shares in the vector Rn. Using those vector shares, An can recover
the entire vector Rn by executing Reconstructt(s1, . . . , sL) (see Section 4.1) on the
shares of each of the |Dn| components in Rn. Afterwards, An finds the minimal
entry in Rn and then assigns the corresponding value to Xn.

6.2.7 A bird’s-eye view of MD-Max-Sum

As a summary of our discussion so far, We provide here a bird’s-eye view of the
MD-Max-Sum algorithm.

Algorithm 2: Bird’s-eye view of MD-Max-Sum.

1 Initial sharing of all topology and constraint information (Section 6.2.1)
2 Perform the initial k = 0 iteration (Section 6.2.2)
3 forall k = 1, . . . , K do
4 forall (Xn, Xe) ∈ E ′+ do
5 Compute t-out-of-L shares in the Qk

n→e-messages (Section 6.2.3)
6 Compute t-out-of-L shares in the Rk

e→n-messages (Section 6.2.4)

7 if (k mod K1) = 0 then
8 Normalize messages (Section 6.2.5)

9 Terminate (Section 6.2.6)

6.3 Correctness and privacy

In this section we provide proofs for the correctness and privacy guarantees of MD-
Max-Sum. Namely, Theorem 6 and Corollary 7 show that the mediated algorithm
MD-Max-Sum perfectly simulates Max-Sum, while Theorem 8 presents the types
of privacy that MD-Max-Sum offers.

Theorem 6. Let:

• Xn and Xe be neighboring nodes in the factor graph G′.
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• Qk
+,n→e and Rk

+,e→n be the two messages that are sent between them in the kth
iteration in Max-Sum, when it is executed on the augmented factor graph G′+.

•
{
Q`,k

+,n→e : ` ∈ [L]
}

and
{
R`,k

+,e→n : ` ∈ [L]
}

be the sets of shares generated in

the kth iteration in MD-Max-Sum between those two nodes.

Then
{
Q`,k

+,n→e : ` ∈ [L]
}

are t-out-of-L shares in Qk
+,n→e and, similarly,{

R`,k
+,e→n : ` ∈ [L]

}
are t-out-of-L shares in Rk

+,e→n.

Proof. The claim is obviously correct for iteration k = 0. We may now proceed
by induction. The computation of the shares in the Q-messages in the kth itera-
tion, as described in Section 6.2.3, and the linearity of secret sharing, imply that{
Q`,k

+,n→e : ` ∈ [L]
}

are t-out-of-L shares in Qk
+,n→e. The computation of the shares

in the R-messages in the kth iteration, as described in Section 6.2.4, and the lin-
earity of secret sharing and the correctness of the COMPARE sub-protocol, imply

that
{
R`,k

+,e→n : ` ∈ [L]
}

are t-out-of-L shares in Rk
+,e→n.

Corollary 7. When MD-Max-Sum and Max-Sum are executed the same number
of iterations K on the same input problem, they will issue the same assignments to
all variables.

Proof. In view of Theorem 6, the set of shares that the mediators will hold in the R-

messages at the completion of the Kth iteration,
{
R`,K

+,e→n : ` ∈ [L]
}

, are t-out-of-L

shares in RK
+,e→n. By Theorem 3, RK

+,e→n ∼ RK
e→n, where RK

e→n is the message sent
in Max-Sum from Xe to Xn, when it is executed on the original (non-augmented)
factor graph G′. Hence, the vector that each agent An computes at termination,
Rn, is equivalent to the corresponding vector that would have been computed by
An at the termination of Max-Sum when executed on G′. In particular, the final
computed assignments would be the same in MD-Max-Sum and in Max-Sum.

Next, we turn to discuss the privacy that is offered by the mediated algorithm.

Theorem 8. MD-Max-Sum provides topology, constraint, and decision privacy,
as long as the mediators have an honest majority.

Proof. The agents share all of their information with the mediators using t-out-of-L
secret sharing, where t = b(L+1)/2c. Under the assumption of honest majority, the
number of mediators that might attempt to reconstruct the shared secrets is smaller
than t and, therefore, all constraint and topology information, as encoded in the
matrices C := {Cn,m : 1 ≤ n < m ≤ N}, Eq. (1), remains fully protected from the
mediators, as well as from the agents. Also, the vectors Rn, n ∈ [N ], that determine
the final decisions (see Section 6.2.6) remain out of reach for the mediators, as well
as for the other agents. Hence, each agent’s final decision remains unknown to all
mediators and all other agents.
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A note on topology privacy. We recall that MD-Max-Sum provides full topol-
ogy privacy, as stated in Theorem 8, when the topology privacy index γ is set to 1
(see Definition 5). Lower settings of γ would result in weaker levels of topology pri-
vacy, as explained in Section 6.1.1, but will provide better runtimes, as demonstrated
in our experimental evaluation, see Section 7.

A note on agent privacy. As discussed in Section 6.2.1, the agents send to the
mediators shares in all of the matrices in C := {Cn,m : 1 ≤ n < m ≤ N}. Hence,
the agents must know the overall number of agents N , as well as the domain sizes
of all variables. Beyond that, each agent must know its identifying index n ∈ [N ].
The mediators could order the agents and then notify each agent of its identifying
index, so that the agents do not need to communicate with each other. Hence,
MD-Max-Sum can provide partial agent privacy: the agents do learn N and |Dn|
for all n ∈ [N ], but no agent will learn anything else about agents with whom it is
not constrained.

6.4 Computational and communication costs

Here we analyze the computational and communication costs of MD-Max-Sum.
The algorithm begins with the agents sending shares in the constraint matrices
to the mediators (Section 6.2.1), then the algorithm iterates for a preset number of
iterations (Sections 6.2.2–6.2.5), and finally the mediators send to each of the agents
a vector from which the agents can infer the assignments to their variables (Section
6.2.6). The opening and concluding phases are executed only once and they include
simple secret sharing computations so we ignore them in this analysis. The main
computational and communication costs are in the main body of the algorithm.

Also there, the work in the initial iteration and in producing shares in the Q-
messages consists of very efficient local computations (see Eqs. (12) and (13)).
The only parts in which the mediators engage in a costly MPC sub-protocol, COP-
MARE, is in computing shares in the R-messages (Section 6.2.4) and in normalizing
messages (Section 6.2.5).

In Protocol 1, when executed on the pair of nodes Xn and Xe, where e =
(Xn, Xm), the COMPARE sub-protocol is executed |Dn| · (|Dm| − 1) times (see
line 4 there). Letting ∆ denote the maximal domain size, then when the topology
privacy index γ equals 1 (see Definition 5), the overall number of invocations of
COMPARE from Protocol 1 in one iteration of MD-Max-Sum is bounded by
∆ · (∆− 1)N(N − 1). For general settings of γ < 1, the bound is 2∆ · (∆− 1)|E+|
(since there are |E+| function nodes and each one of them has two adjacent variable
nodes).

In order to normalize a single Qk
n→e-message, the COMPARE sub-protocol is

needed to be executed |Dn| − 1 times. Hence, the overall number of COMPARE
invocations in iterations when we normalize all Q-messages is bounded by 2|E+|(∆−
1).

In summary, if MD-Max-Sum is executed for K iterations, and every K1 it-
erations we normalize the Q-messages, the overall number of invocations of the
COMPARE sub-protocol is bounded by

2|E+|(∆− 1) · (∆K + bK/K1c) . (18)
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Since in the most secure version of MD-Max-Sum we have |E+| =
(
N
2

)
, the bound

in Eq. (18) is at most

N(N − 1)(∆− 1) · (∆K + bK/K1c) . (19)

As for the computational and communication costs of the COMPARE sub-protocol,
see the theoretical discussion in Section 4.3 and the experimental evaluation in Sec-
tion 7.1.

7 Experimental evaluation

In this section we describe the experiments that we conducted in order to evaluate
the performance of MD-Max-Sum.

We implemented and executed the algorithm on the AgentZero simulator [25],
running on AWS C5a instances comprised of a 2nd generation AMD EPYC™ 7R32
processor and 64 GB memory, except for the call to the COMPARE sub-protocol,
which is described and evaluated separately in Section 7.1.

To achieve maximal parallelism, the number of CPU threads that we used is
greater or equal to the number of agents in all experiments (with one exception that
we describe in the last experiment).

Runtime performance in DCOP is commonly evaluated in a logical manner that
is independent of implementation and hardware issues. This is usually done by
counting the number of non-concurrent constraint checks (NCCCs) [30], since a con-
straint check is the cardinal operation in most standard DCOP algorithms. However,
in privacy-preserving DCOPs the burden of cryptographic operations considerably
outweighs that of constraint checks. Therefore, we follow all previous studies on
privacy-preserving DCOPs and use the simulated time approach [39] instead.

In Section 7.1 we evaluate the runtime of the COMPARE sub-protocol, which is
a fundamental and computationally expensive component of MD-Max-Sum. Then,
in Section 7.2, we evaluate the performance of the whole MD-Max-Sum algorithm,
as a function of the two parameters that affect the level of privacy that it offers: the
topology privacy index γ (Definition 5), and the number of mediators L. Finally, in
Section 7.3, we compare the performance of MD-Max-Sum with other algorithms:
the basic (not-private) Max-Sum, the P-Max-Sum algorithm [42] that preserves
privacy, but is not collusion-secure, and PC-SyncBB [40, 41], which is the only
other privacy-preserving DCOP algorithm that is collusion-secure.

7.1 The COMPARE sub-protocol

The COMPARE sub-protocol was executed using the secure comparison algorithm
of Nishide and Ohta [33] (which we described in Section 4.3), as implemented by
the generic secret-sharing-based protocol of Damg̊ard and Nielsen [11] with the per-
formance improvements of Chida et al. [7]. The implementation is open source and
available online. We executed the sub-protocol over LAN with EC2 machines of
type c5.large in Amazon’s North Virginia data center, with every agent running on
a separate machine. We measured the performance of the protocol for various values
of L (the number of mediators).
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We selected the order of the underlying finite field Zp, over which MD-Max-
Sum operates, to be p = 231 − 1, which is a Mersenne prime (a prime of the form
p = 2t − 1 for some integer t > 1). Using Mersenne primes is advantageous since
multiplying two elements in such fields can be done without performing an expensive
division (in case the multiplication result exceeds the modulus).

Table 2 shows, for each L, the runtime of the Damg̊ard-Nielsen COMPARE
sub-protocol.

L 5 7 9 11 13
runtime 4.5 6.9 13.2 17.2 19.3

Table 2: Runtime in milliseconds, for different values of L, of the Damg̊ard-Nielsen
COMPARE sub-protocol

7.2 The effect of parameters on runtimes

The MD-Max-Sum algorithm depends on two parameters that affect the level of
privacy that it offers. Those are the topology privacy index, γ, and the number of
mediators, L.

As discussed in Section 6.1, we protect the topology of the constraint graph
G from the mediators by adding phantom edges with zero constraints on them.
Although such a mechanism does not alter the final output of the algorithm, it does
add redundant computations along the phantom edges and subsequently entails a
toll on runtime.

In our first experiment we evaluated the price of topology privacy. We used
unstructured random (connected) constraint graphs with N = 24 agents, domains of
size |Dn| = 5, varying constraint densities, p1 = 0.1, . . . , 0.9, and L = 5 mediators.
We ran all problem variants for K = 50 iterations, where the variants differ in
the value of the topology privacy index: γ ∈ {0, 0.25, 0.5, 0.75, 1}. The resulting
runtimes are shown in Figure 6. As expected, runtime increases when γ increases.
Also, for higher values of γ, the effect of the constraint density decreases. Note that
when γ = 1, the constraint density p1 does not affect runtime, since the algorithm
operates on the complete graph regardless of the value of p1.

In the second experiment we evaluated the effect of the number of mediators on
the runtime of MD-Max-Sum. As in the previous experiment, we used unstructured
random (connected) constraint graphs with N = 24 agents, domains of size |Dn| = 5,
and varying constraint densities, p1 = 0.1, . . . , 0.9. We ran all problem variants for
K = 50 iterations, where the variants differ in the number of mediators: L ∈
{5, 7, 9, 11, 13}. The topology privacy index was set to γ = 0.5. As can be seen
in Figure 7, when L increases, the runtime increases too, in consistency with the
runtimes of the COMPARE sub-protocol, as reported in Section 7.1.

In practical applications of MD-Max-Sum, it would be necessary to assess the
probability of the mediators becoming corrupted and forming coalitions, and ac-
cording to that to select the number of mediators. For example, if the probability
of corrupting 3 mediators is deemed sufficiently small, then it would suffice to take
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Figure 6: The effect of the topology privacy index γ on MD-Max-Sum’s runtime:
Unstructured random graphs, N = 24 agents, varying constraint density.

L = 5, since a protocol with that number of mediators is secure as long as the
number of colluding mediators is smaller than 3.

Figure 7: The effect of the number of mediators L on MD-Max-Sum’s runtime:
Unstructured random graphs, N = 24 agents, varying constraint density.

7.3 Comparison of MD-Max-Sum with other algorithms

In the set of experiments that we report next we compared MD-Max-Sum against
other similar-purpose algorithms. We used a logarithmic scale in all these experi-
ments. Unless otherwise stated, we used domains of size |Dn| = 5, n ∈ [N ], in these
experiments.

We used two variants of MD-Max-Sum: one with γ = 0 (no topology privacy)
and one with γ = 1 (full topology privacy). The runtimes of those two extreme
variants provide lower and upper bounds on the runtimes of all other variants,
with 0 < γ < 1. We compared those two variants with the baseline algorithm
Max-Sum (no privacy) and P-Max-Sum [42] (provides privacy, but not against
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coalitions). As shown in [42], and herein in Corollary 4, both of those privacy-
preserving implementations of Max-Sum simulate perfectly the basic Max-Sum.
We used in all experiments K = 10 iterations in all of those algorithms, similarly to
[42].

In addition, we included in our experiment the PC-SyncBB algorithm [40, 41],
which is the only other DCOP-solving algorithm that is privacy-preserving and
collusion-secure. Recall that unlike MD-Max-Sum, PC-SyncBB is a complete
algorithm; hence, it outputs the optimal solution but it is expected to be more time
consuming.

In the first experiment in this set we used unstructured random graphs with
N = 9 agents, see Figure 8. The gap between the runtimes of Max-Sum and
P-Max-Sum demonstrates the price of privacy. The gap between the runtimes
of P-Max-Sum and MD-Max-Sum demonstrates the price of collusion security.
The gap between the runtimes of MD-Max-Sum and PC-SyncBB is the price of
completeness.

Figure 8: Unstructured random graphs, N = 9 agents, varying constraint density.

In the next experiment, shown in Figure 9, we fixed the constraint density to
be p1 = 0.3, and varied the number of agents N in order to observe the scalability
of the evaluated algorithms. The cut-off time for a single execution was set to 30
minutes.

The performance gap between P-Max-Sum and MD-Max-Sum is similar to
what we witnessed in the previous experiment. For small problems with N ≤ 7,
PC-SyncBB is competitive with MD-Max-Sum and even with P-Max-Sum.
However, as the number of agents increases, we can see that the performance of
PC-SyncBB becomes much more time-consuming than MD-Max-Sum. This ad-
vantage of MD-Max-Sum over P-Max-Sum is explained as follows: a significant
portion of the runtime of both algorithms is in performing secure comparisons be-
tween secret values. In PC-SyncBB, that MPC sub-protocol is carried out by all
agents; in MD-Max-Sum, on the other hand, it is carried out by the mediators.
The runtime of this computation depends on the number of interacting parties, as
is evident from Table 2 herein and Table 1 in [41]. Hence, while the time spent in
PC-SyncBB on secure comparisons increases with N , in MD-Max-Sum it is inde-
pendent of N . This mitigation of the dependency of the runtime on N demonstrates
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the strength of the mediated model. (Of course, the runtime of MD-Max-Sum does
depend on N through other computations, outside the secure comparisons in COM-
PARE, since N affects the size of the graph.)

Figure 9: Unstructured sparse random graphs, p1 = 0.3, varying N

In the next experiment we increased the density of the constraints to p1 = 0.7; all
other settings remained the same as in the previous experiment. As can be seen in
Figure 10, the cut-off time of 30 minutes allowed PC-SyncBB to handle only up to
9 agents (as opposed to 11 agents that it could handle within this time limit when
the graph was sparse, p1 = 0.3). Furthermore, in comparison with the previous
experiment, we can see that higher constraint density leads to an increased runtime
performance gap between MD-Max-Sum and PC-SyncBB. Additionally, we ob-
serve that for dense problems, both MD-Max-Sum variants converge to roughly
the same runtime, which is consistent with our experimentation with the impact
of the topology privacy index (Figure 6). In view of these experiments for dense
problems it is advised to apply the MD-Max-Sum variant that offers full topology
privacy (γ = 1).

Figure 10: Unstructured dense random graphs, p1 = 0.7, varying N
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We proceed to compare the performance of the various algorithms on problems of
other types. Using the model of Barabási and Albert [4], we generated random scale-
free networks. Unlike unstructured random graphs, in which the distribution of node
degrees is the same for all nodes, the node degrees in a scale-free network follow a
power law. In our experiments, we began with a complete graph over m0 = 4 nodes.
Then, new nodes were added, one at a time, where each new node was randomly
connected to m = 2 existing nodes with a probability that is proportional to the
degrees of those nodes. We used such scale-free graphs with number of nodes N
that varies from 5 to 23.

Figure 11 displays the result of this analysis. We can immediately observe that,
unlike the previous experiments on unstructured random graphs, the performance
gap between the two MD-Max-Sum variants increases significantly with N . The
reason is that in unstructured random graphs the expected number of edges |E|,
equals p1 ·

(
N
2

)
, which is Θ(N2), while in scale-free graphs |E| =

(
m0

2

)
+m·(N−m0) =

Θ(N). Consequently, the number of potential phantom edges in scale-free graphs,
which is

(
N
2

)
−|E|, is greater, for large values of N , than that in unstructured random

graphs. As a result, the gap between the two extreme variants of MD-Max-Sum is
more evident in scale-free graphs. In such settings, one should tune γ in accordance
with the characteristics of the application scenario.

As for the performance gap between P-Max-Sum and MD-Max-Sum with
γ = 0 variant, it remains similar to what we saw in previous experiments. As for
PC-SyncBB, it remains competitive for problems of up to 9 agents, and it reaches
the cut-off limit after handling 11 agents.

Figure 11: Scale-free graphs (m0 = 4, m = 2), varying N

Next, we evaluated the algorithms on distributed meeting scheduling problems,
in a setting similar to the one described in [41]. In that setting, the problems
are constructed similarly to the PEAV formulation [27], but instead of multiple-
variable agents, we follow the decomposition method that is used in the P-SyncBB
experimentation [42] to separate each variable into a virtual agent [44].

Inspired by the setting of Léauté and Faltings [23], we vary the number of meet-
ings, while the number of participants per meeting is fixed to 2. Then, for each
meeting, the participants are randomly drawn from a pool of 3 agents. Afterwards,
the objective is to select a time slot out of |Dn| = 8 options for each meeting.
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Both time preference and meeting importance are considered during the scheduling.
Figure 12 presents the performance of the algorithms in this setting. The trend is
similar to previous experiments. In addition, we can see that MD-Max-Sum with
topology privacy index γ = 1 reaches the cut-off time of 30 minutes when solving
scheduling problems with 15 meetings or more, while the variant with γ = 0 can
handle problems with 23 meetings without reaching this limit. This emphasizes the
importance of the ability to control the trade-off between privacy and performance.

Figure 12: Meeting scheduling problems, varying number of meetings

Finally, we evaluated the algorithms on structured problems starting with 3-color
graph coloring problems, similar to the setting described by Zivan et al. [45]. In
this setting, for every 1 ≤ n < m ≤ N , Cn,m(x, y) = q if x = y and Cn,m(x, y) = 0 if
x 6= y, for some positive constant q. Figure 13 presents the runtime of the algorithms
on 3-color graph problems with p1 = 0.4 and shows similar scalability properties to
the previous experiments. The small domain size, |Dn| = 3, enables us to experiment
with problems of larger sizes. For this experiment, we started with N = 5 and moved
all the way to 105 agents in steps of 10. While all other algorithms remain within
the cut-off limit of 30 minutes per single execution, the runtime of PC-SyncBB
exceeded the cut-off limit already for N = 20. Hence, we include in Figure 13 the
runtime of PC-SyncBB for N = 19, which was the highest number of agents that
could be processed within 30 minutes. While in all other experiments we allocated a
CPU thread per agent, in this experiment we used a 32-thread CPU even for higher
values of N . Therefore, we can expect even better results for P-Max-Sum when
the number of agents is greater than 32. This does not apply to MD-Max-Sum
since the number of agents affects the constraint graph topology, but the number
of mediators remains the same (L = 5) and the number of CPU threads is not a
bottleneck. Like in the previous experiment, also here the MD-Max-Sum variant
with topology privacy index γ = 1 reaches the cut-off time when solving problems
with 85 agents or more, while the variant with γ = 0 solves up to 105 agents within
this time frame.

In summary, we demonstrated that MD-Max-Sum can be applied to real-world
problems where privacy and security against coalitions are essential.
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Figure 13: 3-color graph coloring problems (p1 = 0.4), varying N

8 Conclusion

In this work we introduced MD-Max-Sum, the first incomplete privacy-preserving
DCOP algorithm that is also collusion-secure. It is an implementation of Max-Sum
in the mediated model of computation. It preserves constraint, topology, decision,
and partial agent privacy. We analyzed the security and correctness of the algorithm
and, using extensive experimentation, demonstrated its characteristics, its advan-
tages over the only other collusion-secure DCOP algorithm, PC-SyncBB, and its
viability.

Aside from the performance gains achieved by utilizing an incomplete algorithm
(as opposed to PC-SyncBB that is based on a complete algorithm), the transition
to the mediated model offers other significant benefits:

• The agents do not need to communicate with each other. Such a feature may
be most advantageous in settings where the agents do not have an efficient
way to communicate among themselves.

• It allows the agents, that may run on computationally-bounded devices, to
outsource costly and cryptographically-complex computations to dedicated
servers. As a result, the agents’ machines can be based on much cheaper
hardware and their energy consumption could be reduced significantly.

• MD-Max-Sum is more robust than all previous DCOP algorithms in the
following sense: if an agent goes offline (e.g., due to a technical failure) after
secret sharing its private data to the mediators, the algorithm can still be
executed and issue the correct outputs to all agents. However, the version
of MD-Max-Sum that we presented here is not resilient to a failure of a
mediator, because we took the maximal possible setting of the threshold, t =
b(L + 1)/2c, see Eq. (5). However, if one reduces the threshold t to values
smaller than b(L+1)/2c, then our algorithm would be able to sustain a failure
of up to L − (2t − 1) mediators. It should be noted that while reducing the
value of the threshold t provides enhanced resilience, it also yields reduced
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security, since the algorithm is secure against coalitions of mediators of size up
to t− 1. Hence, the setting of the number of mediators L and of the threshold
t ≤ b(L+ 1)/2c should take into account the perceived chances of a mediator
having a technical failure or a “moral” failure.

A major bottleneck of MD-Max-Sum is the cryptographic MPC protocol behind
the COMPARE sub-protocol. In our experiments we used the implementation of
Nishide and Ohta [33] for the Damg̊ard and Nielsen [11] protocol. The computational
problem in COMPARE is as follows: given two integers a and b, which are secret-
shared among a set of parties, those parties need to determine whether a < b without
recovering those values. That is a very basic problem in MPC, and it pops up in
PC-SyncBB [41] as well as in many other application settings where privacy is
of concern. Being a fundamental building block in MPC, secure comparison is a
subject of extensive research in the cryptogaphic community, e.g. [6, 29, 32, 36].
We intend to investigate the potential advantages of such alternative techniques of
secure comparison (either existing ones or future ones) in the context of MD-Max-
Sum. We note that the recent study of [29] reports promising improvements in
terms of throughput from which MD-Max-Sum might benefit.

While MD-Max-Sum preserves partial agent privacy, we believe it is possible
to enhance it to support full agent privacy. The main idea is to assign random
identifiers to the agents, instead of ordinal indices, and to provide them with only
an upper bound on the maximum domain size ∆ and number of agents N . We leave
the concrete implementation of this enhancement for future work.

Furthermore, additional improvements can be made on the performance side
by tasking multiple groups of mediators to compute in parallel different areas of
the augmented constraint graph and synchronize the intermediate results between
iterations.

MD-Max-Sum simulates the original version of Max-Sum [12]. Since the in-
troduction of that original version, there have been some advances in the research
of Max-Sum. In particular, recent versions that include damping and splitting [8]
demonstrate improved solution quality. The downside is that these versions require
a considerably higher number of iterations (hundreds or even thousands of itera-
tions) until reaching their solution-quality potential. We leave for future work the
interesting challenge of efficiently implementing such versions of Max-Sum in the
mediated model.

We believe that the mediated model of computation could be successfully imple-
mented for other DCOP algorithms, in order to achieve enhanced privacy guarantees,
and to reap the advantages of the mediated model of computation as we have identi-
fied herein. But we believe that the advantages of mediated computing stretch well
beyond the realm of DCOPs. In settings where the agents are running on devices
of limited computational resources, or cannot efficiently communicate among them-
selves, they could benefit greatly from delegating the solution of their computational
problems (that could be a DCOP, or any other distributed computational task) to
an external set of mediators that run on stronger platforms and could perform the
computational task for the agents, in an oblivious manner, without sacrificing pri-
vacy.
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