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Recommender systems have become very influential in our everyday decision making, e.g., helping us choose

a movie from a content platform, or offering us suitable products on e-commerce websites. While most vendors

who utilize recommender systems rely exclusively on training data consisting of past transactions that took

place through them, it would be beneficial to base recommendations on the rating data of more than one

vendor. However, enlarging the training data by means of sharing information between different vendors

may jeopardize the privacy of users. We devise here secure multi-party protocols that enable the practice of

Collaborative Filtering (CF) in a manner that preserves the privacy of the vendors and users. Shmueli and

Tassa [38] introduced privacy-preserving protocols of CF that involved a mediator; namely, an external entity

that assists in performing the computations. They demonstrated the significant advantages of mediation in

that context. We take here the mediation approach into the next level by using several independent mediators.

Such distributed mediation maintains all of the advantages that were identified by Shmueli and Tassa, and

offers additional ones, in comparison with the single-mediator protocols: stronger security and dramatically

shorter runtimes. In addition, while all prior art assumed limited and unrealistic settings, in which each user

can purchase any given item through only one vendor, we consider here a general and more realistic setting,

which encompasses all previously considered settings, where users can choose between different competing

vendors. We demonstrate the appealing performance of our protocols through extensive experimentation.
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preserving protocols.
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1 INTRODUCTION
Collaborative Filtering (CF) is one of the main methods used by recommender systems in order to

assist users to navigate through the dazzling abundance of items (products, services, information)

available to them, and find the most suitable ones for their tastes and needs [13]. In that method,

predictions about the interests of a user are based on aggregated information on preferences

of a large set of users. One of the most widely used approaches in CF is to base predictions on

characteristics of items. In this so-called item-based approach, one uses the collaborative data in
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order to learn a model of similarity between items; consequently, users are offered items that are

similar to previous items that they had already purchased and liked.

To improve the quality of predictions, larger volumes of training data are needed. Hence, it is in

the interest of vendors to collaborate and conjoin their historical data in order to issue more accurate

recommendations [7]. However, such collaboration may jeopardize the privacy of users, who trust

the vendors through whom they purchased or rated items to keep that information confidential.

Additionally, the vendors themselves may wish to keep their historical data for themselves, as it has

commercial value that they would not like to share with potential competitors. Privacy-Preserving

Collaborative Filtering (PPCF) addresses those issues by enabling the use of CF without disclosing

private information.

In this study we propose secure protocols of Multi-Party Computation (MPC) [51] for item-based

CF. Our protocols enable the computation of the similarities between items, and then to issue

predictions of two types: how a given user would rate a given item, and what are the currently top

items to be recommended to a given user.

Shmueli and Tassa [37, 38] have presented such protocols in the mediated model. In that model

[2], there exists a mediator that assists in performing intermediate computations, but he is prevented

from accessing the actual data due to privacy concerns. Their protocols rely on a single mediator,

to whom the vendors provide the user-item ratings under homomorphic encryption. Owing to the

homomorphic property, the mediator is capable of performing computations on the encrypted data,

but thanks to the encryption he remains oblivious to the plaintext underneath. As explained in

[38, Section 3], mediation is most advantageous for PPCF: it frees the vendors from the need to

communicate with each other, and the need to be constantly online in order to assist other vendors

in their recommendation queries; it reduces communication and computational costs; and it enables

an economically-realistic collaboration model between vendors that differ in their contribution to

the CF training data (as each vendor offers a different set of items to a different set of users), and in

their demand from the CF system (in terms of the number and type of queries that they submit).

In this study we also present PPCF protocols in the mediated model. We implement the very

same item-based CF technique as in [38]; i.e., we compute the same similarity model, and issue

predicted ratings and ranking based on the same equations. However, while the protocols in [38]

used a single mediator, ours rely on several independent mediators. The advantages of distributed

mediation are very significant, as we proceed to explain.

First, while the single-mediator protocols relied on homomorphic encryption, the distributed

mediation-based protocols that we present here rely on secret sharing as the cryptographic pro-

tection shield. Namely, each vendor creates secret shares in his own user-item rating data and

distributes them among the mediators. As secret sharing is a linear operation, while homomorphic

encryption requires expensive modular exponentiations, the effects on runtime costs are over-

whelming. Another aspect that contributes to reducing runtime and communication costs is the

size of the underlying arithmetic. Secret sharing can be executed on standard arithmetic (say, 32-

or 64-bit) because it can be executed over any field that is large enough to represent all possible

secret values. However, homomorphic encryption requires arithmetic of at least 512 and preferably

1024 bits.

Second, the protocols in [38] are vulnerable to malicious collusion, in the sense that if the single

mediator colludes with one of the vendors, all private information is revealed to them. In the secret

sharing-based protocols that we present here, a similar privacy collapse occurs only if at least half

of the mediators betray the trust vested in them and collude. In case the group of mediators has

an honest majority, the private information remains fully protected. In addition, the protection

offered by secret sharing schemes, as opposed to that offered by homomorphic encryption, is in the

highest information-theoretic sense. It means that even if the mediators would have an unlimited
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computational power, they would not be able to infer any information on the private data, as long

as they have an honest majority.

Another advantage that our protocols offer is that they free the vendors from any need to com-

municate with each other. While non-mediated PPCF protocols require a constant communication

between the collaborating vendors, and the single-mediator protocols [38] reduced the communi-

cation demands only to the offline (and less frequent) phase, our protocols free the vendors from

any need of communicating with each other, or even being aware of the number or the identity of

other vendors. They only need to communicate with the mediators.

The last contribution that we offer is with regard to the collaborative setting, in the sense

of how the user-item rating data is distributed among the vendors. All existing works on PPCF

assumed distribution scenarios in which each entry in the user-item rating matrix is owned by

just one vendor. Such exclusivity can be found only in unrealistic markets of zero competition:

a user who wants to purchase a specific item can do so only through a single vendor. In reality,

however, users usually have a choice between competing vendors. We introduce here a much more

realistic distribution scenario, which generalizes all previously-considered scenarios, that allows

such competition.

The outline of the paper is as follows. We begin with an overview of related work in Section 2,

and preliminary discussions and necessary background in Section 3. We present our protocols in

Section 4, and demonstrate their performance in Section 5. We conclude in Section 6.

2 RELATEDWORK
The literature of PPCF may be classified according to their approach towards achieving privacy.

Obfuscation-based methods. In obfuscation-based methods, the user-item data is transformed

in a manner that prevents individual users from being identified, while maintaining a useful level

of accuracy in the generated recommendations.

Polat and Du [32] provided a solution for PPCF by disguising the users’ personal data using

randomized perturbation techniques. The perturbed data is sent to a data collector for further

processing. The perturbations prevent the data collector from deriving explicit information about

specific users, but he can still use the perturbed data in order to perform CF. Polat and Du claim

that even though each user’s information is scrambled, then given a sufficient number of users

they are still able to produce decent rating estimations. Their rating predictions are based on the

same cosine similarity score as we use in the present work.

Similarly, Yakut and Polat [50] proposed a privacy-preserving implementation of item-based CF

which is also based on the cosine similarity score. They considered the case of two vendors, with a

hybrid distribution scenario, and achieved privacy by injecting fake ratings into the distributed

matrix of user-item ratings.

In contrast to the two previously discussed studies, in which randomness is added to the user-item

data, Kikuchi and Mochizuk [21] applied randomness to the system response in order to prevent

the preferences of individual users from being inferred from the system’s responses, while allowing

the users to calculate the exact response using the randomized one.

Another example is the study of Weinsberg et al. [49]: in their study, the goal was to prevent

recommender systems from inferring the gender of users, while having an insignificant effect on

the accuracy of recommendations issued to them. They first evaluated several gender inference

algorithms and showed their ability to estimate with decent accuracy the gender of the user. Then,

they presented techniques for slightly altering the ratings of the users, while barely affecting the

recommendations given to them.
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Obfuscation-based methods are scalable since the transformations usually only need to be applied

to the data at the point of origin, after which the obfuscated data can be used directly. However,

the security of these techniques is harder to prove since they rely on randomness and anonymity.

Also, they issue inaccurate recommendations as those are computed from obfuscated data.

Clustering-based methods. Clustering-based methods rely on grouping the users into clusters

and then extracting a representation of that cluster to be used in the CF process. Such meth-

ods provide anonymity for the users within each cluster. Another advantage of this approach

is scalability, since a reduced representation of the data is used. Larger clusters enable smaller

representations, but, on the other hand, they provide less accurate filtering. Examples of studies

that suggest clustering-based PPCF methods are [9, 20, 26, 40].

Memis and Yakut [26] studied PPCF over partitioned data with overlaps between two parties.

They examined PPCF solutions for both user-based and item-based CF algorithms. Specifically, the

user-based CF algorithm is based on Pearson similarities (which is closely related to the cosine

similarity score), while the item-based one is based on Slope-one predicator. In the user-based

scenario, they initially inserted in random locations votes that could be the row mean, column

mean, or the overall mean from the available ratings of the relevant vendor. Then, in order to

privately compute the similarity scores between pairs of users, they used Paillier’s homomorphic

encryption. The procedure in the item-based scenario is quite similar, only that the similarity

scores are computed between items, and not between users, and the underlying score is determined

by the Slope-One predictor.

The work of Chow et al. [9] presented a way to implement CF by clustering the users and

inserting fake ratings. In the clustering phase, each user uses a public hashing algorithm, computes

the hash value for his movie ratings, and uploads the hash value to the server. The server partitions

the set of users into buckets of similar users, where two users are in the same bucket if their hash

value matches. In the recommendation stage, each user adds noise to his vector of ratings by adding

artificially rated items, and he then uploads the augmented vector to the server. Consequently, the

predicted rating for a given movie will be its average rating over the set of users who are similar to

the user. The insertion of fake ratings naturally reduces the accuracy of this method.

The work of Shokri et al. [39] suggests achieving privacy in PPCF by means which resemble

clustering. In their proposal, each user merges his profile with the profiles of similar users, through

direct contact with them, before uploading it to the server that performs the CF computations.

Cryptography-based methods. In that approach, cryptographic means are used in order

to protect the sensitive data. Typically, such methods use homomorphic encryption, since such

encryption allows performing arithmetic computations on the encrypted values. The study of [38]

that we discussed in the Introduction falls under this category.

Another cryptographic-based PPCF method was presented by Basu et al. [4]. They proposed a

privacy-preserving algorithm that is based on the Slope One predictor [24]. Their way of preserving

privacy includes adding random noise to the ratings, and they show that the Slope One predictor is

very well suited for their purposes as it is robust to certain types of noise. They have also stated that

in order to increase the level of privacy, they can combine the latter approach with homomorphic

public-key encryption, so that each prediction query and response will be encrypted.

The studies of [5, 6] present a practical implementation of a PPCF system, based on the Google

App Engine for Java (GAE/J) cloud platform. They designed algorithms that rely on a homomorphic

encryption scheme to preserve the privacy of user data in the cloud. Their algorithm consists of

two stages – an offline pre-computation stage, and online prediction stage. In the offline stage, the

plaintext deviation matrix of item ratings (indicating the similarity between pairs of items) and the

plaintext cardinality matrix (the number of users who have rated both items) are computed. In the
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prediction stage, the user queries the cloud with his encrypted and complete rating vector. Using

that vector, the Google App Engine computes encrypted predictions of ratings, based on the Slope

One scheme, which only the user can decrypt.

Ahmad et al. [1] introduced the notion of distributed trust, which is similar to the distributed

mediationmodel of computation that underlies our protocols. In contrast to our work, which enables

multiple vendors to collaborate and produce better predictions through distributed mediation, they

aimed at increasing the trust given by the users in a specific vendor. They do so by allocating

several independent servers to that vendor and then having the vendor’s users distribute their data

between those servers, instead of submitting their private data to a single server. They provided a

solution to the CF problem by the use of crossing minimization-based biclustering, and achieved

privacy by using a threshold homomorphic cryptosystem with distributed key generation.

As we show here, while trust/security is the primary motivation for distributing mediation,

such distribution ushers in an even more meaningful advantage: significantly reduced runtimes.

That advantage is critical for the practicality of cryptography-based PPCF methods. While such

methods provide strong security guarantees, without sacrificing the accuracy of their results, they

do not scale well. As practical systems involve millions of users and items, such techniques may

have impractical runtimes, especially in online settings where a short response time is needed.

Distributed mediation enables to replace expensive homomorphic encryption with much more

efficient cryptographic techniques (secret sharing), and thus it enables significantly shorter runtimes

that could be a key factor in making PPCF a viable practice.

3 PRELIMINARIES
We begin this section by providing the necessary background on item-based CF (Section 3.1). We

proceed to describe distributed scenarios, one of which is the general distribution scenario that we

consider here (Section 3.2). Next, we describe the setting of distributed mediation (Section 3.3), and

conclude with an overview of secret sharing (Section 3.4).

3.1 Item-based collaborative filtering
We provide here a brief introduction to item-based CF [11]. In what follows, we use the following

notation agreements:

(1) If 𝑟 is a non-negative integer then 𝜉 (𝑟 ) = 0 if 𝑟 = 0 and 𝜉 (𝑟 ) = 1 otherwise.

(2) If x is a vector and 𝑓 is any scalar function, then 𝑓 (x) is the vector in which 𝑓 (x) (·) = 𝑓 (x(·)).
(3) If x and y are two 𝑁 -dimensional vectors then x · y is the 𝑁 -dimensional vector in which

(x · y) (𝑛) = x(𝑛) · y(𝑛), 𝑛 ∈ [𝑁 ] := {1, . . . , 𝑁 }.
(4) Inner products will be denoted by ⟨·, ·⟩; the induced norm will be denoted by ∥ · ∥.
Let 𝑈 = {𝑢1, . . . , 𝑢𝑁 } be a set of users (consumers) and 𝐵 = {𝑏1, . . . , 𝑏𝑀 } be a set of items

(products or services). The user-item rating matrix, 𝑅, is an 𝑁 ×𝑀 matrix where 𝑅(𝑛,𝑚) is either a
positive integer which indicates a rating that 𝑢𝑛 had given to 𝑏𝑚 , or zero if 𝑢𝑛 had not rated 𝑏𝑚 . In

item-based CF, one uses the rating information, as given in 𝑅, in order to infer similarities between

the items. This similarity model is then used in order to predict how users would rate items that

they still had not purchased, or to determine the potentially most appealing items for a given user.

Let 𝑆 be a symmetric𝑀 ×𝑀 matrix where 𝑆 (ℓ,𝑚) is the similarity score between items 𝑏ℓ and

𝑏𝑚 , ℓ,𝑚 ∈ [𝑀] := {1, 2, . . . , 𝑀}. Then the similarity scores are defined in Definition 3.1.

Definition 3.1. Let c𝑚 = (𝑅(𝑛,𝑚) : 𝑛 ∈ [𝑁 ]) denote the𝑚-th column in the user-item rating
matrix 𝑅, where𝑚 ∈ [𝑀]. Given indices of two items, ℓ,𝑚 ∈ [𝑀], let cℓ |𝑚 := cℓ · 𝜉 (c𝑚) denote the
projection of the ℓ-th column of the user-item rating matrix 𝑅 on the subset of users that rated both
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items 𝑏ℓ and 𝑏𝑚 . Then the cosine similarity score is

𝑆 (ℓ,𝑚) = ⟨cℓ , c𝑚⟩
∥cℓ |𝑚 ∥ · ∥c𝑚 |ℓ ∥

, (1)

where if cℓ |𝑚 = 0 or c𝑚 |ℓ = 0, 𝑆 (ℓ,𝑚) is set to zero.

The similarity scores are used to predict 𝑢𝑛’s rating of 𝑏𝑚 as follows. Let:

• 𝑞 < 𝑀 be a preset (typically small) integer.

• 𝑁𝑞 (𝑚) be the set of indices of the 𝑞 nearest neighbors of 𝑏𝑚 (those with highest 𝑆 (·,𝑚)).
• 𝑁 +𝑞 (𝑚) := {ℓ ∈ 𝑁𝑞 (𝑚) : 𝑆 (ℓ,𝑚) > 0}.
• s𝑚 be the 𝑀-dimensional vector for which s𝑚 (ℓ) = 𝑆 (ℓ,𝑚) if ℓ ∈ 𝑁 +𝑞 (𝑚) and s𝑚 (ℓ) = 0

otherwise.

• 𝑅(𝑏𝑚) =
[∑

𝑛∈[𝑁 ] 𝑅(𝑛,𝑚)
]
/
[∑

𝑛∈[𝑁 ] 𝜉 (𝑅(𝑛,𝑚))
]
be the average rating given to item 𝑏𝑚 .

• r𝑛 be the 𝑛-th row of the user-item rating matrix 𝑅.

• r𝑛 be the vector of 𝑢𝑛’s adjusted ratings, i.e. r𝑛 (ℓ) = (𝑅(𝑛, ℓ) −𝑅(𝑏ℓ )) · 𝜉 (𝑅(𝑛, ℓ)), ℓ ∈ [𝑀].
• 𝜉 (r𝑛) be the row vector in which 𝜉 (r𝑛) (𝑚) = 𝜉 (r𝑛 (𝑚)),𝑚 ∈ [𝑀]; namely, it is the binary

vector that identifies all items that 𝑢𝑛 had rated.

Then the predicted rating 𝑃 (𝑢𝑛, 𝑏𝑚) is the weighted average over the adjusted ratings that 𝑢𝑛 made

thus far,

𝑃 (𝑢𝑛, 𝑏𝑚) := 𝑅(𝑏𝑚) +
⟨s𝑚, r𝑛⟩
⟨s𝑚, 𝜉 (r𝑛)⟩

. (2)

The weighted average is taken over at most 𝑞 items, and it is based only on items that have a

positive similarity to 𝑏𝑚 . The quotient in Eq. (2) is undefined if the denominator equals zero (i.e.,

if none of the items that 𝑢𝑛 had rated in the past is in 𝑁 +𝑞 (𝑚)). In that case, 𝑃 (𝑢𝑛, 𝑏𝑚) is set to
𝑅(𝑏𝑚). (There exist other variants of those similarity scores and prediction formulas. We focus

here on the version that is suggested in [11]. The modification of our protocols to other variants is

straightforward.)

Sometimes, instead of showing to 𝑢𝑛 his predicted rating on some item, the goal is to present

to him the ℎ items which are most likely to appeal to him, without predicted ratings. To that end,

one produces a ranking of all items that 𝑢𝑛 had not rated so far in order to extract from it the top

ℎ items, for some ℎ ≥ 1. Following the discussion in [11, Section 2.3], we implement herein the

following ranking procedure. Let 𝐽 (𝑛) be the subset of indices of items that 𝑢𝑛 already rated. Define

for each𝑚 ∈ [𝑀] \ 𝐽 (𝑛) the score
𝑠 (𝑚) =

∑︁
ℓ∈𝐽 (𝑛)∩𝑁𝑞 (𝑚)

𝑆 (𝑚, ℓ) . (3)

Namely, 𝑠 (𝑚) is the sum of similarities between 𝑏𝑚 and all those items that 𝑢𝑛 already rated and

fall within 𝑁𝑞 (𝑚), the 𝑞-neighborhood of 𝑏𝑚 . Then, the top ℎ items to be recommended to 𝑢𝑛 are

those with the highest values of 𝑠 (𝑚).

3.2 Distributed scenarios
We consider distributed scenarios in which there are 𝐾 vendors,𝑉1, . . . ,𝑉𝐾 , where each one of them

offers a subset of items to some subset of users. Let 𝐼𝑘 ⊆ [𝑁 ] denote the set of indices of users
that 𝑉𝑘 serves, 𝐽𝑘 ⊆ [𝑀] denote the set of indices of the items that 𝑉𝑘 offers, and 𝑁𝑘 := |𝐽𝑘 | and
𝑀𝑘 := |𝐼𝑘 | be their corresponding sizes, 𝑘 ∈ [𝐾]. The subsets 𝐼𝑘 and 𝐽𝑘 , 𝑘 ∈ [𝐾], are assumed to be

publicly known; namely, everybody knows that a given vendor offers, say, consumer electronic

products and ships only to the bay area.
1

1
In our concluding remarks, Section 6, we discuss relaxations of this assumption.
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The study of privacy-preserving collaborative filtering considered one of the following three

distributed scenarios:

Horizontal: All vendors offer all items in 𝐵 but they serve disjoint subsets of users from 𝑈 .

Namely, 𝐽𝑘 = [𝑀] for all 𝑘 ∈ [𝐾], but the sets 𝐼1, . . . , 𝐼𝐾 are all disjoint and their union is [𝑁 ]. In
particular, if 𝑅 is the 𝑁 ×𝑀 user-item matrix, then𝑉𝑘 owns the subset of 𝑅’s rows that corresponds

to 𝐼𝑘 , 𝑘 ∈ [𝐾].
Vertical: All vendors serve all users in𝑈 but they offer disjoint subsets of items from 𝐵. Namely,

𝐼𝑘 = [𝑁 ] for all 𝑘 ∈ [𝐾], but the sets 𝐽1, . . . , 𝐽𝐾 are all disjoint and their union is [𝑀]. Here, 𝑉𝑘
owns the subset of 𝑅’s columns that corresponds to 𝐽𝑘 , 𝑘 ∈ [𝐾].
Hybrid: In that model, the user-item matrix is distributed in a general manner between the

vendors (not necessarily by rows or columns), so that each entry in the matrix is held by a single

vendor.

In this study we consider a general distribution scenario. Like the hybrid scenario, each

vendor owns some sub-matrix, but the sub-matrices could be overlapping. Namely, it is possible

that a user 𝑢𝑛 who wishes to purchase an item 𝑏𝑚 could do so through more than just one vendor,

as is the underlying assumption in all above described scenarios. That is the typical case in real

markets – users usually have a choice between different vendors. Hence, the general distribution

scenario is more realistic than those considered so far in prior art, and it includes all of them as

private cases.

For simplicity we will assume that a user who purchased and rated an item through one vendor,

had not purchased or rated that item again through another vendor. This natural assumption, which

was not needed in previous studies who considered distribution scenarios with no overlaps, is

made only for the sake of simplicity. However, it is possible that Alice, who had purchased a book

and liked it very much, decided later on to purchase another copy of that book also for her niece’s

birthday, but this time she made the purchase through another vendor that had put that book on

sale. We note that even in such unusual cases of repeated ratings, the outputs of our protocols are

still justifiable, without needing to modify the protocols. We defer the discussion of this point to

Appendix A.

3.3 The mediated setting
We assume 𝐷 > 1 independent mediators, 𝑇𝑑 , 𝑑 ∈ [𝐷], that assist the vendors in performing the

computations. They are assumed to be semi-honest, i.e., they follow the prescribed protocols, but

try to glean from the messages received during those protocols information on the user-item rating

matrix. We let T := {𝑇1, . . . ,𝑇𝐷 } denote the set of all mediators.

Our working assumption is that of an honest majority: if a subset of T colludes and combines

the information that they got, in order to extract information on private user-item rating data,

the subset’s size is less than 𝐷/2. Such an assumption is very common in the MPC literature, e.g.

[8, 14, 25, 33]. In practice, it means that if a malicious adversary tries to “corrupt" mediators in

attempt to get access to the information that goes through them, he will be able to corrupt less

than half of those mediators.

3.4 Secret Sharing
Secret sharing [36] methods are protocols that enable to distribute a secret among a group of

participants, such that each of them is allocated a piece of information, called a share, so that

some subsets of those shares enable the reconstruction of the secret. In its most basic form, called

Threshold Secret Sharing, the secret can be reconstructed only when a sufficient number of shares

are combined together, while smaller sets of shares reveal no information at all on the secret. In

our context, the secret holders will be the vendors, and the group of participants among whom the
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secrets will be shared are the mediators. The domain of secrets is known in advance and it will

be a finite field Z𝑝 , where 𝑝 is some sufficiently large prime (in particular, larger than the set of

participants as well as the number of possible secrets).

We will use the Shamir threshold secret sharing scheme [36]. It is a 𝐷 ′-out-of-𝐷 scheme in the

following sense: if 𝐷 ′ is an integer in the range 1 ≤ 𝐷 ′ < 𝐷 , then the shares that are distributed

in that scheme allow the recovery of the secret 𝑥 from any subset of 𝐷 ′ shares, while any subset

of 𝐷 ′ − 1 shares reveals no information on the secret. The scheme has two procedures: Share and
Reconstruct:
• Share𝐷′,𝐷 (𝑥). The procedure samples a uniformly random polynomial 𝑔(·) over Z𝑝 , of degree

at most 𝐷 ′ − 1, where the free coefficient is 𝑥 . That is, 𝑔(𝑡) = 𝑥 + 𝛼1𝑡 + 𝛼2𝑡2 + . . . + 𝛼𝐷′−1𝑡𝐷
′−1

,

where 𝛼 𝑗 , 1 ≤ 𝑗 ≤ 𝐷 ′ − 1, are selected uniformly at random from Z𝑝 . The procedure outputs 𝐷
values – 𝑔(1), . . . , 𝑔(𝐷) – where 𝑥𝑑 = 𝑔(𝑑) is the share given to 𝑇𝑑 , 𝑑 ∈ [𝐷]. It is easy to see that

any selection of 𝐷 ′ − 1 shares reveals nothing about the secret 𝑥 , whereas any subset of 𝐷 ′ shares
fully determines 𝑥 , by means of polynomial interpolation, as we describe next.

•Reconstruct𝐷′ (𝑥1, . . . , 𝑥𝐷 ). The procedure is given any selection of𝐷 ′ shares out of {𝑥1, . . . , 𝑥𝐷 },
and it then interpolates a polynomial 𝑔(·) of degree at most 𝐷 ′ − 1 using the given points. It then

outputs 𝑥 = 𝑔(0).

In what follows we apply secret sharing on secret vectors and matrices. By that we mean that

when a vendor wishes to share a vector, or a matrix, among T, he will compute and distribute shares

in each component of the vector or matrix, independently. Consequently, any sufficiently large

subset of the mediators will be able to reconstruct the shared vector or matrix by reconstructing

each component independently. We also use 𝐷 ′-out-of-𝐷 secret sharing with 𝐷 ′ = ⌊(𝐷 + 1)/2⌋.
With such threshold, the number of shares needed to reconstruct the secret is at least 𝐷 ′ ≥ 𝐷/2.
Hence, under our assumption of honest majority (in the sense that if a collusion between some

of the mediators occurs, it involves less than half of them), the shared secrets will remain fully

protected.

We conclude this section by a note on the selection of the field’s size 𝑝 . Selecting the prime 𝑝 to

be a Mersenne prime (a prime of the form 𝑝 = 2
𝑡 − 1 for some integer 𝑡 > 1) is advantageous since

multiplication of two field elements in such cases can be done without performing an expensive

division (in case the multiplication result exceeds the modulus). We use herein the Mersenne prime

𝑝 := 2
31 − 1 since it is sufficiently large for our purposes, in the sense that whenever we perform

secret sharing, the value of the shared secret is strictly smaller than 𝑝 .

4 PRIVACY PRESERVING PROTOCOLS
In this section we present our privacy-preserving protocols. In Section 4.1 we describe the computa-

tions and protocols that are performed in the offline phase and involve all of the vendors𝑉1, . . . ,𝑉𝐾 ,

as well as the mediators T. Then, we describe the online phase in which a given vendor 𝑉𝑘 submits

queries to T towards computing the predicted rating of some user 𝑢𝑛 for an item 𝑏𝑚 , 𝑃 (𝑢𝑛, 𝑏𝑚),
Eq. (2) (Section 4.2), or getting the top ℎ items for a given user 𝑢𝑛 (Section 4.3). The online phase is

carried out solely by the relevant vendor, 𝑉𝑘 , and the mediators, T. Namely, the participation of all

vendors is required only in the offline and less frequent phase. Finally, in Section 4.4 we discuss a

more efficient execution of the offline computations, which relies on the (plausible) assumption

that between every two invocations of the offline phase, only a small fraction of the entries in the

user-item rating matrix had changed.
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4.1 Offline model construction
Recall that 𝑅 is the global user-item rating matrix; for every 𝑛 ∈ [𝑁 ] and𝑚 ∈ [𝑀], 𝑅(𝑛,𝑚) is the
rating that 𝑢𝑛 gave to 𝑏𝑚 , or zero if no such rating was given. Let sq(𝑅) and 𝜉 (𝑅) be matrices of

the same dimensions as 𝑅, whose entries are as follows:

sq(𝑅) (𝑛,𝑚) = (𝑅(𝑛,𝑚))2 , and 𝜉 (𝑅) (𝑛,𝑚) = 𝜉 (𝑅(𝑛,𝑚)) , (𝑛,𝑚) ∈ [𝑁 ] × [𝑀] .
The columns of 𝑅 were denoted by c𝑚 ,𝑚 ∈ [𝑀]. Therefore, the columns of sq(𝑅) and 𝜉 (𝑅) are c2𝑚
and 𝜉 (c𝑚), under our notation agreements (see Section 3.1). Hence, the similarity score between a

given pair of items, say 𝑏ℓ and 𝑏𝑚 , ℓ < 𝑚 ∈ [𝑀], is given by 𝑆 (ℓ,𝑚) = 𝑧1/
√
𝑧2𝑧3, where

𝑧1 = ⟨cℓ , c𝑚⟩ , 𝑧2 = ∥cℓ |𝑚 ∥2 = ⟨c2ℓ , 𝜉 (c𝑚)⟩ , 𝑧3 = ∥c𝑚 |ℓ ∥2 = ⟨𝜉 (cℓ ), c2𝑚⟩ (4)

(see Definition 3.1).

The user-item matrix in our case is distributed among 𝐾 parties, the vendors. The vendor 𝑉𝑘 ,

𝑘 ∈ [𝐾], possesses an 𝑁𝑘 ×𝑀𝑘 user-item rating matrix, denoted 𝑅𝑘 . That matrix holds an entry for

each user that 𝑉𝑘 serves and for each item that 𝑉𝑘 offers. As stated in Section 3.2, we assume that

each nonzero entry in 𝑅 occurs in just a single 𝑅𝑘 , 𝑘 ∈ [𝐾]. Hence, 𝑅𝑘 is the 𝑁𝑘 ×𝑀𝑘 sub-matrix of

the global 𝑁 ×𝑀 matrix 𝑅, which corresponds to 𝑅’s entries whose indices are in the Cartesian

product 𝐼𝑘 × 𝐽𝑘 . Stated differently,

𝑅 =
∑︁
𝑘∈[𝐾 ]

[[𝑅𝑘 ]] (5)

where [[𝑅𝑘 ]] is the (𝑁 ×𝑀)-“inflation" of 𝑅𝑘 in the sense that

[[𝑅𝑘 ]] (𝑖, 𝑗) =
{
𝑅𝑘 (𝑖, 𝑗) if (𝑖, 𝑗) ∈ 𝐼𝑘 × 𝐽𝑘
0 if (𝑖, 𝑗) ∈ [𝑁 ] × [𝑀] \ 𝐼𝑘 × 𝐽𝑘

.

Example. Let us consider a setting with 𝑁 = 5 users,𝑀 = 6 items, and 𝐾 = 4 vendors:

• 𝑉1 serves users 𝑢1, 𝑢2, 𝑢3 and offers items 𝑏1, 𝑏2, 𝑏3, 𝑏4.

• 𝑉2 serves users 𝑢3, 𝑢4, 𝑢5 and offers items 𝑏1, 𝑏4, 𝑏5.

• 𝑉3 serves users 𝑢1, 𝑢2, 𝑢5 and offers items 𝑏2, 𝑏3, 𝑏5, 𝑏6.

• 𝑉4 serves users 𝑢4, 𝑢5 and offers items 𝑏2, 𝑏6.

Eq. (6) illustrates the four sub-matrices 𝑅𝑘 , 𝑘 ∈ [4], within their corresponding inflated versions,

[[𝑅𝑘 ]]. The entries that are marked by a central dot correspond to entries in the user-item matrix

that the corresponding vendor does not possess. The global user-item matrix, 𝑅, is shown in Eq.

(7), and it is the sum of the 𝐾 = 4 inflated matrices in Eq. (6). Note that, in agreement with our

assumption, a nonzero entry occurs in only one of those matrices.

[[𝑅1]] =
©«
0 2 4 0 · ·
0 0 0 4 · ·
5 0 0 1 · ·
· · · · · ·
· · · · · ·

ª®®®®®¬
[[𝑅2]] =

©«
· · · · · ·
· · · · · ·
0 · · 0 2 ·
0 · · 2 0 ·
0 · · 3 0 ·

ª®®®®®¬
[[𝑅3]] =

©«
· 0 0 · 0 2

· 0 0 · 1 4

· · · · · ·
· · · · · ·
· 5 0 · 1 0

ª®®®®®¬
[[𝑅4]] =

©«
· · · · · ·
· · · · · ·
· · · · · ·
· 3 · · · 0

· 0 · · · 1

ª®®®®®¬

(6)
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10 Tamir Tassa and Alon Ben Horin

𝑅 =

4∑︁
𝑘=1

[[𝑅𝑘 ]] =
©«
0 2 4 0 0 2

0 0 0 4 1 4

5 0 0 1 2 0

0 3 0 2 0 0

0 5 0 3 1 1

ª®®®®®¬
(7)

Protocol 1 is executed by the vendors and the mediators, T, towards the goal of T learning the

similarity scores between items, Eq. (1). The input to the protocol is the user-item sub-matrices 𝑅𝑘 ,

𝑘 ∈ [𝐾], that are held by the vendors. The protocol has three phases:

(1) Phase 1: The vendors distribute shares relating to their sub-matrices of user-item ratings.

(2) Phase 2: The mediators compute shares relating to the global user-item matrix.

(3) Phase 3: The mediators compute the similarity scores between every pair of items.

In Phase 1 (Lines 1-5) each vendor, 𝑉𝑘 , 𝑘 ∈ [𝐾], first computes sq(𝑅𝑘 ) and 𝜉 (𝑅𝑘 ), where

sq(𝑅𝑘 ) (𝑖, 𝑗) = (𝑅𝑘 (𝑖, 𝑗))2 , 𝜉 (𝑅𝑘 ) (𝑖, 𝑗) = 𝜉 (𝑅𝑘 (𝑖, 𝑗)) , (𝑖, 𝑗) ∈ 𝐼𝑘 × 𝐽𝑘 . (8)

As an example, we illustrate the matrices 𝑅1, sq(𝑅1) and 𝜉 (𝑅1) corresponding to [[𝑅1]] from Eq. (6):

𝑅1 =
©«
0 2 4 0

0 0 0 4

5 0 0 1

ª®¬ , sq(𝑅1) = ©«
0 4 16 0

0 0 0 16

25 0 0 1

ª®¬ , 𝜉 (𝑅1) = ©«
0 1 1 0

0 0 0 1

1 0 0 1

ª®¬ .
The vendor 𝑉𝑘 then proceeds to generate 𝐷 ′-out-of-𝐷 shares in each entry of each of those three

matrices, with 𝐷 ′ = ⌊(𝐷 + 1)/2⌋, and distributes those shares to the mediators.

In Phase 2 (Lines 6-9) each mediator accumulates the shares received from all vendors. To that

end, 𝑇𝑑 (for every 𝑑 ∈ [𝐷]) first initializes three share matrices, denoted 𝑅𝑑 , sq(𝑅)𝑑 and 𝜉 (𝑅)𝑑 , to
be 𝑁 ×𝑀 zero matrices. Then, whenever he gets sub-matrices of shares from a vendor, 𝑉𝑘 , he adds

those shares to the relevant entries of the matrix (𝑅𝑑 , sq(𝑅)𝑑 or 𝜉 (𝑅)𝑑 ). In view of Eq. (5) and the

linearity of secret sharing, in the end of this phase the collection of all 𝐷 shares {𝑅𝑑 (𝑛,𝑚)}𝑑∈[𝐷 ] are
𝐷 ′-out-of-𝐷 shares in 𝑅(𝑛,𝑚) for every (𝑛,𝑚) ∈ [𝑁 ] × [𝑀]. Similarly, the entries of the matrices

sq(𝑅)𝑑 and 𝜉 (𝑅)𝑑 , 𝑑 ∈ [𝐷], are 𝐷 ′-out-of-𝐷 shares in the entries of sq(𝑅) and 𝜉 (𝑅), respectively.
(Note that here we rely on our assumption that each user had rated each item at most once, see

Section 3.2. In Appendix A we discuss the case in which a user rated some item more than once.)

Finally, in Phase 3 (Lines 10-18), the mediators use those shares in order to compute the similarity

score between every pair of items, 𝑏ℓ and 𝑏𝑚 , 1 ≤ ℓ < 𝑚 ≤ 𝑀 . As explained earlier, this computation

is carried out by computing the three inner products 𝑧1, 𝑧2 and 𝑧3 in Eq. (4). This is done in Lines 11-

13 in Protocol 1, by invoking Protocol 2, which we explain later on. Then, they compute from those

three values the final score 𝑆 (ℓ,𝑚), according to Definition 3.1 (Lines 14-17). Since the similarity

scores will be used later on in computations over Z𝑝 , the mediators translate the real-valued scores

into integral ones by multiplying them by a sufficiently large factor 𝑄 and rounding to the nearest

integer. We used in our experiments 𝑄 = 1000 (a choice that preserves an accuracy of three digits

after the decimal point). Finally, as the similarity score matrix 𝑆 is symmetric, the mediators store

the similarity score 𝑆 (ℓ,𝑚) which they just computed also in 𝑆 (𝑚, ℓ) (Line 18).
We note that the computation of the similarity score between a given pair of items can be

done by just one of the mediators and then broadcast to all other mediators. Hence, for efficiency,

the mediators may split among themselves the entries of the similarity matrix so that the final

computations in each such entry is carried out by only one of the mediators.

Protocol 2 computes inner products between vectors in Z𝑁𝑝 which are shared by a 𝐷 ′-out-of-𝐷
secret sharing scheme among the 𝐷 mediators, where 𝐷 ′ = ⌊(𝐷 + 1)/2⌋. It serves as a sub-protocol
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Protocol 1: Computing the similarity matrix.

Input: Each 𝑉𝑘 , 𝑘 ∈ [𝐾], holds a matrix {𝑅𝑘 (𝑖, 𝑗) : (𝑖, 𝑗) ∈ 𝐼𝑘 × 𝐽𝑘 }.
1 forall 𝑘 ∈ [𝐾] do
2 𝑉𝑘 computes sq(𝑅𝑘 ) and 𝜉 (𝑅𝑘 ).
3 𝑉𝑘 computes 𝐷 ′-out-of-𝐷 shares, {𝑅𝑑

𝑘
(𝑖, 𝑗) : (𝑖, 𝑗) ∈ 𝐼𝑘 × 𝐽𝑘 }𝑑∈[𝐷 ] , in each entry in 𝑅𝑘 .

4 𝑉𝑘 sends the 𝑑th set of shares to 𝑇𝑑 , for all 𝑑 ∈ [𝐷].
5 𝑉𝑘 does similarly with the matrices sq(𝑅𝑘 ) and 𝜉 (𝑅𝑘 ).
6 forall 𝑑 ∈ [𝐷] do
7 𝑇𝑑 initializes 𝑁 ×𝑀 matrices, denoted 𝑅𝑑 , sq(𝑅)𝑑 and 𝜉 (𝑅)𝑑 , to be the zero matrices.

8 When receiving from 𝑉𝑘 the set of shares {𝑅𝑑𝑘 (𝑖, 𝑗) : (𝑖, 𝑗) ∈ 𝐼𝑘 × 𝐽𝑘 }, 𝑇𝑑 updates the

entries of the matrix 𝑅𝑑 as follows: 𝑅𝑑 (𝑖, 𝑗) ← 𝑅𝑑 (𝑖, 𝑗) + 𝑅𝑑
𝑘
(𝑖, 𝑗) for all (𝑖, 𝑗) ∈ 𝐼𝑘 × 𝐽𝑘 .

9 Similarly, 𝑇𝑑 updates the entries of the matrices sq(𝑅)𝑑 and 𝜉 (𝑅)𝑑 .
10 forall 1 ≤ ℓ < 𝑚 ≤ 𝑀 do
11 The mediators invoke Protocol 2 to compute 𝑧1 = ⟨cℓ , c𝑚⟩ from their shares in cℓ and c𝑚 .
12 Similarly, they compute 𝑧2 = ⟨c2ℓ , 𝜉 (c𝑚)⟩ from their shares in c2ℓ and 𝜉 (c𝑚).
13 Similarly, they compute 𝑧3 = ⟨𝜉 (cℓ ), c2𝑚⟩ from their shares in 𝜉 (cℓ ) and c2𝑚 .
14 if 𝑧2𝑧3 ≠ 0 then
15 The mediators set 𝑆 (ℓ,𝑚) ← ⌊𝑄𝑧1/

√
𝑧2𝑧3 + 0.5⌋.

16 else
17 The mediators set 𝑆 (ℓ,𝑚) = 0.

18 𝑆 (𝑚, ℓ) ← 𝑆 (ℓ,𝑚).
Output :T get 𝑆 (ℓ,𝑚).

in Lines 11-13 in Phase 3 of Protocol 1. Note that the goal of Phases 1 and 2 in Protocol 1 is to

ensure the initial requirement in Protocol 2.

Let v1 and v2 be the two secret vectors in Z𝑁𝑝 , in which the mediators hold shares. The goal

is to compute ⟨v1, v2⟩. For each 𝑖 ∈ [2] and each 𝑛 ∈ [𝑁 ], the 𝐷 values {v𝑖,𝑑 (𝑛)}𝑑∈[𝐷 ] are 𝐷 ′-
out-of-𝐷 shares in v𝑖 (𝑛). The meaning of that is that there exists a polynomial 𝑓𝑖,𝑛 of degree

𝐷 ′ − 1 over Z𝑝 , such that the share v𝑖,𝑑 (𝑛) that 𝑇𝑑 holds in v𝑖 (𝑛) equals 𝑓𝑖,𝑛 (𝑑), 𝑑 ∈ [𝐷]. Now,
consider the polynomial 𝐹 :=

∑𝑁
𝑛=1 𝑓1,𝑛 · 𝑓2,𝑛 . It is a polynomial of degree 2(𝐷 ′ − 1) over Z𝑝 . In

particular, one needs 2𝐷 ′ − 1 point values in 𝐹 in order to reconstruct it. In addition, 𝐹 (0) =∑𝑁
𝑛=1 𝑓1,𝑛 (0) · 𝑓2,𝑛 (0) =

∑𝑁
𝑛=1 v1 (𝑛) · v2 (𝑛) = ⟨v1, v2⟩. The value that each 𝑇𝑑 computes in Line 1

equals 𝑠𝑑 =
∑
𝑛∈[𝑁 ] v1,𝑑 (𝑛) · v2,𝑑 (𝑛) =

∑
𝑛∈[𝑁 ] 𝑓1,𝑛 (𝑑) · 𝑓2,𝑛 (𝑑) = 𝐹 (𝑑). Therefore, the set of shares

{𝑠𝑑 }𝑑∈[𝐷 ] is a set of (2𝐷 ′ − 1)-out-of-𝐷 shares in the desired inner product. Our setting of 𝐷 ′

ensures that 2𝐷 ′ − 1 ≤ 𝐷 . (Specifically, if 𝐷 is odd then 2𝐷 ′ − 1 = 𝐷 , while if 𝐷 is even then

2𝐷 ′ − 1 = 𝐷 − 1.) Hence, any selection of 2𝐷 ′ − 1 mediators can use their 𝑠𝑑 -shares that were

computed in Line 1 in order to interpolate 𝐹 (Line 2) and recover ⟨v1, v2⟩ (Line 3).

4.1.1 Computational and communication costs. The computational cost for vendor 𝑉𝑘 , 𝑘 ∈ [𝐾],
is 𝑂 ( |𝐼𝑘 | · |𝐽𝐾 | · 𝐷) (Lines 1-5 in Protocol 1), which is bounded by 𝑂 (𝑁𝑀𝐷). The cost of Phase
2 (Lines 6-9) for each mediator is bounded by 𝑂 (𝑁𝑀𝐾), while the cost of Phase 3 is bounded

by 𝑂 (𝑀2 (𝑁 + 𝐷)). As for communication, each vendor 𝑉𝑘 , 𝑘 ∈ [𝐾], has to send to each of the

𝐷 mediators three shares relating to each of the |𝐼𝑘 | · |𝐽𝑘 | entries in his sub-matrix. Hence, the

communication cost is

∑
𝑘∈[𝐾 ] 3𝐷 ⌈log𝑝⌉ · |𝐼𝑘 | · |𝐽𝑘 | bits (which, in the vertical, horizontal or hybrid

distribution scenarios equals 3𝑁𝑀𝐷 ⌈log𝑝⌉).
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Protocol 2: InnerProduct: Computing inner product between shared vectors.

Input: v𝑖 , 𝑖 ∈ [2], are two vectors in Z𝑁𝑝 . Every mediator 𝑇𝑑 in T = {𝑇1, . . . ,𝑇𝐷 } holds
𝐷 ′-out-of-𝐷 vector shares in them, denoted v𝑖,𝑑 .

1 Each 𝑇𝑑 , 𝑑 ∈ [𝐷], computes 𝑠𝑑 ←
∑
𝑛∈[𝑁 ] v1,𝑑 (𝑛) · v2,𝑑 (𝑛).

2 Any selection of 2𝐷 ′ − 1 mediators out of T use their 𝑠𝑑 -shares in order to interpolate a

polynomial 𝐹 (·) of degree 2𝐷 ′ − 2 that agrees with those 2𝐷 ′ − 1 𝑠𝑑 -shares.
3 The inner product between the two input vectors is ⟨v1, v2⟩ ← 𝐹 (0).
Output :T gets ⟨v1, v2⟩.

4.1.2 Privacy. The protocols maintain the privacy of the inputs provided by the vendors as those

inputs are communicated to the mediators by𝐷 ′-out-of-𝐷 secret sharing. Indeed, in order to recover

the private user-item ratings, at least 𝐷 ′ = ⌊(𝐷 + 1)/2⌋ mediators would need to collaborate. But

as we assumed that the mediators have an honest majority, then if some of them collude in order

to try and reconstruct the private data, the number of such colluding mediators would be strictly

less than 𝐷/2 ≤ 𝐷 ′; such a coalition of mediators would not be able to learn a thing on the shared

private data.

We would like to stress that this shield of protection is in the information-theoretic sense: namely,

even if the mediators have unlimited computing power, they would not be to reveal any information

on the shared user-item ratings. This level of security is higher than that offered by encryption-

based protocols, as the latter rely on the assumption that the adversary (the mediators in our case)

can execute only polynomial-time computations on the data that they received in order to extract

information on the private inputs.

Note that our protocols are not perfectly secure, in the MPC sense, as they reveal to the mediators

not only the final desired outputs (the similarity scores 𝑆 (ℓ,𝑚)) but also the intermediate values

𝑧1, 𝑧2, 𝑧3. Hiding even those intermediate values (which do not reveal private information about

specific ratings of individual users) is possible, but that would significantly increase the runtimes

of the protocols (see more on that in our concluding remarks, Section 6).

It is important to note that while in theory perfect privacy can always be achieved (e.g., by imple-

menting generic solutions such as Yao’s garbled circuit construction [51]), in practice privacy must

always be balanced against efficiency. Therefore, when looking for practical solutions, some relax-

ations of the notion of perfect privacy are usually inevitable, provided that the leaked information

is deemed benign. Examples for such studies are numerous and span various domains of distributed

computing, e.g. anonymization of distributed datasets [18, 42, 45, 53], distributed association rule

mining [19, 35, 41, 48, 52], distributed constraint optimization problems [15–17, 23, 43, 44, 46, 47],

distributed graph mining [3] and more. The same goes for all studies on PPCF studies that we

reviewed in Section 2.

4.2 Computing predicted ratings
In view of Eq. (2) and the definitions preceding it, the predicted rating is given by

𝑃 (𝑢𝑛, 𝑏𝑚) := 𝑅(𝑏𝑚) +
𝑢𝑛,𝑚 − 𝑣𝑛,𝑚

𝑤𝑛,𝑚
, (9)

where

𝑅(𝑏𝑚) =
∑
𝑛∈[𝑁 ] 𝑅 (𝑛,𝑚)∑

𝑛∈[𝑁 ] 𝜉 (𝑅 (𝑛,𝑚)) , 𝑢𝑛,𝑚 :=
∑
ℓ∈[𝑀 ] s𝑚 (ℓ) · 𝑅(𝑛, ℓ) ,

𝑣𝑛,𝑚 :=
∑
ℓ∈[𝑀 ] s𝑚 (ℓ) · 𝑅(𝑏ℓ ) · 𝜉 (𝑅(𝑛, ℓ)) , 𝑤𝑛,𝑚 :=

∑
ℓ∈[𝑀 ] s𝑚 (ℓ) · 𝜉 (𝑅(𝑛, ℓ)) .

(10)
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Before moving on to explaining how the mediators can compute each of the values in Eq. (9), we

observe that the average ratings, 𝑅(𝑏ℓ ), ℓ ∈ [𝑀], are rational numbers. However, the computation

of 𝑣𝑛,𝑚 , Eq. (10), must be carried out in the secret sharing field Z𝑝 , since it involves entries of the
matrix 𝜉 (𝑅), in which the mediators hold shares in Z𝑝 . Therefore, we replace the computation of

𝑣𝑛,𝑚 in Eq. (10) with the following approximation,

𝑣𝑛,𝑚 =
1

𝑄

∑︁
ℓ∈[𝑀 ]

𝑐ℓ · 𝜉 (𝑅(𝑛, ℓ)) where 𝑐ℓ = ⌊𝑄 · s𝑚 (ℓ) · 𝑅(𝑏ℓ ) + 0.5⌋ . (11)

Here, 𝑄 is a re-scaling factor like the one that we used in Line 15 of Protocol 1 in order to translate

the read-valued similarity scores into integral ones.

4.2.1 Computing affine combinations of secrets. Before we describe the needed computations in

the offline phase (Section 4.2.2) and in the online phase (Section 4.2.3), we observe that the sums

in Eqs. (10) and (11) are all linear combinations of secrets. Hence, we make herein the following

helpful observation:

Let 𝑟 𝑗 be secrets that are shared among the mediators by a 𝐷 ′-out-of-𝐷 secret sharing scheme.

Assume that 𝜎 = 𝛽 +∑𝑗 𝛾 𝑗𝑟 𝑗 , where 𝛽 and 𝛾 𝑗 are known integers. Then the mediators can compute

the sum 𝜎 , without recovering the secrets 𝑟 𝑗 , as follows. Letting 𝑟
𝑑
𝑗 denote 𝑇𝑑 ’s share in 𝑟 𝑗 , 𝑑 ∈ [𝐷],

then by the linearity of secret sharing, the values {𝛽 +∑𝑗 𝛾 𝑗𝑟
𝑑
𝑗 : 𝑑 ∈ [𝐷]} are proper 𝐷 ′-out-of-𝐷

shares in 𝜎 = 𝛽 +∑𝑗 𝛾 𝑗𝑟 𝑗 . Hence, any subset of 𝐷 ′ mediators can use the latter shares in order to

recover the desired sum 𝜎 .

4.2.2 Offline computations. Here we identify all of the values in Eqs. (9)–(11) that do not depend

on 𝑛 and, consequently, can be computed by the mediators already in the offline phase:

(1) Compute the numerator and denominator in the expression for 𝑅(𝑏𝑚) in Eq. (10) from the

shares in 𝑅’s and 𝜉 (𝑅)’s entries, as explained in Section 4.2.1, and then divide them in order

to obtain 𝑅(𝑏𝑚) for all𝑚 ∈ [𝑀].
(2) Compute the vectors s𝑚 ,𝑚 ∈ [𝑀], from the similarity score matrix 𝑆 , according to their

definition in Section 3.1.

(3) Given the average item ratings and the vectors s𝑚 , the mediators will proceed to compute

the integer coefficients 𝑐ℓ , ℓ ∈ [𝑀], as defined in Eq. (11).

4.2.3 Online computations. Assume that a vendor𝑉𝑘 submitted a query in the form (𝑛,𝑚) ∈ 𝐼𝑘 × 𝐽𝑘 .
Namely, a query that asks for a predicted rating that a user 𝑢𝑛 , whom𝑉𝑘 serves (𝑛 ∈ 𝐼𝑘 ), would give
to an item 𝑏𝑚 that𝑉𝑘 offers (𝑚 ∈ 𝐽𝑘 ). Upon receiving such a query, the mediators will compute 𝑢𝑛,𝑚 ,

𝑤𝑛,𝑚 and 𝑣𝑛,𝑚 from the shares that they got in 𝑅’s and 𝜉 (𝑅)’s entries, and the known coefficients in

the linear combinations in Eqs. (10)+(11), respectively, as described in Section 4.2.1. Then, they will

compute the predicted rating, 𝑃 (𝑢𝑛, 𝑏𝑚), by plugging into Eq. (9) the values 𝑢𝑛,𝑚 , 𝑤𝑛,𝑚 and 𝑣𝑛,𝑚

which they had just computed, as well as the item average rating 𝑅(𝑏𝑚), which they had already

computed in the offline phase. Finally, they will send the computed predicted rating to 𝑉𝑘 .

Throughout the above described process, the private user-item ratings remain protected against

the mediators, under our assumption of honest majority.

4.3 Computing the most recommended items
When a vendor 𝑉𝑘 , 𝑘 ∈ [𝐾], wants to recommend to one of his users, 𝑢𝑛 , 𝑛 ∈ 𝐼𝑘 , items that will

most likely appeal to her,𝑉𝑘 submits a query to the mediators so that they can jointly and privately

find the ℎ items from {𝑏𝑚 : 𝑚 ∈ 𝐽𝑘 } that maximize the score 𝑠 (𝑚), Eq. (3), and that 𝑢𝑛 still had

not rated. Define for every𝑚 ∈ [𝑀] the vector s′𝑚 as follows: s′𝑚 (ℓ) = 𝑆 (𝑚, ℓ) if ℓ ∈ 𝑁𝑞 (𝑚) while
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s′𝑚 (ℓ) = 0 otherwise.
2
Then, by Eq. (3),

𝑠 (𝑚) =
∑︁
ℓ∈[𝑀 ]

s′𝑚 (ℓ) · 𝜉 (𝑅(𝑛, ℓ)) . (12)

The mediators will compute the vectors s′𝑚 ,𝑚 ∈ [𝑀], once in the offline phase. The vectors s′𝑚
may have negative entries, since the set of 𝑞 nearest neighbors of 𝑏𝑚 could include items 𝑏ℓ for

which 𝑆 (𝑚, ℓ) < 0. We note that 𝑆 (𝑚, ℓ) ∈ [−𝑄,𝑄]. Indeed, the original cosine-score, Eq. (1), is
confined to the interval [−1, 1], as implied by the Cauchy-Schwarz inequality. Hence, after the

rescaling by 𝑄 (see Line 15 in Protocol 1), the entries of the matrix 𝑆 are confined to the interval

[−𝑄,𝑄]. Therefore, as the number of nonzero addends in the sum in Eq. (12) is at most 𝑞, we infer

that 𝑠 (𝑚) := (𝑞𝑄 + 1) + 𝑠 (𝑚) ≥ 1. As the mapping from 𝑠 to 𝑠 is monotone, we can look for the ℎ

items that maximize 𝑠 .

We proceed to present Protocol 3 that privately computes the subset of ℎ items 𝑏𝑚 ,𝑚 ∈ 𝐽𝑘 , with
highest 𝑠 (𝑚) scores. The protocol starts by 𝑉𝑘 submitting a query to the mediators (Line 1). That

query includes an index 𝑛 ∈ 𝐼𝑘 of a user 𝑢𝑛 that 𝑉𝑘 serves. Then (Line 2), the mediators jointly

generate a random and secret permutation 𝜋 over 𝐽𝑘 – the set of indices of items that 𝑉𝑘 offers.
3

Next, the mediators perform the computations in Lines 3-6. Each mediator 𝑇𝑑 sets a vec-

tor of shares x𝑑 which is initialized to hold in its 𝑚th entry, 𝑚 ∈ 𝐽𝑘 , the value (𝑞𝑄 + 1) +∑
ℓ∈[𝑀 ] s′𝑚 (ℓ)𝜉 (𝑅)𝑑 (𝑛, ℓ) (Line 4). In view of Eq. (12) and our discussion in Section 4.2.1, the set

{x𝑑 (𝑚) : 𝑑 ∈ [𝐷]} is a set of 𝐷 ′-out-of-𝐷 shares in 𝑠 (𝑚) = (𝑞𝑄 + 1) + 𝑠 (𝑚). Next (Line 5),𝑇𝑑 multi-

plies each entry in x𝑑 with the corresponding 𝐷 ′-out-of-𝐷 share in 1 − 𝜉 (𝑅) (𝑛,𝑚). The resulting
set {x𝑑 (𝑚) : 𝑑 ∈ [𝐷]} is now a set of (2𝐷 ′ − 1)-out-of-𝐷 shares in 𝑠 (𝑚) · (1 − 𝜉 (𝑅) (𝑛,𝑚)) (as it
is the same computation of producing shares in a product of two shared secrets, like we did in

Protocol 2). Then (Line 6), 𝑇𝑑 sends to 𝑉𝑘 the vector y𝑑 which is the result of permuting x𝑑 entries

using the secret permutation 𝜋 .

After collecting the responses from all mediators, 𝑉𝑘 selects a subset of 2𝐷
′ − 1 vectors from

{y𝑑 : 𝑑 ∈ [𝐷]} in order to interpolate their entries for each𝑚 ∈ 𝐽𝑘 and recover the underlying shared
secret, denoted 𝑧𝑚 (Line 7). In view of the above discussion, 𝑧𝑚 = 𝑠 (𝜋−1 (𝑚)) · (1− 𝜉 (𝑅) (𝑛, 𝜋−1 (𝑚))).
Namely, 𝑧𝑚 equals the 𝑠-score of the item 𝑏𝜋−1 (𝑚) , if that item had not been rated so far by 𝑢𝑛 ,

while 𝑧𝑚 equals zero otherwise. Since 𝑠 (𝑚) ≥ 1 for all𝑚, then the indices 𝑖1, . . . , 𝑖ℎ of the largest

values in {𝑧𝑚 :𝑚 ∈ 𝐽𝑘 } identify the indices of the ℎ items that were not rated so far by 𝑢𝑛 and have

largest 𝑠-scores. 𝑉𝑘 sends those indices to the mediators who proceed to apply on them the inverse

permutation 𝜋−1 and send them back to𝑉𝑘 (Lines 8-9). Consequently,𝑉𝑘 now has the indices of the

top ℎ items, yet unrated by 𝑢𝑛 , which maximize the 𝑠- and 𝑠-scores.

4.3.1 Privacy. The only information that the mediators obtain in the course of Protocol 3 is the

indices of the top ℎ items to recommend to 𝑢𝑛 . In case that such information may be deemed

sensitive, it is possible to apply an additional layer of security as follows. The vendors agree upfront

on a random and secret orderings of both the user set𝑈 = {𝑢1, . . . , 𝑢𝑁 }, and the global set of items,

𝐵 = {𝑏1, . . . , 𝑏𝑀 }. If those random orderings are kept secret from the mediators, then Protocol 3

reveals no information to the mediators.

As for the vendor𝑉𝑘 , the protocol does leak to him more information than just the desired output,

being the sought-after ℎ indices.𝑉𝑘 learns also the set of 𝑠-scores of all items that were still unrated

by 𝑢𝑛 . However, owing to the random permutation 𝜋 which is kept secret from him,𝑉𝑘 is unable to

2
Note that the definition of s′𝑚 slightly differs from that of s𝑚 , which is used in the context of predicted ratings, Section 4.2,

as s′𝑚 is defined by the index set 𝑁𝑞 (𝑚) while s𝑚 is defined by the index set 𝑁 +𝑞 (𝑚) , see Section 3.1.

3
The mediators may perform that computation using the Fisher–Yates shuffle algorithm (see e.g. [22]), where the random

numbers can be generated by jointly creating a random seed and feeding it into a linear-feedback shift register, such as the

Well Equi-distributed Long-period Linear (WELL) family of pseudorandom number generators [31].
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Protocol 3: Computing for 𝑢𝑛 the top ℎ yet unrated items offered by 𝑉𝑘 .

1 𝑉𝑘 submits to T a query 𝑛 ∈ 𝐼𝑘 .
2 T jointly generate a secret and random permutation 𝜋 over 𝐽𝑘 .

3 forall 𝑑 ∈ [𝐷] do
4 𝑇𝑑 defines an𝑀𝑘 -dimensional vector x𝑑 and sets

x𝑑 (𝑚) ← (𝑞𝑄 + 1) +
∑
ℓ∈[𝑀 ] s′𝑚 (ℓ)𝜉 (𝑅)𝑑 (𝑛, ℓ), ∀𝑚 ∈ 𝐽𝑘 .

5 𝑇𝑑 computes x𝑑 (𝑚) ← x𝑑 (𝑚) · (1 − 𝜉 (𝑅)𝑑 (𝑛,𝑚)), ∀𝑚 ∈ 𝐽𝑘 .
6 𝑇𝑑 sends to 𝑉𝑘 the permuted vector y𝑑 ← 𝜋 (x𝑑 ).
7 For every𝑚 ∈ 𝐽𝑘 , 𝑉𝑘 uses 2𝐷 ′ − 1 shares out of the received shares {y𝑑 (𝑚) : 𝑑 ∈ [𝐷]} in

order to recover the underlying shared secret 𝑧𝑚 ,𝑚 ∈ 𝐽𝑘 .
8 𝑉𝑘 identifies the ℎ values of 𝑧𝑚 ,𝑚 ∈ 𝐽𝑘 , which are largest, and sends their indices, denoted

{𝑖1, . . . , 𝑖ℎ}, to T.
9 The mediators send back to 𝑉𝑘 the set {𝜋−1 (𝑖1), . . . , 𝜋−1 (𝑖ℎ)}.
Output :𝑉𝐾 gets the indices in 𝐽𝑘 \ 𝐽 (𝑛) of the top ℎ items to be recommended to 𝑢𝑛 .

associate any of those scores to any specific item (beyond the fact that the top ℎ scores relate to the

top ℎ items). Such excess information is benign since it does not disclose private user-item ratings

owned by other vendors.

A single malicious mediator may disclose to the vendor𝑉𝑘 the secret permutation 𝜋 ; consequently,

𝑉𝑘 would learn the scores 𝑠 (𝑚), Eq. (3), of each of his items. Such excess information does not

jeopardize the privacy of users or other vendors, just as predicted ratings (Section 4.2) do not. In

fact, some recommender systems may require such information as they present to their users a

personal “match score" for each of the most recommended items (that is the case e.g. in Netflix).

The above described benign leakage of information to a coalition of a mediator and a vendor

could be eliminated if the mediators carry out the entire computation on their own, as we proceed

to outline. The mediators will skip Line 2 in Protocol 3, as they would have no interaction with

the vendor 𝑉𝑘 , and thus there would be no need for such a secret permutation. They will compute

𝑥𝑑 (𝑚) as described in Line 4 of Protocol 3; the set {𝑥𝑑 (𝑚) : 𝑑 ∈ [𝐷]} is a set of 𝐷 ′-out-of-𝐷 shares

in the shifted score 𝑠 (𝑚) = (𝑞𝑄 + 1) + 𝑠 (𝑚),𝑚 ∈ 𝐽𝑘 . Then, instead of Line 5, the mediators will

invoke an MPC sub-protocol (see e.g. [8, 10]) in order to compute from those shares, and from

the 𝐷 ′-out-of-𝐷 shares that they hold in 1 − 𝜉 (𝑅) (𝑛,𝑚), a set of 𝐷 ′-out-of-𝐷 shares in the product

𝑠 (𝑚) · (1− 𝜉 (𝑅) (𝑛,𝑚)). (The difference with respect to the computation that takes place in Line 5 of

Protocol 3 is that the latter computation results in (2𝐷 ′ − 1)-out-of-𝐷 shares in the same product,

instead of 𝐷 ′-out-of-𝐷 shares, as we need for the next computation.) Afterwards, the mediators

can invoke a secure comparison sub-protocol [29] in order to identify the ℎ items that maximize

𝑠 (𝑚) · (1 − 𝜉 (𝑅) (𝑛,𝑚)) (namely, the ℎ items that 𝑢𝑛 had not rated yet and maximize 𝑠 (𝑚)) without
recovering those scores. In conclusion, the mediators will notify 𝑉𝑘 of the indices of those items.

Such a course of action would entail higher runtimes. The information that such a protocol

protects, in comparison with the previously described scenario in which a malicious mediator

discloses the secret permutation in Protocol 3, is of a very benign nature, and in some recommender

systems it is even part of the desired output. Hence, such an MPC-enhanced protocol might not be

attractive in some practical recommendation systems.
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4.4 Efficient execution of the offline computations in wake of updates in the user-item
rating matrix

The computations in the offline phase (Section 4.1) have to be repeated in some periodicity in order

to update the similarity matrix due to recent activities of the users (e.g., Alice added a rating to a

movie she saw, or Bob decided to increase the rating he had previously given to some book). It

is possible to run Protocol 1 every predetermined update period (say, once every day), in order

to incorporate such recent updates in the similarity model. However, as the vast majority of the

user-item matrix entries would remain the same, most of the computations would be redundant.

Here we suggest a more careful implementation of Protocol 1, which takes into account that only a

small fraction of the matrix entries had changed.

Assume that in the current update period, user 𝑢𝑛𝑖 rated (or changed a previous rating for) item

𝑏𝑚𝑖 , 1 ≤ 𝑖 ≤ 𝑡 . Namely, 𝑡 of 𝑅’s entries, {𝑅(𝑛𝑖 ,𝑚𝑖 ) : 1 ≤ 𝑖 ≤ 𝑡}, need to be updated. One way

to perform these updates is that the relevant vendors, through whom those activities took place,

would send to the mediators updated shares only for those entries, instead of doing so for all of the

entries in their corresponding sub-matrices, as is done in Lines 1-5 of Protocol 1. Alas, that would

disclose to the mediators which user rated what item. Even though the actual rating would be still

hidden from the mediators, such an information leakage is prohibited as it violates the users’ right

for privacy. In contrast, the vendors could completely ignore efficiency and simply execute Lines

1-5 of Protocol 1 fully; that approach would maintain perfect privacy.

However, instead of those two extreme approaches, the first that is geared towards efficiency,

and the second that is geared towards privacy, the vendors could take an intermediate approach.

Recall that each vendor 𝑉𝑘 possesses a sub-matrix 𝑅𝑘 of dimensions 𝑁𝑘 ×𝑀𝑘 which relates to the

entries (𝑛,𝑚) ∈ 𝐼𝑘 × 𝐽𝑘 in the global user-item rating matrix 𝑅 that he controls. Assume that in a

given update period, the subset of 𝑉𝑘 ’s entries that had changed is 𝐴𝑘 ⊆ 𝐼𝑘 × 𝐽𝑘 . Then instead of

updating just 𝐴𝑘 (first approach) or all of 𝐼𝑘 × 𝐽𝑘 (second approach), 𝑉𝑘 chooses a random subset

𝐴𝑘 where 𝐴𝑘 ⊆ 𝐴𝑘 ⊆ 𝐼𝑘 × 𝐽𝑘 , and then he updates all entries in 𝐴𝑘 . By that we mean that𝑉𝑘 shares

with the mediators the difference 𝑅′
𝑘
(𝑛,𝑚) − 𝑅𝑘 (𝑛,𝑚) for all (𝑛,𝑚) ∈ 𝐴𝑘 , where 𝑅𝑘 (𝑛,𝑚) is the

previous value of that entry and 𝑅′
𝑘
(𝑛,𝑚) is the updated value. Note that for all entries in 𝐴𝑘 \𝐴𝑘 ,

that difference would be zero. As for the entries in 𝐴𝑘 , in the typical case where this is the first

time in which 𝑢𝑛 rates item 𝑏𝑚 , we will have 𝑅
′
𝑘
(𝑛,𝑚) − 𝑅𝑘 (𝑛,𝑚) = 𝑅′𝑘 (𝑛,𝑚). However, in cases

where 𝑢𝑛 modifies his rating to 𝑏𝑚 , the value that 𝑉𝑘 shares among the mediators is the difference

between the previous and updated ratings.

Higher values of the ratio |𝐴𝑘 |/|𝐴𝑘 | imply higher levels of privacy, since the mediators can infer

for any given entry in 𝐴𝑘 that it was an entry that actually changed in probability |𝐴𝑘 |/|𝐴𝑘 | (under
the assumption that the ratio |𝐴𝑘 |/|𝐴𝑘 | is known). On the other hand, the runtime for 𝑉𝑘 in Lines

2-5 of Protocol 1, as well as the runtime for the mediators in Lines 8-9, will reduce by a factor of

𝑁𝑘𝑀𝑘/|𝐴𝑘 |.
As we shall see in Section 5, the main computational toll in all of Protocol 1 is the computation

of inner products in Line 1 of Protocol 2 (that is called in Lines 11-13 of Protocol 1). Let us focus on

a pair of items, 𝑏ℓ , 𝑏𝑚 ∈ 𝐵. Let cℓ and c𝑚 denote their corresponding columns in 𝑅 and let Δcℓ and
Δc𝑚 denote the updates to those two columns. Then the mediators need to compute in Line 11 the

inner product ⟨cℓ + Δcℓ , c𝑚 + Δc𝑚⟩. By bilinearity,

⟨cℓ + Δcℓ , c𝑚 + Δc𝑚⟩ = ⟨cℓ , c𝑚⟩ + ⟨cℓ ,Δc𝑚⟩ + ⟨Δcℓ , c𝑚⟩ + ⟨Δcℓ ,Δc𝑚⟩ . (13)

The first inner product on the right hand side of Eq. (13) is the current inner product that was

already computed in the last update period. Hence, it suffices to compute each of the other three

inner products on the right hand side of Eq. (13). But since those are inner products between vectors
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dataset 𝑁 𝑀 𝑛𝑢𝑚𝑅 density scale

ML100K 943 1682 10
5

6.30% [1,5]

ML1M 6040 3706 10
6

4.47% [1,5]

ML10M 71567 10677 10
7

1.30% [1,5]

ML20M 138493 26744 2 · 107 0.54% [1,5]

WN0 100000 10000 2 · 107 2% [1,5]

WN1 250000 10000 5 · 107 2% [1,5]

WN2 500000 10000 1 · 108 2% [1,5]

WN3 1000000 10000 2 · 108 2% [1,5]

WM0 100000 10000 2 · 107 2% [1,5]

WM1 100000 25000 5 · 107 2% [1,5]

WM2 100000 50000 1 · 108 2% [1,5]

WM3 100000 100000 2 · 108 2% [1,5]

Table 1. Dataset characteristics

of dimensions that are significantly smaller than 𝑁 (because both Δcℓ and Δcℓ are vectors that
involve only a small fraction of the users), the time to compute them is significantly smaller than

the time that is required to compute an inner product of two vectors of dimension 𝑁 . In the next

section we illustrate the advantages of this approach in several simulated scenarios.

5 EXPERIMENTS
5.1 overview
Our protocols issue the very same similarity scores, predicted ratings and predicted rankings as

described in Section 3.1; namely, the privacy-preserving mechanisms that we apply do not alter the

computed outputs (as opposed to obfuscation- or clustering-based methods). In particular, they

issue the very same outputs as the protocols of [38]. Hence, we focus herein on runtime experiments

in order to show the dramatic advantage that our protocols offer, in comparison to [38], in terms of

runtimes. We stress that apart from runtime, our protocols offer other significant advantages, of

qualitative nature, as discussed in the Introduction.

⊲ Experimental setting. All experiments were run on a virtual machine in the Google Could

Platform with the c2-standard-60 machine (60 vCPUs, 240 GB memory). The algorithms were

implemented in C++.

⊲Datasets.Weused four publicly available datasets:MovieLens 100K,MovieLens 1M,MovieLens
10M, and MovieLens 20M. (In all tables hereinafter we refer to those datasets by the following

abbreviations: ML100K, ML1M, ML10M, and ML20M.) Those datasets are available online as CSV

files at https://grouplens.org/datasets/movielens/X, where the suffix ’X’ is ’100K’, ’1M’, ’10M’, or

’20M’. In addition, we generated artificial datasets in order to test the scalability of our algorithms

with respect to the number of users, 𝑁 , and number of items, 𝑀 .
4
The datasets for testing the

runtime dependency on 𝑁 (𝑀) are denoted WN𝑖 (WM𝑖), where 𝑖 = 0, 1, 2, 3. Table 1 reports the

main characteristics of all datasets: number of users 𝑁 , number of items 𝑀 , number of ratings

𝑛𝑢𝑚𝑅, density (in percents) —
𝑛𝑢𝑚𝑅
𝑁𝑀
× 100, and the rating scale.

4
The content of those datasets was generated as follows: 2 percents of their entries were filled with random ratings between

1 and 5, while the remaining entries were set to zero. Having said that, We stress that the runtime of our algorithms is not

affected by the content of the underlying dataset.
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We measured the runtimes for the vendors and the mediators to perform the computations in

the offline and online phases, and report them in Sections 5.2 and 5.3, respectively.

5.2 The offline phase
The main computational effort is in the offline phase. The computations that the vendors need

to perform are in Lines 2-5 of Protocol 1. As for the mediators, their offline tasks consist of (a)

Lines 7-9 in Protocol 1 for aggregating the share inputs from all vendors; (b) the main loop in Lines

10-18 of Protocol 1 for computing the similarity scores between all pairs of items; (c) the offline

computations as described in Section 4.2.2; (d) the offline computations as described in Section 4.3

(i.e., computing the vectors s′𝑚 ,𝑚 ∈ [𝑀]).

5.2.1 Runtimes for the vendors. The runtimes for the vendors are shown in Table 2. We assumed

that there exists only one vendor who holds the entire user-item matrix. In a distributed setting,

where the user-item matrix is distributed between several vendors (see Section 3.2), one may derive

the runtimes for a vendor𝑉𝑘 by multiplying the runtimes shown in Table 2 by the proportion of the

matrix that is held by 𝑉𝑘 , namely, by the fraction
𝑁𝑘𝑀𝑘
𝑁𝑀

. So for example, if the dataset MovieLens

20M is split evenly between 𝐾 = 5 vendors, then each of the vendors will spend around 70 seconds

in the case 𝐷 = 3 and up to 4.13 minutes in the case 𝐷 = 9. Such overhead is negligible as it occurs

very infrequently (say, once every few days) and can be carried out in idle time.

We note that larger values of 𝐷 increase the runtime for the vendors, since they need to utilize

polynomials of higher degree and generate more shares, for each of the entries in the matrices 𝑅𝑘 ,

sq(𝑅𝑘 ) and 𝜉 (𝑅𝑘 ).
We proceed to compare those results to the corresponding runtimes of the Single-Mediator

Protocols (SMP) of [38]. We focus here on their protocol for the vertical scenario. In that scenario,

each vendor𝑉𝑘 who possesses𝑀𝑘 columns out of the𝑀 columns in thematrix, has to perform 2𝑁𝑀𝑘

encryptions. The right side of Table 2 shows the corresponding runtimes, when the homomorphic

cipher is Paillier [30] (as used in [38]) with a modulus of 512 or 1024 bits. As with the runtimes for

our distributed mediation protocols, we assumed that there is a single vendor, namely, the shown

runtimes are the times to compute 2𝑁𝑀 encryptions. In a genuine vertical split, those runtimes

should be multiplied by the fraction of columns owned by that vendor (namely, by𝑀𝑘/𝑀). So for

example, when there are 𝐾 vendors and each of them possesses𝑀𝑘 ∼ 𝑀/𝐾 columns, the shown

runtimes should be divided by 𝐾 . As can be seen, the Single-Mediator protocol is not scalable. For

example, in a balanced vertical split with 𝐾 = 5, the runtime for each vendor with MovieLens
10M is roughly 24 hours, when using 512-bit encryptions, and more than a week when using

1024-cryptography. The runtimes forMovieLens 20M are roughly five times worse. However, as

we already saw, our protocol’s runtime on the MovieLens 20M dataset is only 4.13 minutes per

vendor in the 𝐾 = 5 vertical split scenario and 𝐷 = 9 mediators.

For both our protocol and the Single-Mediator protocol, the vendor’s runtime depends linearly on

the number of entries in the dataset, because the main effort in both protocols is in the cryptographic

processing of each of the dataset entries (secret sharing in our protocol and encryption in the

Single-Mediator protocol).

5.2.2 Runtimes for the mediators. The runtimes for the mediators are shown in Table 3, on the left

side of each column. The percentage shown on the right side of each column relates to the time

spent in Line 1 of Protocol 2. For example, in the 20M dataset, when 𝐷 = 9, nearly 54 minutes are

spent in Line 1 of Protocol 2, while less than half a minute is spent on all other offline computations.

As can be seen, in the larger datasets, the runtimes for the mediators are much larger than

those for the vendors. However, the lion’s share of those runtimes is spent on computing the
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dataset 𝐷=3 𝐷=5 𝐷=7 𝐷=9 SMP512 SMP1024

ML100K 0.095 0.224 0.296 0.415 0.898×103 6.62×103
ML1M 1.881 3.526 4.567 7.259 1.267×104 9.343×104
ML10M 72.925 110.062 184.564 220.324 4.327×105 31.894×105
ML20M 349.326 647.116 904.904 1240.474 2.097×106 15.459×106
WN0 73.025 132.725 184.625 254.925 5.664×105 41.74×105
WN1 182.187 331.437 461.937 636.937 1.996×105 14.714×105
WN2 365.25 663.75 923.25 1275.875 3.993×105 29.428×105
WN3 733.75 1330.75 1852.75 2552.25 5.664×106 41.74×106
WM0 73.025 132.725 184.625 254.925 5.664×105 41.74×105
WM1 187.687 339.187 480.187 636.937 1.996×105 14.714×105
WM2 375.875 678.875 960.875 1275.875 3.993×105 29.428×105
WM3 755.25 1364.25 1922.25 2552.25 5.664×106 41.74×106

Table 2. Runtimes (seconds) for a vendor in the offline phase. Left: our distributed mediated protocol for
different values of 𝐷 ; right: runtimes for the Single-Mediator Protocols (SMP) of [38] with 512- and 1024-bit
encryptions, in the vertical distribution scenario. All runtimes in the table need to be multiplied by the fraction
of the user-item matrix entries that are owned by the vendor.

dataset 𝐷=3 𝐷=5 𝐷=7 𝐷=9

ML100K 0.06 86.6% 0.048 79.1% 0.036 72.9% 0.03 67.7%

ML1M 0.48 67.2% 0.3 54.7% 0.24 46.4% 0.24 39.6%

ML10M 179 96.9% 178 96.9% 177 96.9% 177 96.9%

ML20M 3270 99.1% 3257 99.1% 3253 99.1% 3252 99.1%

WN0 309 97.7% 308 97.7% 308 97.7% 3071 97.7%

WN1 766 98.1% 765 98.1% 765 98.1% 765 98.1%

WN2 1537 97.7% 1536 97.7% 1536 97.7% 1535 97.7%

WN3 3110 97.7% 3108 97.7% 3108 97.7% 3108 97.7%

WM0 309 97.7% 308 97.7% 308 97.7% 307 97.7%

WM1 1906 99.2% 1899 99.2% 1896 99.2% 1894 99.2%

WM2 7602 99.5% 7575 99.5% 7564 99.5% 7558 99.5%

WM3 30361 99.7% 30249 99.7% 30197 99.7% 30169 99.7%

Table 3. Runtimes (seconds) for a mediator in the offline phase

inner products in Line 1 of Protocol 2. That computation is carried out even in a non-private

implementation of that CF method. Hence, the cost of privacy that our protocols entail is quite

insignificant.

We can see from Table 3 that the runtime depends linearly on 𝑁 and quadratically on𝑀 . Indeed,

the protocol needs to compute𝑀 (𝑀 − 1)/2 inner products of 𝑁 -dimensional vectors, and as most

of the runtime is spent on those computations, the overall runtime grows like 𝑂 (𝑁𝑀2).
Table 3 does not show the runtime for the mediator in the single-mediator offline protocol of [38];

that is because in that protocol, all of the computations in the offline phase are done by the vendors.

However, when considering the runtimes for both the vendors and mediators, as shown in Tables 2

and 3, it is evident that the improvement offered by distributing the mediation and, consequently,

of replacing expensive homomorphic encryptions with lightweight secret sharing computations, is
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overwhelming. Another advantage of our protocols is that the bulk of the computational overhead

is transferred from the vendors to the mediators.

(We note that for the 20M dataset, [38] state that a direct implementation of their Protocol 2

would take several days. The time that they report in Table 2 there, of 48 minutes, is for a relaxed

version of their Protocol 2 that re-uses encryptions of zero. Such a version is less secure than their

original Protocol 2.)

Here we see that the number of mediators, 𝐷 , has almost no effect on the runtime, and, in

fact, as 𝐷 increases the runtime for each mediator slightly decreases. We proceed to explain this

phenomenon. The main computational effort is in the invocations of Protocol 2, which is called

from Lines 11-13 in Protocol 1. The most time consuming computation here is the inner product

that each mediator performs in Line 1 of Protocol 2; that computation is indifferent to 𝐷 . However,

the subsequent computation in Line 2 of Protocol 2 depends on 𝐷 in two ways. On one hand,

the time for reconstruction increases with 𝐷 , since larger values of 𝐷 require interpolation of

higher-degree polynomials. On the other hand, the computational burden in Line 2 can be split

between the mediators. Namely, the mediators can decide upfront that each one of them will take

care of performing the computation in Line 2 of Protocol 2 only for𝑀 (𝑀 − 1)/(2𝐷) pairs of items.

A similar dual effect of 𝐷 on the resulting runtimes exists also in the offline computations that are

described in Sections 4.2.2 and 4.3. As it turns out, the latter effect (by which larger values of 𝐷 help

to reduce the average runtime per mediator by means of splitting the computational burden) is

slightly more noticeable than the former effect (by which larger values of 𝐷 require more involved

computations).

5.2.3 Scenarios with competing vendors. To conclude our discussion of runtimes in the offline

phase, we consider distribution scenarios in which different vendors own overlapping sub-matrices

in the user-item matrix. Define 𝛼 :=

∑
𝑘∈[𝐾 ] 𝑁𝑘𝑀𝑘
𝑁𝑀

to be the competition factor of the distributed
scenario; it equals the average number of competing vendors for each pair of a user and an item. In

all distributed scenarios that were considered in prior art (see Section 3.2), 𝛼 = 1. The runtimes for

the average mediator that were reported in Table 3 refer to the case 𝛼 = 1. If 𝛼 > 1, those runtimes

increase very slightly. Table 4 reports the increase in runtime when 𝛼 > 1 (with respect to the

runtimes when 𝛼 = 1, as reported in Table 3).

5.2.4 Runtimes of performing efficient updates. In Section 4.4 we described a way of executing

the offline computations efficiently in wake of updates in the user-item rating matrix. Here we

demonstrate the advantages of that approach.

Figures 1 and 2 show the offline runtimes for a vendor and for a mediator, on the two largest

datasets (WN3 and WM3) as a function of the percentage of entries in the global user-item rating

matrix 𝑅 that were updated. In both figures we took the number of mediators to be 𝐷 = 9, and

we assumed that there is a single vendor that holds all of 𝑅 (like we did in Section 5.2.1); as the

runtimes for the vendors depend linearly on the size of the sub-matrix that they hold, the derivation

of runtimes for vendors in a genuine distributed scenario from the runtimes shown in Figure 1 is

straightforward. In Figure 2 we have also showed the standard deviation as we ran the experiment

50 times, each with different random entries to be updated. The percentage shown on the horizontal

axis represents the number of entries for which the vendors send updates to the mediators at the

end of an update period. Note that this percentage relates not only to entries that actually changed

(𝐴𝑘 ) but to the superset of entries for which updates are sent (𝐴𝑘 ). We chose to show runtimes

for several percentage values, ranging from 1% to 100%. The runtimes shown for percentage of

100%, that is represented in both figures as a bold orange line, coincide with the runtimes that we

reported earlier in Tables 2 and 3, since it reflects a full implementation of Protocol 1. The runtimes
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dataset 𝛼=2 𝛼=3 𝛼=4 𝛼=5

ML100K 0.01 0.02 0.03 0.04

ML1M 0.147 0.294 0.441 0.588

ML10M 5.043 10.086 15.129 20.172

ML20M 24.445 48.89 73.335 97.78

WM0 6.6 13.2 19.8 26.4

WM1 13.2 26.4 39.6 52.8

WM2 33 66 99 132

WM3 66 132 198 264

WM4 132 264 396 528

WN0 6.6 13.2 19.8 26.4

WN1 13.2 26.4 39.6 52.8

WN2 33 66 99 132

WN3 66 132 198 264

WN4 132 264 396 528

Table 4. Overhead runtime (seconds) for a mediator in the offline phase for different values of 𝛼

shown for percentage of 1% illustrate the benefits of our suggested approach, as such a percentage

seems to be a realistic upper bound on the fraction of entries that would need to be updated in

typical update periods. Indeed, user-item rating matrices are typically very sparse (for example, the

largest real dataset in our experiments, MovieLens 20M, has only 0.54% non-zero entries). Assume

that during an update period 0.05% of the entries had changed (namely, about one tenth of the

overall number of nonzero entries), and that the vendors used a superset 𝐴𝑘 that is 20 times larger

than 𝐴𝑘 (what implies that the mediators could infer for each updated entry that it actually had

changed in probability of 1/20). Then that would result in updating 1% of the matrix entries.

Fig. 1. Runtimes in seconds for a single vendor performing partial updates, as a function of the percentage of
user-item matrix entries that were updated, on WN3 (top) and WM3 (bottom).

5.3 The online phase
The runtime for predicting ratings, for all testing configurations, was under 1 msec.

5
Computing

the most recommended items (Protocol 3) is more time-consuming, as it requires computing𝑀𝑘

5
In all of our experiments in the online phase, we used 𝑞 = 80 (see Section 3.1), as in [38].
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Fig. 2. Runtimes in seconds for each mediator performing partial updates, as a function of the percentage of
user-item matrix entries that were updated, on WN3 (top) and WM3 (bottom).

inner products of𝑀-dimensional vectors. Table 5 shows the runtimes of that computation for each

of the datasets, under the assumption that𝑀𝑘 = 𝑀 , for both our protocols and the single-mediator

protocols of [38]. When𝑀𝑘 < 𝑀 , all shown runtimes should be multiplied by𝑀𝑘/𝑀 . (We do not

consider here the WN0-WN3 datasets, since the runtimes in the online phase are not affected by

𝑁 .) We note that also here, the advantage of distributing the mediation is manifested by a dramatic

improvement in response times to recommendation queries.

dataset Our protocol SMP512 (V) SMP512 (H)

ML100K <0.001 12.850 0.938 12.850 0.938

ML1M <0.001 28.313 2.068 28.313 2.068

ML10M 0.044 81.572 5.959 81.572 5.959

ML20M 0.310 204.324 14.928 204.324 14.928

WM0 0.026 76.4 5.582 76.4 5.582

WM1 0.171 191 13.955 191 13.955

WM2 0.721 382 27.91 382 27.91

WM3 3.020 764 55.82 764 55.82

dataset SMP1024 (V) SMP1024 (H)

ML100K 73.604 7.018 73.604 7.018

ML1M 162.174 15.465 162.174 15.465

ML10M 467.225 44.555 467.225 44.555

ML20M 1170.317 111.602 1170.317 111.602

WM0 437.6 41.73 437.6 41.73

WM1 1094 104.325 1094 104.325

WM2 2188 208.65 2188 208.65

WM3 4376 417.3 4376 417.3

Table 5. Runtimes (seconds) for computing the most recommended items. Top table: our distributed mediated
protocol (left) and the Single-Mediator protocol of [38] with 512-bit encryptions, in the vertical (V) and
horizontal (H) distribution scenarios, for the mediator (left value within each column) and for the vendor
(right value). Bottom table: runtimes for the Single-Mediator protocol of [38] with 1024-bit encryptions. All
runtimes in the tables need to be multiplied by𝑀𝑘/𝑀 – the fraction of items offered by the corresponding
vendor.
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6 CONCLUSIONS
We presented herein secure multi-party protocols for performing item-based PPCF over distributed

datasets for a general distribution scenario. Our protocols utilize mediation, in similarity to the

protocols of [38], who showed the significant advantages of mediation in the context of PPCF.

While their protocols used a single mediator, our protocols assume several independent mediators.

That assumption enabled us to design protocols that are based on lightweight secret sharing

computations rather than costly homomorphic encryption. Distributed mediation maintains all

of the advantages of mediation that were identified in [38], and more: the distributed-mediator

protocols offer stronger security and overwhelmingly shorter runtimes, in comparison to the single-

mediator protocols. In addition, we considered a general distribution scenario that encompasses

all previously considered distribution scenarios and extends them to a more realistic scenario, in

which users have a choice between several competing vendors.

Some comments are in order:

(1) In Section 3.2 we stated our assumption that 𝐼𝑘 ⊆ [𝑁 ] (the set of indices of users that 𝑉𝑘
serves) and 𝐽𝑘 ⊆ [𝑀] (the set of indices of the items that𝑉𝑘 offers) are publicly known. Specifically,

for our purposes, it is required only that the mediators T know those sets, but not the other vendors.

While such an assumption is very natural (since vendors typically do not wish to hide the set of

items that they offer, nor the clientele which they serve), it is possible that a vendor of sensitive

items would like to obfuscate those subsets. To protect the clientele subset 𝐼𝑘 , such a vendor may

publicize a set of users, 𝐼𝑘 , that extends the actual clientele that he serves, i.e., 𝐼𝑘 ⊂ 𝐼𝑘 ⊆ [𝑁 ].
Clearly, larger subsets 𝐼𝑘 would offer greater privacy to the clientele of 𝑉𝑘 , while setting 𝐼𝑘 = [𝑁 ]
would provide the perfect privacy in that regard. However, such an artificial augmentation of the

clientele set would incur an increased cost for 𝑉𝑘 . Specifically, 𝑉𝑘 ’s runtime in executing Lines

2-5 of Protocol 1 would increase by a factor of |𝐼𝑘 |/|𝐼𝑘 |. (Similarly if 𝑉𝑘 wishes to obfuscate 𝐽𝑘 .) A

vendor who wishes to protect one or both of those subsets may select the level of privacy desired

according to the expected increase in runtime in the offline phase. It should be noted that such an

action has a very modest effect on the mediators’ runtime, since they would need to update more

entries in their matrices (see Lines 8-9 in Protocol 1). However, such an action has no effect on the

costlier Phase 3 of Protocol 1 (Lines 10-18) nor on the computations that are done in the online

phase to reply to vendors’ queries.

(2) In Section 4.1.2 we noted that our offline protocol is not perfectly secure, as it reveals also

the intermediate values 𝑧1, 𝑧2, 𝑧3. A more secure protocol would avoid the computation of those

intermediate values and, instead, would use the shares that the mediators hold in each of the

three inner products in the numerator and denominator in order to directly compute the desired

fraction 𝑆 (ℓ,𝑚)2 = 𝑧2
1
/(𝑧2𝑧3), without exposing 𝑧1, 𝑧2, 𝑧3. Such a computation can be carried out

as follows. The operation of long division is just a sequence of multiplications, comparisons, and

subtractions. If 𝑥 and 𝑦 are two integers, and the mediators have shares in them, it is well known

how to compute shares in the product 𝑥 · 𝑦 [8, 10], in the bit that indicates whether 𝑥 < 𝑦 [29],

and in 𝑥 − 𝑦 (straightforward). Hence, instead of recovering the three intermediate values 𝑧1, 𝑧2, 𝑧3,

the mediators can compute 𝑆 (ℓ,𝑚)2 = 𝑧2
1
/(𝑧2𝑧3) as follows: they will first compute shares in the

numerator 𝑧2
1
and in the denominator 𝑧2𝑧3 by performing two multiplications (along the lines

of [8, 10]), and subsequently they will perform the long division procedure in order to recover

shares in the desired value 𝑆 (ℓ,𝑚)2. From those shares they can then recover 𝑆 (ℓ,𝑚). However,
such a computation is expected to have a severe toll on runtime. Given the benign nature of the

information that is revealed through 𝑧1, 𝑧2, 𝑧3, we believe that our current protocol is much more

fitting for practical deployments, and we thus leave the design and evaluation of the more secure

version which we outlined above to future research.
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In summary, distributed mediation offers many attractive advantages in the context of PPCF:

scalability; enhanced privacy; freeing the vendors from the need to communicate with each other,

or the need to be online constantly; and enabling an economically-realistic collaboration model

between the vendors. Hence, we intend to examine the applicability of distributed mediation to

other CF algorithms, such as matrix factorization-based algorithms, e.g. [34], and compare their

performance to that of existing privacy-preserving implementations of such algorithms, e.g. [27, 28].
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A MULTIPLE RATINGS
So far we assumed that given any user 𝑢𝑛 and item 𝑏𝑚 , 𝑢𝑛 had rated 𝑏𝑚 at most once. Let us now

assume that the user 𝑢𝑛 (say, Alice) had purchased and rated 𝑏𝑚 (say, the book "The Hobbit")

through one vendor,𝑉𝑘1 , and, as she liked it so much, she decided to purchase it also for her beloved

niece. But this time she purchased it through another vendor, 𝑉𝑘2 , who offered it for a reduced

price, and she submitted a rating for that item also through that vendor. Here we show that even in

that scenario, the cosine similarity scores that Protocol 1 issues are meaningful.

Assume that the two ratings that 𝑢𝑛 had submitted for 𝑏𝑚 through 𝑉𝑘1 and 𝑉𝑘2 are 𝑟1 and 𝑟2,

respectively. Then the 𝑛’th entry in the vector c𝑚 , in which the mediators hold shares, will be 𝑟1 +𝑟2
(because 𝑉𝑘1 shared the value 𝑟1 in that entry, 𝑉𝑘2 shared the value 𝑟2, all other vendors shared a

zero value in that entry, and the mediators add up the shares, see Lines 3 and 8 in the protocol).

Similarly, the 𝑛’th entries in c2𝑚 and 𝜉 (c𝑚) will be 𝑟 21 +𝑟 22 and 2, respectively. We proceed to examine

the effect that such double ratings have on the cosine similarity score that Protocol 1 computes for

𝑏𝑚 against 𝑏ℓ , for any ℓ ≠𝑚.

To that end, let us define the following vectors of dimensions 𝑁 + 1:
c+𝑚 = (c𝑚 (1), . . . , c𝑚 (𝑛 − 1), 𝑟1, 𝑟2, c𝑚 (𝑛 + 1), . . . , c𝑚 (𝑁 ))𝑇

c+ℓ = (cℓ (1), . . . , cℓ (𝑛 − 1), cℓ (𝑛), cℓ (𝑛), cℓ (𝑛 + 1), . . . , cℓ (𝑁 ))𝑇

Those would be the two column vectors for items 𝑏𝑚 and 𝑏ℓ over a population of 𝑁 + 1 users which
coincides with the original population of 𝑁 users, except that Alice is replaced by two “reflections":

Alice1 and Alice2. Both Alices rated all items the same as the real Alice, except for item 𝑏𝑚 that

Alice1 rated 𝑟1 and Alice2 rated 𝑟2. It is easy to see that the cosine similarity score that Protocol 1

computes for 𝑏𝑚 and 𝑏ℓ would be the same as that which would have been computed from c+𝑚 and

c+ℓ over the population of 𝑁 + 1 users that includes the two reflections of Alice.

Namely, in such (probably rare) cases in which the same user purchases and rates the same item

twice, the cosine similarity score regards those two actions as if they were carried out by two

different users. It is easy to see that this interpretation extends also to cases in which there are

several multiple ratings (namely, several pairs of a user 𝑢 and an item 𝑏, in which 𝑢 rated 𝑏 through

more than one vendor).

As a concluding note we observe that there is also another course of action for handling such

cases. It is possible to identify upfront such multiple ratings and then retain just one of the

ratings, say the latest one. However, such course of action would require every pair of vendors

to communicate with each other; it would entail the invocation of costly Private Set Intersection

[12] and secure comparison [51] sub-protocols; and it would disclose to the vendors sensitive

information on purchases of users through other vendors. In addition, such treatment of multiple

ratings completely ignores the fact that the user had liked the item so much that she or he had

purchased and rated it more than once. Hence, Protocol 1 as is, without any modifications, offers

the most suitable treatment of such multiple ratings, in terms of simplicity and efficiency, as well

as in terms of utility for the purposes of CF.
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