
Privacy Preserving DCOP Solving by Mediation

Pablo Kogan1,3, Tamir Tassa1[0000−0001−9681−8824], and Tal
Grinshpoun2,3[0000−0002−4106−3169]

1 Department of Mathematics and Computer Science, The Open University of Israel
2 Department of Industrial Engineering and Management, Ariel University, Israel

3 Ariel Cyber Innovation Center, Ariel University, Israel
pablokogan@pm.me, tamirta@openu.ac.il, talgr@ariel.ac.il

Abstract. In this study we propose a new paradigm for solving DCOPs,
whereby the agents delegate the computational task to a set of exter-
nal mediators who perform the computations for them in an oblivious
manner, without getting access neither to the problem inputs nor to
its outputs. Specifically, we propose MD-Max-Sum, a mediated imple-
mentation of the Max-Sum algorithm. MD-Max-Sum offers topology,
constraint, and decision privacy, as well as partial agent privacy. More-
over, MD-Max-Sum is collusion-secure, as long as the set of mediators
has an honest majority. We evaluate the performance of MD-Max-Sum
on different benchmarks. In particular, we compare its performance to
PC-SyncBB, the only privacy-preserving DCOP algorithm to date that
is collusion-secure, and show the significant advantages ofMD-Max-Sum
in terms of runtime.

Keywords: DCOP · Max-Sum · Privacy · Multiparty computation ·
Mediated computing

1 Introduction

A Distributed Constraint Optimization Problem (DCOP) [5,2] is a commonly
accepted and practical mathematical framework for solving coordination chal-
lenges in multi-agent systems. A DCOP consists of a set of variables that are
controlled by several independent agents. Some subsets of variables may be de-
pendent in the sense that when they are assigned values from their respective
domains, different combinations of those values may incur costs. The goal is
to assign values to all variables so that the sum of all incurred costs would be
minimal. One of the main motivations for solving constraint optimization prob-
lems in a distributed manner is to preserve the privacy of the interacting agents.
Hence, many privacy-preserving DCOP algorithms were proposed over the past
two decades (see the review of related work in Section 2).

All existing DCOP algorithms (privacy-preserving or not) are carried out by
the agents themselves. However, some of those algorithms, and in particular the
privacy-preserving ones, require significant computing resources. In addition, all
DCOP algorithms assume that the agents are connected through a communica-
tion network. We propose here a new paradigm in DCOPs: solving them in the

2 P. Kogan et al.

so-called mediated model; i.e., there are external servers to whom the agents send
the problem inputs in some protected manner. The external servers, whom we
call mediators, simulate a DCOP algorithm on those inputs. At its completion,
they send to the agents messages from which the agents extract the outputs,
i.e., the variable assignments. Throughout this process, the mediators remain
oblivious to the problem inputs, to the content of the protected messages that
they exchange, and to the outputs.

Performing the DCOP algorithm in such a mediated manner offers several
significant advantages: (a) it protects the privacy of the agents and their sensitive
private data; (b) the agents do not need to establish a communication network
amongst them; and (c) it delegates the computational workload from the agents,
who may have limited computational resources, to dedicated servers.

In this work we demonstrate the power of mediated computing by presenting
MD-Max-Sum, a mediated execution of the Max-Sum algorithm [1]. In MD-
Max-Sum, the agents send to the mediators secret shares [13] in their private
inputs. The mediators proceed to execute the Max-Sum computations on the
shares of the problem inputs, while remaining oblivious to the value of the under-
lying inputs. At the end, the mediators send to the agents messages from which
the agents may infer the assignments to their variables. If the mediators have
an honest majority (namely, the number of colluding mediators is smaller than
the number of mediators outside the coalition), then MD-Max-Sum provides
topology, constraint, and decision privacy, as well as partial agent privacy (see
[9] for the definition of those notions). Those security guarantees hold against
any collusion among the set of agents.

2 Related work

Léauté and Faltings [9] devised three secure versions of the complete DCOP-
solving algorithm DPOP [12], each with different runtimes and privacy guaran-
tees. In their study they suggested four notions of privacy for the DCOP frame-
work, to which we adhere in this study: agent, topology, constraint, and decision
privacy. Grinshpoun and Tassa [3] presented a privacy-preserving version of an-
other complete algorithm – SyncBB [5]. The resulting method, P-SyncBB,
preserves topology, constraint, and decision privacy.

Since complete algorithms are not scalable, research efforts were invested also
in designing privacy-preserving implementations of incomplete algorithms. Tassa
et al. [15] developed the P-Max-Sum algorithm, which runs Max-Sum with
cryptographic enhancements in order to preserve privacy. P-Max-Sum provides
topology, constraint, and decision privacy, and it may be extended to provide
also agent privacy. Grinshpoun et al. [4] devised another incomplete privacy-
preserving algorithm, P-RODA, which is based on region optimality [6,7]. P-
RODA provides constraint privacy and partial decision privacy.

All of the above mentioned privacy-preserving DCOP algorithms assume soli-
tary conduct of the agents. However, if two or more agents collude and combine
the information that they have, they may extract valuable information about

Privacy Preserving DCOP Solving by Mediation 3

other agents. To address the risk of collusion, Tassa et al. [14] introduced PC-
SyncBB, the first privacy-preserving DCOP algorithm that is collusion-secure.
It is secure under the assumption that the agents have an honest majority. PC-
SyncBB does extensive usage of Secure Multiparty Computation (MPC) [16]
in order to obliviously compare between costs of partial assignments.

In this work we proposeMD-Max-Sum, the first incomplete privacy-preserving
DCOP algorithm that is collusion-secure.

3 DCOP definitions and the Max-Sum algorithm

ADistributed Constraint Optimization Problem (DCOP) [5] is a tuple ⟨A,X ,D,R⟩
where A is a set of agents A1, A2, . . . , AN , X is a set of variables X1, X2, . . . , XN ,
D is a set of finite domains D1, D2, . . . , DN , and R is a set of relations (con-
straints). Each variable Xn, n ∈ [N] := {1, 2, . . . , N}, takes values in the domain
Dn, and it is held by the agent An.

4 Each constraint C ∈ R defines a non-
negative cost for every possible value combination of some subset of variables,
and is of the form C : Dn1

×· · ·×Dnk
→ [0, q], for some 1 ≤ n1 < · · · < nk ≤ N ,

and a publicly known maximal constraint cost q.
An assignment is a pair including a variable and a value from that variable’s

domain. The goal of the agents is to find assignments to their variables so that
the sum of all costs that those assignments incur would be minimal.

We consider here a binary version of DCOPs, in which every C ∈ R con-
straints exactly two variables and takes the form Cn,m : Dn×Dm → [0, q], where
1 ≤ n < m ≤ N . Such an assumption is customary in DCOP literature, see e.g.
[11,12]. As the domains are finite, they me be ordered. Hence, the binary con-
straint Cn,m between Xn and Xm may be described by a matrix, which we also
denote by Cn,m, of dimensions |Dn|× |Dm|; in that matrix, Cn,m(i, j) equals the
cost that corresponds to the assignment of the ith value in Dn to Xn and the
jth value in Dm to Xm, where 1 ≤ i ≤ |Dn| and 1 ≤ j ≤ |Dm|.

The constraint graph G = (V,E) is an undirected graph over the set of
variables V = X , where an edge in E connects two variables if and only if
they are constrained. If we define for every pair of variables (Xn, Xm) /∈ E a
constraint matrix Cn,m which is the zero matrix of dimensions |Dn|×|Dm|, then
the set of all such matrices,

C := {Cn,m : 1 ≤ n < m ≤ N} , (1)

encompasses all topology and constraint information.
Every DCOP is also associated with a so-called factor graph. It is a bipartite

graph G′ = (V ′, E′) that is defined as follows. The set V ′ has two types of nodes:
variable nodes, X1, . . . , XN , and function nodes, Xe, for each e = (Xn, Xm) ∈ E.
The edge set E′ has an edge connecting Xn with Xe if and only if e is an edge
in G that is adjacent to Xn.

4 We make the standard assumption that the number of variables equals the number
of agents, and that each variable is held by a distinct single agent, see e.g. [11,12].

4 P. Kogan et al.

The Max-Sum algorithm [1] is an iterative message-passing algorithm that
operates on the factor graph G′. In every iteration a message is sent from each
node in V ′ to each one of its adjacent nodes. In the kth iteration, each variable
node Xn sends to each adjacent function node Xe a message denoted Qk

n→e,
while the message in the opposite direction is denoted Rk

e→n; both messages are
vectors of dimension |Dn|. In the k = 0 iteration all messages are zero. After
completing the kth iteration, the messages in the next iteration will be as follows.
Fixing a variable node Xn and letting Vn be the set of function nodes adjacent
to Xn in G′, then for each Xe ∈ Vn, Xn will send to Xe the vector

Qk+1
n→e :=

∑
Xf∈Vn\{Xe}

Rk
f→n . (2)

As for messages sent from function nodes, if Xe is a function node that connects
the two variable nodes Xn and Xm then the message sent from Xe to Xn is

Rk+1
e→n(x) := min

y∈Dm

[
Cn,m(x, y) +Qk

m→e(y)
]
, ∀x ∈ Dn ; (3)

the message that Xe sends to Xm is constructed similarly. Finally, after com-
pleting a preset number K of iterations, each variable node Xn computes Rn :=∑

Xe∈Vn
RK

e→n and then selects a value x ∈ Dn for which Rn(x) is minimal.

4 Mediated Max-Sum

In order to implement Max-Sum in a manner that preserves the privacy of the
agents even when some of them collude, we propose herein MD-Max-Sum – an
implementation of Max-Sum in the mediated model.

Let M = {M1, . . . ,ML} be an external committee of so-called mediators.
The agents in A will share their DCOP private inputs, namely, the topology and
constraint information, with the mediators using a t-out-of-L threshold secret
sharing scheme [13], where t := ⌊(L+1)/2⌋. Specifically, the agents distribute to
the mediators t-out-of-L shares in each of the entries in each of the matrices in C,
see Eq. (1); the underlying secret sharing field will be denoted henceforth by Zp.
The agents trust the mediators to have an honest majority, in the sense that if
some of the mediators decide to collude in order to reconstruct the shared private
data, the number of colluding mediators would be smaller than the number of
mediators outside the coalition. Under that assumption, the mediators cannot
recover the private inputs that were shared with them, since at least t mediators
have to collude in order to be able to reconstruct the shared secrets, and t =
⌊(L+ 1)/2⌋ ≥ L− t.

After the agents had completed sharing all their private inputs with the
mediators, they go to rest and the mediators start emulating the performance of
the entire Max-Sum algorithm by implementing secure multiparty computation
(MPC) on the shared data. The main challenge in this regard is to design an
implementation of Max-Sum that operates on shared data, namely, in a manner
that is oblivious to the underlying topology and constraint values.

Privacy Preserving DCOP Solving by Mediation 5

When the mediators complete their emulation of Max-Sum, say by running
an agreed preset number of iterations, K, they send to each of the agents a
message from which that agent can infer the assignment of its variable in the
solution that the algorithm had found.

In order to hide the constraint graph topology from the mediators, MD-
Max-Sum operates on an augmented version G+ = (V,E+) of the constraint
graph G = (V,E). G+ is a complete graph in the sense that E+ includes all

(
N
2

)
pairs of nodes/variables from V = X , where all edges (Xn, Xm) ∈ E+ \ E are
associated with a zero constraint matrix, Cn,m, as described earlier in Section
3. In the full version of this paper [8] we show that the addition of such so-
called phantom edges does not change the algorithm’s outputs. However, with
such added phantom edges, the mediators, who only get shares in the constraint
matrices, cannot distinguish between a zero matrix and a non-zero matrix and,
consequently, they cannot tell which of the edges in the augmented graph are
phantom ones, so the graph topology is preserved.

4.1 The MD-Max-Sum algorithm

We assume that all agents know the total number of agentsN , and the identifying
index n ∈ [N] of each agent. In addition, the sizes of all domains, |Dn|, n ∈ [N],
are also publicly known.

4.1.1 Distributing to the mediators shares in the problem inputs In
this preliminary stage, the agents share with the mediators the problem inputs,
which, as explained in Section 3, are encoded through the set of matrices C, see
Eq. (1). To do so, each agent An, 1 ≤ n ≤ N−1, shares with the mediatorsM the
constraint matrices Cn,m ∈ C for all n < m ≤ N , where, as explained in Section
3, the matrix Cn,m is of dimensions |Dn| × |Dm| and it either spells out the
constraint values between those two agents, or, if they are not constrained, it is
the zero matrix. The matrices are shared by performing an independent t-out-of-
L secret sharing for each entry in each of those matrices, where t = ⌊(L+1)/2⌋.
Letting n < m ∈ [N] be indices of two agents, and ℓ ∈ [L] be an index of
a mediator, we denote the share of the cost Cn,m(i, j) that the mediator Mℓ

receives by Cℓ
n,m(i, j). The entire matrix of shares that Mℓ receives is denoted

Cℓ
n,m =

(
Cℓ

n,m(i, j) : 1 ≤ i ≤ |Dn|, 1 ≤ j ≤ |Dm|
)
.

After each mediator Mℓ, ℓ ∈ [L], got its share matrix Cℓ
n,m for all 1 ≤ n < m ≤

N , they have all problem inputs and they may now begin an MPC emulation of
Max-Sum over those inputs.

We assume that the mediators have an honest majority. Hence, as we use
t-out-of-L secret sharing with t = ⌊(L + 1)/2⌋, the mediators cannot learn any
information on the content of the constraint matrices. Therefore, not only the
constraints themselves are kept secret, also the topology is kept secret, since the
mediators cannot tell from their shares whether Cn,m is the zero matrix or not.

6 P. Kogan et al.

While Max-Sum, as well as P-Max-Sum, operate on the exact factor graph
G′, the mediated algorithm MD-Max-Sum operates on an augmented factor
graph, denoted G′

+ = (V ′
+, E

′
+), in which every two variable nodes are con-

nected through a function node, even if some of those function nodes stand for a
zero/phantom constraint (which was introduced only for the purpose of hiding
the real topology of G from the mediators).

After the agents finish distributing to the mediators shares in the problem
inputs, they go to rest and let the mediators do the work. The mediators start
an emulation of each of the iterations in Max-Sum. They do so by producing
proper shares in the true messages that would have been sent along each edge of
the factor graph, if the agents had run the Max-Sum algorithm by themselves.

We proceed to explain in the next sections the details of the MD-Max-Sum
implementation. Specifically, we need to explain how in each iteration of the
algorithm, the mediators create shares in the messages that the corresponding
Max-Sum algorithm would have generated. In doing so, we focus on an arbitrary
pair of neighboring nodes in the augmented factor graph: a variable node Xn,
n ∈ [N], and a function node, Xe, where e = (Xn, Xm) and m ∈ [N] \ {n}.

4.1.2 Producing shares in the messages of the initial iteration In
iteration 0, all of the L mediators have to emulate zero messages between Xn

and Xe,

Q0
n→e = (0, . . . , 0) ∈ Z|Dn|

p , R0
e→n = (0, . . . , 0) ∈ Z|Dn|

p . (4)

To do so, each mediator Mℓ, ℓ ∈ [L], creates for himself corresponding zero share
vectors as follows:

Q0,ℓ
n→e = (0, . . . , 0) ∈ Z|Dn|

p , R0,ℓ
e→n = (0, . . . , 0) ∈ Z|Dn|

p . (5)

Note that no interaction between the mediators is needed at this stage, and that
the L vector shares of the Q-messages in Eq. (5) are t-out-of-L vector shares in
the zero Q-messages in Eq. (4), and likewise for the R-messages.

4.1.3 Producing shares in Q-messages In iteration k + 1, the mediators
have to emulate the message Qk+1

n→e from the variable node Xn to the adjacent
function node, Xe, where e = (Xn, Xm). In view of Eq. (2), and as the medi-
ators already have t-out-of-L shares in R-messages of the kth iteration, such a
computation can be done, without interaction between the mediators, by com-
puting Qk+1,ℓ

n→e :=
∑

Xf
Rk,ℓ

f→n, where the sum is over all N − 2 function nodes,

Xf , between Xn and Xi for any i ∈ [N] \ {n,m}.

4.1.4 Producing shares in R-messages Here, we concentrate on the more
involved task of computing t-out-of-L shares in the R-messages, Rk+1

e→n, from the
function node, Xe, where e = (Xn, Xm), to the variable node Xn. We rewrite
Eq. (3) in the following manner,

Rk+1
e→n(x) := min

y∈Dm

Bk
n,m(x, y) , x ∈ Dn , (6)

Privacy Preserving DCOP Solving by Mediation 7

where Bk
n,m(x, y) denotes the sum

Bk
n,m(x, y) := Cn,m(x, y) +Qk

m→e(y) . (7)

The L mediators hold t-out-of-L shares in Cn,m(x, y) for all (x, y) ∈ Dn ×Dm

(denoted Cℓ
n,m(x, y), ℓ ∈ [L]), since such shares were generated and distributed

to them by the agents in the preliminary stage. Moreover, the mediators had
computed in the kth iteration t-out-of-L shares in Qk

m→e(y) for all y ∈ Dm,
where Mℓ’s shares are denoted Qk,ℓ

m→e(y). Hence, Cℓ
n,m(x, y) +Qk,ℓ

m→e(y), which

we denote by Bk,ℓ
n,m(x, y), are t-out-of-L shares in Bk

n,m(x, y), as implied by Eq.
(7) and the linearity of secret sharing. Hence, the main computational challenge
is to compute t-out-of-L shares in the left-hand side of Eq. (6) from the shares
that the mediators hold in each of the terms on the right-hand side of Eq. (6).
This task is non-trivial because the minimum function is non-linear.

Protocol 1, which we describe below, is simultaneously executed by each of
the L mediators. It is executed for each pair of a function node in the augmented
factor graph,Xe, where e = (Xn, Xm), and one of its two adjacent variable nodes,
Xn. At the completion of that protocol, each mediator Mℓ holds a share Rk+1,ℓ

e→n

in Rk+1
e→n. That protocol will be executed in every iteration N(N − 1) times, as

there are
(
N
2

)
= N(N − 1)/2 function nodes in the augmented factor graph G′

+,
and each one of them has two adjacent variable nodes.

Protocol 1: Computing shares in an R-message from the function node
Xe, where e = (Xn, Xm), to the variable node Xn.

Input: Mediator Mℓ, ℓ ∈ [L], holds a t-out-of-L share, Bk,ℓ
n,m(x, y), in

Bk
n,m(x, y), for every x ∈ Dn and y ∈ Dm = {y1, . . . , y|Dm|}.

1 forall x ∈ Dn do

2 Mℓ sets βℓ
n,m(x)← Bk,ℓ

n,m(x, y1)
3 forall j = 2, . . . , |Dm| do
4 if COMPARE({Bk,ℓ

n,m(x, yj)}ℓ∈[L], {βℓ
n,m(x)}ℓ∈[L]) = true then

5 Mℓ sets βℓ
n,m(x)← Bk,ℓ

n,m(x, yj)

6 Mℓ sets Rk+1,ℓ
e→n (x)← βℓ

n,m(x)

Output: Mediator Mℓ, ℓ ∈ [L], gets a t-out-of-L share Rk+1,ℓ
e→n (x) in Rk+1

e→n(x).

The external loop in the protocol (lines 1-6) is over all values x in the domain
Dn, i.e., over all entries in the vector message Rk+1

e→n. For each such x ∈ Dn, the
mediators have to find the minimum among {Bk

n,m(x, y) : y ∈ Dm}, where each
of the values in that set is shared by a t-out-of-L scheme among them. The t-
out-of-L shares of the minimum will be stored in βℓ

n,m(x), ℓ ∈ [L]. First (line 2),

each mediator initiates its β-shares with the shares corresponding to Bk
n,m(x, y1).

Then (lines 3-5), for each yj , j = 2, . . . , |Dm|, the mediators compare Bk
n,m(x, yj)

to the current minimum, in which they have t-out-of-L shares in βℓ
n,m(x), ℓ ∈ [L].

The comparisons are performed in a secure manner by invoking a distributed
sub-protocol that all mediators jointly execute, as will be explained below. If
Bk

n,m(x, yj) is smaller than the current minimum, then each mediator updates
its share of the minimum (line 5).

8 P. Kogan et al.

In order to perform comparisons between values that are known to the media-
tors only through t-out-of-L shares, without recovering those values and perform
the comparison over those recovered values, Protocol 1 calls upon an MPC sub-
protocol called COMPARE (line 4), which all the mediators run together in a
distributed manner. That sub-protocol assumes that the mediators have t-out-
of-L shares in two values x, y ∈ Zp; it returns true if x < y (when x and y
are interpreted as integers) and false otherwise. This sub-protocol is perfectly
secure in the sense that it reveals to the mediators nothing about the two com-
pared values beyond the final output bit which indicates which of the two is
smaller. (A full description of COMPARE is provided in [8].)

Finally (line 6), each mediator stores in Rk+1,ℓ
e→n (x) its share in the minimum

that was found above, βℓ
n,m(x).

4.1.5 Termination After completing a preset number of K iterations, the
final assignment to Xn, n ∈ [N], is determined by the minimal entry in Rn =∑

Xe∈Vn
RK

e→n. To find that assignment, each agent An, n ∈ [N], selects a subset

of t mediators and asks them for their shares in the vector Rn. Using those vector
shares, An can recover each of the |Dn| entries in Rn. Afterwards, An finds the
minimal entry in Rn and then assigns the corresponding value to Xn.

4.2 Correctness and privacy

The MD-Max-Sum algorithm is correct and privacy-preserving, as stated in
Theorems 1 and 2. (The proofs are given in the full version of this paper [8]).

Theorem 1. When MD-Max-Sum and Max-Sum are executed the same num-
ber of iterations K on the same input problem, they will issue the same assign-
ments to all variables.

Theorem 2. MD-Max-Sum provides topology, constraint, and decision pri-
vacy, as long as the mediators have an honest majority.

5 Experimental evaluation

We implemented and executed the MD-Max-Sum algorithm on the AgentZero
simulator [10], running on AWS C5a instances comprised of a 2nd generation
AMD EPYC™ 7R32 processor and 64 GB memory, except for the call to the
COMPARE sub-protocol that was executed over LAN with EC2 machines of
type c5.large in Amazon’s North Virginia data center.

We compared MD-Max-Sum with the baseline algorithm Max-Sum (no
privacy) and P-Max-Sum [15] (provides privacy, but not against coalitions). As
shown in [15], and stated above in Theorem 1, both of those privacy-preserving
implementations of Max-Sum simulate perfectly the basic Max-Sum. We used
in all experiments K = 10 iterations in each of these algorithms, similarly to [15].
MD-Max-Sum was executed with L = 5 mediators. In addition, we included

Privacy Preserving DCOP Solving by Mediation 9

Fig. 1. Unstructured random graphs (p1 = 0.3, |Dn| = 5), varying N

in our experiments the PC-SyncBB algorithm [14], which is the only other
DCOP-solving algorithm that is privacy-preserving and collusion-secure. Recall
that unlike MD-Max-Sum, PC-SyncBB is a complete algorithm; hence, it
outputs the optimal solution but it is expected to be more time consuming.

The first experiment, shown in Figure 1, was conducted on unstructured
random graphs with constraint density p1 = 0.3 and domains of size |Dn| = 5,
n ∈ [N]. We varied the number of agents N to observe the scalability of the
algorithms. The cut-off time for a single execution was set to 30 minutes.

The performance gap between Max-Sum and P-Max-Sum demonstrates
the price of privacy. The gap between P-Max-Sum and MD-Max-Sum demon-
strates the price of collusion security. Those two gaps remain constant. Con-
versely, the gap between MD-Max-Sum and PC-SyncBB, which demonstrates
the price of completeness, is constantly growing. For small problems with N ≤ 7,
PC-SyncBB is competitive with MD-Max-Sum and even with P-Max-Sum.
However, as the number of agents increases, we can see that the performance
of PC-SyncBB becomes much more time-consuming than MD-Max-Sum’s.
This advantage of MD-Max-Sum over PC-SyncBB is explained as follows: a
significant portion of the runtime of both algorithms is in performing secure
comparisons between secret values. In PC-SyncBB, that MPC sub-protocol is
carried out by all agents; in MD-Max-Sum, on the other hand, it is carried out
by the mediators. The runtime of this computation depends on the number of in-
teracting parties, see [14, Table 1]. Hence, while the time spent in PC-SyncBB
on secure comparisons increases with N , in MD-Max-Sum it is independent of
N . This mitigation of the dependency of the runtime on N demonstrates the
strength of the mediated model. (Of course, the runtime of MD-Max-Sum does
depend on N through other computations, outside the secure comparisons in
COMPARE, since N affects the size of the graph.)

We also evaluated the algorithms on 3-color graph coloring problems, similar
to the setting described by Zivan et al. [17]. In this setting, for every 1 ≤ n <
m ≤ N , Cn,m(x, y) = q if x = y and Cn,m(x, y) = 0 if x ̸= y, for some positive
constant q. Figure 2 presents the runtime of the algorithms on 3-color graph
problems with p1 = 0.4 and shows similar scalability properties to the previous

10 P. Kogan et al.

experiments. The small domain size, |Dn| = 3, enables us to experiment with
problems of larger sizes. For this experiment, we started with N = 5 and moved
up to N = 75 agents in steps of 10. While all other algorithms remain within
the cut-off limit of 30 minutes per single execution, the runtime of PC-SyncBB
exceeded the cut-off limit already for N = 20. Hence, we include in Figure 2 the
runtime of PC-SyncBB for N = 19, which was the highest number of agents
that could be processed within 30 minutes. The trends are similar to those in
the former experiment.

Fig. 2. 3-color graph coloring problems (p1 = 0.4), varying N

6 Conclusion

In this work we introducedMD-Max-Sum, the first incomplete privacy-preserving
DCOP algorithm that is also collusion-secure. It is an implementation of Max-
Sum in the mediated model of computation. It preserves topology, constraint,
decision, and partial agent privacy. We analyzed the security and correctness of
the algorithm and, using experimentation, demonstrated its characteristics, its
advantages over the only other collusion-secure DCOP algorithm, PC-SyncBB,
and its viability.

Aside from the performance gains achieved by utilizing an incomplete algo-
rithm (as opposed to PC-SyncBB that is based on a complete algorithm), the
transition to the mediated model offers other significant benefits:MD-Max-Sum
is privacy-preserving and is immune to any coalition among the agents, under
the assumption of an honest majority within the mediators; the agents do not
need to communicate with each other, a significant advantage in settings where
the agents do not have an efficient way to communicate among themselves; the
agents, that may run on computationally-bounded devices, can outsource costly
and cryptographically-complex computations to dedicated servers; and, finally,
MD-Max-Sum is more robust than all previous DCOP algorithms since if an
agent goes offline (e.g., due to a technical failure) after secret sharing its private
data to the mediators, the algorithm can still be executed and issue the correct
outputs to all agents.

We believe that the mediated model of computation could be successfully
implemented for other DCOP algorithms as well as for various problems of fed-

Privacy Preserving DCOP Solving by Mediation 11

erated learning, in order to achieve enhanced privacy guarantees, and to reap the
advantages of the mediated model of computation as we have identified herein.

Acknowledgments This work was partially supported by the Ariel Cyber
Innovation Center in conjunction with the Israel National Cyber Directorate in
the Prime Minister’s Office.

References

1. Farinelli, A., Rogers, A., Jennings, N.R.: Decentralised coordination of low-power
embedded devices using the max-sum algorithm. In: AAMAS. pp. 639–646 (2008)

2. Fioretto, F., Pontelli, E., Yeoh, W.: Distributed constraint optimization problems
and applications: A survey. Journal of Artificial Intelligence Research 61, 623–698
(2018)

3. Grinshpoun, T., Tassa, T.: P-SyncBB: A privacy preserving branch and bound
DCOP algorithm. Journal of Artificial Intelligence Research 57, 621–660 (2016)

4. Grinshpoun, T., Tassa, T., Levit, V., Zivan, R.: Privacy preserving region optimal
algorithms for symmetric and asymmetric DCOPs. Artificial Intelligence 266, 27–
50 (2019)

5. Hirayama, K., Yokoo, M.: Distributed partial constraint satisfaction problem. In:
CP. pp. 222–236 (1997)

6. Katagishi, H., Pearce, J.P.: Kopt: Distributed DCOP algorithm for arbitrary k-
optima with monotonically increasing utility. In: DCR (2007)

7. Kiekintveld, C., Yin, Z., Kumar, A., Tambe, M.: Asynchronous algorithms for
approximate distributed constraint optimization with quality bounds. In: AAMAS.
pp. 133–140 (2010)

8. Kogan, P.: Privacy Preserving Solution of DCOPs by Mediation. Master’s
thesis, supervised by Tassa, T. and Grinshpoun, T., The Open University
of Israel, https://www.openu.ac.il/Lists/MediaServer Documents/PersonalSites/
TamirTassa/MD Max Sum.pdf (2022)

9. Léauté, T., Faltings, B.: Protecting privacy through distributed computation in
multi-agent decision making. Journal of Artificial Intelligence Research 47, 649–
695 (2013)

10. Lutati, B., Gontmakher, I., Lando, M., Netzer, A., Meisels, A., Grubshtein, A.:
AgentZero: A framework for simulating and evaluating multi-agent algorithms. In:
Agent-Oriented Software Engineering. pp. 309–327 (2014)

11. Modi, P.J., Shen, W.M., Tambe, M., Yokoo, M.: ADOPT: asynchronous distributed
constraint optimization with quality guarantees. Artificial Intelligence 161, 149–
180 (2005)

12. Petcu, A., Faltings, B.: A scalable method for multiagent constraint optimization.
In: IJCAI. pp. 266–271 (2005)

13. Shamir, A.: How to share a secret. Commun. ACM 22(11), 612–613 (1979)
14. Tassa, T., Grinshpoun, T., Yanai, A.: PC-SyncBB: A privacy preserving collusion

secure DCOP algorithm. Artificial Intelligence 297, 103501 (2021)
15. Tassa, T., Grinshpoun, T., Zivan, R.: Privacy preserving implementation of the

Max-Sum algorithm and its variants. Journal of Artificial Intelligence Research
59, 311–349 (2017)

16. Yao, A.C.: Protocols for secure computation. In: FOCS. pp. 160–164 (1982)
17. Zivan, R., Okamoto, S., Peled, H.: Explorative anytime local search for distributed

constraint optimization. Artificial Intelligence 212, 1–26 (2014)

https://www.openu.ac.il/Lists/MediaServer_Documents/PersonalSites/TamirTassa/MD_Max_Sum.pdf
https://www.openu.ac.il/Lists/MediaServer_Documents/PersonalSites/TamirTassa/MD_Max_Sum.pdf

	Privacy Preserving DCOP Solving by Mediation
	Introduction
	Related work
	DCOP definitions and the Max-Sum algorithm
	Mediated Max-Sum
	The MD-Max-Sum algorithm
	Distributing to the mediators shares in the problem inputs
	Producing shares in the messages of the initial iteration
	Producing shares in Q-messages
	Producing shares in R-messages
	Termination

	Correctness and privacy

	Experimental evaluation
	Conclusion

