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Abstract
In recent years, several studies proposed privacy-
preserving algorithms for solving Distributed Con-
straint Optimization Problems (DCOPs). All of
those studies assumed that agents do not collude.
In this study we propose the first privacy-preserving
DCOP algorithm that is immune to coalitions, un-
der the assumption of honest majority. Our al-
gorithm – PC-SyncBB – is based on the classical
Branch and Bound DCOP algorithm. It offers con-
straint, topology and decision privacy. We evalu-
ate its performance on different benchmarks, prob-
lem sizes, and constraint densities. We show that
achieving security against coalitions is feasible. As
all existing privacy-preserving DCOP algorithms
base their security on assuming solitary conduct
of the agents, we view this study as an essential
first step towards lifting this potentially harmful as-
sumption in all those algorithms.

1 Introduction
Constraint optimization [Meseguer and Larrosa, 1995] is a
powerful framework for describing optimization problems in
terms of constraints. In many practical domains, such as
Meeting Scheduling [Maheswaran et al., 2004], Mobile Sen-
sor nets [Farinelli et al., 2008], and the Internet of Things
[Lezama et al., 2017], the constraints are enforced by dis-
tinct participants (agents). Hirayama and Yokoo [1997]
termed such problems as Distributed Constraint Optimization
Problems (DCOPs). Various algorithms for solving DCOPs
have been proposed, some of which are complete [Gersh-
man et al., 2009; Hirayama and Yokoo, 1997; Mailler and
Lesser, 2004; Modi et al., 2005; Petcu and Faltings, 2005;
Yeoh et al., 2010], and some are incomplete [Farinelli et
al., 2008; Katagishi and Pearce, 2007; Ottens et al., 2017;
Zhang et al., 2005].

The main motivation for DCOP research stems from the
inherent distributed structure of many real-world problems,
and the privacy concerns that are associated with this distribu-
tion. Léauté and Faltings [2013] offered the basic definitions
of privacy in this framework. The four notions of privacy that
they describe are: agent privacy, topology privacy, constraint
privacy and decision privacy (see Section 2). Several studies

considered a solution of DCOPs in a manner that preserves
(some of) those privacy types.

This line of research began with the work of Silaghi and
Mitra [2004]. They proposed a privacy-preserving solution to
Distributed Weighted Constraint Satisfaction Problems (Dis-
WCSPs); those are distributed problems that are similar to
DCOPs, but differ from them in the distribution model and,
consequently, in the related privacy targets. Their solution is
strictly limited to small scale problems since it depends on
an exhaustive search over all possible assignments. As their
solution is based on the BGW protocol [Ben-Or et al., 1988],
it is immune against coalitions that involve less than half of
the agents.

All of the subsequent studies considered DCOPs. The main
motif in those studies was to develop privacy-preserving ver-
sions of existing algorithms. Greenstadt et al. [2007] de-
vised a version of the DPOP algorithm [Petcu and Faltings,
2005], called SSDPOP. Léauté and Faltings [2013] proposed
three privacy-preserving versions of DPOP that differ in their
privacy guarantees and in their runtime performance. Grin-
shpoun and Tassa [2016] developed P-SyncBB, a privacy-
preserving version of the complete search algorithm SyncBB
[Hirayama and Yokoo, 1997]. Tassa et al. [2017] presented
P-Max-Sum, a privacy-preserving version of the incomplete
inference-based Max-Sum algorithm [Farinelli et al., 2008].
Lastly, Grinshpoun et al. [2019] devised P-RODA, a secure
implementation of region-optimal algorithms.

All of the above described works based their security on as-
suming solitary conduct of the agents. Alas, subsets of agents
may try to collude and combine the information which they
have in order to infer information on other agents. In this pa-
per we suggest the first privacy-preserving DCOP algorithm
that is immune against such coalitions. We depart from the
SyncBB algorithm and devise a privacy-preserving algorithm
that simulates its operation and provides topology, constraint
and decision privacies, even in the presence of a coalition of
agents, under the assumption of an honest majority (i.e., the
size of the coalition is smaller than half the number of agents).

2 Definitions and Assumptions
A Distributed Constraint Optimization Problem (DCOP)
is a tuple 〈A,X ,D,R〉 where A is a set of agents
A1, A2, . . . , An, X is a set of variables X1, X2, . . . , Xm, D
is a set of finite domains D1, D2, . . . , Dm, and R is a set



of relations (constraints). Each variable Xi takes values in
the domain Di, and it is held by a single agent. Each con-
straint C ∈ R defines a non-negative cost for every possible
value combination of a set of variables, and is of the form C :
Di1 × · · · ×Dik → [0, q], for some 1 ≤ i1 < · · · < ik ≤ m,
and a publicly known maximal constraint cost q.

An assignment is a pair including a variable, and a value
from that variable’s domain. We denote by ai the value as-
signed to the variable Xi. A partial assignment (PA) is a set
of assignments in which each variable appears at most once.
A constraint C ∈ R is applicable to a PA if all variables
that are constrained by C are included in the PA. The cost
of a PA is the sum of all applicable constraints to the PA. A
full assignment is a partial assignment that includes all of the
variables. The goal in Constraint Optimization Problems is to
find a full assignment of minimal cost.

For simplicity, we assume that each agent holds exactly one
variable, i.e., n = m. We let n denote hereinafter the number
of agents and the number of variables. We consider a binary
version of DCOPs, in which every C ∈ R constraints exactly
two variables and takes the form Ci,j : Di × Dj → [0, q].
These assumptions are customary in DCOP literature [Modi
et al., 2005; Petcu and Faltings, 2005].

Léauté and Faltings [2013] have distinguished between
four notions of privacy. The notions of privacy which our pro-
posed algorithm respects are: (a) Topology privacy – hiding
from each agent the topological structures in the constraint
graph beyond his1 own direct neighborhood in the graph; (b)
Constraint privacy – hiding from each agent the constraints
in which he is not involved; and (c) Decision privacy – hiding
from each agent the final assignments to other variables.

Like in all prior art on privacy-preserving DCOP algo-
rithms, we too assume that the agents are semi-honest,
namely, they follow the prescribed protocol but try to glean
more information than allowed from the protocol transcript.
In contrast to prior art, we assume that (less than half of the)
agents may collude in order to combine their inputs and mes-
sages received during the execution of the protocol, for the
purpose of extracting private information on other agents.

3 A Secure Synchronous Branch and Bound
Synchronous Branch-and-Bound (SyncBB) [Hirayama and
Yokoo, 1997] was the first complete algorithm for solving
DCOPs. SyncBB operates in a completely sequential man-
ner, a fact that inherently renders its synchronous behavior.
It assumes a static public ordering of the agents, A1, . . . , An.
The search space of the problem is traversed by each agent as-
signing a value to his variable and passing the current partial
assignment (CPA) to the next agent in the order, along with
the current cost of the CPA. After an agent completes assign-
ing all values in the domain to his variable, he backtracks,
i.e., he sends the CPA back to the preceding agent. To pre-
vent exhaustive traversal of the entire search space, the agents
maintain an upper bound, which is the cost of the best solu-
tion that was found thus far. The algorithm keeps comparing
the costs of CPAs and the current upper bound, in order to
prune the search space.

1We use the masculine form for simplicity.

Herein we devise a secure implementation of SyncBB,
called PC-SyncBB (Privacy-preserving and Collusion-
resistant SyncBB). Another secure implementation of
SyncBB, called P-SyncBB, was previously introduced by
Grinshpoun and Tassa [2014; 2016]. The two algorithms are
fundamentally different. While in P-SyncBB agents are ex-
posed to sensitive information such as assignments of other
agents, costs of CPAs, and the value of the upper bound, PC-
SyncBB totally avoids such information disclosure. Hence,
the outline of PC-SyncBB is simpler than that of P-SyncBB,
because there is no need to implement mechanisms for pre-
venting illegal inferences that can be deduced from such in-
formation. On the other hand, as in PC-SyncBB much less
information is revealed, and as PC-SyncBB is designed to be
resistant to coalitions (while P-SyncBB’s security is jeopar-
dized already when two agents collude), the secure multi-
party computational tasks in PC-SyncBB are much harder.
Hence, the cryptographic approach taken in PC-SyncBB is
completely different, and it is much more involved than the
corresponding one in P-SyncBB.

3.1 Preliminaries
General Assumptions and Notations
The design of PC-SyncBB is based on the following general
assumptions:

• There is a static public ordering of the agents,
A1, . . . , An.

• The upper bound on the cost of any possible solution
is q∞ :=

(
n
2

)
q + 1, and it is known to all agents. In

addition, all agents agree upfront on an integer S greater
than 2q∞.

• For every pair of indices 1 ≤ t < k ≤ n, Γ(t, k) is a
Boolean predicate that equals true iff Xt and Xk are
constrained. Then, I−k := {t : 1 ≤ t < k and Γ(t, k)}
and I+k := {t : k < t ≤ n and Γ(k, t)} are sets con-
taining the indices of all agents that precede/follow Ak
in the order and whose variable is constrained with Xk.
We also let Ik := I−k ∪ I

+
k .

Value Ordering
Each agentAk maintains two value orderings over his domain
Dk. Each of those orderings can be described by a vector
of length |Dk|. The first ordering, denoted uk, is fixed and
known to all agents At such that t ∈ Ik. Then if At and Ak
are constrained, they can describe their constraint Ct,k as a
matrix Mt,k of |Dt| rows and |Dk| columns, where the value
in the r-th row and s-th column is

Mt,k(r, s) = Ct,k(ut(r),uk(s)) . (1)

The second ordering, denoted wk, is generated at random by
Ak whenever he begins a new traversal over his domain. That
ordering, which is kept secret from all other agents, deter-
mines the order in which that agent will scan the values in his
domain during that stage of the search. Agent Ak generates
such an ordering each time a CPA is passed to him from the
preceding agent Ak−1.



Internal Variables
Every agent Ak maintains the following variables:
• sCPAk is an array of length n that holds additive shares

in the cost of the CPA. Assume that agents At and Ak
are constrained and that Ct,k is applicable to the CPA.
Then the cost of the CPA includes, as one of its addends,
the value Ct,k(Xt, Xk). In such a case sCPAk(t) and
sCPAt(k) will both store random values in ZS so that

sCPAt(k) + sCPAk(t) = Ct,k(Xt, Xk) mod S . (2)

If, on the other hand, Ct,k is not applicable to the CPA
(i.e. the CPA does not include Xk or Xt or both), then
sCPAk(t) = sCPAt(k) = 0. In view of the above, the
overall cost of the CPA, at any stage of the algorithm’s
run, equals

Cost(CPA) =

n∑
k=1

∑
t∈Ik

sCPAk(t) mod S . (3)

• sUBk holds an additive share in the upper bound (the
cost of the best full assignment that was discovered thus
far). Each such share is random and uniformly dis-
tributed over ZS . At any stage of the algorithm’s run,

UpperBound =

n∑
k=1

sUBk mod S . (4)

• pk is a pointer to a value in the ordering wk. The current
assignment to Xk is given by wk(pk).

• OptimalSettingk stores the assignment to Xk in the
currently best full assignment that was found thus far.

3.2 The PC-SyncBB Algorithm

The PC-SyncBB algorithm is given in Algorithm 1, which we
proceed to describe.

The Procedure init
Every agent Ak initializes all entries in his vector sCPAk as
well as pk to zero (Lines 1-2). Then, every agent Ak, k > 1,
initializes sUBk to zero, while A1 initializes it to q∞ (Lines
3-6). Such settings imply that

∑n
k=1 sUBk = q∞ mod S, in

agreement with Eq. (4) (since the initial upper bound is set to
q∞). Finally, the procedure init triggers the search by having
A1 call the procedure assign CPA (Line 7).

The Procedure assign CPA
If this procedure is called when pk = 0, it means that Ak
now begins a new traversal over his domain. Hence, in such
a case he generates a new random ordering, wk, of Dk (Lines
8-9). In order to move to the next value in wk, Ak in-
crements the pointer pk (Line 10). If pk becomes greater
than |Dk| it means that the domain Dk was already fully
scanned, so Ak performs the procedure backtrack (discussed
below) in order to return the search torch back to the pre-
ceding agent Ak−1 (Lines 11-12). Otherwise, Ak assigns
v := wk(pk) to Xk (Line 14). Consequently, as Xk has a
new value, the CPA’s cost is changed, so new random shares
of that cost must be computed. This is done by calling the

Algorithm 1 – PC-SyncBB (executed by agent Ak)
procedure init
1: sCPAk(t)← 0 for all 1 ≤ t ≤ n
2: pk ← 0
3: if k > 1 do
4: sUBk ← 0
5: else
6: sUBk ← q∞
7: assign CPA()

procedure assign CPA
8: if pk = 0 do
9: Generate a new random ordering of Dk into wk

10: pk ← pk + 1
11: if pk > |Dk| do
12: backtrack()
13: else
14: Xk ← v := wk(pk)
15: update shares in CPA(k, v)
16: if k = n do
17: if compare CPA cost to upper bound() = true do
18: broadcast(NEW OPTIMUM FOUND)
19: assign CPA()
20: else
21: if compare CPA cost to upper bound() = false do
22: assign CPA()
23: else
24: send(CPA MSG) to Ak+1

procedure backtrack
25: if k > 1 do
26: sCPAk(t)← 0 for all t ∈ I−k
27: send(ZERO SHARE MSG,k) to At for all t ∈ I−k
28: send(BACKTRACK MSG) to Ak−1

29: else
30: broadcast(COMPLETE)

when received (NEW OPTIMUM FOUND) do
31: sUBk ←

∑
t∈Ik

sCPAk(t)

32: OptimalSettingk ← Xk

when received (CPA MSG) do
33: pk ← 0
34: assign CPA()
when received (ZERO SHARE MSG,k′) do
35: sCPAk(k

′)← 0
when received (BACKTRACK MSG) do
36: assign CPA()
when received (COMPLETE) do
37: Xk ← OptimalSettingk
38: Terminate

sub-protocol update shares in CPA(k, v) (Line 15), which
recomputes sCPAk(t) and sCPAt(k), for all t ∈ I−k , so that
the right-hand side of Eq. (3) equals the new CPA’s cost. (We
discuss that sub-protocol in Section 3.3.)

We now separate the discussion according to the index k
of the operating agent. If k = n, then a new full assignment
is reached. It is needed to compare its cost, which equals∑n
k=1

∑
t∈Ik sCPAk(t) mod S, Eq. (3), to the current up-

per bound,
∑n
k=1 sUBk mod S, (Eq. (4)). This compari-

son must be done in a secure manner. To that end, An in-



vokes compare CPA cost to upper bound (Line 17), a secure
multi-party sub-protocol that we discuss in Section 3.4. It re-
turns true if the cost of the current full assignment is lower
than the upper bound, namely, if

n∑
k=1

∑
t∈Ik

sCPAk(t) mod S <
n∑
k=1

sUBk mod S , (5)

and false otherwise. If the current full assignment does
improve the upper bound, then An broadcasts the message
NEW OPTIMUM FOUND (Line 18). Upon receiving such a
message, every agent Ak stores the sum of his current shares,∑
t∈Ik sCPAk(t), in sUBk and he also stores the current as-

signment of Xk in OptimalSettingk (Lines 31-32). Finally,
whether the current full assignment is a new optimum or not,
An calls the procedure assign CPA again in order to test the
next value in his domain (Line 19).

If k < n, the agents examine the possibility to prune the
search space: they first check whether the CPA’s cost is al-
ready greater than or equal to the upper bound, by invoking
compare CPA cost to upper bound (Line 21). If it returns
false then Eq. (5) does not hold, i.e., the cost of the CPA
is already greater than or equal to the upper bound. In such
a case there is no point in pursuing the current path in the
search space, so Ak calls the procedure assign CPA again in
order to test the next value in his domain (Line 22). Other-
wise, Ak passes the torch onward to Ak+1 (by sending him
the message CPA MSG in Line 24) in order to continue the
search over CPAs with the current k-prefix. When Ak+1 re-
ceives the message CPA MSG, he zeroes the pointer pk+1

to his domain Dk+1, in order to start traversing all values in
Dk+1 as possible extensions to the current k-CPA, and then
he calls the procedure assign CPA (Lines 33-34).

The Procedure backtrack
When agent Ak, k > 1, executes the procedure backtrack,
he does two things. First, he zeros all entries in sCPAk (Line
26) and sends a ZERO SHARE MSG message, with his in-
dex k, to all agents that precede him and are constrained
with him (Line 27). Any such agent, upon receiving the
ZERO SHARE
MSG message, zeroes the relevant share in his own array
(Line 35). As a result of the above two actions, Eq. (3) still
holds for the reduced CPA that is obtained after this back-
tracking. Afterwards, Ak sends a BACKTRACK MSG mes-
sage to Ak−1 (Line 28). When the latter receives that mes-
sage, he calls assign CPA in order to change the assignment
of his variable to the next value in his domain and proceed the
search with the new modified CPA (Line 36).

When A1 performs backtrack, it means that he completed
a traversal of D1, and, consequently, the entire search space
(D1×· · ·×Dn) was scanned. Therefore, the algorithm termi-
nates with the last optimum found being the global optimum.
In such a case A1 broadcasts the message COMPLETE (Line
30). When receiving such a message, every agent Ak assigns
to his variable Xk the value OptimalSettingk (which was
his assignment in the last optimal solution that was found)
and then he terminates (Lines 37-38).

3.3 The Sub-protocol update shares in CPA
Before starting PC-SyncBB, each of the agents Ak, k < n,
creates a key pair in a Paillier cipher [Paillier, 1999] and sends
the corresponding public key to At for all t ∈ I+k . Denote by
Ek the encryption function inAk’s cipher and by νk the corre-
sponding modulus. Then Ek is a function from Zν to Z∗ν2 and
it is additively homomorphic, in the sense that for every two
plaintexts x and y, Ek(x+y) = Ek(x) ·Ek(y), where addition
is modulo ν and multiplication is modulo ν2. The Paillier ci-
pher is probabilistic, in the sense that the encryption function
depends also on a random string (so that every plaintext x has
a large number of possible ciphertexts Ek(x)). It is known to
be semantically secure [Goldwasser and Micali, 1982].

After creating Ek, Ak computes a vector z1k of length |Dk|
where z1k(1) = Ek(1) and z1k(i) = Ek(0) for all 2 ≤ i ≤ |Dk|.
It is important to compute the latter |Dk|−1 encryptions with
|Dk|−1 independently selected random strings. Then,Ak de-
fines the vectors zik = CRS

(
zi−1k

)
, for 2 ≤ i ≤ |Dk|, where

CRS(·) is a circular right-shift by one position of the vector
entries. Hence, zik encrypts the vector (0, . . . , 0, 1, 0, . . . , 0)
where the 1 appears in the ith entry, 1 ≤ i ≤ |Dk|. Given the
manner in which those vectors were computed and the proba-
bilistic and semantic security properties of the Paillier cipher,
a polynomially-bounded adversary who gets any random se-
quence of those vectors (i.e. zi1k , z

i2
k , . . .) will not be able to

distinguish between the Ek(1) and the Ek(0) entries in them
(with a non-negligible probability of success).

We are now ready to describe the sub-protocol up-
date shares in CPA (Algorithm 2). It is triggered by Ak
whenever he assigns a new value v to his variable, Xk. When
that happens, it is needed to update the shares of all agents
A1, . . . , Ak so that the validity of Eq. (3) is maintained. The
shares that should be modified in wake of such an assignment
are sCPAk(t) and sCPAt(k) for all t ∈ I−k . Those shares will
be modified so that, in view of Eq. (2), the sum of sCPAk(t)
and sCPAt(k), for any fixed t ∈ I−k , will equal Ct,k(Xt, Xk)
for the current assignments of Xt and Xk (Xk’s assignment
equals v, and it is passed to the sub-protocol as an input).

Assume that t ∈ I−k . Then the contribution of the pair
Xt and Xk to the CPA is Mt,k(r, s), where ut(r) = Xt and
uk(s) = Xk (see Eq. (1)). Recall that At does not know
s while Ak does not know r. In order to compute the new
respective shares, sCPAk(t) and sCPAt(k), so that Eq. (2)
holds, these two agents perform the following computation.

When At performed last time the procedure assign CPA
and set there the current assignment to Xt, he called up-
date shares in CPA (Algorithm 2), see Line 15 in PC-
SyncBB. In Line 8 of Algorithm 2 he sent to all agents in I+t
the vector zjt which encodes his current assignment. Going
back to the present, when Ak executes update shares in CPA
he holds a vector zt that he received fromAt for every t ∈ I−k .
That vector equals zrt , where r is the index in ut in which the
current assignment to Xt is stored. Even though Ak cannot
infer from zt the current value of Xt, he can still correctly
update his shares vis-a-vis At. To that end, he computes

yt :=

|Dt|∏
i=1

zt(i)[(Mt,k(i,s)−ρ) mod S] , (6)



Algorithm 2 The sub-protocol update shares in CPA
when received k, the index of the agent Ak that invokes the proce-

dure, and v, Ak’s current assignment
1: for all t ∈ I−k do
2: Ak selects uniformly at random ρ ∈ ZS .
3: Ak computes yt as given in Eq. (6), where zt is the vector

that Ak received from At in the last time.
4: Ak sends the computed yt to At.
5: At sets sCPAt(k)← E−1

t (yt).
6: Ak sets sCPAk(t)← ρ.
7: if k < n do
8: Ak sends to all At where t ∈ I+k the vector zjk where j is the

index for which uk(j) = v.

where s is the index of the entry in uk that holds v – the
current assignment to Xk, and ρ is a value selected uniformly
at random (independently for each At) from ZS . The key
observation here is the following.

Lemma 3.1 The homomorphism of Et implies that yt =
Et ([(Mt,k(r, s)− ρ) mod S]).

Next, Ak sends yt to At who decrypts it and stores it in
sCPAt(k). In view of Lemma 3.1, At obtains sCPAt(k) =
(Mt,k(r, s) − ρ) mod S whereas Ak sets sCPAk(t) = ρ
mod S (Algorithm 2, Lines 5-6). Those two uniformly
random shares satisfy sCPAt(k) + sCPAk(t) = Mt,k(r, s)
mod S, which fulfils the required equality in Eq. (2).

The above described updates are carried out by Ak and At
for all t ∈ I−k . After completing all those updates, the up-
dated shares satisfy Eq. (3).

3.4 compare CPA cost to upper bound
The sub-protocol compare CPA cost to upper bound verifies
the inequality in Eq. (5). Agent Ak, 1 ≤ k ≤ n, holds
two integers modulo S: ak :=

∑
t∈Ik sCPAk(t) mod S and

bk := sUBk mod S. The goal is to determine whether α :=∑n
k=1 ak mod S is smaller than β :=

∑n
k=1 bk mod S or not.

To this end, we make use of a secure multi-party com-
putation (MPC) protocol [Yao, 1982]. An MPC protocol
for some function f allows a set of n distrustful parties
A1, . . . , An, where Ai possesses a private input xi, to com-
pute y ← f(x1, . . . , xn), while preserving the privacy of
the parties. Namely, at the end of the protocol the parties
learn y, but nothing beyond that on inputs of other parties.
Almost all practical MPC protocols work with the underly-
ing Boolean/Arithmetic circuit as the computational model.
Therefore, to securely compute the function f , the parties first
need to agree on a Boolean/Arithmetic circuit C that imple-
ments f . The runtime of such computations depends on n
and the size |C| of the circuit C (the number of gates in it).

In PC-SyncBB, we managed to shrink the usage of a gen-
eral purpose MPC protocol to the computation of Eq. (5).
Specifically, we use the protocol of Ben-Efraim and Omri
[2017] for the function f(x1, . . . , xn) where Ak’s input is
xk = bk − ak mod S and the function f returns true if
Eq. (5) holds and false otherwise.

The protocol of Ben-Efraim and Omri [2017] is secure un-
der the assumption that less than n/2 parties collude. It pro-
ceeds in two phases, called “offline” and “online”. In the

offline phase the parties do not yet know their inputs, but can
prepare the raw materials required for the computation. The
online phase begins once the parties know their inputs. In
practice, this allows the parties to perform the offline phase
in advance, even without having their inputs (or even know-
ing the domains), and perform the fast online phase once the
inputs are ready. Due to page limitations, we defer the de-
tailed description of this sub-protocol to the full version.

3.5 Properties of PC-SyncBB
The main properties of this algorithm are stated below.2

Theorem 3.2 PC-SyncBB is complete and sound.

Theorem 3.3 PC-SyncBB provides constraint-, topology-,
and assignment/decision-privacy. Even if any subset B  A
of agents collude, where |B| < n/2, they would not be able
to infer information on (values or existence of) constraints
between two agents outside the coalition, or on value assign-
ments or final decisions of such agents.

It is important to note that, like all preceding papers on
privacy-preserving solution of DCOPs, our algorithm does
not guarantee perfect privacy, as it may leak some very benign
information on the constraint graph topology. While achiev-
ing perfect privacy is possible, in theory, in any multi-party
computation, it is very hard to do so while maintaining prac-
ticality. Hence, in almost all studies that deal with privacy-
preserving solutions of practical problems, one accepts be-
nign information leakages.

4 Experimental Evaluation
We begin by evaluating the runtime of the com-
pare CPA cost to upper bound sub-protocol, which is a
central and computationally expensive part of PC-SyncBB.
For efficiency and reproducibility we used the original
implementation of Ben-Efraim and Omri [2017].3 The
executions were over LAN with EC2 machines of type
c5.large in Amazon’s North Virginia data center with
every agent running on a separate machine. We measured
performance for various values of n, where q (the maximum
value of a single binary constraint) is set to 100. Hence, as
the maximum cost of any solution is q∞ :=

(
n
2

)
q + 1 and S

is set to be the smallest power of 2 greater than 2q∞, then n
fully determines ` = logS and, consequently, also the size
of the circuit C that the protocol uses. Table 1 gives, for each
n, the bit-length ` of the agents’ inputs, the overall circuit
size (number of gates), and the average runtimes over 100
executions for the offline and online phases of the protocol.

Now we turn to the runtime performance evaluation of the
full PC-SyncBB algorithm. In order to asses the toll of pri-
vacy preservation, we compare PC-SyncBB (offline+online)
to other algorithms that maintain the Branch & Bound struc-
ture – P-SyncBB [Grinshpoun and Tassa, 2016] that pre-
serves privacy only under the assumption of non-colluding

2Proofs are given at http://arxiv.org/abs/1905.09013.
3https://github.com/cryptobiu/Protocols/tree/master/Concrete
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n 5 7 9 11 13 15 17 19
` 11 13 13 14 14 15 15 16
|C| 184 336 448 610 732 924 1056 1278
offline 6.7 12.4 20.2 32.3 47.2 72.0 94.3 135.3
online 0.51 0.85 1.3 1.6 2.4 2.5 2.7 3.6

Table 1: Bit length, circuit size and runtime (msecs) of the Ben-
Efraim-Omri as a function of n.
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Figure 1: Varying p1 (random DCOPs).

agents, and the basic insecure SyncBB [Hirayama and Yokoo,
1997]. We also present separately the online requirements
of PC-SyncBB. The algorithms were implemented and exe-
cuted in the AgentZero simulator [Lutati et al., 2014], run-
ning on a hardware comprised of an Intel i7-6820HQ pro-
cessor and 32GB memory, except for the calls to the com-
pare CPA cost to upper bound procedure that were executed
on the machines from Amazon’s North Virginia data center,
in order to simulate as realistically as possible a truly dis-
tributed environment. We followed the simulated time [Sul-
tanik et al., 2008] approach in all the subsequent experiments.
The results are shown in a logarithmic scale and are the aver-
age over 50 problem instances (for each setting/benchmark).

The first benchmark consists of unstructured randomly
generated DCOPs on which we perform two experiments. In
the first experiment, presented in Figure 1, we fix the num-
ber of agents to n = 7 and the domain sizes to 6, and vary
the constraint density 0.3 ≤ p1 ≤ 0.9. (Using lower density
values p1 < 0.3 results in unconnected constraint graphs.) It
is clear that constraint density only mildly affects the runtime
performance of all the evaluated algorithms. However, the
toll of privacy preservation is evidently high, with each layer
of protection adding about two orders of magnitude to the
runtime. Specifically, the online part of PC-SyncBB requires
about one order of magnitude more time than P-SyncBB.

In the second experiment, shown in Figure 2, we fix the
constraint density to p1 = 0.3 and the domain sizes to 6, and
vary the number of agents 5 ≤ n ≤ 9. Here and in the follow-
ing scalability experiments we use a cutoff time of 30 minutes
for online PC-SyncBB. It is clear that the number of agents
has a major effect on the performance of all the evaluated
algorithms, in accordance with known results regarding the
scalability of Branch & Bound algorithms in computationally
hard problems. Interestingly, P-SyncBB scales slightly better,
probably due to its inherent use of sorted value ordering.

Similar scalability phenomena are also observed in more
structured benchmarks. Figure 3 depicts the runtime perfor-
mance on distributed 3-color graph coloring problems (p1 =
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Figure 2: Varying n (random DCOPs).
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Figure 3: Varying n (graph coloring problems).

0.4, 5 ≤ n ≤ 19) in which each pair of equal values of con-
strained agents imposes a random and private cost. The struc-
ture in these problems lies in the diagonal constraint matrices
between every pair of neighboring agents. An experiment
on scale-free networks, generated according to the Barabási-
Albert model [Barabási and Albert, 1999], produced almost
the same graph as in Figure 2 and is thus omitted.

5 Conclusion
We proposed herein PC-SyncBB, the first privacy-preserving
DCOP algorithm which is secure against coalitions. We an-
alyzed the properties of the algorithm and evaluated its per-
formance. Our experiments demonstrate that PC-SyncBB is
feasible for moderately-sized problems.

A major limitation on scalability is due to the protocol
of Ben-Efraim and Omri [2017] that is invoked by com-
pare CPA cost to upper bound. In the future we intend to
explore other directions that could yield much more efficient
implementations of that sub-protocol. If those constructions
prove more efficient, we intend to consider more challeng-
ing settings, with larger coalitions or malicious agents. While
raising the security bar usually increases runtime and com-
munication costs, it is important to come up with such so-
lutions in order to enlarge and diversify the toolkit avail-
able for implementations in various application settings. Fi-
nally, as all existing privacy-preserving DCOP algorithms
base their security on assuming solitary conduct of the agents,
we view this study as an essential first step towards lifting
this potentially harmful assumption in all those algorithms.
In particular, it is necessary to develop privacy-preserving
and collision-secure implementations of other DCOP algo-
rithms (e.g., inference-based), and especially of incomplete
algorithms that could offer better scalability.
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