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ABSTRACT
Electronic voting systems are essential for holding virtual elections.
One of the main challenges in such elections is to secure the voting
process: namely, to certify that the computed results are consistent
with the cast ballots, and that the privacy of the voters is preserved.
We propose herein a secure voting protocol for elections that are
governed by order-based voting rules. Our protocol offers perfect
ballot secrecy, in the sense that it issues only the required output,
while no other information on the cast ballots is revealed. Such
perfect secrecy, which is achieved by employing secure multiparty
computation tools, may increase the voters’ confidence and, conse-
quently, encourage them to vote according to their true preferences.
Evaluation of the protocol’s computational costs establishes that it
is lightweight and can be readily implemented in real-life electronic
elections.
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1 INTRODUCTION
Secure e-voting systems are required for holding elections virtu-
ally. Virtual elections may increase participation, reduce costs, and
increase sustainability. In the past two years, due to the COVID-
19 pandemic and the need for social distancing, secure e-voting
platforms have become even more essential.

The usual meaning of voter privacy is that the voters remain
anonymous. Namely, even though the ballots are revealed (as is the
case when opening the ballot box at the end of an election day),
no ballot can be traced back to the voter who cast it. Herein we
propose a protocol that offers perfect ballot secrecy, or full privacy

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
Appears at the 4th Games, Agents, and Incentives Workshop (GAIW 2022). Held as
part of the Workshops at the 20th International Conference on Autonomous Agents and
Multiagent Systems., Abramowitz, Ceppi, Dickerson, Hosseini, Lev, Mattei, Zick (Chairs),
May 2022, Auckland, New Zealand. © 2022 Copyright held by the owner/author(s).
. . . $ACM ISBN 978-x-xxxx-xxxx-x/YY/MM

[9], i.e., given any coalition of voters, the protocol does not reveal
any information on the ballots, beyond what can be inferred from
the published results. Such perfect secrecy may increase the voters’
confidence and, consequently, encourage them to vote according
to their true preferences.

There are various families of voting rules that can be used in
elections. For example, in score-based voting rules, each voter as-
signs a score to each of the candidates. In this study we focus on
order-based voting rules, where each voter submits a ranking of the
candidates [7].

Contributions.We consider a scenario in which there is a set
of voters that hold an election over a given set of candidates. We
devise a fully private protocol for computing the results of elections
that are governed by order-based voting rules. The output of the
election is a ranking of the candidates, from which the winning
candidate(s) can be determined. Our protocol, which is based on
cryptographic tools of multiparty computation, is lightweight and
can be readily implemented in virtual elections.

2 RELATEDWORK
Secure e-voting can be approached using various cryptographic
techniques. The earliest suggestion is that of Chaum [10], who
suggested to use a mix network (mixnet). The idea is to treat the
ballots as ciphertexts. Voters encrypt their ballots and agents collect
and shuffle these messages and thus anonymity of the ballots is
preserved. Others followed and improved this model (e.g. [1, 5, 21,
22, 24, 28]). However, while this system preserves anonymity, the
talliers are exposed to the actual ballots. The mere anonymity of the
ballots might not provide sufficient security and this may encourage
voters to abstain or vote untruthfully [15].

Homomorphic encryption enable computations on encrypted
values without decrypting them first. The most common ciphers
of that class are additively homomorphic, in the sense that the
product of several ciphertexts is the encryption of the sum of the
corresponding plaintexts. Such encryptions are suitable for secure
voting, as was first suggested by Benaloh [3]. The main idea here
is to encrypt the ballots, using a public-key homomorphic cipher.
An agent aggregates the encrypted ballots and then sends an aggre-
gated encrypted value to the tallier. The tallier who decrypts the
received ciphertext recovers the aggregation of the ballots, but not
the ballots themselves. Secure voting protocols that are based on ho-
momorphic encryption were presented in e.g. [12, 13, 20, 26, 27, 30].

While most studies on secure voting offered protocols for secur-
ing the voting process, only few studies considered the question of
private execution of the computation that the underlying voting
rule dictates. Canard et al. [8] considered the Majority Judgment



(MJ) voting rule [2]. They first translated the complex control flow
and branching instructions that the MJ rule entails into a branch-
less algorithm; then they devised a privacy-preserving implemen-
tation of it using homomorphic encryption, distributed decryption
schemes, distributed evaluation of Boolean gates, and distributed
comparisons. Nair et al. [23] suggested to use secret sharing for
the tallying process in Plurality voting. Their protocol provides
anonymity but does not provide perfect secrecy as it reveals the
final aggregated score of each candidate. In addition, their protocol
is vulnerable to cheating attacks, as it does not include means for
detecting illegal votes. Yang et al. [30] suggested using homomor-
phic encryption specifically for approval voting [6]. Lastly, Dery
et al. [15] offered a solution based on multiparty computation in
order to securely determine the winners in elections governed by
score-based voting rules.

To the best of our knowledge, no study so far addressed the ques-
tion of securely computing election results where the governing
voting rule is order-based. We undertake this challenge herein.

3 CRYPTOGRAPHIC PRELIMINARIES
Our protocol relies heavily on cryptographic machinery. Herein
we provide a brief introduction to secret sharing, secure multiparty
computation (MPC), and solutions to specific problems of MPC
that are used in our protocol: secure comparisons, secure testing of
positivity, and secure testing of equality to zero.

3.1 Secret sharing
Secret sharing methods [29] enable distributing a secret among a
group of participants. Each participant is given a random share
of the secret so that: (a) the secret can be reconstructed only by
combining the shares given to specific authorized subsets of partici-
pants, and (b) combinations of shares belonging to unauthorized
subsets of participants reveal zero information on the underlying
secret.

The notion of secret sharing was introduced, independently,
by Shamir [29] and Blakley [4], for the case of threshold secret
sharing. Let 𝐷 be the number of participants and let 𝐷 ′ ≤ 𝐷 be
some threshold. Then the authorized subsets in Shamir’s and in
Blakley’s schemes are those of size at least 𝐷 ′. Such secret sharing
schemes are called 𝐷 ′-out-of-𝐷 .

Shamir’s 𝐷 ′-out-of-𝐷 secret sharing scheme operates over a
finite field Z𝑝 , where 𝑝 > 𝐷 is a prime sufficiently large so that all
possible secrets may be represented in Z𝑝 . It has two procedures:
Share and Reconstruct:

• Share𝐷′,𝐷 (𝑥). The procedure samples a uniformly random
polynomial 𝑔(·) over Z𝑝 , of degree at most 𝐷 ′ − 1, where the free
coefficient is the secret 𝑠 . That is, 𝑔(𝑥) = 𝑠 + 𝑎1𝑥 + 𝑎2𝑥2 + . . . +
𝑎𝐷′−1𝑥

𝐷′−1, where 𝑎 𝑗 , 1 ≤ 𝑗 ≤ 𝐷 ′ − 1, are selected independently
and uniformly at random from Z𝑝 . The procedure outputs 𝐷 values,
𝑠𝑑 = 𝑔(𝑑), 𝑑 ∈ [𝐷] := {1, . . . , 𝐷}, where 𝑠𝑑 is the share given to the
𝑑th participant, 𝑑 ∈ [𝐷].

• Reconstruct𝐷′ (𝑠1, . . . , 𝑠𝐷 ). The procedure is given any selec-
tion of 𝐷 ′ shares out of {𝑠1, . . . , 𝑠𝐷 }; it then interpolates a poly-
nomial 𝑔(·) of degree at most 𝐷 ′ − 1 using the given points, and
outputs 𝑠 = 𝑔(0). Clearly, any selection of 𝐷 ′ shares out of the 𝐷

shares will yield the same polynomial 𝑔(·) that was used to gener-
ate the shares, as 𝐷 ′ point values determine a unique polynomial
of degree at most 𝐷 ′ − 1. Hence, any selection of 𝐷 ′ shares will
issue the secret 𝑠 . On the other hand, any selection of 𝐷 ′ − 1 shares
reveals nothing about the secret 𝑠 .

Our protocol involves a set of third parties, {𝑇1, . . . ,𝑇𝐷 }, which
are called talliers. In the protocol, each voter creates shares of
his private ballot and distributes them to the 𝐷 talliers. As those
ballots are matrices (see the definitions in Section 4.1), the secret
sharing is carried out for each entry independently, so that each
of the tallier receives a share matrix in each ballot matrix. The
talliers then verify the legality of the cast ballots and, at the end
the election period, compute the desired election results. Those
computations are executed based only on the shares that the talliers
had received, i.e., without actually recovering the private ballots.
Such a computation, that depends on secret inputs that cannot be
disclosed, is called secure multiparty computation; we elaborate on
that topic in Section 3.2 below.

We will use Shamir’s 𝐷 ′-out-of-𝐷 secret sharing with 𝐷 ′ :=
⌊(𝐷 + 1)/2⌋ (namely, the value (𝐷 + 1)/2 rounded down to the
nearest integer). With that setting, at least half of the talliers would
need to collude in order to recover the secret ballots. If the set of the
talliers is trusted to have an honest majority, then such a betrayal
scenario is impossible. Namely, if more than half of the talliers are
honest, in the sense that they would not attempt cheating, then even
if all other dishonest talliers attempt to recover the secret ballots
from the shares that they hold, they will not be able to extract any
information on the ballots. The secret sharing mechanism prevents
such unauthorized subsets from inferring any information on the
shared secrets from the shares that they hold.

Higher values of 𝐷 (and consequently of 𝐷 ′ := ⌊(𝐷 + 1)/2⌋) will
imply greater security against coalitions of corrupted talliers, but
at the same time they will also imply higher computational and
communication costs.

3.2 Secure multiparty computation
As described above, the talliers hold shares in the voters’ ballots and
perform computations on those shares. First, they need to verify
that the shares for each cast ballot correspond to a legal ballot
(legal ballots are characterized in Section 4.2). Then, they need to
compute the identity of the 𝐾 winning candidates, as dictated by
the rule. Those two tasks would be easy if the talliers could use
their shares in order to recover the ballots. However, they must not
do so, in order to protect the voters’ privacy. Instead, they must
perform those computations on the distributed shares, without
revealing the shares to each other. As shown in Section 4.2, both of
those computations boil down to arithmetic computations (namely,
to computations of additions and multiplications of secret-shared
values).

To do so, the talliers execute sub-protocols of secure multiparty
computation (MPC) [31]. An MPC protocol allows a set of parties,
𝑇1, . . . ,𝑇𝐷 , to compute any function 𝑓 over private inputs that they
hold, 𝑥1, . . . , 𝑥𝐷 , where 𝑥𝑑 is known only to 𝑇𝑑 , 𝑑 ∈ [𝐷], so that
at the end of the protocol everyone learns 𝑓 (𝑥1, . . . , 𝑥𝐷 ), but noth-
ing beyond that value and what can be naturally inferred from
it. In cases where the desired function 𝑓 may be expressed as an



arithmetic function of the inputs, then one may represent 𝑓 by an
arithmetic circuit𝐶 such that for every set of inputs, 𝑥1, . . . , 𝑥𝐷 , the
output of the circuit, 𝐶 (𝑥1, . . . , 𝑥𝐷 ), equals 𝑓 (𝑥1, . . . , 𝑥𝐷 ).

The circuit has several input wires and a single output wire. Each
input wire is fed with a single secret value by one of the parties.
The output wire determines a single value that is revealed to all
parties. Between the input and output wires there are multiple
layers of arithmetic gates that connect them. An arithmetic gate
can be either addition or multiplication. Each gate is fed by exactly
two input wires, and it produces one output wire such that the
output of a gate in layer 𝑘 can be given as input to multiple gates
in layer 𝑘 + 1. For illustration, consider the arithmetic function
𝑓 (𝑥1, 𝑥2, 𝑥3) = 𝑥1 · 𝑥2 + 𝑥2 · 𝑥3 · (𝑥2 + 𝑥3). The circuit 𝐶 in Figure 1
evaluates that function. It consists of three layers. The first layer
has two multiplication gates that compute 𝑥1 · 𝑥2 and 𝑥2 · 𝑥3, and
one addition gate that computes 𝑥2 + 𝑥3. The second layer has a
single multiplication gate for computing 𝑥2 · 𝑥3 · (𝑥2 + 𝑥3). Finally,
the third and last layer has a single addition gate that issues the
desired output.

Figure 1: An arithmetic circuit 𝐶 that realizes the function
𝑓 (𝑥1, 𝑥2, 𝑥3) = 𝑥1 · 𝑥2 + 𝑥2 · 𝑥3 · (𝑥2 + 𝑥3).

In a secret-sharing-based MPC protocol, all values along all wires
are secret shared among the 𝐷 parties (as described in Section 3.1);
in particular, they are never reconstructed and thus remain secret.
Only the value on the final output wire is reconstructed: when
reaching the output gate, each party broadcasts the corresponding
share that he1 holds in the output wire, and subsequently everyone
can use the broadcast shares in order to reconstruct the output.

The computational challenge in this context is how to emulate
the operation of an arithmetic circuit when operating on shared val-
ues. As an arithmetic circuit consists of two types of gates – addition
and multiplication, the challenge is as follows: given 𝐷 ′-out-of-𝐷
shares in two secret values 𝑢, 𝑣 ∈ Z𝑝 , how can the parties compute
𝐷 ′-out-of-𝐷 shares in 𝑢 + 𝑣 and in 𝑢 · 𝑣 , without reconstructing
any of those values. In the circuit shown in Figure 1, the parties
have 𝐷 ′-out-of-𝐷 shares in each of the input values 𝑥1, 𝑥2, 𝑥3. With
those shares they proceed to emulate the circuit layer by layer, by
computing proper 𝐷 ′-out-of-𝐷 shares in the output wires of the
three gates in the first layer, then proceeding to computing 𝐷 ′-out-
of-𝐷 shares in the output of the multiplication gate in the second
layer, using the already computed shares in the output wires of two
of the gates in the first layer, and finally computing 𝐷 ′-out-of-𝐷
shares in the output wire using the computed shares in the output
wires of the multiplication gate in the second layer and the first
multiplication gate in the first layer.
1For the sake of simplicity, we keep referring to parties by the pronoun “he”. In our
context, those parties may be voters, who are humans of both genders, or talliers, that
are typically (genderless) servers.

Let 𝑢𝑑 and 𝑣𝑑 denote the shares held by 𝑇𝑑 , 𝑑 ∈ [𝐷], in the two
input values 𝑢 and 𝑣 , respectively. Emulating addition gates is easy:
the linearity of secret sharing implies that for any two public field
elements 𝑎, 𝑏 ∈ Z𝑝 , the values 𝑎𝑢𝑑 + 𝑏𝑣𝑑 , 𝑑 ∈ [𝐷], are proper 𝐷 ′-
out-of-𝐷 shares in 𝑎𝑢 + 𝑏𝑣 . In particular, each party may compute
his share in the output wire from his shares in the input wires
without any interaction with the other parties.

Emulating multiplication gates is trickier. Here, in order to com-
pute proper 𝐷 ′-out-of-𝐷 shares in the output wire 𝑢 · 𝑣 , the parties
need to interact, and the required computation is more involved.
In our protocol we use the construction proposed by Damgård
and Nielsen [14], enhanced by a work by Chida et al. [11] that
demonstrates some performance optimizations. The details of this
computation are not essential for understanding our secure vot-
ing protocol, but for the sake of completeness we describe it in
Appendix A.

3.3 Secure Comparison
When computing election results, it is essential to repeatedly com-
pare scores of two candidates in order to determine which is larger.
In our protocol, those scores are kept hidden from all parties, but
the talliers hold secret shares in them. Of course, the talliers could
use those shares in order to recover the scores and then compare
them. However, for the sake of achieving perfect ballot secrecy, our
goal is to determine which of two given scores is larger without
explicitly recovering those scores. To that end, we consider the
problem of secure comparison, which is defined below.

Assume that the 𝐷 parties, 𝑇1, . . . ,𝑇𝐷 , hold 𝐷 ′-out-of-𝐷 shares
in two integers 𝑎 and 𝑏, where both 𝑎 and 𝑏 are smaller than 𝑝 ,
which is the size of the underlying field Z𝑝 . The parties wish to
compute 𝐷 ′-out-of-𝐷 secret shares in the binary variable, denoted
1𝑎<𝑏 , which equals 1 if 𝑎 < 𝑏 and 0 otherwise2, without learning
any other information on 𝑎 and 𝑏. A protocol that does that is called
secure comparison.

Nishide and Ohta [25] presented a method for secure comparison
that is based on the following simple observation. Let us denote
the bits (i.e., binary variables) 1

𝑎<
𝑝

2
, 1
𝑏<

𝑝

2
, 1[ (𝑎−𝑏) mod 𝑝 ]< 𝑝

2
, and

1𝑎<𝑏 by𝑤 , 𝑥 , 𝑦, 𝑧, respectively. Then

𝑧 = 𝑤𝑥 ∨ �̄�𝑥𝑦 ∨𝑤𝑥𝑦 . (1)

The Boolean expression in Eq. (1) can be translated to an equiva-
lent arithmetic expression:

𝑧 = 𝑤 (1 − 𝑥) + (1 −𝑤) (1 − 𝑥) (1 − 𝑦) +𝑤𝑥 (1 − 𝑦)
= 1 − 𝑥 − 𝑦 + 𝑥𝑦 +𝑤 (𝑥 + 𝑦 − 2𝑥𝑦) . (2)

Hence, we reduced the problem of comparing two secret shared
values, 𝑎 and 𝑏, to computing three other comparison bits —𝑤, 𝑥,𝑦,
and then evaluating an arithmetic function of them, Eq. (2). What
makes this alternative expression efficiently computable is the fact
that in the three comparison bits, 𝑤 = 1

𝑎<
𝑝

2
, 𝑥 = 1

𝑏<
𝑝

2
, and

𝑦 = 1[ (𝑎−𝑏) mod 𝑝 ]< 𝑝

2
, the right-hand side is 𝑝

2 , as we proceed
to explain.

2Hereinafter, for any predicate Π, we let 1Π denote the binary variable that equals 1 if
and only if the predicate Π holds.



Lemma 1. Given a finite field Z𝑝 and a field element 𝑞 ∈ Z𝑝 , then
𝑞 <

𝑝
2 if and only if the least significant bit (LSB) of (2𝑞 mod 𝑝) is

zero.

The proof can be found in Appendix B. In view of Lemma 1,
the parties may compute 𝐷 ′-out-of-𝐷 shares in 𝑤 = 1

𝑎<
𝑝

2
(and

similarly for 𝑥 = 1
𝑏<

𝑝

2
, and 𝑦 = 1[ (𝑎−𝑏) mod 𝑝 ]< 𝑝

2
) as follows:

each party 𝑇𝑑 will translate the share he holds in 𝑎 to a share in 2𝑎
by multiplying the share by 2; then, all parties will use their shares
in 2𝑎 in order to compute shares in the LSB of 2𝑎. The reader is
referred to Nishide and Ohta [25] for the details of that last step in
the computation.

We conclude this section by commenting on the complexity of
the above described secure comparison protocol. Computing shares
in the LSB of a shared value requires 13 rounds of communication
and 93ℓ + 1 multiplications, where hereinafter ℓ = log2 (𝑝). Hence,
computing shares in𝑤 , 𝑥 , and 𝑦 requires 13 rounds and a total of
279ℓ + 3 multiplications. Finally, we should evaluate the expression
in Eq. (2), which entails two additional rounds and two additional
multiplications. Hence, the total complexity is 15 rounds and 279ℓ+5
multiplications.

3.4 Secure testing of positivity and equality to
zero

Let 𝑥 be an integer in the range [−𝑁, 𝑁 ]. Assume that 𝑇1, . . . ,𝑇𝐷
hold 𝐷 ′-out-of-𝐷 shares in 𝑥 , where the underlying field is Z𝑝 , and
𝑝 > 2𝑁 . They wish to obtain 𝐷 ′-out-of-𝐷 shares in the bits 1𝑥>0
and 1𝑥=0, without learning any further information on 𝑥 .

For the first task, we state the following lemma, the proof of
which is given in Appendix C.

Lemma 2. Under the above assumptions, 𝑥 > 0 if and only if the
LSB of (−2𝑥 mod 𝑝) is 1.

Hence, the talliers need only to multiply their shares in 𝑥 by −2
and then compute the LSB of shared value. Therefore, the computa-
tional cost of that task is 13 rounds of communication and 93ℓ + 1
multiplications.

For the task of computing shares in the bit 1𝑥=0, we recall Fer-
mat’s little theorem that states that if 𝑥 ∈ Z𝑝 \ {0} then 𝑥𝑝−1 = 1
mod 𝑝 . Hence, 1𝑥≠0 =

(
𝑥𝑝−1 mod 𝑝

)
. Therefore, shares in the bit

1𝑥≠0 can be obtained by simply computing 𝑥𝑝−1 mod 𝑝 . The latter
computation can be carried out by the square-and-multiply algo-
rithm with up to 2ℓ consecutive multiplications, where, as before,
ℓ = log 𝑝 . Finally, as 1𝑥=0 = 1 − 1𝑥≠0, then shares in 1𝑥≠0 can be
readily translated into shares in 1𝑥=0.

4 THE METHOD: A SECURE ORDER BASED
VOTING PROTOCOL

In this section we describe our method for securely computing the
winners in two order-based voting rules, Copeland and Maximin.

4.1 Formal definitions
We consider a setting in which there are𝑁 voters,V = {𝑉1, . . . ,𝑉𝑁 },
that wish to hold an election over𝑀 candidates, C = {𝐶1, . . . ,𝐶𝑀 }.
The output of the election is a ranking of C, or the 𝐾 leading
candidates in that ranking, for some pre-determined 𝐾 < 𝑀 .

We proceed to define the two order-based rules for which we
devise a secure MPC protocol in this paper. In the full version of
this work, we also address Kemeny-Young andModal Ranking.

• Copeland. Define for each 𝑉𝑛 a matrix 𝑃𝑛 = (𝑃𝑛 (𝑚,𝑚′) :
𝑚,𝑚′ ∈ [𝑀]), where 𝑃𝑛 (𝑚,𝑚′) = 1 if 𝐶𝑚 is ranked higher than
𝐶𝑚′ in 𝑉𝑛 ’s ranking, 𝑃𝑛 (𝑚,𝑚′) = −1 if 𝐶𝑚 is ranked lower than
𝐶𝑚′ , and all diagonal entries are 0. Then the sum matrix,

𝑃 =

𝑁∑
𝑛=1

𝑃𝑛 , (3)

induces the following score for each candidate:
w(𝑚) := |{𝑚′ ≠𝑚 : 𝑃 (𝑚,𝑚′) > 0}|+

𝛼 |{𝑚′ ≠𝑚 : 𝑃 (𝑚,𝑚′) = 0}| .
(4)

Namely,w(𝑚) equals the number of candidates𝐶𝑚′ that a majority
of the voters ranked lower than 𝐶𝑚 , plus 𝛼 times the number of
candidates 𝐶𝑚′ who broke even with 𝐶𝑚 . The parameter 𝛼 can be
set to any rational number between 0 and 1. The most common
setting is 𝛼 = 1

2 ; the Copeland rule with this setting of 𝛼 is known
as Copeland

1
2 [18].

•Maximin. Define the matrices 𝑃𝑛 so that 𝑃𝑛 (𝑚,𝑚′) = 1 if 𝐶𝑚
is ranked higher than 𝐶𝑚′ in 𝑉𝑛 ’s ranking, while 𝑃𝑛 (𝑚,𝑚′) = 0
otherwise. As in Copeland rule, we let 𝑃 denote the sum of all
ballot matrices, see Eq. (3). Then 𝑃 (𝑚,𝑚′) is the number of voters
who preferred 𝐶𝑚 over 𝐶𝑚′ . The final score of 𝐶𝑚 , 𝑚 ∈ [𝑀], is
then set to w(𝑚) := min𝑚′≠𝑚 𝑃 (𝑚,𝑚′).

We hereinafter refer to the matrix 𝑃𝑛 as 𝑉𝑛 ’s ballot matrix, and
to 𝑃 as the aggregated ballot matrix.

4.2 Characterization of legal ballot matrices
Here we characterize the ballot matrices in each of the two order-
based rules that we consider. This characterization is an essential
part of our method, since the talliers need to verify, in an oblivious
manner, that each cast ballot is indeed legal, and does not hide a
malicious attempt to cheat or to sabotage the elections.

Theorem 3. An 𝑀 × 𝑀 matrix 𝑄 is a valid ballot under the
Copeland rule if and only if it satisfies the following conditions:

(1) 𝑄 (𝑚,𝑚′) ∈ {−1, 1} for all 1 ≤ 𝑚 < 𝑚′ ≤ 𝑀 ;
(2) 𝑄 (𝑚,𝑚) = 0 for all𝑚 ∈ [𝑀];
(3) 𝑄 (𝑚′,𝑚) +𝑄 (𝑚,𝑚′) = 0 for all 1 ≤ 𝑚 < 𝑚′ ≤ 𝑀 ;
(4) The set {𝑄𝑚 : 𝑚 ∈ [𝑀]}, where 𝑄𝑚 :=

∑
𝑚′∈[𝑀 ] 𝑄 (𝑚′,𝑚),

consists of𝑀 distinct values.

The proof of Theorem 3 is given in Appendix D.

Theorem 4. An𝑀 ×𝑀 matrix 𝑄 is a valid ballot under theMax-
imin rule if and only if it satisfies the following conditions:

(1) 𝑄 (𝑚,𝑚′) ∈ {0, 1} for all 1 ≤ 𝑚 < 𝑚′ ≤ 𝑀 ;
(2) 𝑄 (𝑚,𝑚) = 0 for all𝑚 ∈ [𝑀];
(3) 𝑄 (𝑚′,𝑚) +𝑄 (𝑚,𝑚′) = 1 for all 1 ≤ 𝑚 < 𝑚′ ≤ 𝑀 ;
(4) The set {𝑄𝑚 : 𝑚 ∈ [𝑀]}, where 𝑄𝑚 :=

∑
𝑚′∈[𝑀 ] 𝑄 (𝑚′,𝑚),

consists of𝑀 distinct values.

The proof of Theorem 4 is similar to that of Theorem 3 and thus
omitted.

We conclude this section with the following observation. Let
us define a projection mapping Γ : Z𝑀×𝑀

𝑝 ↦→ Z𝑀 (𝑀−1)/2
𝑝 , which



takes an𝑀 ×𝑀 matrix 𝑄 ∈ Z𝑀×𝑀
𝑝 and outputs its upper triangle,

Γ(𝑄) := (𝑄 (𝑚,𝑚′) : 1 ≤ 𝑚 < 𝑚′ ≤ 𝑀). Conditions 2 and 3
in Theorems 3 and 4 imply that every ballot matrix, 𝑃𝑛 , is fully
determined by its upper triangle, Γ(𝑃𝑛), in either of the two voting
rules that we consider.

4.3 A secure voting protocol
Protocol 1 is a privacy-preserving implementation of the Copeland
andMaximin order-based rules. The protocol computes, in a privacy-
preserving manner, the winners in elections that are governed by
those rules. It has two phases: a voting phase and a tallying phase.
We first provide a bird’s-eye view of those two phases.

In Phase 1 (Lines 1-8), the voting phase, each voter 𝑉𝑛 , 𝑛 ∈
[𝑁 ] := {1, . . . , 𝑁 }, constructs his ballot matrix, 𝑃𝑛 (Line 2), and
then creates and distributes to all talliers corresponding 𝐷 ′-out-of-
𝐷 shares, with 𝐷 ′ = ⌊(𝐷 + 1)/2⌋, as described in Section 3.1 (Lines
3-7). Following that, the talliers jointly verify the legality of the
shared ballot (Line 8). In Phase 2 (Lines 9-11), the talliers perform
an MPC sub-protocol on the distributed shares in order to find the
winning candidates, while remaining oblivious to the actual ballots.

After constructing his ballot matrix in Line 2, voter 𝑉𝑛 , 𝑛 ∈ [𝑁 ],
samples a random share-generating polynomial of degree 𝐷 ′−1 for
each of the𝑀 (𝑀 − 1)/2 entries in Γ(𝑃𝑛), where Γ is the projection
mapping defined in Section 4.2 (Lines 3-5). Then, 𝑉𝑛 sends each
tallier 𝑇𝑑 his relevant share in each of those entries, namely, the
value of the corresponding share-generating polynomial at 𝑥 = 𝑑 ,
𝑑 ∈ [𝐷] (Lines 6-7).

In Line 8, the talliers engage in an MPC sub-protocol to verify
the legality of 𝑉𝑛 ’s ballot, without actually recovering that ballot,
see Section 4.4. Ballots that are found to be illegal are discarded.
(In such cases it is possible to notify the voter that his ballot was
rejected and allow him to resubmit it.)

Phase 2 (Lines 9-11) takes place at the end of the voting period,
after the voters cast their ballots. First (Lines 9-10), each of the
talliers, 𝑇𝑑 , 𝑑 ∈ [𝐷], computes his 𝐷 ′-out-of-𝐷 share, denoted
𝐺𝑑 (𝑚,𝑚′), in the (𝑚,𝑚′)th entry of the aggregated ballot matrix 𝑃 ,
see Eq. (3), for all 1 ≤ 𝑚 < 𝑚′ ≤ 𝑀 . This computation follows from
the linearity of the secret sharing scheme. Indeed, as 𝑔𝑛,𝑚,𝑚′ (𝑑) is
𝑇𝑑 ’s share in 𝑃𝑛 (𝑚,𝑚′) in a 𝐷 ′-out-of-𝐷 Shamir’s secret sharing,
then 𝐺𝑑 (𝑚,𝑚′) =

∑
𝑛∈[𝑁 ] 𝑔𝑛,𝑚,𝑚′ (𝑑) is a 𝐷 ′-out-of-𝐷 Shamir’s

secret share in 𝑃 (𝑚,𝑚′) = ∑
𝑛∈[𝑁 ] 𝑃𝑛 (𝑚,𝑚′).

The heart of the protocol is in Line 11: here, the talliers engage in
an MPC sub-protocol in order to find the indices of the 𝐾 winning
candidates. How can the talliers do that when none of them actually
holds the matrix 𝑃? We devote our discussion in Sections 4.5 and
4.6 to that interesting computational challenge.

4.4 Verifying the legality of the cast ballots
Here we provide a short overview of how the talliers may validate
a cast ballot matrix, 𝑄 , using the shares that were dealt to them in
its upper triangle, Γ(𝑄), without recovering the ballot and with-
out breaching the voter’s privacy. The full discussion is given in
Appendix E.

Protocol 1: A basic protocol for secure order-based voting
Input: A set of𝑀 candidates C; 𝐾 ∈ [𝑀]; a set of voters V.

1 forall 𝑉𝑛 , 𝑛 ∈ [𝑁 ], do
2 Construct the ballot matrix, 𝑃𝑛 , according to the

selected indexing of candidates and the voting rule;
3 forall 1 ≤ 𝑚 < 𝑚′ ≤ 𝑀 do
4 Select uniformly at random 𝑎𝑛,𝑚,𝑚′, 𝑗 ∈ Z𝑝 ,

1 ≤ 𝑗 ≤ 𝐷 ′ − 1;
5 Set 𝑔𝑛,𝑚,𝑚′ (𝑥) = 𝑃𝑛 (𝑚,𝑚′) +∑𝐷′−1

𝑗=1 𝑎𝑛,𝑚,𝑚′, 𝑗𝑥
𝑗 ;

6 forall 𝑑 ∈ [𝐷] do
7 Send to 𝑇𝑑 the set

{𝑛,𝑚,𝑚′, 𝑔𝑛,𝑚,𝑚′ (𝑑) : 1 ≤ 𝑚 < 𝑚′ ≤ 𝑀};
8 After all talliers receive their shares in 𝑉𝑛 ’s ballot, they

engage in an MPC sub-protocol to check its legality;
9 forall 𝑇𝑑 , 𝑑 ∈ [𝐷] do
10 Set 𝐺𝑑 (𝑚,𝑚′) = ∑

𝑛∈[𝑁 ] 𝑔𝑛,𝑚,𝑚′ (𝑑), for all
1 ≤ 𝑚 < 𝑚′ ≤ 𝑀 ;

11 𝑇1, . . . ,𝑇𝐷 find the indices of the 𝐾 winners and publish
them;
Output :The 𝐾 winning candidates from C.

The validation is based on the characterizations of legal ballot
matrices as provided in Theorems 3 and 4 for Copeland and Max-
imin, respectively. Since the talliers get shares only in Γ(𝑄), they
only need to verify conditions 1 and 4.

To validate condition 1 in Theorem 3 for Copeland, they need to
verify that each entry in the shared Γ(𝑄) is either 1 or −1. A shared
scalar 𝑥 is in {−1, 1} iff (𝑥 + 1) · (𝑥 − 1) = 0. Hence, the talliers input
their shares in 𝑥 to an arithmetic circuit that outputs the product
(𝑥 + 1) · (𝑥 − 1). If the output of such a circuit is zero for each
of the 𝑀 (𝑀 − 1)/2 entries of Γ(𝑄), then Γ(𝑄) satisfies condition
1 in Theorem 3. The verification of condition 1 in Theorem 4 for
Maximin goes along the same lines, where the computed circuit
outputs 𝑥 · (𝑥 − 1) = 0., in ordet to verify that 𝑥 ∈ {0, 1}.

To validate condition 4, the talliers compute shares in the 𝑀
values 𝑄𝑚 , 𝑚 ∈ [𝑀], and then compute the product 𝐹 (𝑄) :=∏

1≤𝑚′<𝑚≤𝑀 (𝑄𝑚 −𝑄𝑚′). Condition 4 is satisfied iff 𝐹 (𝑄) ≠ 0.
The above outlined procedure reveals to the talliers nothing

beyond the legality of the cast ballots. Hence, the voters may be
assured that their privacy is fully preserved, see Appendix E.

Verifying condition 1 can be performed in parallel for all𝑀 (𝑀 −
1)/2 entries in a given ballot. Hence, in order to perform a batch
validation of 𝐵 ballots, the talliers need to compute 𝐵𝑀 (𝑀 − 1)/2
simultaneous multiplication gates. The verification of condition 4
over a single ballot requires performing a sequence of𝑀 (𝑀 − 1)/2
multiplications. Hence, in order to perform a batch validation of 𝐵
ballots, the talliers need to go through𝑀 (𝑀 − 1)/2 rounds, where
in each round they compute 𝐵 simultaneous multiplication gates.

4.5 An MPC computation of the winners in the
Copeland rule

The parameter 𝛼 in Eq. (4) is always a rational number; typical
settings of 𝛼 are 0, 1, or 1

2 [18]. Assume that 𝛼 = 𝑠
𝑡 for some



integers 𝑠 and 𝑡 . Then

𝑡 ·w(𝑚) = 𝑡 ·
∑
𝑚′

1𝑃 (𝑚,𝑚′)>0 + 𝑠 ·
∑
𝑚′

1𝑃 (𝑚,𝑚′)=0 , (5)

where both summations are over𝑚′ ∈ [𝑀] \ {𝑚}. The expression
in Eq. (5) involves all entries in 𝑃 outside the diagonal. However,
the talliers hold 𝐷 ′-out-of-𝐷 shares, denoted 𝐺𝑑 (𝑚,𝑚′), 𝑑 ∈ [𝐷],
in 𝑃 (𝑚,𝑚′) only for entries above the diagonal, 1 ≤ 𝑚 < 𝑚′ ≤ 𝑀

(see Lines 9-10 in Protocol 1). Hence, we first translate Eq. (5) into
an equivalent expression that involves only entries in 𝑃 above the
diagonal. Condition 3 in Theorem 3, together with Eq. (3), imply
that 𝑃 (𝑚′,𝑚) = −𝑃 (𝑚,𝑚′). Hence, for all𝑚′ < 𝑚, we can replace
1𝑃 (𝑚,𝑚′)=0 with 1𝑃 (𝑚′,𝑚)=0, while 1𝑃 (𝑚,𝑚′)>0 can be replaced with
1−𝑃 (𝑚′,𝑚)>0. Hence,

𝑡 ·w(𝑚) = 𝑡 ·
{∑

𝑚′>𝑚 1𝑃 (𝑚,𝑚′)>0 +
∑
𝑚′<𝑚 1−𝑃 (𝑚′,𝑚)>0

}
+𝑠 ·

{∑
𝑚′>𝑚 1𝑃 (𝑚,𝑚′)=0 +

∑
𝑚′<𝑚 1𝑃 (𝑚′,𝑚)=0

}
. (6)

Eq. (6) expresses the score of candidate 𝐶𝑚 , re-scaled by a factor
of 𝑡 , only by entries in 𝑃 above the diagonal, in which the talliers
hold 𝐷 ′-out-of-𝐷 secret shares.

In view of the above, the talliers may begin by computing secret
shares in the bits of positivity in the first sum on the right hand
side of Eq. (6), as well as in the bits of equality to zero in the second
sum, as described in Section 3.4. As the value of 𝑡 ·w(𝑚) is a linear
combination of those bits, the talliers can then use the secret shares
in those bits and Eq. (6) in order to get secret shares in 𝑡 ·w(𝑚), for
each of the candidates, 𝐶𝑚 ,𝑚 ∈ [𝑀].

Next, they perform secure comparisons among the values 𝑡w(𝑚),
𝑚 ∈ [𝑀], in order to find the 𝐾 candidates with the highest scores.
To do that, they need to perform 𝑀 − 1 secure comparisons (as
described in Section 3.3) in order to find the candidate with the
highest score,𝑀 − 2 additional comparisons to find the next one,
and so forth down to𝑀 − 𝐾 comparisons in order to find the 𝐾th
winning candidate. Namely, the overall number of comparisons in
this final stage is

∑𝑀−1
𝑚=𝑀−𝐾 𝑚 = 𝐾 ·

(
𝑀 − 𝐾+1

2

)
. That number is

bounded by 𝑀 (𝑀 − 1)/2 for all 𝐾 < 𝑀 . Once this computational
task is concluded, the talliers publish the indices of the 𝐾 winners
(Line 11 in Protocol 1)).

We summarize the above described computation in Sub-protocol
2, which is an implementation of Line 11 in Protocol 1. It assumes
that the talliers hold 𝐷 ′-out-of-𝐷 secret shares in 𝑃 (𝑚,𝑚′) for all
1 ≤ 𝑚 < 𝑚′ ≤ 𝑀 . Indeed, that computation has already taken place
in Lines 9-10 of Protocol 1. Sub-protocol 2 starts with a computation
of 𝐷 ′-out-of-𝐷 shares in all of the positivity bits and equality to
zero bits that relate to the entries above the diagonal in 𝑃 (Lines 1-4).
Then, in Lines 5-7, the talliers use those shares in order to obtain𝐷 ′-
out-of-𝐷 shares in 𝑡 ·w(𝑚) for each of the candidates, using Eq. (6);
the 𝐷 ′-out-of-𝐷 shares in 𝑡 ·w(𝑚) are denoted {𝑤𝑑 (𝑚) : 𝑑 ∈ [𝐷]}.
Finally, using the secure comparison sub-protocol, they find the 𝐾
winning candidates (Lines 8-10).

We note that if we set 𝐾 = 𝑀 then Sub-protocol 2 outputs a full
ranking of the𝑀 candidates. Alternatively, if the goal is to get the
𝐾 winning candidates, for some predetermined 𝐾 < 𝑀 , without
revealing their order, then the last stage in Sub-protocol 2 can be
modified in order to meet that goal.

Sub-Protocol 2: Determining the winners in Copeland
rule
Input: 𝑇𝑑 , 𝑑 ∈ [𝐷], has 𝐺𝑑 (𝑚,𝑚′) (a share in 𝑃 (𝑚,𝑚′)) for

all 1 ≤ 𝑚 < 𝑚′ ≤ 𝑀 .
1 forall 1 ≤ 𝑚 < 𝑚′ ≤ 𝑀 do
2 The talliers apply the positivity sub-protocol to translate

{𝐺𝑑 (𝑚,𝑚′) : 𝑑 ∈ [𝐷]} into shares
{𝜎+
𝑑
(𝑚,𝑚′) : 𝑑 ∈ [𝐷]} in 1𝑃 (𝑚,𝑚′)>0;

3 The talliers apply the positivity sub-protocol to translate
{𝐺𝑑 (𝑚,𝑚′) : 𝑑 ∈ [𝐷]} into shares
{𝜎−
𝑑
(𝑚,𝑚′) : 𝑑 ∈ [𝐷]} in 1−𝑃 (𝑚,𝑚′)>0;

4 The talliers apply the equality to zero sub-protocol to
translate {𝐺𝑑 (𝑚,𝑚′) : 𝑑 ∈ [𝐷]} into shares
{𝜎0
𝑑
(𝑚,𝑚′) : 𝑑 ∈ [𝐷]} in 1𝑃 (𝑚,𝑚′)=0;

5 forall 𝑑 ∈ [𝐷] do
6 forall𝑚 ∈ [𝑀] do
7 𝑇𝑑 computes𝑤𝑑 (𝑚) =

𝑡 ·
{∑

𝑚′>𝑚 𝜎
+
𝑑
(𝑚,𝑚′) +∑

𝑚′<𝑚 𝜎
−
𝑑
(𝑚′,𝑚)

}
+

𝑠 ·
{∑

𝑚′>𝑚 𝜎
0
𝑑
(𝑚,𝑚′) +∑

𝑚′<𝑚 𝜎
0
𝑑
(𝑚′,𝑚)

}
;

8 forall 𝑘 ∈ [𝐾] := {1, . . . , 𝐾} do
9 The talliers perform𝑀 − 𝑘 invocations of the secure

comparison sub-protocol over the𝑀 − 𝑘 + 1 candidates
in C in order to find the 𝑘th elected candidate;

10 The talliers output the candidate that was found and
remove him from C;

Output :The 𝐾 winning candidates from C.

4.5.1 Privacy. The talliers hold 𝐷 ′-out-of-𝐷 shares in each of the
ballot matrices, 𝑃𝑛 , 𝑛 ∈ [𝑁 ], as well as in the aggregated ballot
matrix 𝑃 . Under our assumption of honest majority, and our set-
ting of 𝐷 ′ = ⌊(𝐷 + 1)/2⌋, the talliers cannot recover any entry
in any of the ballot matrices nor in the aggregated ballot matrix.
In computing the final election results, they input the shares that
they hold into the secure comparison sub-protocol, the positivity
testing sub-protocol, or the sub-protocol that tests equality to zero
(Sections 3.3–3.4). The secure comparison sub-protocol is perfectly
secure, as was shown in [25]. The positivity testing sub-protocol
that we presented here is just an implementation of one component
from the secure comparison sub-protocol, hence it is also perfectly
secure. Finally, the testing of equality to zero invokes the arithmetic
circuit construction of [14] and [11], that was shown there to be
secure. Hence, Sub-protocol 2 is perfectly secure.

4.6 An MPC computation of the winners in the
Minimax rule

Fixing 𝑚 ∈ [𝑀], the talliers need first to find the index 𝑚′ ≠ 𝑚

whichminimizes 𝑃 (𝑚,𝑚′); once𝑚′ is found thenw(𝑚) = 𝑃 (𝑚,𝑚′).
To do that (finding aminimum among𝑀−1 values), the talliers need
to perform𝑀−2 secure comparisons. That means an overall number
of𝑀 (𝑀 − 2) secure comparisons for the first stage in the talliers’
computation of the final results (namely, the computation of the
scores for all candidates under theMaximin rule). The second stage
is just like in Copeland — finding the indices of the 𝐾 candidates
with highest w scores. As analyzed earlier, that task requires an



invocation of the secure comparison sub-protocol at most𝑀 (𝑀 −
1)/2 times. Namely, the determination of the winners in the case
of Minimax requires performing the comparison sub-protocol less
than 1.5𝑀2 times. The above described computation maintains the
privacy of the voters, as argued in Section 4.5.1.

4.7 The protocol’s security
An important goal of secure voting is to provide anonymity; namely,
it should be impossible to connect a ballot to the voter who cast
it. Protocol 1 achieves that goal, and beyond. Indeed, each cast
ballot is distributed into 𝐷 ′-out-of-𝐷 random shares and then each
share is designated to a unique tallier. Under the honest majority
assumption, the voters’ privacy is perfectly preserved. Namely,
unless at least 𝐷 ′ ≥ 𝐷/2 talliers betray the trust vested in them and
collude, the ballots remain secret. Therefore, not only that a ballot
cannot be connected to a voter, even the content of the ballots is
never exposed, and not even the aggregated ballot matrix. The only
information that anyone learns at the end of Protocol 1’s execution
is the final election results. This is a level of privacy that exceeds
mere anonymity.

A scenario in which at least half of the talliers collude is highly
improbable, and its probability decreases as 𝐷 increases. Ideally,
the talliers would be parties that enjoy high level of trust within
the organization or state in which the elections take place, and
whose business is based on such trust. Betraying that trust may
incur devastating consequences for the talliers. Hence, even if 𝐷 is
set to a low value such as 𝐷 = 5 or even 𝐷 = 3, the probability of
a privacy breach (namely, that 𝐷 ′ = ⌊(𝐷 + 1)/2⌋ talliers choose to
betray the trust vested in them) would be small.

Another possible attack scenario is as follows: an adversary may
eavesdrop on the communication link between some voter 𝑉𝑛 and
at least 𝐷 ′ of the talliers, and intercept the messages that 𝑉𝑛 sends
to them (in Protocol 1’s Line 7) in order to recover𝑉𝑛 ’s ballot. That
adversary may also replace 𝑉𝑛 ’s original messages to all 𝐷 talliers
with other messages (say, ones that carry shares of a ballot that
reflects the adversary’s preferences). Such attacks can be easily
thwarted by requiring each party (a voter or a tallier) to have a
certified public key, encrypt each message that he sends out using
the receiver’s public key and then sign it using his own private key;
also, when receiving messages, each party must first verify them
using the public key of the sender and then send a suitable message
of confirmation to the receiver. Namely, each message that a voter
𝑉𝑛 sends to a tallier 𝑇𝑑 in Line 7 of Protocol 1 should be signed
with 𝑉𝑛 ’s private key and then encrypted by 𝑇𝑑 ’s public key; and
𝑇𝑑 must acknowledge its receipt and verification.

In view of the above discussion, the tradeoff in setting the number
of talliers 𝐷 is clear: higher values of 𝐷 provide higher security
since more talliers would need to be corrupted in order to breach the
system’s security. However, more independent and reputable talliers
would be needed, and the communication and computational costs
of our protocol would increase, albeit modestly.

5 EVALUATION: COMPUTATIONAL COSTS
Our goal herein is to establish the practicality of our protocol.
Our protocol relies on expensive cryptographic sub-protocols —
secure comparisons and secure multiplications. All other operations

#layers #multiplication gates
per layer

𝐷 = 3 𝐷 = 5 𝐷 = 7 𝐷 = 9

20 50000 826 844 1058 1311
100 10000 842 989 1154 1410
1000 1000 1340 1704 1851 2243

Table 1: Runtimes (milliseconds) for computing 106 multipli-
cation gates, spread evenly over 20, 100, and 1000 layers, as a
function of the number 𝐷 of talliers. The first two columns
show the number of layers and the number of multiplica-
tion gates per layer in each setting.

that the voters and talliers do (random number generation, and
standard/non-secure additions and multiplications) have negligible
costs in comparison to those of the cryptographic computations.
In this section we provide upper bounds for the overall cost of
the cryptographic computations, in various election settings, in
order to show that our protocol is viable and can be implemented
in practical elections with very light overhead.

We set the number of talliers to be 𝐷 ∈ {3, 5, 7, 9}. As explained
in Section 4.7, larger values of 𝐷 provide greater security, as well
as higher runtimes. We set the number of candidates to be 𝑀 ∈
{5, 10, 20}. The number 𝑁 of voters affects only the time for val-
idating the cast ballots. We provide here runtimes for validating
batches of 𝐵 ballots, for 𝐵 ∈ {500, 5000, 25000}. Those runtimes
should be multiplied by 𝑁 /𝐵 in order to get the overall time for
validating all incoming ballots. As for the size 𝑝 of the underlying
field, we chose the prime 𝑝 = 231 − 1. It is sufficiently large for our
purposes (see a detailed discussion in Appendix F).

5.1 The cost of batch validation of ballots
The batch validation of 𝐵 ballots involves 𝐵𝑀 (𝑀 − 1)/2 simulta-
neous multiplications (for verifying condition 1) and𝑀 (𝑀 − 1)/2
consecutive rounds with 𝐵 simultaneous multiplications in each
(for verifying condition 4). We can perform the verification of both
conditions in parallel by spreading the 𝐵𝑀 (𝑀 − 1)/2 simultaneous
multiplications for verifying condition 1 over𝑀 (𝑀 − 1)/2 consecu-
tive rounds with 𝐵 simultaneous multiplications in each. Hence, the
total workload would be𝑀 (𝑀 − 1)/2 rounds with 2𝐵 simultaneous
multiplications in each round. For more details see Appendix E.5.

Chida et al. [11] report runtimes for performing secure multipli-
cations. Their experimentswere carried onAmazonAWSm5.4xlarge
machines at N. Virginia over a network with bandwidth 9.6Gbps.
They experimented over a larger field of size 𝑝 ′ = 261 − 1 (which is
also a Mersenne prime). Clearly, runtimes for our smaller prime,
𝑝 = 231 − 1, are faster; but since we are interested only in the upper-
bound of the computational overhead of our protocol, in order to
establish its practicality, their chosen 𝑝 is sufficient. They experi-
mented with a circuit that consists of one million multiplication
gates that are evenly spread over {20, 100, 1000} layers; hence, in
each layer there are {5 · 104, 104, 103} multiplication gates, respec-
tively. The reported runtimes as a function of 𝐷 , the number of
talliers, are shown in Table 1.

We begin by computing the needed runtimes for performing
batch validations when𝑀 = 20. We exemplify the computation in
the case where the batch size is 𝐵 = 500. To do that, it is necessary



𝐵 = 500 𝐵 = 5000 𝐵 = 25000
𝑀 = 5 27/34/37/45 17/20/23/28 16/17/21/26
𝑀 = 10 121/153/167/202 76/89/104/127 74/76/95/118
𝑀 = 20 510/648/704/852 160/188/219/268 314/321/402/498

Table 2: Runtimes (seconds) for validating 1 million ballots
in order-based rules, as a function of the number of candi-
dates 𝑀 , the batch size 𝐵, and the number of talliers 𝐷 . The
table’s entry relating to 𝑀 and 𝐵 shows the validation run-
times for 𝐷 = 3/5/7/9.

Number of talliers 𝐷 = 3 𝐷 = 5 𝐷 = 7 𝐷 = 9
Time (msecs) to compute
a secure comparison

9.07 9.54 9.64 15.0

Table 3: Runtimes (milliseconds) for a secure comparison
sub-protocol with a varying number of talliers.

to perform 𝑀 (𝑀 − 1)/2 = 190 rounds of 2𝐵 = 1000 simultaneous
multiplications in each. The runtimes for such a computation can be
inferred from the third row in Table 1, if we multiply the runtimes
shown there by a factor of 190

1000 . That is, the batch validation of
𝐵 = 500 ballots would take 255/324/352/426 mili-seconds when
𝐷 = 3/5/7/9. Therefore, to validate a million ballots, it would take
510/648/704/852 seconds.

Those runtimes may be improved by enlarging the batch size.
The runtimes for validating one million ballots in batches of size
𝐵 = 500/5000/25000 can be read from Table 1 by multiplying the
times reported there in the third/second/first row by a factor of
𝑀 (𝑀 − 1). Table 2 includes runtimes for validating 1 million ballots
in batches of 𝐵 ∈ {500, 5000, 25000} ballots when 𝑀 ∈ {5, 10, 20},
for 𝐷 = 3/5/7/9.

Elections usually span a long time (typically at least 1 day) and
the batch validation of ballots can take place along that period
whenever a number of 𝐵 new ballots were received. Hence, the
runtimes for validating incoming ballots are realistic and are not
expected to slow down the election process.

5.2 The cost of computing final election results
Sub-protocol 2 computes the final election results in the Copeland
rule. It requires𝑀 (𝑀 − 1) invocations of the secure positivity test
as well as 𝑀 (𝑀 − 1)/2 invocations of the equality to zero test
(Section 3.4), followed by 𝐾 ·

(
𝑀 − 𝐾+1

2

)
≤ 𝑀 (𝑀 − 1)/2 secure

comparisons (Section 3.3). As discussed in Section 3.4, the cost of
a secure comparison is the upper bound to the costs of the MPC
computations to determine positivity and equality to zero. Hence,
4𝑀 (𝑀 − 1) secure comparisons is the upper bound to the cost of
Sub-protocol 2.

In order to evaluate the runtime of performing the secure compar-
ison sub-protocol we ran it on Amazon AWS m5.4xlarge machines
at N. Virginia over a network with bandwidth 9.6Gbps. We per-
formed our evaluation with 𝐷 ∈ {3, 5, 7, 9} talliers. The measured
runtimes are given in Table 3.

As can be seen, the implied runtimes are negligible. For example,
when 𝑀 = 5, the runtime of this stage is upper bounded by 1.2

seconds, when using the highest number of talliers, 𝐷 = 9, while
for 𝑀 = 20 it is upper bounded by 22.8 seconds. The runtimes in
the case of Maximin are even smaller, since then the number of
secure comparisons is bounded only by 1.5 ·𝑀2 (see Section 4.6).
In summary, it is possible to achieve perfect ballot secrecy, as our
protocol offers, at a very small computational price.

6 CONCLUSION
In this study we presented a protocol for the secure computation of
order-based voting rules. Securing the voting process is an essential
step towards a fully online voting process, which is needed more
than ever in these current times of social distancing.

A fundamental assumption in all secure voting systems that
rely on fully trusted talliers (that is, talliers who receive the actual
ballots from the voters) is that the talliers do not misuse the ballot
information and that they keep it secret. In contrast, our protocol
significantly reduces the trust vested in the talliers, as it denies the
talliers access to the actual ballots and utilizes MPC techniques in
order to compute the desired output without allowing any party an
access to the inputs (the private ballots). Even in scenarios where
some (a minority) of the talliers betray that trust, privacy is ensured.
Such a reduction of trust in the talliers is essential in order to
increase the confidence of the voters in the voting system so that
they would be further motivated to exercise their right to vote and,
moreover, vote according to their true preferences, without fearing
that their private vote will be disclosed to anyone.

Our protocol offers perfect ballot secrecy: the protocol outputs
the identity of the winning candidates, but the voters as well as
the talliers remain oblivious of any other related information, such
as the actual ballots or any other value that is computed during
the tallying process (e.g., how many voters preferred one candidate
over the other). The design of a mechanism that offers perfect ballot
secrecy must be tailored to the specific voting rule that governs the
elections. Ours is the first study that offers a privacy-preserving
solution for order-based voting rules. We specifically demonstrated
our solution on two order-based rules: Copeland and Maximin.
We showed that our solution is lightweight and can thus be readily
implemented in real-life order-based elections.

The present study suggests several directions for future research:
(a) To demonstrate the features and advantages of our protocol,

we intend to implement a running voting system, as was done in
[16] for the secure protocols implementing score-based rules [15].

(b) Multi-winner election rules are designed specifically for se-
lecting candidates that would satisfy the voters the most [17, 19],
in the sense that they also comply with additional social conditions
(e.g., that the selected winners include a minimal number of repre-
sentatives of specific gender, race, region etc.). This problem has
unique features and it therefore requires its own secure protocols.

(c) Our protocol assumes that the talliers are semi-honest, i.e.,
that they follow the prescribed protocol correctly. While such semi-
honesty can be ensured by securing the software and hardware
of the talliers, it is desired to design an MPC protocol that would
be immune even to malicious talliers that may deviate from the
prescribed protocol. Such protocols could enhance even further the
security of the system and the trust of voters in the preservation of
their privacy.
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A EMULATING MULTIPLICATION GATES
Here we describe how the generic secret-sharing-based protocol
of Damgård and Nielsen [14] emulates multiplication gates. That
computation requires the interacting parties to generate shares in
a random field element 𝑟 , such that 𝑟 distributes uniformly on Z𝑝
and it remains unknown to all parties. We begin by describing a
manner in which this latter task can be carried out.

To generate shares in a random field element, each party𝑇𝑑 , 𝑑 ∈
[𝐷], generates a uniformly randomfield value 𝜌𝑑 and performs a𝐷 ′-
out-of-𝐷 sharing of it among 𝑇1, . . . ,𝑇𝐷 . At the completion of this
stage, each𝑇𝑑 adds up all the 𝐷 shares that he received and obtains
a value that we denote by 𝑟𝑑 . It is easy to see that {𝑟1, . . . , 𝑟𝐷 } is a
𝐷 ′-out-of-𝐷 sharing of the random value 𝜌 =

∑
𝑑∈[𝐷 ] 𝜌𝑑 . Clearly,

𝜌 is a uniformly random field element, as it is a sum of uniformly
random independent field elements.

Now we turn to explain the processing of multiplication gates.
Let {𝑢1, . . . , 𝑢𝐷 } be 𝐷 ′-out-of-𝐷 shares in 𝑢, which were generated
by a polynomial 𝑓 (·) of degree 𝐷 ′ − 1, and {𝑣1, . . . , 𝑣𝐷 } be 𝐷 ′-out-
of-𝐷 shares in 𝑣 , which were generated by a polynomial 𝑔(·) also
of degree 𝐷 ′ − 1. The party 𝑇𝑑 holds 𝑢𝑑 and 𝑣𝑑 , 𝑑 ∈ [𝐷]. The goal
is to let the parties have 𝐷 ′-out-of-𝐷 shares in𝑤 = 𝑢 · 𝑣 .

First,𝑇𝑑 computes𝑤𝑑 = 𝑢𝑑 · 𝑣𝑑 , 𝑑 ∈ [𝐷]. Those values are point
values of the polynomial 𝑓 (·)𝑔(·), which is a polynomial of degree
2𝐷 ′ − 2. Hence, {𝑤1, . . . ,𝑤𝐷 } is a (2𝐷 ′ − 1)-out-of-𝐷 sharing of𝑤 .
Note that as 𝐷 ′ := ⌊(𝐷 + 1)/2⌋, then 2𝐷 ′ − 1 ≤ 𝐷 ; therefore, the
𝐷 parties have a sufficient number of shares in order to recover𝑤 .
However, our goal is to obtain a 𝐷 ′-out-of-𝐷 sharing of𝑤 , namely
a set of shares in𝑤 , of which any selection of only 𝐷 ′ shares can
be used to reconstruct𝑤 . Hence, we proceed to describe a manner
in which the parties can translate this (2𝐷 ′ − 1)-out-of-𝐷 sharing
of𝑤 into a 𝐷 ′-out-of-𝐷 sharing of𝑤 .

To do that, the parties generate two sharings of the same uni-
formly random (and unknown) field element 𝑅: a 𝐷 ′-out-of-𝐷 shar-
ing, denoted {𝑟1, . . . , 𝑟𝐷 }, and a (2𝐷 ′−1)-out-of-𝐷 sharing, denoted
{𝑅1, . . . , 𝑅𝐷 }. Next, each 𝑇𝑑 computes �̃�𝑑 = 𝑤𝑑 + 𝑅𝑑 and sends the
result to 𝑇1. Since {�̃�1, . . . , �̃�𝑑 } is a (2𝐷 ′ − 1)-out-of-𝐷 sharing of
𝑤 +𝑅,𝑇1 can use any 2𝐷 ′− 1 of those shares in order to reconstruct
�̃� := 𝑤 + 𝑅. 𝑇1 broadcasts that value to all parties. Consequently,
each 𝑇𝑑 computes �̂�𝑑 = �̃� − 𝑟𝑑 , 𝑑 ∈ [𝐷]. Since �̃� is a constant and
𝑟𝑑 is a 𝐷 ′-out-of-𝐷 share in 𝑅, then �̂�𝑑 is a 𝐷 ′-out-of-𝐷 share in
�̃� − 𝑅 = 𝑤 + 𝑅 − 𝑅 = 𝑤 , as needed. This procedure is perfectly
secure since �̃� = 𝑤 + 𝑅 reveals no information on𝑤 because 𝑅 is a
uniformly random field element that is unknown to the parties.

B PROOF OF LEMMA 1
If 𝑞 <

𝑝
2 then 2𝑞 < 𝑝 . Hence, 2𝑞 mod 𝑝 = 2𝑞 (there is no modular

reduction) and therefore, as 2𝑞 is even, its LSB is 0. On the other
hand, if 𝑞 >

𝑝
2 then 2𝑞 > 𝑝 . Hence, 2𝑞 mod 𝑝 = 2𝑞 − 𝑝 . Since that

number is odd, its LSB is 1. □

C PROOF OF LEMMA 2
Recall that 𝑥 ∈ [−𝑁, 𝑁 ] and 𝑁 <

𝑝
2 . Assume that 𝑥 > 0, namely,

that 𝑥 ∈ (0, 𝑁 ]. Hence, −2𝑥 ∈ [−2𝑁, 0). Therefore, as 2𝑁 < 𝑝 , (−2𝑥
mod 𝑝) = −2𝑥+𝑝 . As that number is odd, its LSB is 1. If, on the other
hand, 𝑥 ≤ 0, then 𝑥 ∈ [−𝑁, 0]. Hence, −2𝑥 ∈ [0, 2𝑁 ] ⊂ [0, 𝑝 − 1].

Therefore, (−2𝑥 mod 𝑝) = −2𝑥 . As that number is even, its LSB is
0. □

D PROOF OF THEOREM 3
Assume that the ordering of a voter over the set of candidates
C is (𝐶 𝑗1 , . . . ,𝐶 𝑗𝑀 ) where j := ( 𝑗1, . . . , 𝑗𝑀 ) is some permutation
of [𝑀]. Then the ballot matrix that such an ordering induces is
𝑄 = (𝑄 (𝑚,𝑚′))1≤𝑚,𝑚′≤𝑀 , where𝑄 (𝑚,𝑚′) = 1 if𝑚 appears before
𝑚′ in the sequence j, 𝑄 (𝑚,𝑚′) = −1 if 𝑚 appears after 𝑚′ in j,
and 𝑄 (𝑚,𝑚) = 0 for all𝑚 ∈ [𝑀]. Such a matrix clearly satisfies
conditions 1, 2 and 3 in the theorem. It also satisfies condition 4, as
we proceed to show. Fix𝑚 ∈ [𝑀] and let 𝑘 ∈ [𝑀] be the unique
index for which 𝑚 = 𝑗𝑘 . Then the 𝑚th column in 𝑄 consists of
exactly 𝑘 − 1 entries that equal 1,𝑀 − 𝑘 entries that equal −1, and
a single entry on the diagonal that equals 0. Hence, 𝑄𝑚 , which is
the sum of entries in that column, equals 2𝑘 −𝑀 − 1. Clearly, all
those values are distinct, since the mapping𝑚 ↦→ 𝑘 is a bijection.
That completes the first part of the proof: every legal Copeland
ballot matrix satisfies conditions 1-4.

Assume next that 𝑄 is an𝑀 ×𝑀 matrix that satisfies conditions
1-4. Then for each𝑚 ∈ [𝑀], the𝑚th column in the matrix consists
of a single 0 entry on the diagonal where all other entries are
either 1 or −1. Assume that the number of 1 entries in the column
equals 𝑘 (𝑚) − 1, for some 𝑘 (𝑚) ∈ [𝑀], while the number of −1
entries equals𝑀−𝑘 (𝑚). Then the sum𝑄𝑚 of entries in that column
equals 2𝑘 (𝑚) −𝑀 − 1. As, by condition 4, all𝑄𝑚 values are distinct,
then 𝑘 (𝑚) ≠ 𝑘 (𝑚′) when𝑚 ≠𝑚′. Stated otherwise, the sequence
k := (𝑘 (1), . . . , 𝑘 (𝑀)) is a permutation of [𝑀]. Let j := ( 𝑗1, . . . , 𝑗𝑀 )
be the inverse permutation of k; i.e., for each𝑚 ∈ [𝑀], 𝑗𝑘 (𝑚) =𝑚.
Then it is easy to see that thematrix𝑄 is theCopeland ballot matrix
that corresponds to the ordering j. That completes the second part
of the proof: every matrix that satisfies conditions 1-4 is a legal
Copeland ballot matrix. □

E VERIFYING THE LEGALITY OF THE CAST
BALLOTS

This section provides a complete discussion of the sub-protocol
that the talliers may invoke in order to verify the legality of the
cast ballots. A short summary was provided in the body of this
manuscript in Section 4.4.

E.1 Motivation and overview
Voters may attempt to cheat by submitting illegal ballots in order to
help their preferred candidate. For example, a dishonest voter may
send the talliers shares of the matrix 𝑐𝑄 , where 𝑄 is his true ballot
matrix and 𝑐 is an “inflating factor" greater than 1. If such a cheating
attempt remains undetected, that voter manages to multiply his
vote by a factor of 𝑐 . The shares of the illegal “inflated" matrix
are indistinguishable from the shares of the legal ballot matrix
(unless, of course, a majority of 𝐷 ′ talliers collude and recover the
ballot — a scenario that is impossible under our assumption that the
talliers have an honest majority). Hence, it is necessary to devise a
mechanism that would enable the talliers to check that the shares
they received from each of the voters correspond to a legal ballot
matrix, without actually recovering that matrix.



Malicious voters can sabotage the elections also in othermanners.
For example, a voter may create a legal ballot matrix 𝑄 and then
alter the sign of some of the ±1 entries in the shared upper triangle
Γ(𝑄), so that the resulting matrix does no longer correspond to an
ordering of the candidates. Even though such a manipulated matrix
cannot serve a dishonest voter in an attempt to help a specific
candidate, it still must be detected and discarded. Failing to detect
the illegality of such a ballot may result in an aggregated matrix 𝑃
that differs from the aggregated matrix 𝑃 ′ that corresponds to the
case in which that ballot is rejected. In such an unfortunate case, it
is possible that the set of winners that 𝑃 would dictate differs from
that which 𝑃 ′ dictates. In summary, it is essential to validate each
of the cast ballots in order to prevent any undesirable sabotaging
of the elections.

In real-life electronic elections where voters typically cast their
ballots on certified computers in voting centers, the chances of
hacking such computers and tampering with the software that they
run are small. However, for full-proof security and as a countermea-
sure against dishonest voters that might manage to hack the voting
system, we proceed to describe an MPC solution that enables the
talliers to verify the legality of each ballot, even though those ballots
remain hidden from them. We note that in case a ballot is found to
be illegal, the talliers may reconstruct it (by means of interpolation
from the shares of 𝐷 ′ talliers) and use the recovered ballot as a
proof of the voter’s dishonesty. The ability of constructing such
proofs, that could be used in legal actions against dishonest voters,
might deter voters from attempting cheating.

We proceed to explain how the talliers can verify the legality of
the cast ballots in each of the two order-based rules. That validation
is based on the characterizations of legal ballots as provided in
Theorems 3 and 4 for Copeland and Maximin, respectively. Note
that the talliers need only to verify conditions 1 and 4; condition 2
needs no verification since the voters do not distribute shares in
the diagonal entries, as those entries are known to be zero; and
condition 3 needs no verification since the voters distribute shares
only in the upper triangle and then the talliers use condition 3 in
order to infer the lower triangle from the shared upper triangle.

E.2 Verifying condition 1
Consider the shares that a voter distributed in Γ(𝑄), where 𝑄 is
his ballot matrix. The talliers need to verify that each entry in the
shared Γ(𝑄) is either 1 or −1 in Copeland, or either 1 or 0 in
Maximin. The verification is performed independently on each of
the𝑀 (𝑀−1)/2 entries of the shared upper triangle. A shared scalar
𝑥 is in {−1, 1} (resp. in {0, 1}) if and only if (𝑥 + 1) · (𝑥 − 1) = 0
(resp. 𝑥 · (𝑥 − 1) = 0). Hence, the talliers input their shares in 𝑥
to an arithmetic circuit that outputs the product (𝑥 + 1) · (𝑥 − 1)
for Copeland or 𝑥 · (𝑥 − 1) for Maximin. If the output of such a
circuit is zero for each of the 𝑀 (𝑀 − 1)/2 entries of Γ(𝑄), then
Γ(𝑄) satisfies condition 1 in Theorem 3 (Copeland) or in Theorem
4 (Maximin). If, on the other hand, some of the multiplication gates
issue a nonzero output, then the ballot will be rejected.

E.3 Verifying condition 4
First, we make the following observation. Let 𝑥,𝑦 ∈ Z𝑝 be two
values that are shared among the talliers. Denote by 𝑥𝑑 and 𝑦𝑑 the

𝐷 ′-out-of-𝐷 shares that 𝑇𝑑 has in 𝑥 and 𝑦, respectively. Then if
𝑎, 𝑏 ∈ Z𝑝 are two publicly known field elements, it is easy to see
that 𝑎𝑥𝑑 + 𝑏𝑦𝑑 is a proper 𝐷 ′-out-of-𝐷 share in 𝑎𝑥 + 𝑏𝑦, 𝑑 ∈ [𝐷].
Also 𝑎 + 𝑥𝑑 is a proper 𝐷 ′-out-of-𝐷 share in 𝑎 + 𝑥 .

Using the above observation regarding the linearity of secret
sharing, then once the talliers receive 𝐷 ′-out-of-𝐷 shares in each
entry in Γ(𝑄), they can proceed to compute 𝐷 ′-out-of-𝐷 shares in
the corresponding column sums, 𝑄𝑚 ,𝑚 ∈ [𝑀], as we proceed to
show.

In Copeland, conditions 2 and 3 in Theorem 3 imply that

𝑄𝑚 =
∑

𝑚′∈[𝑀 ]
𝑄 (𝑚′,𝑚) =

∑
𝑚′<𝑚

𝑄 (𝑚′,𝑚) −
∑
𝑚<𝑚′

𝑄 (𝑚,𝑚′) . (7)

Since the talliers hold shares in 𝑄 (𝑚′,𝑚) for all 1 ≤ 𝑚′ < 𝑚 ≤ 𝑀 ,
they can use Eq. (7) and the linearity of secret sharing to compute
shares in 𝑄𝑚 ,𝑚 ∈ [𝑀]. InMaximin, on the other hand, conditions
2 and 3 in Theorem 4 imply that

𝑄𝑚 =
∑
𝑚′<𝑚

𝑄 (𝑚′,𝑚) −
∑
𝑚<𝑚′

𝑄 (𝑚,𝑚′) + (𝑀 −𝑚) . (8)

Here too, the linearity of sharing and the relation in Eq. (8) enable
the talliers to compute shares in 𝑄𝑚 ,𝑚 ∈ [𝑀], also in the case of
Maximin.

Now, it is necessary to verify that all𝑀 values𝑄𝑚 ,𝑚 ∈ [𝑀], are
distinct. That condition can be verified by computing the product

𝐹 (𝑄) :=
∏

1≤𝑚′<𝑚≤𝑀
(𝑄𝑚 −𝑄𝑚′) . (9)

Condition 4, in both rules, holds if and only if 𝐹 (𝑄) ≠ 0. Hence, the
talliers, who hold shares in 𝑄𝑚 ,𝑚 ∈ [𝑀], may compute 𝐹 (𝑄) and
then accept the ballot if and only if 𝐹 (𝑄) ≠ 0.

E.4 Privacy
A natural question that arises is whether the above described val-
idation process poses a risk to the privacy of the voters. In other
words, a voter that casts a legal ballot wants to be ascertained that
the validation process only reveals that the ballot is legal, while all
other information is kept hidden from the talliers. We proceed to
examine that question.

The procedure for verifying condition 1 in Theorems 3 and 4
offers perfect privacy for honest voters. If the ballot 𝑄 is legal then
all multiplication gates will issue a zero output. Hence, apart from
the legality of the ballot, the talliers will not learn anything on the
content of the ballot.

The procedure for verifying condition 4 in Theorems 3 and 4
offers almost perfect privacy, in the following sense. If 𝑄 is a valid
ballot in Copeland, then the ordered tuple (𝑄1, . . . , 𝑄𝑀 ) is a per-
mutation of the ordered tuple (−𝑀 + 1,−𝑀 + 3, . . . , 𝑀 − 3, 𝑀 − 1).
This statement follows from the proof of condition 4 in Theorem 3,
see D. Hence, as can be readily verified, if𝑄 is a legal ballot then the
value of 𝐹 (𝑄), Eq. (9), which the talliers compute in the validation
procedure, equals

𝐹 (𝑄) = ±2(
𝑀
2 ) ·

∏
1≤𝑚′<𝑚≤𝑀

(𝑚 −𝑚′) , (10)

where the sign of the product in Eq. (10) is determined by the signa-
ture of (𝑄1, . . . , 𝑄𝑀 ) when viewed as a permutation of the ordered
tuple (−𝑀 + 1,−𝑀 + 3, . . . , 𝑀 − 3, 𝑀 − 1). Hence, since a ballot in



Copeland describes some ordering (permutation) of the candidates,
the talliers will be able to infer the signature of that permutation,
but nothing beyond that. Such a leakage of information is meaning-
less, but it can be eliminated by squaring the result and recovering
𝐹 (𝑄)2.

Similarly, the procedure for verifying condition 4 in Theorem
4, for Maximin, is also privacy-preserving in the same manner.
Indeed, in the case ofMaximin, (𝑄1, . . . , 𝑄𝑀 ) is a permutation of
the ordered tuple (0, 1, . . . , 𝑀 − 2, 𝑀 − 1), and, therefore,

𝐹 (𝑄) = ±
∏

1≤𝑚′<𝑚≤𝑀
(𝑚 −𝑚′) ,

where the sign of the above product is determined by the signature
of (𝑄1, . . . , 𝑄𝑀 ) as a permutation of (0, 1, . . . , 𝑀 − 2, 𝑀 − 1).

E.5 Computational cost
Verifying condition 1 can be performed in parallel for all𝑀 (𝑀−1)/2
entries in a given ballot, and also for several different ballots. Hence,
in order to perform a batch validation of 𝐵 ballots, the talliers need
to compute 𝐵𝑀 (𝑀 − 1)/2 simultaneous multiplication gates.

The verification of condition 4 over a single ballot requires per-
forming a sequence of𝑀 (𝑀 − 1)/2 multiplications. Hence, in order
to perform a batch validation of 𝐵 ballots, the talliers need to go
through𝑀 (𝑀 − 1)/2 rounds, where in each round they compute 𝐵
simultaneous multiplication gates.

F A LOWER BOUND ON THE UNDERLYING
FIELD’S SIZE

Here we comment on the requirements of our protocol regarding
the size 𝑝 of the underlying field Z𝑝 .

The prime 𝑝 should be selected to be greater than:
• 𝐷 , as that is the number of talliers (see Section 3.1).
• 2𝑁 , since the field should be large enough to hold the entries
of the sum 𝑃 of all ballot matrices, Eq. (3), and the entries of
that matrix are confined to the range [−𝑁, 𝑁 ].

• max{𝑡, 𝑠} · (𝑀 −1), since that is the upper bound on 𝑡 ·w(𝑚),
see Eq. (5), which is secret-shared among the talliers.

• 2(𝑀 − 1), since in validating a given ballot matrix 𝑄 , the
talliers need to test the equality to zero of 𝐹 (𝑄), see Eq. (9).
As 𝐹 (𝑄) is a product of the differences 𝑄𝑚 −𝑄𝑚′ , and each
of those differences can be at most 2(𝑀 − 1) (in Copeland)
or 𝑀 − 1 (inMaximin), it is necessary to set 𝑝 to be larger
than that maximal value.

Hence, in summary, 𝑝 should be selected to be larger than each
of the above four values. Since 𝐷 (number of talliers),𝑀 (number
of candidates), and 𝑠 and 𝑡 (the numerator and denominator in the
coefficient 𝛼 in Copeland rule, Eq. (4)), are typically much smaller
than 𝑁 , number of voters, the essential lower bound on 𝑝 is 2𝑁 . In
our evaluation we selected 𝑝 = 231 − 1, which is sufficiently large
for any conceivable election scenario.
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