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Abstract

In this study, we propose a new paradigm for solving DCOPs, whereby the

agents delegate the computational task to a set of external mediators who per-

form the computations for them in an oblivious manner. That is, the mediators

perfectly simulate the operation of the chosen DCOP algorithm, but without

getting access to the problem inputs or to its outputs. Specifically, we propose

MD-Max-Sum, a mediated implementation of the Max-Sum algorithm. MD-

Max-Sum offers topology, constraint, and decision privacy. Moreover, MD-

Max-Sum is collusion-secure, as long as the set of mediators has an honest

majority. We evaluate the performance of MD-Max-Sum on different bench-

marks, problem sizes, and constraint densities. In particular, we compare its

performance to PC-SyncBB, the only privacy-preserving DCOP algorithm to

date that is collusion-secure, and show the significant advantages of MD-Max-

Sum in terms of runtime. We conclude that MD-Max-Sum can be used in

practice for solving DCOPs when strong privacy guarantees are required. The

main takeaway from this study is a demonstration of the power of mediated com-

puting. It allows either a single party or a set of parties, who may have limited

computational or communication resources, to delegate an intricate computa-

tion to external dedicated servers who can perform the computation for them

in an oblivious manner that protects the privacy of the initiating parties.
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1. Introduction

A Distributed Constraint Optimization Problem (DCOP) [1, 2] is a com-

monly accepted and practical mathematical framework for solving coordination

challenges in multi-agent systems. DCOPs are well-suited to handle many real-

world artificial intelligence problems, such as meeting scheduling [3], sensor5

networks [4], and management of energy resources [5].

A DCOP consists of a set of variables that are controlled by several indepen-

dent agents. Each variable can take values in some finite domain. Some subsets

of variables may be dependent in the sense that when they are assigned values

from their respective domains, different combinations of those values may incur10

costs. The goal of the agents is to find assignments to their variables so that

the sum of all costs that those assignments incur would be minimal.

Many algorithms were proposed over the years to solve DCOPs. Some of

those algorithms are complete, in the sense that they always issue an optimal

solution, namely, assignment to all variables with an overall minimal cost. Ex-15

amples for such algorithms are SyncBB [1], ADOPT [6], OptAPO [7], and

DPOP [8]. As DCOPs are NP-hard, complete algorithms are characterized by

low scalability and they are usually limited to small-scale problems. In con-

trast, incomplete DCOP-solving algorithms, such as DSA [9], MGM [10], and

Max-Sum [4], find solutions of typically low cost, but those solutions are not20

necessarily optimal. Such algorithms are usually much more efficient than com-

plete algorithms and they can be applied to larger problems.

One of the main motivations for solving constraint optimization problems in

a distributed manner is to preserve the privacy of the interacting agents. For

example, when the agents represent parties that engage in coordinating event25

scheduling [3], each party might wish to keep its schedule details hidden from

the other parties, since revealing such information might leak sensitive business

data, e.g., meetings with competitors or with potential partners. Other exam-

ples of DCOP applications with privacy concerns include scheduling devices in
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smart homes [11, 12], scheduling observations in satellite constellations [13, 14],30

and assigning students to courses based on sensitive friendships information [15].

In Section 2 we survey some of the DCOP algorithms that preserve privacy.

All existing DCOP algorithms (privacy-preserving or not) are carried out

by the agents themselves. However, some of those algorithms, and in partic-

ular the privacy-preserving ones, require significant computing resources. In35

addition, all DCOP algorithms assume that the agents are connected through a

communication network. We propose here a new paradigm in DCOPs: solving

them in what is known in cryptography as the mediated model [16, 17]. Namely,

We assume that there exist external servers, or mediators, that may serve as

computing engines for the agents. The agents send the problem inputs to those40

mediators in some protected manner. The mediators simulate a DCOP algo-

rithm on those inputs. At its completion, they send to the agents messages from

which the agents extract the outputs, i.e., the variable assignments. Through-

out this process, the mediators remain oblivious to the problem inputs, to the

content of the protected messages that they exchange, and to the outputs.145

Performing the DCOP algorithm in such a mediated manner offers several

significant advantages:

1. It protects the privacy of the agents since the agents no longer exchange

among themselves messages that relate to their private data, while the

mediators work on protected values (say, on secret sharing of the input50

values, or on homomorphic encryption of those values).

2. In some settings, the agents cannot efficiently communicate among them-

selves. This can happen in scenarios in which the agents are energy-

constrained, such as static or mobile sensors [19, 20], or in scenarios in

which the agents do not even know with whom they are constrained as55

in the case with requesters of satellite observations [14]. In such cases,

1Note that the external mediators herein should not be confused with the mediators in the

OptAPO algorithm [7, 18], which are regular (internal) agents that perform computations in

their neighborhood as an inherent part of the algorithm.
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it is hard to run DCOP algorithms, because they require the agents to

exchange messages. Some of those algorithms (like SyncBB) require all

agents to communicate between themselves. The problem in Max-Sum is

somewhat relaxed, as it requires only pairs of agents that are constrained60

to exchange messages. However, if two agents are constrained it does

not imply that they can efficiently communicate. Delegating the com-

putational task to a set of dedicated servers that are connected among

themselves offers a remedy for this problem.

3. Agents who do not have the computational resources to run the DCOP al-65

gorithm may benefit from delegating the computation to external servers

that will perform it for them in a secure manner. Examples include sen-

sors [19, 20], smart home devices [11, 12], and students that want to

register to courses [15].

4. While DCOP algorithms depend on having all agents active and cooper-70

ative, the mediated model is much more robust. Once all agents submit

their inputs in a secure manner to the mediators, even if some of them

experience a failure, the mediators can still complete the computation and

provide the needed outputs to all agents that are still operational.

In this work we demonstrate the power of mediated computing by presenting75

MD-Max-Sum, a Mediated execution of the Max-Sum algorithm [4]. We use

here distributed mediation, where the number of mediators, which we denote

by L, is greater than 1. With such distributed mediation, the cryptographic

protection shield (see point 1 above) is secret sharing (see Section 4.1).2 MD-

Max-Sum starts with the agents sending to the mediators secret shares in their80

private inputs. In the main part of the algorithm, the mediators execute the

Max-Sum computations on the shares of the problem inputs, while remaining

2It is possible also to devise a mediated implementation ofMax-Sum with a single mediator,

L = 1. In such a case, the cryptographic protection shield would have to be homomorphic

encryption, in order to allow the mediator to perform arithmetic computations on secret

values. However, the costs of encryption are significantly higher than those of secret sharing.
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oblivious to the value of the underlying inputs. Finally, the mediators send

the agents messages from which the agents may infer the assignments to their

variables. We show that if the mediators have an honest majority (namely, the85

number of colluding mediators is smaller than the number of mediators outside

the coalition), then MD-Max-Sum provides topology, constraint, and decision

privacy. Those security guarantees hold against any collusion among the set of

agents.

The outline of this work is as follows. In Section 2 we provide a summary of90

the previous work in the field of privacy-preserving DCOP algorithms. Then,

Section 3 covers the relevant DCOP background – definitions and the Max-

Sum algorithm. Later, in Section 4 we provide the necessary cryptographic

background – threshold secret sharing and secure multiparty computation. In

particular, we focus on efficient ways for performing secure comparisons, a sig-95

nificant building block of Md-Max-Sum. Section 5 holds the main part of

this work – the description and analysis of MD-Max-Sum, our novel privacy-

preserving collusion-secure DCOP algorithm. Section 6 provides an experimen-

tal evaluation of MD-Max-Sum and a comparison of its performance against

Max-Sum and other privacy-preserving algorithms. We conclude in Section 7.100

A preliminary version of this paper was published at CSCML 2022 confer-

ence [21]. The present journal version extends the preliminary version with the

inclusion of two algorithmic enhancements, formal proofs, extended experimen-

tal evaluation, as well as a much more elaborate presentation throughout the

paper. The first algorithmic enhancement is in the computation of minima in105

Protocol 1, which provides perfect privacy (see the discussion in Sections 4.4 and

5.2.4). The second algorithmic enhancement is in the incorporation of a topology

privacy index that allows us to balance between the level of topology privacy

preservation and computational and communication costs (see Section 5.1.1).

Other notable additions include elaborate introduction, related work, and back-110

ground (Sections 1-4), formal proofs (Sections 5.1 and 5.3), computational and

communication analysis (Section 5.4), and a much extended and comprehen-

sive experimental evaluation (Section 6). In addition, we include in this version
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a demonstration of the privacy issues in Max-Sum (Appendix A) as well as

the vulnerability of the privacy-preserving implementation of Max-Sum [22] to115

collusion attacks (Appendix B). We also include examples that illustrate the

secret sharing of the private inputs (Appendix C) and the MPC computations

over secret shared values (Appendix D).

2. Related work

The study of privacy in the context of Distributed Constraint Satisfaction120

Problems (DCSPs) started with the work of Silaghi and Faltings [23], who com-

pared different solution techniques and arranged them in a hierarchy according

to their corresponding level of privacy loss. DCSPs are a special case of DCOPs:

while in DCOPs, combinations of assignments incur a cost in the range [0,∞], in

DCSPs all costs are in {0,∞}. Namely, a combination of assignments is either125

allowed or prohibited, and the goal is to find an assignment to all variables with

no prohibited combinations.

In a later study, Silaghi and Mitra [24] proposed a privacy-minded solution

to Distributed Weighted Constraint Satisfaction Problems, another framework

that is closely related to DCOPs. Their solution was based on the BGW proto-130

col for a multiparty secure evaluation of polynomial functions [25], and it was

applicable only to small problems due to its dependency on an exhaustive search

over all possible full assignments.

Doshi et al. [26] and Savaux et al. [27] considered the idea of injecting privacy

loss as a criterion for the solving process. These studies relate to the trade-off135

between solution quality and privacy loss, whereas our focus is on preventing

privacy loss via strong privacy guarantees.

In order to better describe the privacy guarantees of DCOP algorithms,

Léauté and Faltings [28] suggested four notions of privacy for the DCOP frame-

work: agent, topology, constraint, and decision privacy. We adhere to those140

notions and provide their definition in Section 3.1. Furthermore, they devised

three secure versions of DPOP, each with different runtimes and privacy guar-
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antees: P-DPOP(+), P3/2-DPOP(+), and P2-DPOP(+).

Grinshpoun and Tassa [29] presented a privacy-preserving version of another

complete algorithm – SyncBB. The resulting method, P-SyncBB, preserves145

topology, constraint, and decision privacy.

Since complete algorithms are not scalable, research efforts were invested also

in designing privacy-preserving implementations of incomplete algorithms. A

notable example is the GDL-based [30] Max-Sum algorithm [4]. Unlike search-

based algorithms, where the agents systematically search the entire solution150

space, GDL-based algorithms require the agents to maintain a set of beliefs.

As the protocol progresses, the agents communicate and update those beliefs

and ultimately choose their assignment according to them. Such schemes are

also known as inference-based algorithms. In the context of DCOPs, Max-

Sum was shown to produce high-quality solutions while keeping runtimes low155

in comparison with both incomplete or complete algorithms.

Tassa et al. [22] developed the P-Max-Sum algorithm, which runs Max-

Sum with cryptographic enhancements in order to preserve privacy (see Ap-

pendix A where we demonstrate how Max-Sum fails to preserve privacy). In

P-Max-Sum, every message between two nodes is secret-shared between the160

two agents that control those nodes. The main task is then to use the set of

message shares in one iteration in order to compute from them proper shares

in the messages of the next iteration. Homomorphic encryption is used in or-

der to perform that computation in a privacy-preserving manner. P-Max-Sum

provides topology, constraint, and decision privacy, and it may be extended to165

provide also agent privacy. Grinshpoun et al. [31] devised another incomplete

privacy-preserving algorithm, P-RODA, which is based on region optimality

[32, 33]. P-RODA provides constraint privacy and partial decision privacy.

All of the above-mentioned privacy-preserving DCOP algorithms assume

solitary conduct of the agents. However, if two or more agents collude and170

combine the information that they have, they may extract valuable information

about other agents. (In Appendix B we demonstrate such possible attacks

in the context of P-Max-Sum). To address the risk of collusion, Tassa et
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al. [34] introduced PC-SyncBB, the first privacy-preserving DCOP algorithm

that is collusion-secure. It is secure under the assumption that the agents have175

an honest majority. PC-SyncBB does extensive usage of Secure Multiparty

Computation (MPC) in order to obliviously compare between costs of partial

assignments.

In this work we proposeMD-Max-Sum, the first incomplete privacy-preserving

DCOP algorithm that is collusion-secure. MD-Max-Sum is also the first DCOP180

algorithm that is implemented in the mediated model. We note that one of the

variants of PC-SyncBB [34] suggests exporting some computation to an exter-

nal committee of mediators. That is, PC-SyncBB is executed entirely by the

agents but there is one specific computation (the comparison between the cost

of the current partial assignment to the cost of the best full assignment that185

was found so far in the search) that could be exported to external mediators.

In contrast, MD-Max-Sum is the first algorithm that is fully mediated, in the

sense that it is executed entirely by external mediators. The advantages of that

model of computation are discussed in the Introduction and in Section 7.

3. Background: Distributed Constraint Optimization Problems190

In this section, we present the necessary DCOP background: definitions of

the DCOP framework (Section 3.1) and the Max-Sum algorithm (Section 3.2).

3.1. DCOP definitions

A Distributed Constraint Optimization Problem (DCOP) [1, 2] is a tuple

⟨A,X ,D,R⟩ where A is a set of agents A1, A2, . . . , AN , X is a set of variables195

X1, X2, . . . , XN , D is a set of finite domains D1, D2, . . . , DN , and R is a set

of relations (constraints). Each variable Xn, n ∈ [N ] := {1, 2, . . . , N}, takes

values in the domain Dn, and it is held by the agent An.
3 Each constraint

C ∈ R defines a non-negative cost for every possible value combination of some

3We make herein the standard assumption that the number of variables equals the number

of agents, and that each variable is held by a distinct single agent, see e.g. [6, 8].
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subset of variables and is of the form C : Dn1 × · · · × Dnk
→ [0, q], for some200

1 ≤ n1 < · · · < nk ≤ N , and a publicly known maximal constraint cost q.

An assignment is a pair including a variable and a value from that variable’s

domain. The goal of the agents is to find assignments to their variables so that

the sum of all costs that those assignments incur would be minimal.

We consider here a binary version of DCOPs, in which every C ∈ R con-205

straints exactly two variables and takes the form Cn,m : Dn × Dm → [0, q],

where 1 ≤ n < m ≤ N . Such an assumption is customary in DCOP literature,

see e.g. [6, 8]. As the domains are finite, they may be ordered. Hence, the bi-

nary constraint Cn,m between Xn and Xm may be described by a matrix, which

we also denote by Cn,m, of dimensions |Dn| × |Dm|; in that matrix, Cn,m(i, j)210

equals the cost that corresponds to the assignment of the ith value in Dn to Xn

and the jth value in Dm to Xm, where 1 ≤ i ≤ |Dn| and 1 ≤ j ≤ |Dm|.

The constraint graph G = (V,E) is an undirected graph over the set of

variables V = X , where an edge in E connects two variables if and only if

they are constrained. If we define for every pair of variables (Xn, Xm) /∈ E

a constraint matrix Cn,m which is the zero matrix of dimensions |Dn| × |Dm|,

then the set of all such matrices,

C := {Cn,m : 1 ≤ n < m ≤ N} , (1)

fully determines the problem; namely, it encompasses all topology and constraint

information.

Every DCOP is also associated with a so-called factor graph. It is a bipartite215

graph G′ = (V ′, E′) that is defined as follows.

• V ′ has two types of nodes: variable nodes,X1, . . . , XN , and function nodes,

Xe, for each e = (Xn, Xm) ∈ E.

• E′ has an edge connecting Xn with Xe if and only if e is an edge in G

that is adjacent to Xn.220

An example of a DCOP constraint graph and its corresponding factor graph

is given in Figure 1.
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Figure 1: A constraint graph G of a DCOP with 4 variable nodes (left) and the corresponding

factor graph G′ that has 4 variable nodes and 3 function nodes (right).

Léauté and Faltings [28] have distinguished between four notions of privacy

in the context of distributed constraints:

• Agent privacy – hiding from each agent the identity or even the existence225

of other agents with whom it is not constrained.

• Topology privacy – hiding from each agent the topological structures in

the constraint graph beyond its own direct neighborhood in the graph.

• Constraint privacy – hiding from each agent the constraints in which it is

not involved. Namely, agent Ak should not know anything about Cn,m(·, ·)230

if k /∈ {n,m}.

• Decision privacy – hiding from each agent the final assignments to other

variables (i.e., variables owned by other agents).

3.2. The Max-Sum algorithm

TheMax-Sum algorithm [4] operates on the factor graphG′. Each agentAn,235

n ∈ [N ], controls its corresponding variable node Xn. As for the function nodes,

they are controlled by either of the two agents corresponding to the adjacent

variable nodes; the decision of which agent controls each function node is made

a-priori. The Max-Sum algorithm performs synchronous steps (iterations),

where in each of them a couple of messages are sent along each edge of G′ in240

both directions. Let us consider the edge that connects Xn with Xe, where
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e = (Xn, Xm). The messages, in both directions, will be vectors of dimension

|Dn|, and they will be denoted by Qk
n→e and Rk

e→n, depending on the direction,

where k ≥ 0 is the number of the iteration. If x is one of the elements in Dn then

its corresponding entry in the message will be denoted by Qk
n→e(x) or R

k
e→n(x).245

In the k = 0 iteration, all messages are zero. After completing the kth

iteration, the messages in the next iteration will be as follows. Fixing a variable

node Xn and letting Vn be the set of function nodes adjacent to Xn in G′, then

for each Xe ∈ Vn, Xn will send to Xe the vector

Qk+1
n→e :=

∑
Xf∈Vn\{Xe}

Rk
f→n . (2)

As for messages sent from function nodes, if Xe is a function node that connects

the two variable nodes Xn and Xm then the message sent from Xe to Xn is

Rk+1
e→n(x) := min

y∈Dm

[
Cn,m(x, y) +Qk

m→e(y)
]
, ∀x ∈ Dn ; (3)

the message that Xe sends to Xm is constructed similarly. Finally, after com-

pleting a preset number K of iterations, each variable node Xn computes

Rn :=
∑

Xe∈Vn

RK
e→n , (4)

and then selects a value x ∈ Dn for which Rn(x) is minimal.

During the run of Max-Sum, the entries in the messages Qk and Rk may

grow exponentially. In order to prevent the entries in the messages from growing

uncontrollably, it is customary to “normalize” the messages. One manner in

which messages are normalized in Max-Sum is to subtract from each entry in250

each message Qk+1
n→e, where e = (Xn, Xm), the value αk+1

n→e := minx∈Dn
Qk+1

n→e(x)

[4].

4. Background: Cryptographic tools

In this section, we describe the cryptographic tools and protocols that we

will use in our privacy-preserving DCOP algorithm. We begin with two general-255

purpose tools: threshold secret sharing (Section 4.1) and secure multiparty com-

putation (Section 4.2). We then describe efficient ways for performing a secure
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comparison of secret-shared values (Section 4.3) and how to securely compute

their minimum (Section 4.4).

4.1. Shamir’s secret sharing260

Secret sharing schemes [35] are protocols that enable to distribute a secret

among a group of parties, denoted M = {M1, . . . ,ML}, such that each of them

is allocated a random value, called a share, so that some subsets of those shares

enable the reconstruction of the secret. In its most basic form, called Threshold

Secret Sharing, the secret can be reconstructed only when a sufficient number of265

shares are combined together, while smaller sets of shares reveal no information

at all on the secret.

Shamir’s t-out-of-L threshold secret sharing scheme [35], for some t ≤ L, is

a scheme in which the secret shares enable the recovery of the secret from any

subset of t shares, while any subset of t − 1 or fewer shares reveals nothing on270

the secret. The scheme operates over a finite field Zp, where p > L is a prime

sufficiently large so that all possible secrets may be represented in Zp. It has

two procedures: Share and Reconstruct:

• Sharet,L(x). The procedure samples a uniformly random polynomial f(·)

over Zp, of degree at most t − 1, where the free coefficient is the secret s.275

That is, f(x) = s + a1x + a2x
2 + . . . + at−1x

t−1, where aj , 1 ≤ j ≤ t − 1,

are selected independently and uniformly at random from Zp. The procedure

outputs L values, sℓ = f(ℓ), ℓ ∈ [L] := {1, . . . , L}, where sℓ is the share given

to Mℓ, ℓ ∈ [L]. The entire set {s1, . . . , sL} is called a t-sharing of s, and will be

denoted henceforth by [s]t.280

• Reconstructt(s1, . . . , sL). The procedure is given any selection of t shares

out of [s]t. Then it interpolates a polynomial f(·) of degree at most t− 1 using

the given points and outputs s = f(0). Any selection of t shares out of [s]t will

yield the secret s, as t points determine a unique polynomial of degree at most

t − 1. On the other hand, any selection of t − 1 shares or less reveals nothing285

about the secret s.
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The operations of generating random shares in a secret and reconstructing

a secret from its shares are demonstrated in Appendix C and Appendix D.

4.2. Secure Multiparty Computation

A Secure Multiparty Computation (MPC) protocol [36, 37] allows a group290

of parties, denoted M = {M1, . . . ,ML}, to compute any function f over private

inputs that they hold, x1, . . . , xL, where xℓ is known only to Mℓ, ℓ ∈ [L], so

that at the end of the protocol, everyone learns the result of f(x1, . . . , xL), but

nothing else beyond what every party may infer from the final output and its

own input.295

It is customary to distinguish between semi-honest and malicious parties.

Semi-honest parties follow the prescribed MPC protocol but at the same time,

they try to glean more information than allowed from what they receive during

the execution of the protocol. In contrast, malicious parties may deviate from

the prescribed protocol, or even defect during the protocol. Designing protocols300

that are secure against malicious parties is a significantly more intricate task

and the resulting protocols are usually much less efficient. We concentrate here

on the case of semi-honest parties.

It should be noted that while semi-honest parties are trusted to follow the

protocol, some of them may collude in order to combine their inputs and mes-305

sages received during the protocol’s execution in order to extract private infor-

mation on other parties. A common assumption in studies that consider honest

parties is that of an honest majority. It means that if some of the parties col-

lude, the number of colluding parties is strictly smaller than half the overall

number of parties. We make that assumption herein.310

4.2.1. Circuit representation

MPC protocols require the function f to be represented by a circuit C such

that for every set of inputs, x1, . . . , xL, the output of the circuit, C(x1, . . . , xL),

equals f(x1, . . . , xL). A circuit representation of a function f is essentially a

directed acyclic graph with the following properties. The graph has a leaf node315
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(i.e., a node with in-degree zero) for every input of f , and a root node (i.e., a

node with out-degree zero) for the output of f . The former nodes are called

input gates, while the latter one is called an output gate. In addition, the graph

may have multiple internal nodes (ones with positive in-degrees and out-degrees)

that are called operation gates.320

We restrict our attention to arithmetic circuits, in which the values assigned

to gates are from an arbitrary finite field F, and the operation gates are either the

addition or the multiplication functions (over two operands). For illustration,

consider the arithmetic function f(x1, x2, x3) = x1 · x2 + x2 · x3 · (x2 + x3).

The circuit C in Figure 2 evaluates that function. It consists of three layers.325

The first layer has two multiplication gates that compute x1 · x2 and x2 · x3,

and one addition gate that computes x2 + x3. The second layer has a single

multiplication gate for computing x2 · x3 · (x2 + x3). Finally, the third and last

layer has a single addition gate that issues the desired output.

The private values x1, . . . , xL determine the input values to all of the circuit’s330

input gates. Then, the following process is performed repeatedly: for each gate

g, once both its input wires are assigned values, say α1 and α2, the output wire

of the gate is assigned the value g(αl, αr). This process is repeated until the

output gate is assigned a value. That output value is denoted C(x1, . . . , xL).

Figure 2: An arithmetic circuit C that realizes the function f(x1, x2, x3) = x1 · x2 + x2 · x3 ·

(x2 + x3).

4.2.2. Secret-sharing-based MPC335

Here we describe a general approach to performing an MPC evaluation of

arithmetic circuits based on Shamir’s secret sharing scheme (Section 4.1). As-
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sume that C(x1, . . . , xh) is an arithmetic circuit that realizes some polynomial

function f(x1, . . . , xh). Assume next that each of the inputs xi, i ∈ [h], is secret-

shared using t-out-of-L secret sharing among a set of L parties, M1, . . . ,ML.340

The goal is to design an MPC protocol that will allow the L parties to compute

t-out-of-L sharing of the output value f(x1, . . . , xh).

Since the L parties already have t-out-of-L shares in each of the input values,

then it is necessary to devise sub-protocols that will allow them to emulate

arithmetic gates. Namely, assuming that the parties hold t-out-of-L shares in345

the two inputs of a gate, it is necessary to describe a manner in which they will

be able to compute t-out-of-L shares in the gate’s output, without learning in

the process any information on the underlying inputs or output. Clearly, if we

can emulate addition gates and multiplication gates, then it would be possible

to emulate the entire circuit, gate by gate, until the parties get t-out-of-L shares350

in the final output.

In the circuit shown in Figure 2, the parties have t-out-of-L shares in each

of the input values x1, x2, x3. With those shares, they proceed to emulate the

circuit layer by layer, by computing proper t-out-of-L shares in the output wires

of the three gates in the first layer, then proceeding to compute t-out-of-L shares355

in the output of the multiplication gate in the second layer, using the already

computed shares in the output wires of two of the gates in the first layer, and

finally computing t-out-of-L shares in the output wire using the computed shares

in the output wires of the multiplication gate in the second layer and the first

multiplication gate in the first layer.360

Below, we describe the generic secret-sharing-based protocol of Damg̊ard

and Nielsen [38]. Specifically, we explain the manner in which that protocol

emulates addition and multiplication gates. As the multiplication procedure

requires the parties to generate shares in an unknown random value, we also

explain how they perform that. We would like to note that in our experiments365

we used that protocol, with the performance improvements that were proposed

by Chida et al. [39].
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Hereinafter, we set the secret sharing threshold to be

t := ⌊(L+ 1)/2⌋ . (5)

Namely, in order to reconstruct the secret, at least half of the parties must

combine their shares. We will explain the importance of that setting later on

when we discuss the privacy of MD-Max-Sum.370

• Addition. Let {a1, . . . , aL} be a t-sharing of the field element a and

{b1, . . . , bL} be a t-sharing of the field element b. Then it is easy to see that

{a1+ b1, . . . , aL+ bL} is a t-sharing of the sum a+ b. Hence, addition gates can

be emulated easily with no interaction between the parties.

• Random number generation. In emulating multiplication gates, it is375

necessary for the parties to generate secret shares in a random field number that

will remain unknown to them. To do that, each party Mℓ, ℓ ∈ [L], generates a

uniformly random field value ρℓ and performs t-sharing of it among M1, . . . ,ML.

At the completion of this stage, each Mℓ adds up all the L shares that it had

received and gets a value that we denote by rℓ. It is easy to see that {r1, . . . , rL}380

is a t-sharing of the random value ρ =
∑

ℓ∈[L] ρℓ. Clearly, ρ is a uniformly

random field element, as it is a sum of uniformly random independent field

elements.

• Multiplication. Let [a]t be a t-sharing of a, which was generated by

a polynomial f(·) of degree t − 1; and let [b]t be a t-sharing of b, which was385

generated by a polynomial g(·) (also of degree t − 1). The goal is to obtain

t-sharing of c = a · b.

First, Mℓ computes cℓ = aℓ · bℓ, ℓ ∈ [L]. Those values are point values of the

polynomial fg, which is a polynomial of degree 2t− 2. Hence, {c1, . . . , cL} is a

(2t − 1)-sharing of c. Note that as t = ⌊(L + 1)/2⌋, Eq. (5), then 2t − 1 ≤ L;390

therefore, the L parties have a sufficient number of shares in order to recover

c. However, our goal is to obtain a t-sharing of c, namely a set of shares in c,

of which any selection of only t shares can be used to reconstruct c. Hence, we

proceed to describe a manner in which the parties can translate this (2t − 1)-

sharing of c into a t-sharing of c.395
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To do that, the parties generate two sharings of the same uniformly random

(and unknown) field element R: a t-sharing, denoted {r1, . . . , rL}, and a (2t−1)-

sharing, denoted {R1, . . . , RL}. Next, each Mℓ computes c̃ℓ = cℓ+Rℓ and sends

the result to M1. Since {c̃1, . . . , c̃L} is a (2t − 1)-sharing of c + R, M1 can use

any 2t − 1 of those shares in order to reconstruct c̃ := c + R. M1 broadcasts400

that value to all parties. Consequently, each Mℓ computes ĉℓ = c̃− rℓ, ℓ ∈ [L].

Since c̃ is a constant and rℓ is a t-out-of-L share in R, then ĉℓ is a t-out-of-L

share in c̃ − R = c + R − R = c, as needed. This procedure is perfectly secure

since c̃ = c + R reveals no information on c because R is a uniformly random

field element that is unknown to the parties.405

4.3. Secure comparisons

Let a and b be two integers smaller than p, which is the size of the underlying

field Zp. Assume that the parties M1, . . . ,ML hold t-out-of-L shares in both a

and b. They wish to compute a t-sharing of the bit 1a<b that indicates whether

a < b or not, without learning any information on a and b. A protocol that does410

that is called secure comparison. Such a protocol is instrumental in MD-Max-

Sum, and it is a fundamental building block in other computations as well (see

Section 4.4 below).

Secure comparison is an area of active study, and improvements are being

developed rapidly. An efficient constant-round protocol was considered an open

problem for a significant amount of time. The first efficient solution was in-

troduced by Damg̊ard et al. [40] by means of bit-decomposition. It required

O(ℓ · log(ℓ)) multiplications, where ℓ = log2(p). A year later, Nishide and Ohta

[41] presented an improved method for secure comparison. It is based on the

following simple observation. If we denote the bits 1a< p
2
, 1b< p

2
, 1[(a−b) mod p]< p

2
,

and 1a<b by w, x, y, z, respectively, then

z = wx̄ ∨ w̄x̄ȳ ∨ wxȳ . (6)

The equality in Eq. (6) can be confirmed by the truth table in Table 1. Next,

we translate the Boolean expression in Eq. (6) to an equivalent arithmetic
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w = 1a< p
2

x = 1b< p
2

y = 1[(a−b) mod p]< p
2

z = 1a<b

T F * T

F T * F

F F F T

F F T F

T T F T

T T T F

Table 1: Truth table for an indirect comparison of a and b using Eq. (6).

expression:

z = w(1− x) + (1− w)(1− x)(1− y) + wx(1− y)

= 1− x− y + xy + w(x+ y − 2xy) .
(7)

Hence, we reduced the problem of comparing two secret shared values, a

and b, to computing three other comparison bits, w, x, y, and then evaluating415

an arithmetic function of them, Eq. (7). What makes this alternative expression

efficiently computable is the fact that in the three comparison bits, w = 1a< p
2
,

x = 1b< p
2
, and y = 1[(a−b) mod p]< p

2
, the right-hand side is p

2 , as we proceed to

explain.

Lemma 1. Given a finite field Zp and a field element q ∈ Zp, then q < p
2 if420

and only if the least significant bit (LSB) of (2q mod p) is zero.

Proof. If q < p
2 then 2q < p. Hence, 2q mod p = 2q (there is no modular

reduction), and therefore, as 2q is even, its LSB is 0. On the other hand, if

q > p
2 then 2q > p. Hence, 2q mod p = 2q − p. Since that number is odd, its

LSB is 1. 2425

In view of Lemma 1, the parties may compute t-out-of-L shares in 1q< p
2
by

computing shares in the field element 2q and then using those shares in order

to compute shares in the corresponding LSB. The reader is referred to [41] for

the details of that last step in the computation.
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We conclude this section by commenting on the complexity of the above-430

described secure comparison protocol. Computing shares in the LSB of a shared

value requires 13 rounds of communication and 93ℓ+1 multiplications. Since we

have to compute three such bits (i.e., w, x, and y) then we can compute shares of

those three bits in 13 rounds and a total of 279ℓ+3 multiplications. Finally, we

should evaluate the expression in Eq. (7), which entails two additional rounds435

and two additional multiplications. Hence, the total complexity is 15 rounds

and 279ℓ + 5 multiplications. In comparison, the cost of the protocol of [40]

that was based on bit decomposition required 44 rounds and 205ℓ+188+ log2 ℓ

multiplications.

4.4. Secure computation of minima440

As in Section 4.3, let us assume that a and b are two integers smaller than p,

and that the parties M1, . . . ,ML hold t-out-of-L shares in both a and b. They

wish to compute a t-sharing of min(a, b). Since

min(a, b) = b+ 1a<b · (a− b) , (8)

the parties may perform that computation securely (i.e., without revealing a, b,

or 1a<b) as follows. First, they compute a t-sharing of the bit 1a<b, as described

above. Then, using the emulation of multiplications (see Section 4.2.2), they

proceed to compute a t-sharing of the value c := 1a<b · (a − b). Finally, each

party adds its share in b to its share in c. In view of Eq. (8), the resulting445

shares are t-sharing of min(a, b).

In what follows we let MIN(a, b) denote the MPC protocol that takes as

inputs a t-sharing of a and a t-sharing of b and outputs a t-sharing of min(a, b).

As that protocol amounts to performing the secure comparison protocol (Section

4.3) with an additional round that involves a single multiplication (as can be450

seen in Eq. (8)), its total complexity is 16 rounds and 279ℓ+ 6 multiplications.

As a concluding remark, we refer the reader to Appendix D in which we

exemplify the inputs and outputs of the MPC protocols discussed in this section.
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5. Mediated Max-Sum

In order to implement Max-Sum in a manner that preserves the privacy of455

the agents even when some of them collude, we propose herein an implemen-

tation of the algorithm in the mediated model. Let M = {M1, . . . ,ML} be

an external committee of so-called mediators. The agents in A will share their

DCOP private inputs, namely, the topology and constraint information, with

the mediators using a t-out-of-L secret sharing scheme, where t = ⌊(L + 1)/2⌋460

(see Eq. (5)). The agents trust the mediators to have an honest majority, in

the sense that if some of the mediators decide to collude in order to reconstruct

the shared private data, the number of colluding mediators would be smaller

than the number of mediators outside the coalition. Under that assumption,

the mediators cannot recover the private inputs that were shared with them,465

since at least t mediators have to collude in order to be able to reconstruct the

shared secrets, and t = ⌊(L+ 1)/2⌋ ≥ L− t.

After the agents had completed sharing all their private inputs with the

mediators, they go to rest and the mediators start emulating the performance of

the entire Max-Sum algorithm by implementing MPC techniques on the shared470

data. The main challenge in this regard is to design an implementation of Max-

Sum that operates on shared data, namely, in a manner that is oblivious to the

underlying topology and constraint values. When the mediators complete their

emulation of Max-Sum, say by running an agreed preset number of iterations,

K, they send to each of the agents a message from which that agent can infer475

the assignment of its variable in the solution that the algorithm had found. We

call this algorithm MD-Max-Sum.

In order to hide the constraint graph topology from the mediators, MD-

Max-Sum operates on an augmented version G+ = (V,E+) of the constraint

graph G = (V,E), which includes, in addition to the actual edges in G, also480

some phantom edges (see Section 5.1). As demonstrated in Theorem 4, running

Max-Sum over a constraint graph that is augmented by phantom edges does

not change the output of the algorithm. With such added phantom edges, the
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mediators cannot tell which of the edges in the augmented graph are actual ones

and which are phantom ones, so the graph topology is preserved.485

The remainder of this section is organized as follows. In Section 5.1 we

discuss phantom edges, prove that adding such edges has no effect on the com-

puted solution, and explain how we use such edges in order to hide the constraint

topology from the mediators. In Section 5.2 we describe the main body of MD-

Max-Sum: namely, the protocol that the mediators run on the shares that490

they had received from the agents in order to emulate in a privacy-preserving

manner the operation of Max-Sum. In Section 5.3 we prove the correctness

of MD-Max-Sum and its privacy guarantees. The costs of MD-Max-Sum are

analyzed in Section 5.4.

5.1. Phantom edges and their effect on Max-Sum495

Assume that Xn and Xm are two variables that are not constrained. As

discussed in Section 3.1, the fact that those two variables are not constrained

may be represented by setting a zero constraint matrix Cn,m between them.

Namely, one may add to the constraint graph G an edge e = (Xn, Xm) with

a corresponding constraint matrix Cn,m which is the zero matrix. We refer to500

such an edge as a phantom edge.

Phantom edges are not needed when executing Max-Sum. However, we will

add phantom edges in the mediated version of Max-Sum, which we present in

Section 5.2, in order to hide the topology of the constraint graph. The question

which we address here is the following: does the addition of phantom edges505

affect the operation of Max-Sum? We will show that while the content of the

messages will be affected by adding phantom edges, the output of the algorithm

will remain unchanged.

Before we start our discussion, we make the following observation. While

in principle the constraints in a given DCOP are real values, when represented510

in finite precision arithmetic they are approximated by rational numbers of the

form c · 2−d, where c and d are non-negative integers. Hence, by multiplying

all constraints in a given DCOP with a suitable power of 2, we arrive at an
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equivalent DCOP where all constraints are non-negative integers. Therefore, all

Q- and R-messages that are generated in the course of Max-Sum are vectors515

in ZD for some D ∈ {|D1|, . . . , |DN |}.

Definition 2. Two vectors u,v ∈ ZD are called equivalent if there exists an

integer w ∈ Z such that u = v+w, where v+w is the vector in which (v+w)(i) =

v(i) + w, for all 1 ≤ i ≤ D. In that case, we denote such a relation by u ∼ v.

It is easy to see that ∼ is an equivalence relation. Our main claim is the520

following.

Lemma 3. Let:

• G = (V,E) be the constraint graph of a given DCOP;

• G+ = (V,E+) be an augmented graph over the same set of nodes V , where

E+ is a superset of E and all edges e ∈ E+ \ E are phantom edges;525

• G′ and G′
+ be the corresponding factor graphs.

Fix a variable node Xn and an adjacent function node Xe in G′ and G′
+, where

e is not a phantom edge. For k ≥ 0, let Qk
n→e, Rk

e→n, Qk
+,n→e and Rk

+,e→n

denote the Q- and R-messages between those two nodes in the kth iteration of

Max-Sum when operating on G′ and G′
+, respectively. Then Qk

+,n→e ∼ Qk
n→e530

and Rk
+,e→n ∼ Rk

e→n.

Namely, while the addition of phantom edges may change the content of the

messages that Max-Sum generates, the change will be in the form of a constant

shift of the components of each such message.

Proof. At first, we assume that there is only one phantom edge e+. Later, we535

will consider the general case of any number of phantom edges.

The proof goes by induction on the iteration number k. Clearly, the claim

holds when k = 0, since then all messages are zero and, consequently, Q0
+,n→e ∼

Q0
n→e and R0

+,e→n ∼ R0
e→n. Assume next that the claim holds for the kth
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iteration. We proceed to prove that it also holds for the subsequent (k + 1)-th540

iteration.

We start with the R-messages. Let e = (Xn, Xm) be any function node. By

Eq. (3), Rk+1
+,e→n(x) = miny∈Dm

[Cn,m(x, y) + Qk
+,m→e(y)]. By the induction

hypothesis,

Rk+1
+,e→n(x) = min

y∈Dm

[Cn,m(x, y) +Qk
m→e(y) + w]

= min
y∈Dm

[Cn,m(x, y) +Qk
m→e(y)] + w

= Rk+1
e→n(x) + w ,

545

for some integer w. We infer that Rk+1
+,e→n ∼ Rk+1

e→n, as required.

Next, we prove the claim for the Q-messages. Here we distinguish between

two cases. In messages emerging from a variable node, Xn, that is not adjacent

to the phantom function node, Xe+ , we get by Eq. (2) that

Qk+1
+,n→e =

∑
Xf∈Vn\{Xe}

Rk
+,f→n , (9)

while, in the original graph, the messages are as in Eq. (2). As, by induction,

Rk
+,f→n ∼ Rk

f→n, we infer that Qk+1
+,n→e ∼ Qk+1

n→e, as required.

As for messages emerging from a variable node Xn that is adjacent to Xe+ ,

we observe that the set of adjacent function nodes to Xn in the augmented

factor graph G′
+ is V+,n = Vn ∪ {Xe+}. Hence, while Qk+1

n→e is given by Eq. (2),

the entries of the corresponding Q-message in the augmented graph are given

by

Qk+1
+,n→e = Rk

+,e+→n +
∑

Xf∈Vn\{Xe}

Rk
+,f→n . (10)

By induction, the vector sum on the right-hand side of Eq. (10) is equivalent

to Qk+1
n→e, as given by Eq. (2). It remains to prove that the additional vector

Rk
+,e+→n on the right-hand side of Eq. (10) is a constant vector. That vector

is given by

Rk
+,e+→n(x) = min

y∈Dm

[Cn,m(x, y) +Qk
+,m→e+(y)] . (11)
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As e+ is a phantom edge, we have Cn,m(x, y) = 0 for all x ∈ Dn and y ∈ Dm.

Hence, Rk
+,e+→n(x) = miny∈Dm

[Qk
+,m→e+(y)]. Since the arguments within the550

minimum function do not depend on x, we infer that all entries in the Rk
+,e+→n

vector are equal. That completes the proof, in the case of a single phantom

edge.

The generalization of the proof to any number of phantom edges follows by

induction on the number of phantom edges, because the equivalence relation is555

transitive. 2

Theorem 4. Running Max-Sum twice, once on G′ and once on G′
+, for the

same number K of iterations, results in the same set of final assignments.

Proof. By Lemma 3, if Xn is any variable node, then Rn ∼ R+,n, where Rn is

the final vector that Xn computes in the execution of Max-Sum on G′, while560

R+,n is the final vector that Xn computes in the execution of Max-Sum on

G′
+. Hence, the value x ∈ Dn that minimizes Rn is also the one that minimizes

R+,n. Therefore, the two executions yield the same assignment to Xn. 2

5.1.1. Topology privacy index

Definition 5. Let γ ∈ [0, 1] denote the density of phantom edges. Namely, it565

is the fraction of the number of phantom edges in G+ = (V,E+) (i.e., |E+ \E|)

divided by the number of non-edges in G = (V,E) (i.e.,
(
N
2

)
− |E|). Then γ is

called the topology privacy index.

When γ = 0 we get G+ = G; in that case, the topology is fully revealed

to the mediators. When γ = 1, G+ is the complete graph; in that case, the570

topology of graph G is fully hidden from the mediators.

When 0 < γ < 1 we get an intermediate level of topology privacy. With such

values of γ we still achieve topology privacy, but somewhat weaker, since the

mediators could infer that all edges in V2 \ E+ are not in the actual constraint

graph topology E. For convenience, in our description below of MD-Max-Sum575

we will assume that γ = 1 so that the algorithm operates on the complete graph.
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5.2. The MD-Max-Sum algorithm

We assume that all parties (agents and mediators) know the total number

of agents N , and the identifying index n ∈ [N ] of each agent. In addition, the

sizes of all domains, |Dn|, n ∈ [N ], are also publicly known.580

5.2.1. Distributing to the mediators shares in the problem inputs

In this preliminary stage, the agents share with the mediators the problem

inputs, which, as explained in Section 3.1, are encoded through the set of ma-

trices C, see Eq. (1). To do so, each agent An, 1 ≤ n ≤ N − 1, shares with the

mediators M the constraint matrices Cn,m ∈ C for all n < m ≤ N , where, as

explained in Section 3.1, the matrix Cn,m is of dimensions |Dn| × |Dm| and it

either spells out the constraint values between those two agents or, if they are

not constrained, it is the zero matrix. The matrices are shared by performing an

independent t-out-of-L secret sharing for each entry in each of those matrices,

where t = ⌊(L + 1)/2⌋ (see Section 4.2.2). Letting n < m ∈ [N ] be indices of

two agents, and ℓ ∈ [L] be an index of a mediator, we denote the share of the

cost Cn,m(i, j) that the mediator Mℓ receives by Cℓ
n,m(i, j). The entire matrix

of shares that Mℓ receives is denoted

Cℓ
n,m =

(
Cℓ

n,m(i, j) : 1 ≤ i ≤ |Dn|, 1 ≤ j ≤ |Dm|
)
.

After each mediator Mℓ, ℓ ∈ [L], got its share matrix Cℓ
n,m for all 1 ≤ n < m ≤

N , they have all problem inputs and they may now begin an MPC emulation

of Max-Sum over those inputs. We exemplify the above-described procedure

of secret sharing the private inputs in Appendix C.585

The addition of phantom edges is carried out in the following manner. Let γ

be the topology index that was selected upfront by the agents (see Definition 5).

Then for each pair of variables that are not constrained, the agents can choose

to add it as a phantom edge in probability γ. Specifically, if Xn and Xm are

not constrained, i.e. (Xn, Xm) /∈ E, and n < m, then agent An may select a590

number r uniformly at random from the interval [0, 1], and if r ≤ γ then it will

add (Xn, Xm) as a phantom edge and will distribute to the mediators shares in
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a zero matrix Cn,m of dimensions |Dn| × |Dm|. (Recall that the overall number

of agents N , the index of each agent, and the domain sizes are known to all.)

We assume that the set of mediators has an honest majority. That means595

that some of the mediators may collude in order to combine the pieces of in-

formation that they got in an attempt to extract private information; however,

the number of colluding agents is smaller than L/2 under the assumption of

an honest majority. As we use t-out-of-L secret sharing with t = ⌊(L + 1)/2⌋,

then at least t mediators have to collude in order to recover the problem inputs.600

Since t = ⌊(L + 1)/2⌋ ≥ L/2, such a scenario is impossible under our working

assumption of an honest majority. Hence, the mediators cannot learn any in-

formation on the content of the constraint matrices. Therefore, not only the

constraints themselves are kept secret, but also the topology is kept secret since

the mediators cannot tell from their shares whether Cn,m is the zero matrix or605

not.

While Max-Sum, as well as P-Max-Sum, operate on the exact factor graph

G′, the mediated algorithm MD-Max-Sum operates on an augmented factor

graph, denoted G′
+ = (V ′

+, E
′
+), in which every two variable nodes are con-

nected through a function node, even if some of those function nodes stand for610

a zero/phantom constraint (which was introduced only for the purpose of hid-

ing the real topology of G from the mediators). Figure 3 is an example of an

augmented factor graph: the edges e1,2 and e1,3 are actual constraints between

the agents, while e2,3 is a zero/phantom constraint (and is marked by red). The

mediators operating on the augmented factor graph cannot distinguish between615

the actual constraints and the phantom constraints.

After the agents finish distributing to the mediators shares in the problem

inputs, they go to rest and let the mediators do the work. The mediators start

an emulation of each of the iterations in Max-Sum. They do so by producing

proper shares in the true messages that would have been sent along each edge of620

the factor graph, if the agents had run the Max-Sum algorithm by themselves.

We proceed to explain in the next sections the details of the MD-Max-Sum

implementation. Specifically, we need to explain how in each iteration of the
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Figure 3: An Augmented Factor Graph: Xe1,2 and Xe1,3 are actual function nodes; Xe2,3 is

a phantom function node.

algorithm, the mediators can create proper shares in theQ- and R-messages that

the corresponding Max-Sum algorithm would have generated. In doing so, we625

focus on an arbitrary pair of neighboring nodes in the augmented factor graph:

a variable node Xn, n ∈ [N ], and a function node, Xe, where e = (Xn, Xm) and

m ∈ [N ] \ {n}.

5.2.2. Producing shares in the messages of the initial iteration

In iteration 0, all of the L mediators have to emulate zero messages between

Xn and Xe,

Q0
n→e = (0, . . . , 0) ∈ Z|Dn|

p , R0
e→n = (0, . . . , 0) ∈ Z|Dn|

p . (12)

(Recall that Zp is the underlying field in which all computations take place,

see Section 4.1.) To do so, each mediator Mℓ, ℓ ∈ [L], creates for himself

corresponding zero share vectors as follows:

Q0,ℓ
n→e = (0, . . . , 0) ∈ Z|Dn|

p , R0,ℓ
e→n = (0, . . . , 0) ∈ Z|Dn|

p . (13)

Note that no interaction between the mediators is needed at this stage and that630

the L vector shares of the Q-messages in Eq. (13) are t-out-of-L vector shares

in the zero Q-messages in Eq. (12), and likewise for the R-messages.
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5.2.3. Producing shares in Q-messages

In iteration k+1, the mediators have to emulate the message Qk+1
n→e from the

variable node Xn to the adjacent function node, Xe, where e = (Xn, Xm). In

view of Eq. (2), and the fact that the mediators already have t-out-of-L shares

in R-messages of the kth iteration, such a computation can be done locally,

without interaction between the mediators, as follows:

Qk+1,ℓ
n→e :=

∑
Xf ̸=Xe

Rk,ℓ
f→n , (14)

where the sum is over all N −2 function nodes, Xf , between Xn and Xi for any

i ∈ [N ] \ {n,m}.635

5.2.4. Producing shares in R-messages

Here, we concentrate on the more involved task of computing t-out-of-

L shares in the R-messages, Rk+1
e→n, from the function node, Xe, where e =

(Xn, Xm), to the variable node Xn. We rewrite Eq. (3) in the following man-

ner,

Rk+1
e→n(x) := min

y∈Dm

Bk
n,m(x, y) , x ∈ Dn , (15)

where Bk
n,m(x, y) denotes the sum

Bk
n,m(x, y) := Cn,m(x, y) +Qk

m→e(y) . (16)

The L mediators hold t-out-of-L shares in Cn,m(x, y) for all (x, y) ∈ Dn ×Dm

(denoted Cℓ
n,m(x, y), ℓ ∈ [L]), since such shares were generated and distributed

to them by the agents in the preliminary stage. Moreover, the mediators had

computed in the kth iteration t-out-of-L shares in Qk
m→e(y) for all y ∈ Dm,640

where Mℓ’s shares are denoted Qk,ℓ
m→e(y). Hence, Cℓ

n,m(x, y) +Qk,ℓ
m→e(y), which

we denote by Bk,ℓ
n,m(x, y), are t-out-of-L shares in Bk

n,m(x, y), as implied by

Eq. (16) and the linearity of secret sharing. Hence, the main computational

challenge is to compute t-out-of-L shares in the left-hand side of Eq. (15) from

the shares that the mediators hold in each of the terms on the right-hand side of645

Eq. (15). This task is non-trivial because the minimum function is non-linear.
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Protocol 1, which we describe below, is simultaneously executed by each of

the Lmediators. It is executed for each pair of a function node in the augmented

factor graph, Xe, where e = (Xn, Xm), and one of its two adjacent variable

nodes, Xn. At the completion of that protocol, each mediator Mℓ holds a share650

Rk+1,ℓ
e→n in Rk+1

e→n. That protocol will be executed in every iteration N(N − 1)

times, as there are
(
N
2

)
= N(N − 1)/2 function nodes in the augmented factor

graph G′
+, and each one of them has two adjacent variable nodes.

Protocol 1: Computing shares in an R-message from the function node

Xe, where e = (Xn, Xm), to the variable node Xn.

Input: Mediator Mℓ, ℓ ∈ [L], holds a t-out-of-L share, Bk,ℓ
n,m(x, y), in

Bk
n,m(x, y), for every x ∈ Dn and y ∈ Dm = {y1, . . . , y|Dm|}.

1 forall x ∈ Dn do

2 Mℓ sets βℓ
n,m(x)← Bk,ℓ

n,m(x, y1)

3 forall j = 2, . . . , |Dm| do

4 {βℓ
n,m(x)}ℓ∈[L] ←MIN({Bk,ℓ

n,m(x, yj)}ℓ∈[L], {βℓ
n,m(x)}ℓ∈[L])

5 Mℓ sets Rk+1,ℓ
e→n (x)← βℓ

n,m(x)

Output: Mediator Mℓ, ℓ ∈ [L], gets a t-out-of-L share Rk+1,ℓ
e→n (x) in

Rk+1
e→n(x).

The external loop in the protocol (Lines 1-5) is over all values x in the domain

Dn, i.e., over all entries in the vector message Rk+1
e→n. For each such x ∈ Dn,655

the mediators have to find the minimum among {Bk
n,m(x, y) : y ∈ Dm}, where

each of the values in that set is shared by a t-out-of-L scheme among them.

The t-out-of-L shares of the minimum will be stored in βℓ
n,m(x), ℓ ∈ [L]. First

(Line 2), each mediator initiates its β-shares with the shares corresponding to

Bk
n,m(x, y1). Then (Lines 3-4), for each yj , j = 2, . . . , |Dm|, the mediators660

compare Bk
n,m(x, yj) to the current minimum, in which they have t-out-of-L

shares in βℓ
n,m(x), ℓ ∈ [L], and update their shares in the minimum accordingly.

Specifically, in order to compute the minimum of two values that are known to

the mediators only through t-out-of-L shares, without recovering those values or

realizing which of the two is the minimum, Protocol 1 calls upon the MPC sub-665
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protocol MIN (Line 4), which we described in Section 4.4. That sub-protocol

takes as input the t-sharings in each of the two secret-shared values and outputs

to the mediators a t-sharing of their minimum.4

Finally (Line 6), each mediator stores in Rk+1,ℓ
e→n (x) its share in the minimum

that was found above, βℓ
n,m(x).670

5.2.5. Normalizing messages

In order to prevent the entries in the messages from growing uncontrollably,

it is customary to subtract from each entry in each message Qk+1
n→e the value

αk+1
n,m := minx∈Dn

Qk+1
n→e(x) (see [4]). To perform such normalization, we need

to find for each message Qk+1
n→e the minimum entry αk+1

n,m, and then subtract it675

from each of the entries in Qk+1
n→e.

To find the minimal entry inQk+1
n→e, a vector of dimension |Dn|, it is necessary

to perform |Dn|−1 secure computations of minima. As the mediators hold shares

in each of those entries, they may apply the MIN sub-protocol (Section 4.4)

|Dn|−1 times in a similar manner to the minimum computations in Protocol 1.680

After finding the minimum, each mediator will subtract the share that it holds

in that minimum from the share that it holds in each entry in Qk+1
n→e.

To reduce computation time, the normalization procedure could be per-

formed every K1 iterations, instead of every iteration, for a suitable selection of

K1 that depends on the size p of the underlying field Zp.685

Let us find first the maximal number of iterations for which we can be

ascertained that all entries in all messages do not exceed p− 1. Let

q = max
1≤n<m≤N

max
x∈Dn,y∈Dm

Cn,m(x, y) (17)

denote the maximum value of any single constraint, and assume that the max-

4In the preliminary version of this paper [21] the mediators computed the minimum in

a manner that disclosed ordering information between the compared entries, as well as the

index of the minimal entry. Here, we prevent any such unwanted leakage of information as

we rely on the MPC sub-protocol MIN, which is designed for computing the minimum and

nothing beyond that.
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imal degree in the constraint graph G is d + 1. It was shown in [22, Theorem

2.1] that all entries in all messages in Max-Sum that are sent during the first

k iterations are bounded by q · d
h−1
d−1 , where h = ⌊k/2⌋+ 1. Hence, it is easy to

verify that as long as

dh < Γ :=
(d− 1)p

q
+ 1 , (18)

the content of all entries in all messages will be strictly smaller than p. From

the latter inequality, we infer that as long as h < log Γ
log d , or k < 2 log Γ

log d , no

normalization is needed. In our experiments, we set K1 to be half that upper

bound, namely K1 := ⌊ log Γ
log d ⌋, and we then applied normalization every K1

iterations.690

5.2.6. Termination

After completing a preset number of K iterations, the final assignment to

Xn, n ∈ [N ], is determined by the minimal entry in Rn =
∑

Xe∈Vn
RK

e→n.

To perform that computation, each agent An, n ∈ [N ], selects a subset of t

mediators and asks them for their shares in the vector Rn. Using those vector695

shares, An can recover the entire vector Rn by executing Reconstructt(s1, . . . , sL)

(see Section 4.1) on the shares of each of the |Dn| components in Rn. Afterward,

An finds the minimal entry in Rn and then assigns the corresponding value to

Xn.

5.2.7. A bird’s-eye view of MD-Max-Sum700

As a summary of our discussion so far, we provide here a bird’s-eye view of

the MD-Max-Sum algorithm (Algorithm 2). In addition, Figure 4 illustrates

the whole system.

5.3. Correctness and privacy

In this section, we provide proofs for the correctness and privacy guarantees705

of MD-Max-Sum. Namely, Lemma 6 and Theorem 7 show that the medi-

ated algorithm MD-Max-Sum perfectly simulates Max-Sum, while Theorem

8 presents the types of privacy that MD-Max-Sum offers.
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Algorithm 2: Bird’s-eye view of MD-Max-Sum.

1 Initial sharing of all topology and constraint information (Section 5.2.1)

2 Perform the initial k = 0 iteration (Section 5.2.2)

3 forall k = 1, . . . ,K do

4 forall (Xn, Xe) ∈ E′
+ do

5 Compute t-out-of-L shares in the Qk
n→e-messages (Section 5.2.3)

6 Compute t-out-of-L shares in the Rk
e→n-messages (Section 5.2.4)

7 if (k mod K1) = 0 then

8 Normalize messages (Section 5.2.5)

9 Terminate (Section 5.2.6)

Figure 4: An overview of MD-Max-Sum. The agents and the constraint graph between

them are shown on the left, while the mediators are shown on the right. The top arrow

represents the operation in Line 1 of Algorithm 2. The right arrow stands for all computations

that the mediators perform among themselves (Lines 2-8). The bottom arrow represents the

termination stage (Line 9) in which the mediators send back to the agents shares in the final

R-messages from which the agents infer the assignments to their variables.

Lemma 6. Let:

• Xn and Xe be neighboring nodes in the factor graph G′.710
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• Qk
+,n→e and Rk

+,e→n be the two messages that are sent between them in

the kth iteration in Max-Sum when it is executed on the augmented factor

graph G′
+.

•
{
Qℓ,k

+,n→e : ℓ ∈ [L]
}
and

{
Rℓ,k

+,e→n : ℓ ∈ [L]
}
be the sets of shares generated

in the kth iteration in MD-Max-Sum between those two nodes.715

Then
{
Qℓ,k

+,n→e : ℓ ∈ [L]
}

are t-out-of-L shares in Qk
+,n→e and, similarly,{

Rℓ,k
+,e→n : ℓ ∈ [L]

}
are t-out-of-L shares in Rk

+,e→n.

Proof. The claim is obviously correct for iteration k = 0. We may now proceed

by induction. The computation of the shares in the Q-messages in the kth

iteration, as described in Section 5.2.3, and the linearity of secret sharing, imply720

that
{
Qℓ,k

+,n→e : ℓ ∈ [L]
}

are t-out-of-L shares in Qk
+,n→e. The computation of

the shares in the R-messages in the kth iteration, as described in Section 5.2.4,

and the linearity of secret sharing and the correctness of the MIN sub-protocol,

imply that
{
Rℓ,k

+,e→n : ℓ ∈ [L]
}

are t-out-of-L shares in Rk
+,e→n. 2

Theorem 7. When MD-Max-Sum and Max-Sum are executed the same num-725

ber of iterations K on the same input problem, they will issue the same assign-

ments to all variables.

Proof. In view of Lemma 6, the set of shares that the mediators will hold

in the R-messages at the completion of the Kth iteration,
{
Rℓ,K

+,e→n : ℓ ∈ [L]
}
,

are t-out-of-L shares in RK
+,e→n. By Lemma 3, RK

+,e→n ∼ RK
e→n, where RK

e→n730

is the message sent in Max-Sum from Xe to Xn, when it is executed on the

original (non-augmented) factor graph G′. Hence, the vector that each agent

An computes at termination, Rn, is equivalent to the corresponding vector

that would have been computed by An at the termination of Max-Sum when

executed on G′. In particular, the final computed assignments would be the735

same in MD-Max-Sum and in Max-Sum. 2
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Hence, in view of the above, MD-Max-Sum perfectly simulates Max-Sum.

However, if an agent “dies” at some stage of the algorithm’s execution, the

computed results may become wrong or irrelevant. For example, an agent may

cease to operate before it completes sending shares in its constraint matrices;740

in such a case, the mediators would start emulating Max-Sum based on incom-

plete data. As another example, an agent may permanently cease to operate

after it completed sending shares in all of its constraint matrices; in such a case

the mediators will solve a DCOP that is no longer relevant, as the set of agents

had changed. Therefore, we suggest increasing the robustness of the algorithm745

as follows. First, each agent will send to all mediators a special message that

indicates that it had finished distributing shares in its constraint matrices, to-

gether with the overall number of scalars (constraint matrices’ entries) that it

had shared (Line 1 in Algorithm 2). The mediators will not start their emulation

of Max-Sum (Lines 2-8) before getting such messages from all N agents, and750

verifying that they had received all shares that there were supposed to receive.

Then, at termination (Line 9), they will wait to receive an acknowledgment of

receipt from all agents. If one or some of the agents do not respond at that

point, the mediators will notify all agents about it, so that the remaining agents

will decide on their next steps (namely, whether to use the final assignments755

that were obtained based on the existence of the agents who ceased to operate,

or to start a new computation with the subset of remaining agents).

Next, we turn to discuss the privacy that is offered by the mediated algo-

rithm.

Theorem 8. MD-Max-Sum provides topology, constraint, and decision pri-760

vacy, as long as the mediators have an honest majority.

Proof. The agents share all of their information with the mediators using t-

out-of-L secret sharing, where t = ⌊(L+1)/2⌋. Under the assumption of honest

majority, the number of mediators that might attempt to reconstruct the shared

secrets is smaller than t and, therefore, all topology and constraint information,765
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as encoded in the matrices C := {Cn,m : 1 ≤ n < m ≤ N}, Eq. (1), remains

fully protected from the mediators, as well as from the agents. Also, the vectors

Rn, n ∈ [N ], that determine the final decisions (see Section 5.2.6) remain out

of reach for the mediators, as well as for the other agents. Hence, each agent’s

final decision remains unknown to all mediators and all other agents. 2770

A note on the connection between L and the algorithm’s security.MD-Max-Sum

relies on the honest majority assumption. If the number of mediators is L then

at least t = ⌊(L+ 1)/2⌋ of them would need to betray the trust vested in them

and collude in order to reveal all private information. Hence, larger values of

L would imply higher levels of security, because a larger number of mediators775

would need to be corrupted. The trade-off is clear: if the agents wish to in-

crease the algorithm’s security they would need to find more mediators for the

task, and the implied communication and computational costs would increase,

as demonstrated in Section 6.

A note on topology privacy. We recall that MD-Max-Sum provides full topol-780

ogy privacy, as stated in Theorem 8, when the topology privacy index γ is set to

1 (see Definition 5). Lower settings of γ would result in weaker levels of topol-

ogy privacy, as explained in Section 5.1.1, but will provide better runtimes, as

demonstrated in our experimental evaluation, see Section 6.

A note on agent privacy. As stated at the beginning of Section 5.2, all parties785

(agents and mediators) know the total number of agentsN , the identifying index

n ∈ [N ] of each agent, and the sizes of all domains, |Dn|, n ∈ [N ]. Hence, MD-

Max-Sum does not provide agent privacy. Another reason why the mediated

approach cannot achieve agent privacy is that the agents need to agree upfront

on the set of mediators, which requires them to communicate among themselves.790

5.4. Computational and communication costs

Here we analyze the computational and communication costs of MD-Max-

Sum. The algorithm begins with the agents sending shares in the constraint

matrices to the mediators (Section 5.2.1), then the algorithm iterates for a
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preset number of iterations (Sections 5.2.2–5.2.5), and finally the mediators send795

to each of the agents a vector from which the agents can infer the assignments to

their variables (Section 5.2.6). The opening and concluding phases are executed

only once and they include simple secret sharing computations so we ignore

them in this analysis. The main computational and communication costs are in

the main body of the algorithm.800

Also there, the work in the initial iteration and in producing shares in the

Q-messages consists of very efficient local computations (see Eqs. (13) and

(14)). The only parts in which the mediators engage in a costly MPC sub-

protocol, MIN, is in computing shares in the R-messages (Section 5.2.4) and

in normalizing messages (Section 5.2.5).805

In Protocol 1, when executed on the pair of nodes Xn and Xe, where e =

(Xn, Xm), the MIN sub-protocol is executed |Dn| · (|Dm| − 1) times (see Line

4 there). Letting ∆ denote the maximal domain size, then when the topology

privacy index γ equals 1 (see Definition 5), the overall number of invocations

of MIN from Protocol 1 in one iteration of MD-Max-Sum is bounded by810

∆ ·(∆−1)N(N−1). For general settings of γ < 1, the bound is 2∆ ·(∆−1)|E+|

(since there are |E+| function nodes and each one of them has two adjacent

variable nodes).

In order to normalize a single Qk
n→e-message, the MIN sub-protocol is

needed to be executed |Dn|−1 times. Hence, the overall number ofMIN invoca-815

tions in iterations when we normalize allQ-messages is bounded by 2|E+|(∆−1).

In summary, if MD-Max-Sum is executed for K iterations, and every K1

iterations we normalize the Q-messages, the overall number of invocations of

the MIN sub-protocol is bounded by

2|E+|(∆− 1) · (∆K + ⌊K/K1⌋) . (19)

Since in the most secure version of MD-Max-Sum we have |E+| =
(
N
2

)
, the

bound in Eq. (19) is at most

N(N − 1)(∆− 1) · (∆K + ⌊K/K1⌋) . (20)
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As for the computational and communication costs of the MIN sub-protocol,

see the theoretical discussion in Section 4.4 and the experimental evaluation in

Section 6.1.

6. Experimental evaluation820

In this section, we describe the experiments that we conducted in order to

evaluate the performance of MD-Max-Sum.

We implemented and executed the algorithm on the AgentZero simulator

[42], running on AWS C5a instances comprised of a 2nd generation AMD

EPYC™ 7R32 processor and 64 GB memory, except for the call to the MIN825

sub-protocol, which is described and evaluated separately in Section 6.1.

To achieve maximal parallelism, the number of CPU threads that we used is

greater or equal to the number of agents in all experiments (with one exception

that we describe in the last experiment).

Runtime performance in DCOP is commonly evaluated in a logical manner830

that is independent of implementation and hardware issues. This is usually done

by counting the number of non-concurrent constraint checks (NCCCs) [43] since

a constraint check is the cardinal operation in most standard DCOP algorithms.

However, in privacy-preserving DCOPs the burden of cryptographic operations

considerably outweighs that of constraint checks. Therefore, we follow all previ-835

ous studies on privacy-preserving DCOPs and use the simulated time approach

[44] instead.

In Section 6.1 we evaluate the runtime of the MIN sub-protocol, which is

a fundamental and computationally expensive component of MD-Max-Sum.

Then, in Section 6.2, we evaluate the performance of the whole MD-Max-840

Sum algorithm, as a function of the two parameters that affect the level of

privacy that it offers: the topology privacy index γ (Definition 5), and the

number of mediators L. Finally, in Section 6.3, we compare the performance of

MD-Max-Sum with other algorithms: the basic (not-private) Max-Sum, the

P-Max-Sum algorithm [22] that preserves privacy, but is not collusion-secure,845
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and PC-SyncBB [45, 34], which is the only other privacy-preserving DCOP

algorithm that is collusion-secure.

6.1. The MIN sub-protocol

The MIN sub-protocol was executed using the secure comparison algorithm

of Nishide and Ohta [41] (which we described in Section 4.3), as implemented850

by the generic secret-sharing-based protocol of Damg̊ard and Nielsen [38] with

the performance improvements of Chida et al. [39]. The implementation is open

source and available online. We executed the sub-protocol over LAN with EC2

machines of type c5.large in Amazon’s North Virginia data center, with every

agent running on a separate machine. We measured the performance of the855

protocol for various values of L (the number of mediators).

We selected the order of the underlying finite field Zp, over which MD-Max-

Sum operates, to be p = 231 − 1, which is a Mersenne prime (a prime of the

form p = 2t−1 for some integer t > 1). Using Mersenne primes is advantageous

since multiplying two elements in such fields can be done without performing860

an expensive division (in case the multiplication result exceeds the modulus).

Table 2 shows, for each L, the runtime of the Damg̊ard-Nielsen MIN sub-

protocol. Recall that the upper bound on the number of such calls to the MIN

sub-protocol was analyzed in Section 5.4 (see Eqs. (19) and (20) there).

L 5 7 9 11 13

runtime 4.5 6.9 13.2 17.2 19.3

Table 2: Runtime in milliseconds, for different values of L, of the Damg̊ard-Nielsen MIN

sub-protocol

6.2. The effect of parameters on runtimes865

The MD-Max-Sum algorithm depends on two parameters that affect the

level of privacy that it offers. Those are the topology privacy index, γ, and the

number of mediators, L.

38



As discussed in Section 5.1, we protect the topology of the constraint graph

G from the mediators by adding phantom edges with zero constraints on them.870

Although such a mechanism does not alter the final output of the algorithm, it

does add redundant computations along the phantom edges and subsequently

entails a toll on runtime.

In our first experiment, we evaluated the price of topology privacy. We used

unstructured random (connected) constraint graphs with N = 24 agents, do-875

mains of size |Dn| = 5, varying constraint densities, p1 = 0.1, . . . , 0.9, and L = 5

mediators. We ran all problem variants for K = 50 iterations, where the vari-

ants differ in the value of the topology privacy index: γ ∈ {0, 0.25, 0.5, 0.75, 1}.

The resulting runtimes are shown in Figure 5. As expected, runtime increases

when γ increases. Also, for higher values of γ, the effect of the constraint den-880

sity decreases. Note that when γ = 1, the constraint density p1 does not affect

runtime, since the algorithm operates on the complete graph regardless of the

value of p1.

Figure 5: The effect of the topology privacy index γ onMD-Max-Sum’s runtime: Unstructured

random graphs, N = 24 agents, varying constraint density.

In the second experiment, we evaluated the effect of the number of media-

tors on the runtime of MD-Max-Sum. As in the previous experiment, we used885

unstructured random (connected) constraint graphs with N = 24 agents, do-

mains of size |Dn| = 5, and varying constraint densities, p1 = 0.1, . . . , 0.9. We
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ran all problem variants for K = 50 iterations, where the variants differ in the

number of mediators: L ∈ {5, 7, 9, 11, 13}. The topology privacy index was set

to γ = 0.5. As can be seen in Figure 6, when L increases, the runtime increases890

too, in consistency with the runtimes of the MIN sub-protocol, as reported in

Section 6.1.

In practical applications of MD-Max-Sum, it would be necessary to assess

the probability of the mediators becoming corrupted and forming coalitions,

and according to that to select the number of mediators. For example, if the895

probability of corrupting 3 mediators is deemed sufficiently small, then it would

suffice to take L = 5, since a protocol with that number of mediators is secure

as long as the number of colluding mediators is smaller than 3. We used MD-

Max-Sum with L = 5 in all subsequent experiments.

Figure 6: The effect of the number of mediators L on MD-Max-Sum’s runtime: Unstructured

random graphs, N = 24 agents, varying constraint density.

6.3. Comparison of MD-Max-Sum with other algorithms900

In the set of experiments that we report next we compared MD-Max-Sum

against other similar-purpose algorithms. For the runtime comparisons, we used

a logarithmic scale in all these experiments. Unless otherwise stated, we used

domains of size |Dn| = 5, n ∈ [N ], in these experiments.

We used two variants of MD-Max-Sum: one with γ = 0 (no topology905

privacy) and one with γ = 1 (full topology privacy). The runtimes of those two
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extreme variants provide lower and upper bounds on the runtimes of all other

variants, with 0 < γ < 1. We compared those two variants with the baseline

algorithm Max-Sum (no privacy) and P-Max-Sum [22] (provides privacy, but

not against coalitions). As shown in [22], and herein in Theorem 7, both of910

those privacy-preserving implementations of Max-Sum simulate perfectly the

basic Max-Sum. We used in all experiments K = 10 iterations in all of those

algorithms, similarly to [22].

In addition, we included in our experiment the PC-SyncBB algorithm [45,

34], which is the only other DCOP-solving algorithm that is privacy-preserving915

and collusion-secure. Recall that unlike MD-Max-Sum, PC-SyncBB is a com-

plete algorithm; hence, it outputs the optimal solution but it is expected to be

more time-consuming.

In the first experiment in this set, we used unstructured random graphs

with N = 9 agents, see Figure 7. As can be clearly seen (recall the logarithmic920

scale), the constraint density highly affects the runtime of PC-SyncBB; this is

a known phenomenon of Branch & Bound algorithms. In contrast, the effect of

constraint density on theMax-Sum-based algorithms is much milder. Moreover,

the constraint density does not affect at all MD-Max-Sum with γ = 1, see

Figure 5.925

Figure 7 also provides a clear view of the different trade-offs of the algo-

rithms. The gap between the runtimes of Max-Sum and P-Max-Sum demon-

strates the price of privacy. The gap between the runtimes of P-Max-Sum and

MD-Max-Sum demonstrates the price of collusion security. The gap between

the runtimes of MD-Max-Sum and PC-SyncBB demonstrates the price of930

completeness.

The results of this experiment are not surprising. In each application, it is

essential to select a DCOP-solving method by considering the privacy risks and

the potential damage in case the privacy is breached and weighing them against

the needed response time (namely, how much time can the agents wait until935

they learn how to set their variable assignments), and utility requirements (i.e.,

how essential it is to find an optimal solution and not just a local optimum).
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Figure 7: Runtime on unstructured random graphs, N = 9 agents, varying constraint density.

In the next experiment, shown in Figure 8, we fixed the constraint density

to be p1 = 0.3 and varied the number of agents N in order to observe the

scalability of the evaluated algorithms. The cut-off time for a single execution940

was set to 30 minutes.

The performance gap between P-Max-Sum and MD-Max-Sum is similar

to what we witnessed in the previous experiment. For small problems with

N ≤ 7, PC-SyncBB is competitive with MD-Max-Sum and even with P-

Max-Sum. However, as the number of agents increases, we can see that the945

performance of PC-SyncBB becomes much more time-consuming than MD-

Max-Sum. This advantage ofMD-Max-Sum over PC-SyncBB is explained as

follows: a significant portion of the runtime of both algorithms is in performing

secure comparisons between secret values. In PC-SyncBB, that MPC sub-

protocol is carried out by all agents; in MD-Max-Sum, on the other hand, it950

is carried out by the mediators. The runtime of this computation depends on

the number of interacting parties, as is evident from Table 2 herein and Table

1 in [34]. Hence, while the time spent in PC-SyncBB on secure comparisons

increases with N , in MD-Max-Sum it is independent of N . This mitigation of

the dependency of the runtime on N demonstrates the strength of the mediated955

model. (Of course, the runtime of MD-Max-Sum does depend on N through

other computations, outside the secure comparisons in MIN, since N affects
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the size of the graph.)

Figure 8: Runtime on unstructured sparse random graphs, p1 = 0.3, varying N .

In the next experiment, we increased the density of the constraints to p1 =

0.7; all other settings remained the same as in the previous experiment. As960

can be seen in Figure 9, the cut-off time of 30 minutes allowed PC-SyncBB

to handle only up to 9 agents (as opposed to 11 agents that it could handle

within this time limit when the graph was sparse, p1 = 0.3). Furthermore, in

comparison with the previous experiment, we can see that higher constraint

density leads to an increased runtime performance gap between MD-Max-Sum965

and PC-SyncBB. Additionally, we observe that for dense problems, both MD-

Max-Sum variants converge to roughly the same runtimes (notice that the re-

spective curves are overlapping), which is consistent with our experimentation

with the impact of the topology privacy index (Figure 5). In view of these ex-

periments for dense problems, it is advised to apply the MD-Max-Sum variant970

that offers full topology privacy (γ = 1).

We proceed to compare the performance of the various algorithms on prob-

lems of other types. Using the model of Barabási and Albert [46], we generated

random scale-free networks. Unlike unstructured random graphs, in which the

distribution of node degrees is the same for all nodes, the node degrees in a975

scale-free network follow a power law. In our experiments, we began with a

complete graph over m0 = 4 nodes. Then, new nodes were added, one at a
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Figure 9: Runtime on unstructured dense random graphs, p1 = 0.7, varying N .

time, where each new node was randomly connected to m = 2 existing nodes

with a probability that is proportional to the degrees of those nodes. We used

such scale-free graphs with a number of nodes N that varies from 5 to 23.980

Figure 10 displays the result of this analysis. We can immediately observe

that, unlike the previous experiments on unstructured random graphs, the per-

formance gap between the two MD-Max-Sum variants increases significantly

with N . The reason is that in unstructured random graphs the expected num-

ber of edges |E|, equals p1 ·
(
N
2

)
, which is Θ(N2), while in scale-free graphs985

|E| =
(
m0

2

)
+ m · (N − m0) = Θ(N). Consequently, the number of potential

phantom edges in scale-free graphs, which is
(
N
2

)
−|E|, is greater, for large values

of N , than that in unstructured random graphs. As a result, the gap between

the two extreme variants of MD-Max-Sum is more evident in scale-free graphs.

In such settings, one should tune γ in accordance with the characteristics of990

the application scenario. As for the performance gap between P-Max-Sum and

the MD-Max-Sum variant with γ = 0, it remains similar to what we saw in

previous experiments.

As noted above, the number of edges in scale-free graphs increases linearly

with the number of nodes (|E| = Θ(N)) compared to the quadratic increase995

in unstructured random graphs (|E| = Θ(N2)). Such a moderate increase of

the constraint density in scale-free graphs is favorable by PC-SyncBB, the
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runtime of which is highly dependent on the constraint density, see Figure 7.

This explains the competitive runtimes of PC-SyncBB in scale-free graphs of

up to 9 nodes. Nonetheless, PC-SyncBB reaches the cut-off limit after handling1000

11 agents (nodes) due to its strong dependence on the number of agents N .

Figure 10: Runtime on scale-free graphs (m0 = 4, m = 2), varying N .

Next, we evaluated the algorithms on distributed meeting scheduling prob-

lems, in a setting similar to the one described in [34]. In that setting, the

problems are constructed similarly to the PEAV formulation [3], but instead of

multiple-variable agents, we follow the decomposition method that is used in the1005

P-SyncBB experimentation [22] to separate each variable into a virtual agent

[47].

Inspired by the setting of Léauté and Faltings [28], we vary the number of

meetings, while the number of participants per meeting is fixed to 2. Then,

for each meeting, the participants are randomly drawn from a pool of 3 agents.1010

Afterward, the objective is to select a time slot out of |Dn| = 8 options for each

meeting. Both time preference and meeting importance are considered during

the scheduling.

Figure 11 presents the performance of the algorithms in the meeting schedul-

ing setting. The trend is similar to previous experiments. In addition, we can1015

see that MD-Max-Sum with topology privacy index γ = 1 reaches the cut-off

time of 30 minutes when solving scheduling problems with 15 meetings or more,
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while the variant with γ = 0 can handle problems with 23 meetings without

reaching this limit. This emphasizes the importance of the ability to control

the trade-off between privacy and performance. Regarding PC-SyncBB, as in1020

the case of scale-free graphs, it remains competitive for small problems; yet,

for a different reason. The meeting scheduling problems herein include many

hard constraints which are dictated by the PEAV formulation to enforce equal-

ity between variables of different agents that attend the same meeting. Hard

constraints are an effective driver of prunning and thus are beneficial for Branch1025

& Bound algorithms. Yet, PC-SyncBB reaches the cut-off limit after handling

m = 9 meetings, again due to its strong dependence on the number of variables.

Figure 11: Runtime of meeting scheduling problems, varying number of meetings.

Finally, we evaluated the algorithms on 3-color graph coloring problems,

similar to the setting described by Zivan et al. [48]. In this setting, for every

1 ≤ n < m ≤ N , Cn,m(x, y) = q if x = y and Cn,m(x, y) = 0 if x ̸= y, for1030

some positive constant q. Figure 12 presents the runtime of the algorithms on

3-color graph problems with p1 = 0.4 and shows similar scalability properties

to the previous experiments. The small domain size, |Dn| = 3, enables us to

experiment with problems of larger sizes. For this experiment, we started with

N = 5 and moved all the way to 105 agents in steps of 10. While all other1035

algorithms remain within the cut-off limit of 30 minutes per single execution,

the runtime of PC-SyncBB exceeded the cut-off limit already for N = 20.
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Hence, we include in Figure 12 the runtime of PC-SyncBB for N = 19, which

was the highest number of agents that could be processed within 30 minutes.

While in all other experiments, we allocated a CPU thread per agent, in this1040

experiment we used a 32-thread CPU even for higher values of N . Therefore,

we can expect even better results for P-Max-Sum when the number of agents

is greater than 32. This does not apply to MD-Max-Sum since the number

of agents affects the constraint-graph’s topology, but the number of mediators

remains the same (L = 5); thus, the number of CPU threads is not a bottleneck.1045

Like in the previous experiment, also here the MD-Max-Sum variant with

topology privacy index γ = 1 reaches the cut-off time when solving problems

with 85 agents or more, while the variant with γ = 0 solves up to 105 agents

within this time frame.

Figure 12: Runtime of 3-color graph coloring problems (p1 = 0.4), varying N .

Finally, we report the solution quality (cost) obtained by MD-Max-Sum1050

and compare it to the optimal solution provided by PC-SyncBB. Since these

two algorithms perfectly simulate Max-Sum and SyncBB, respectively, such

comparisons have been studied in previous studies on Max-Sum and are, there-

fore, not directly required herein. Nonetheless, it is important to understand

the price in solution quality when needing to decide between MD-Max-Sum1055

and PC-SyncBB, especially given the substantial differences in runtimes, as

shown in the above experiments.
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Figure 13: Solution cost for unstructured random spare graphs (p1 = 0.3, N = 11), varying

number of iterations.

Figure 13 presents the average solution cost obtained after each of the first

50 iterations in unstructured random graphs with N = 11 agents (which are

the largest problems that PC-SyncBB managed to compute in that setting,1060

see Figure 8). Figure 14 presents the results of a similar experiment performed

on scale-free graphs, again with N = 11 agents (see Figure 10). In both experi-

ments, the solution quality obtained by MD-Max-Sum is drastically improved

in the first 10 iterations. However, the solution quality in subsequent itera-

tions oscillates, which is a known phenomenon of Max-Sum for problems with1065

cycles [49]. These results reinforce our choice to apply K = 10 iterations of

MD-Max-Sum in most of the experiments. Similar trends were observed in

other problem types.

In summary, we demonstrated that MD-Max-Sum can be applied to real-

world problems in which privacy and security against coalitions are essential.1070

7. Conclusion

In this work, we introduced MD-Max-Sum, the first incomplete privacy-

preserving DCOP algorithm that is also collusion-secure. It is an implementa-

tion of Max-Sum in the mediated model of computation. It preserves topology,

constraint, and decision privacy. We analyzed the security and correctness of1075
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Figure 14: Solution cost for scale-free random graphs (m0 = 4, m = 2, N = 11), varying

number of iterations.

the algorithm and, using extensive experimentation, demonstrated its charac-

teristics, its advantages over the only other collusion-secure DCOP algorithm,

PC-SyncBB, and its viability.

Aside from the performance gains achieved by utilizing an incomplete algo-

rithm (as opposed to PC-SyncBB that is based on a complete algorithm), the1080

transition to the mediated model offers other significant benefits:

• The agents do not need to constantly communicate with each other. Such

a feature may be most advantageous in settings where the agents do not

have an efficient way to communicate among themselves.

• It allows the agents, that may run on computationally-bounded devices,1085

to outsource costly and cryptographically-complex computations to ded-

icated servers. As a result, the agents’ machines can be based on much

cheaper hardware and their energy consumption could be reduced signifi-

cantly.

• MD-Max-Sum is more robust than all previous DCOP algorithms in the1090

following sense: if an agent goes offline (e.g., due to a technical failure)

after secret sharing its private data to the mediators, the algorithm can

still be executed and issue the correct outputs to all agents. However,

the version of MD-Max-Sum that we presented here is not resilient to
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a failure of a mediator, because we took the maximal possible setting of1095

the threshold, t = ⌊(L + 1)/2⌋, see Eq. (5). However, if one reduces the

threshold t to values smaller than ⌊(L+ 1)/2⌋, then our algorithm would

be able to sustain a failure of up to L− (2t− 1) mediators. It should be

noted that while reducing the value of the threshold t provides enhanced

resilience, it also yields reduced security, since the algorithm is secure1100

against coalitions of mediators of size up to t − 1. Hence, the setting of

the number of mediators L and of the threshold t ≤ ⌊(L + 1)/2⌋ should

take into account the perceived chances of a mediator having a technical

failure or a “moral” failure.

Before the mediated model can be practically assimilated in real settings, the1105

involved agents need to first choose the set of mediators. That initial stage is out

of the scope of this study. Nevertheless, there exist various trust and reputation

models that can help the agents choose the most suitable and trusted mediators

(cloud providers) for the task, e.g. [50, 51, 52]. According to the trustworthiness

of the available cloud providers, the agents can decide on the number L of1110

mediators and then choose the most appropriate cloud providers that will serve

as the mediators.

A major bottleneck of MD-Max-Sum is the cryptographic MPC protocol

behind the MIN sub-protocol. In our experiments, we used the implementa-

tion of Nishide and Ohta [41] for the Damg̊ard and Nielsen [38] protocol. The1115

computational problem that underlies MIN is as follows: given two integers

a and b, which are secret-shared among a set of parties, those parties need to

determine whether a < b without recovering those values. That is a very basic

problem in MPC, and it pops up in PC-SyncBB [34] as well as in many other

application settings where privacy is of concern. Being a fundamental build-1120

ing block in MPC, secure comparison is a subject of extensive research in the

cryptographic community, e.g. [53, 54, 55, 56]. We intend to investigate the

potential advantages of such alternative techniques of secure comparison (either

existing ones or future ones) in the context of MD-Max-Sum. We note that
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the recent study of Makri et al. [54] reports promising improvements in terms1125

of throughput from which MD-Max-Sum might benefit.

Furthermore, additional improvements can be made on the performance side

by tasking multiple groups of mediators to compute in parallel different areas

of the augmented constraint graph and synchronizing the intermediate results

between iterations.1130

MD-Max-Sum simulates the original version of Max-Sum [4]. Since the

introduction of that original version, there have been some advances in the

research of Max-Sum. In particular, recent versions that include damping and

splitting [57] demonstrate improved solution quality. We leave for future work

the interesting challenge of efficiently implementing such versions of Max-Sum1135

in the mediated model. Another direction for future work is to design a mediated

version of the improved Max-Sum for DCOPs with constraints of general arity

[58].

We believe that the mediated model of computation could be successfully

implemented for other DCOP algorithms, in order to achieve enhanced privacy1140

guarantees and to reap the advantages of the mediated model of computation

as we have identified herein. But we believe that the advantages of mediated

computing stretch well beyond the realm of DCOPs. In settings where the

agents are running on devices with limited computational resources, or cannot

efficiently communicate among themselves, they could benefit greatly from del-1145

egating the solution of their computational problems (that could be a DCOP

or any other distributed computational task) to an external set of mediators

that run on stronger platforms and could perform the computational task for

the agents, in an oblivious manner, without sacrificing privacy.
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Appendix A. Privacy violations in Max-Sum

It is easy to see that all Q-messages that emerge from a variable node of1310

degree 1 are always zero, as implied by their definition in Eq. (2), while Q-

messages that emerge from a variable node of degree greater than 1 are typically

non-zero in iteration k with k ≥ 2. Hence, any agent Ai who controls the

function nodeXei,j between its variable nodeXi and another agent Aj ’s variable

node Xj , will be able to tell whether the degree of Xj is 1 or greater than 1.1315

Such leakage of information violates agent privacy (no agent should learn of the

existence of agents with which it is not constrained) as well as topology privacy.

Moreover, the content of the Q-messages sent from Xj to Xei,j in iteration

k = 2 reveals to the function node, which Ai controls, information on the value

of constraints of Xj vis-à-vis other variable nodes. If Ai learns, somehow, that1320

Xj has degree 2 (namely, that Xj has, apart from Xi, only one additional

neighbor, Xk), then the Q-message that Xj sends to Xei,j in iteration 2 reveals

the minimal entries in each row in the constraint matrix between Xj and the

other variable node, Xk. In any case, such a leakage of information violates

constraint privacy and it may expose to Ai, for example, that the magnitude of1325

constraints between its variable and Xj is much smaller than the magnitude of

constraints between Xj and other variable nodes.

Finally, if Ai learns that Xj has degree 1, as described above, it will know

that Rj equals the last R-message sent from Xei,j to Xj (see Eq. (4)) and, thus,

it will know the final decision of Xj . Hence, also decision privacy is infringed.1330

Appendix B. Privacy violating collusion attacks in P-Max-Sum

Motivated by the privacy issues that Max-Sum raises, as illustrated in Ap-

pendix A, Tassa et al. [22] introduced P-Max-Sum, a privacy-preserving ver-

sion of Max-Sum. P-Max-Sum, like Max-Sum, is also executed as a dis-

tributed protocol that the agents execute on their own, but owing to the cryp-1335

tographic machinery that it implements, it preserves topology, constraint, and

decision privacy. However, P-Max-Sum is not secure against collusion: even if
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only two agents collude, they may learn sensitive private information on other

agents. We proceed to demonstrate two such attacks. In doing so we use the

same notations as in [22].1340

The P-Max-Sum algorithm assumes that for every agent An, all other

agents, A−n := {A1, . . . , AN} \ {An}, generate jointly a key pair in a homo-

morphic cipher En, and that they keep the decryption key private from An (see

[22, Section 3.2.1]). That encryption is then used in P-Max-Sum for securely

generating shares in the Q- and R-messages in each iteration. If one of the1345

agents in A−n colludes with An and reveals to An the private decryption key

in En, then An will be able to recover all Q- and R-messages that are sent from

and to its variable node Xn. As shown in Appendix A, the content of those

messages can be used for violating privacy.

To illustrate another collusion attack on P-Max-Sum, let us assume that the1350

factor graph has a sub-graph as shown in Figure B.15. Assume that agents A1

and A3, who control X1 and X3, respectively, collude. If they compare the list

of neighbors that they have, they will detect A2 as a common neighbor. Then,

A1 and A3 may combine messages that they have in order to infer whether X2

has another neighboring variable node apart from them. To this end, A1 and1355

A3 wait for A2 to complete the execution of Protocol 1 in P-Max-Sum, which

computes shares in the Q-messages that emerge from X2 (see [22]). After the

completion of that protocol, which involves A2 as well as all of its neighboring

agents, A1 holds Sk+1,1
2→e1,2

= Sk,3
e2,3→2 +

∑
j∈W Sk,j

e2,j→2, and A3 holds Sk+1,3
2→e2,3

=

Sk,1
e1,2→2 +

∑
j∈W Sk,j

e2,j→2, where W is the set of indices of all neighbors of X21360

apart from X1 and X3. Next, A1 sends to A3 the value Sk+1,1
2→e1,2

. If A3 sees that

it equals Sk,3
e2,3→2, A3 can infer, with very high probability, that W = ∅, namely,

that A2 is constrained only with A1 and A3. Otherwise, W ̸= ∅, namely, X2

has other neighbors in the factor graph. Thus, such collusion may infringe on

topology privacy.1365
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Figure B.15: A sub-graph of the factor graph.

Appendix C. Exemplifying the secret sharing of the problem inputs

among the mediators

Here we exemplify the first stage in MD-Max-Sum, in which the agents

secret-share their private data among the mediators (as described in Section

5.2.1). To do that, we consider the following simple setting.1370

There are N = 3 agents and the domains of each of their three variables,

X1, X2, X3, are D1 = D2 = D3 = {0, 1}. The constraint graph between them is

shown in Figure C.16 by the solid lines. Namely, X1 is constrained with each of

X2 and X3, but X2 and X3 are indifferent to each other. In order to hide the

graph topology, agents A2 and A3 add a phantom edge between their variables,1375

as shown by the dashed line in Figure C.16. The constraint matrices are shown

in Table C.3.

Figure C.16: Regular and phantom edges.

Now, assume that there are L = 5 mediators. Then the agents send shares

60



C1,2 X2 = 0 X2 = 1

X1 = 0 3 1

X1 = 1 6 5

C1,3 X3 = 0 X3 = 1

X1 = 0 4 2

X1 = 1 0 8

C2,3 X3 = 0 X3 = 1

X2 = 0 0 0

X2 = 1 0 0

Table C.3: The constraint matrices corresponding to all edges in the augmented constraint

graph in Figure C.16: the actual ones – C1,2 and C1,3, and the phantom one – C2,3.

in each of the constraint matrices to all L mediators, using t-out-of-L threshold

secret sharing with t = ⌊(L+1)/2⌋ = 3. Agent A1 will distribute shares in each1380

of the entries in the constraint matrices C1,2 and C1,3, while A2 will distribute

shares in each of the entries in the constraint matrix C2,3.

We exemplify the secret sharing for only one entry – C1,2(0, 0) = 3. Let us

take the underlying field to be Zp with p = 11. Hence, A1 generates a random

polynomial of degree t− 1 = 2, for which f(0) = C1,2(0, 0) = 3. Let us assume1385

that the chosen polynomial is f(x) = 3 + 4x+ 7x2. Then, A1 will distribute to

the mediator Mℓ, ℓ ∈ {1, 2, 3, 4, 5}, the share f(ℓ). Hence, the shares that the

mediators will receive in C1,2(0, 0) will be the following:

C1
1,2(0, 0) = f(1) = 3 + 4 · 1 + 7 · 12 = 3 mod 11 ,

C2
1,2(0, 0) = f(2) = 3 + 4 · 2 + 7 · 22 = 6 mod 11 ,

C3
1,2(0, 0) = f(3) = 3 + 4 · 3 + 7 · 32 = 1 mod 11 ,

C4
1,2(0, 0) = f(4) = 3 + 4 · 4 + 7 · 42 = 10 mod 11 ,

C5
1,2(0, 0) = f(5) = 3 + 4 · 5 + 7 · 52 = 0 mod 11 .

A1 will perform similar secret sharing for all entries in C1,2 until Mℓ, ℓ ∈ [5],

receives a full matrix of shares, Cℓ
1,2. The same procedure is applied for each of1390

the constraint matrices.
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Appendix D. Exemplifying MPC over secret shared values

The MPC computations that the mediators need to perform over secret

shared values are the following: given secret shares of a ∈ Zp and b ∈ Zp,

compute secret shares in their sum a+b, in their product ab, in their comparison1395

bit 1a<b, and in their minimum min(a, b). The details of those computations

were discussed in Section 4. Here we exemplify the inputs and outputs of such

computations.

We take the underlying field to be Zp with p = 11, and set the number of

mediators to be L = 5. Then t := ⌊(L+1)/2⌋ = 3 and, consequently, all secret-1400

generating polynomials will be of degree t−1 = 2. Assume that a = 4 and b = 9

and that the secret-generating polynomials for them are fa(x) = 4+x+7x2 and

fb(x) = 9 + 3x + 2x2, respectively. Then the shares in a that are held by each

of the five mediators are sℓ = fa(ℓ), ℓ ∈ [5], while the shares in b are sℓ = fb(ℓ);

those shares are shown in the first two columns of Table D.4.1405

The shares in a + b are computed locally by each of the mediators as the

sum of shares in a and b. They are shown in the third column of Table D.4.

As for the shares in ab = 3, they are computed by the MPC protocol that

we described in Section 4.2. That protocol outputs shares in ab to each of the

mediators. Those shares correspond to some random secret-generating polyno-1410

mial for the value ab. That polynomial remains unknown to all parties. For the

sake of illustration, assume that it is fab(x) = 3 + 10x + 4x2. Then the share

that the protocol outputs to Mℓ is fab(ℓ), ℓ ∈ [5]. Those shares are shown in

the fourth column of Table D.4.

We now turn to shares in the comparison bit 1a<b = 1. The MPC protocol1415

for that computation was described in Section 4.3. It yields a secret-generating

polynomial for the value 1a<b, and that polynomial remains hidden from all

parties. Let us assume that it is fa<b(x) = 1 + 6x2. Then the share that the

protocol outputs to Mℓ is fa<b(ℓ), ℓ ∈ [5]. Those shares are shown in the fifth

column of Table D.4.1420

Finally, to compute shares in min(a, b) = 4, the mediators execute the MPC
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protocol that was described in Section 4.4. That protocol generates a secret-

generating polynomial for the value min(a, b). Assuming, for the sake of illus-

tration, that it is fmin(x) = 4 + 10x+ 9x2, the share that the protocol outputs

to Mℓ is fmin(ℓ), ℓ ∈ [5], as shown in the sixth column of Table D.4.1425

a = 4 b = 9 a+ b = 2 ab = 3 1a<b = 1 min(a, b) = 4

s1 1 3 4 6 7 1

s2 1 1 2 6 3 5

s3 4 3 7 3 0 5

s4 10 9 8 8 9 1

s5 8 8 5 10 8 4

Table D.4: Shares in two secret values, their sum, product, comparison bit, and minimum.

Recall that under the assumption of an honest majority, all shared values

remain unknown to all mediators. However, if a majority (t = 3) of the me-

diators collude, they can use the shares that they hold in order to find the

secret-generating polynomial and then the secret value, which is the free term

in that polynomial. For example, if M1, M2, and M3 collude and wish to recover1430

ab, they will find fab by means of Lagrange interpolation:

fab(x) = s1 ·
(x− 2)(x− 3)

(1− 2)(1− 3)
+ s2 ·

(x− 1)(x− 3)

(2− 1)(2− 3)
+ s3 ·

(x− 1)(x− 2)

(3− 1)(3− 2)

= 6 · 2−1 · (x− 2)(x− 3)− 6 · (x− 1)(x− 3) + 3 · 2−1 · (x− 1)(x− 2)

= 3 · (x2 − 5x+ 6)− 6 · (x2 − 4x+ 3) + 7 · (x2 − 3x+ 2)

= 4x2 + 10x+ 3 . (D.1)

Then, they will infer that ab = fab(0) = 3.

Note that the computation that each of the agents performs at the termi-

nation stage of MD-Max-Sum (see Section 5.2.6) goes along the same lines as

above. An agent may select any t out of the L shares that were received from1435

the mediators and it will recover the same share-generating polynomial (and

thus also the same secret), regardless of the selection made.
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