
PC-SyncBB: A Privacy Preserving Collusion Secure
DCOP Algorithm

Tamir Tassa1 , Tal Grinshpoun2 , Avishay Yanai3

1Department of Mathematics and Computer Science, The Open University, Ra’anana,
Israel

2Department of Industrial Engineering and Management and Ariel Cyber Innovation
Center, Ariel University, Ariel, Israel

3VMware Research, Israel

Abstract

In recent years, several studies proposed privacy-preserving algorithms for solv-

ing Distributed Constraint Optimization Problems (DCOPs). Those studies

were based on existing DCOP solving algorithms, which they strengthened by

implementing cryptographic weaponry that enabled performing the very same

computation while protecting sensitive private data. All of those studies as-

sumed that agents do not collude. In this study we propose the first privacy-

preserving DCOP algorithm that is immune to coalitions. Our basic algorithm

is secure against any coalition under the assumption of an honest majority

(namely, the number of colluding agents is < n/2, where n is the overall num-

ber of agents). We then proceed to describe two variants of that basic algorithm:

a more efficient variant that is secure against coalitions of size ≤ c, for some

constant c < (n− 1)/2; and another variant that is immune to agent coalitions

of any size, but relies on an external committee of mediators with an honest

majority. Our algorithm – PC-SyncBB – is based on the classical Branch and

Bound DCOP algorithm. It offers constraint, topology and decision privacy. We

evaluate its performance on different benchmarks, problem sizes, and constraint

densities. We show that achieving security against coalitions is feasible. Our

experiments indicate that PC-SyncBB can run in reasonable time on problems

involving up to 19 agents. As all existing privacy-preserving DCOP algorithms

Preprint submitted to Artificial Intelligence March 20, 2021

base their security on assuming solitary conduct of the agents, we view this study

as an essential first step towards lifting this potentially harmful assumption in

all those algorithms.

Keywords: DCOP, Branch and Bound, Privacy, Multiparty Computation,

Collusion-Secure

1. Introduction

Constraint optimization [1] is a powerful framework for describing optimiza-

tion problems in terms of constraints. In many practical artificial intelligence ap-

plications, such as Meeting Scheduling [2], Mobile Sensor nets [3], and the Inter-

net of Things [4], the constraints are enforced by distinct participants (agents).5

Hirayama and Yokoo [5] termed such problems as Distributed Constraint Op-

timization Problems (DCOPs). Various algorithms for solving DCOPs have

been proposed, some of which are complete [5, 6, 7, 8, 9, 10], and some are

incomplete [3, 11, 12, 13]. The complete algorithms ensure finding the opti-

mal solution, and they compete in terms of efficiency, i.e., reducing the runtime10

and/or communication overhead. Incomplete algorithms, on the other hand,

do not guarantee optimality, and the competition among them is usually with

regard to solution quality.

The main motivation for DCOP research stems from the inherent distributed

structure of many real-world problems, and the privacy concerns that are associ-15

ated with this distribution. Léauté and Faltings [14] offered the basic definitions

of privacy in this framework. The four notions of privacy that they describe are:

agent privacy, topology privacy, constraint privacy and decision privacy. (We

elaborate on those four types of privacy after providing the formal DCOP defini-

tions in Section 2.) Several studies considered a solution of DCOPs in a manner20

that preserves (some of) those privacy types.

This line of research began with the work of Silaghi and Mitra [15]. They

proposed a privacy-preserving solution to Distributed Weighted Constraint Sat-

isfaction Problems (DisWCSPs); those are distributed problems that are similar

2

to DCOPs, but differ from them in the distribution model and, consequently,25

in the related privacy targets. Their solution is strictly limited to small scale

problems since it depends on an exhaustive search over all possible assignments.

As their solution is based on the BGW protocol [16], it relies on the assumption

of honest majority. To the best of our knowledge, the DisWCSP model [15] did

not receive much focus in the past 15 years.30

All of the subsequent studies considered DCOPs. The main motif in those

studies was to develop privacy-preserving versions of existing algorithms. Green-

stadt et al. [17] devised a version of the DPOP algorithm [9], called SSDPOP;

that algorithm adds a secret sharing phase to the basic DPOP algorithm and,

consequently, reduces the privacy loss of DPOP. Léauté and Faltings [14] pro-35

posed three privacy-preserving versions of DPOP – P-DPOP(+), P3/2-DPOP(+)

and P2-DPOP(+) – that differ in their privacy guarantees and in their run-

time performance. Grinshpoun and Tassa [18] developed P-SyncBB, a privacy-

preserving version of the complete search algorithm SyncBB [5], which provides

topology, constraint and decision privacy. Tassa et al. [19] presented P-Max-40

Sum, a privacy-preserving version of the incomplete inference-based Max-Sum

algorithm [3], which respects topology, constraint and assignment/decision pri-

vacy. Lastly, Grinshpoun et al. [20] devised P-RODA, a secure implementa-

tion of region-optimal algorithms. First, the various existing algorithms in the

region-optimality family (e.g., KOPT [11], DALO [21]) were encompassed by a45

framework called RODA (Region Optimal DCOP Algorithm). Next, a secure

implementation of RODA, called P-RODA, was devised. P-RODA preserves

constraint privacy and partial decision privacy.

The above described works on DCOP algorithms cover a variety of solu-

tion techniques, such as complete search (P-SyncBB), complete inference (the50

P-DPOP(+) family), incomplete inference (P-Max-Sum), and region optimal-

ity (P-RODA). However, all of those works based their security on assuming

solitary conduct of the agents. Alas, subsets of agents may try to collude and

combine the information which they have (consisting of their private inputs and

messages received in the course of the DCOP solving algorithm) in order to infer55

3

information on other agents. For example, P-SyncBB [18] is no longer secure

if the first agent A1 colludes with some agent Ak, k > 1, since together they

can find out the cost of a CPA that involves the variables X1, . . . , Xk and, con-

sequently, may learn information on private constraints between X2, . . . , Xk−1

(see [18, Section 4.5]).60

In this paper we introduce the first privacy-preserving DCOP algorithm

that is immune against such coalitions. We depart from the classical SyncBB

algorithm [5] and devise PC-SyncBB, a Privacy-preserving and Collusion-secure

Synchronous Branch and Bound algorithm, that completely simulates the oper-

ation of SyncBB and provides topology, constraint, and decision privacy, even65

in the presence of coalitions of agents. Our basic algorithm is secure under the

assumption of an honest majority; namely, its privacy guarantees hold against

any coalition of size smaller than n/2, where n is the number of agents. We

then proceed to devise two variants of that algorithm. In one of them, we as-

sume a stricter upper bound on the coalition size, i.e., that its size is ≤ c for70

some constant c < (n− 1)/2. Such a limitation on the coalition size translates

into higher efficiency in terms of runtime and communication costs. In another

variant, we delegate some of the computations from the agents to an external

committee of mediators. The model of using external mediators that assist in

performing computations in a multi-agent environment and are trusted to do so75

honestly, but at the same time are not allowed access to private inputs of the

agents, is known in cryptography as “the mediated model”, see e.g. [22, 23, 24].

We show that if there exists an honest majority among the mediators, then that

variant of PC-SyncBB is secure against any coalition among the agents and, in

addition, it is more efficient than our basic variant (that is immune only against80

coalitions of size smaller than n/2).

The paper is outlined as follows. In Section 2 we provide the standard

DCOP definitions. In Section 3 we describe the basic variant of PC-SyncBB

and analyze its properties. Then, in Section 4, we describe the two additional

variants of PC-SyncBB. In Section 5 we provide experimental results regarding85

the run-time performance and communication complexity of PC-SyncBB on

4

different benchmarks, problem sizes, constraint densities, and coalition sizes.

We conclude in Section 6.

A preliminary version of this paper was published at IJCAI 2019 confer-

ence [25]. The present journal version extends the preliminary version by in-90

cluding two additional variants of the algorithm, as described above (Section 4).

Additionally, this journal version introduces an alternative computation for one

of the algorithm’s core sub-protocols (Section 3.4), which significantly improves

the overall performance of the algorithm. Finally, the current version includes

complete proofs (Sections 3.3 and 3.5), an extended and comprehensive experi-95

mental evaluation (Section 5), and a detailed example (Appendix A).

2. DCOP definitions

A Distributed Constraint Optimization Problem (DCOP, [5]) is a tuple

〈A,X ,D,R〉 where A is a set of agents A1, A2, . . . , An, X is a set of variables

X1, X2, . . . , Xm, D is a set of finite domains D1, D2, . . . , Dm, and R is a set of100

relations (constraints). Each variable Xi takes values in the domain Di, and it

is held by a single agent. Each constraint C ∈ R defines a non-negative cost

for every possible value combination of a set of variables, and is of the form

C : Di1 × · · · × Dik → [0, q], for some 1 ≤ i1 < · · · < ik ≤ m, and a publicly

known maximal constraint cost q.1105

An assignment is a pair including a variable, and a value from that variable’s

domain. We denote by ai the value assigned to the variable Xi. A partial assign-

ment (PA) is a set of assignments in which each variable appears at most once.

A constraint C ∈ R is applicable to a PA if all variables that are constrained

by C are included in the PA. The cost of a PA is the sum of all applicable110

constraints to the PA. A full assignment is a partial assignment that includes

all of the variables. The goal in Constraint Optimization Problems is to find a

full assignment of minimal cost.

1Our framework can include also the case of hard constraints, i.e., combinations of assign-

ments that are strictly forbidden, see [18].

5

For simplicity, we assume that each agent holds exactly one variable, i.e.,

n = m. We let n denote hereinafter the number of agents and the number115

of variables. We consider a binary version of DCOPs, in which every C ∈ R

constraints exactly two variables and takes the form Ci,j : Di × Dj → [0, q].

These assumptions are customary in DCOP literature, see e.g. [8, 9].

Léauté and Faltings [14] have distinguished between four notions of privacy.

• Agent privacy – hiding from each agent the identity or even the existence120

of other agents with whom he is not constrained.

• Topology privacy – hiding from each agent the topological structures in

the constraint graph (namely, the graph over the set of variables where

an edge connects two variables iff there is a constraint that relates them)

beyond his2 own direct neighborhood in the graph.125

• Constraint privacy – hiding from each agent the constraints in which he is

not involved. Namely, agent Ak should not know anything about Ci,j(·, ·)

if k /∈ {i, j}.

• Assignment/Decision privacy – hiding from each agent the intermedi-

ate/final assignments to other variables.130

The notions of privacy which our proposed algorithm respects are topology,

constraint and assignment/decision privacy.

3. A Secure Synchronous Branch and Bound

Synchronous Branch-and-Bound (SyncBB) [5] was the first complete algo-

rithm for solving DCOPs. SyncBB operates in a completely sequential manner,135

a fact that inherently renders its synchronous behavior. It is also the most ba-

sic search algorithm for solving DCOPs, and other more sophisticated DCOP

search algorithms, such as NCBB [26], AFB [6] and BnB-ADOPT [10], use the

2We use the masculine form for simplicity.

6

Branch and Bound structure as a core ingredient. The SyncBB algorithm as-

sumes a static public ordering of the agents, A1, . . . , An. The search space of the140

problem is traversed by each agent assigning a value to his variable and passing

the current partial assignment (CPA) to the next agent in the order, along with

the current cost of the CPA. After an agent completes assigning all values in

the domain to his variable, he backtracks, i.e., he sends the CPA back to the

preceding agent. To prevent exhaustive traversal of the entire search space,145

the agents maintain an upper bound, which is the cost of the best solution that

was found thus far. The algorithm keeps comparing the costs of CPAs and the

current upper bound, in order to prune the search space.

Herein we devise a secure implementation of SyncBB, called PC-SyncBB

(Privacy-preserving and Collusion-resistant SyncBB). Another secure imple-150

mentation of SyncBB, called P-SyncBB, was previously introduced by Grin-

shpoun and Tassa [18, 27]. The two algorithms are fundamentally different.

While in P-SyncBB agents are exposed to sensitive information such as as-

signments of other agents, costs of CPAs, and the value of the upper bound,

PC-SyncBB avoids such information disclosure, as indicated above. Hence, the155

outline of PC-SyncBB is simpler than that of P-SyncBB, because there is no

need to implement mechanisms for preventing illegal inferences that can be de-

duced from such information. For example, as in P-SyncBB agents are informed

of the CPA, they can infer the final decision of other agents. To prevent that

(in order to achieve decision privacy), P-SyncBB implements a delicate cryp-160

tographic mechanism; such a mechanism is not needed in PC-SyncBB, since

it keeps assignment information secret and it performs computations on secret

data. On the other hand, as in PC-SyncBB much less information is revealed,

and as PC-SyncBB is designed to be resistant to coalitions (while P-SyncBB

is not), the secure multiparty computational tasks in PC-SyncBB are harder.165

Hence, the cryptographic approach taken in PC-SyncBB is completely different

and it is much more involved than the corresponding one in P-SyncBB. The

most prominent example is the problem of verifying inequalities between values

that are held by more than one agent, as happens each time the cost of the CPA

7

is compared to the upper bound; the secure multiparty computation that PC-170

SyncBB has to invoke to solve such problems is much more intricate than the

one that P-SyncBB invokes, since in PC-SyncBB such inequality verifications

need to be performed over data which is distributed among all agents, and it is

needed to do so in a manner that is resistant to coalitions.

This section is organized as follows. In Section 3.1 we discuss the setting in175

which PC-SyncBB operates, introduce notations that we will use, and describe

the main internal variables that each agent holds. The algorithm is given in

Section 3.2. The secure multiparty sub-protocols that the algorithm invokes

are described in Sections 3.3 and 3.4. We discuss the properties of PC-SyncBB

in Section 3.5. A detailed example illustrating the operation of PC-SyncBB is180

presented in Appendix A.

3.1. Preliminaries

General assumptions and notations. The design of PC-SyncBB is based

on several general assumptions. The first two assumptions are inherent in the

SyncBB algorithm [5] and its derivatives, e.g. [6, 18], whereas the other assump-185

tions are specific for PC-SyncBB:

(1) All agents can directly communicate with each other, even if they are

not constrained. In particular, broadcast is allowed.

(2) There is a static public ordering of the agents, A1, . . . , An.

(3) The upper bound on the cost of any possible solution is q∞ :=
(
n
2

)
q + 1,190

and it is known to all agents.

(4) Cryptographical computations always take place over a finite algebraic

domain (typically a group or a field). The cryptographical selections that we

made in the design of PC-SyncBB, require the algorithm to operate over a finite

prime-ordered field. We let S denote the size of that field. Hence, all agents195

agree upfront on a prime S that is greater than q∞. The latter restriction

is essential since it ensures that all computed values (which relate to costs of

CPAs) can be uniquely represented in that field.

8

(5) For every pair of indices 1 ≤ t < k ≤ n, Γ(t, k) is a Boolean predicate

that equals true iff Xt and Xk are constrained. Then, I−k := {t : 1 ≤ t <200

k and Γ(t, k)} and I+k := {t : k < t ≤ n and Γ(k, t)} are sets containing the

indices of all agents that precede/follow Ak in the order and whose variable is

constrained with Xk. We also let Ik := I−k ∪ I
+
k .

Value ordering. Each agent Ak maintains two value orderings over his domain

Dk. Each of those orderings can be described by a vector of length |Dk| that

contains all values in Dk in the corresponding order. The first ordering, denoted

uk, is fixed and known to all agents At such that t ∈ Ik. Then if At and Ak

are constrained, they can describe their constraint Ct,k as a matrix Mt,k of |Dt|

rows and |Dk| columns, where the value in the r-th row and s-th column is

Mt,k(r, s) = Ct,k(ut(r),uk(s)) . (1)

The second ordering, denoted wk, is generated at random by Ak whenever he

begins a new traversal over his domain. That ordering determines the order in205

which Ak scans the values in his domain during that stage of the search. Agent

Ak generates such an ordering each time a CPA is passed to him from the

preceding agent Ak−1. After wk is generated, Ak traverses his domain, during

that stage in the search loop, in the order which wk spells out: he will first

check the assignment Xk ← wk(1), then Xk ← wk(2), and so forth until the210

last assignment Xk ← wk(|Dk|) is checked. That ordering is kept secret from

all other agents, in order to prevent agents from inferring sensitive information

on the current assignments of other agents (see Theorem 3 in Section 3.5).

Internal variables. Every agent Ak maintains the following variables:

(1) sCPAk is an array of length n that holds additive shares in the cost of the

CPA. Assume that agents At and Ak are constrained and that Ct,k is applicable

to the CPA. Then the cost of the CPA includes, as one of its addends, the value

Ct,k(Xt, Xk). In such a case sCPAk(t) and sCPAt(k) will both store random

9

values in ZS so that

Ct,k(Xt, Xk) = (sCPAt(k) + sCPAk(t)) mod S .3 (2)

If, on the other hand, Ct,k is not applicable to the CPA (i.e. the CPA does

not include Xk or Xt or both), then sCPAk(t) = sCPAt(k) = 0. In view of the

above, the overall cost of the CPA, at any stage of the algorithm’s run, equals

Cost(CPA) =

n∑
k=1

∑
t∈Ik

sCPAk(t) mod S . (3)

(Note that the internal vectors sCPAk, for any 1 ≤ k ≤ n, could actually be215

of length |Ik|, rather than n. But in order to avoid cumbersome notations we

assume herein that all those vectors are of length n.)

(2) sUBk holds an additive share in the current upper bound (the cost of the

best full assignment that was discovered thus far). Each such share is random

and uniformly distributed over ZS . At any stage of the algorithm’s run,

UpperBound =

n∑
k=1

sUBk mod S . (4)

(3) pk is a pointer to a value in the ordering wk. The current assignment to

Xk is given by wk(pk).

(4) OptimalSettingk stores the assignment to Xk in the currently best full220

assignment that was found thus far.

3.2. The PC-SyncBB algorithm

The PC-SyncBB algorithm is given in Algorithm 1, which we proceed to de-

scribe.

3Hereinafter, when we write a = b mod S we mean that a is the residue of b modulo S.

10

Algorithm 1 – PC-SyncBB (executed by agent Ak) – first part

procedure init

1: sCPAk(t)← 0 for all 1 ≤ t ≤ n

2: pk ← 0

3: if k > 1 do

4: sUBk ← 0

5: else

6: sUBk ← q∞

7: assign CPA()

procedure assign CPA

8: if pk = 0 do

9: Generate a new random ordering of Dk into wk

10: pk ← pk + 1

11: if pk > |Dk| do

12: backtrack()

13: else

14: Xk ← v := wk(pk)

15: update shares in CPA(k, v)

16: if k = n do

17: if compare CPA cost to upper bound() = true do

18: broadcast(NEW OPTIMUM FOUND)

19: assign CPA()

20: else

21: if compare CPA cost to upper bound() = false do

22: assign CPA()

23: else

24: send(CPA MSG) to Ak+1

procedure backtrack

25: if k > 1 do

26: sCPAk(t)← 0 for all t ∈ I−k
27: send(ZERO SHARE MSG,k) to At for all t ∈ I−k
28: send(BACKTRACK MSG) to Ak−1

29: else

30: broadcast(COMPLETE)

11

Algorithm 1 – PC-SyncBB (executed by agent Ak) – second part

when received (NEW OPTIMUM FOUND) do

31: sUBk ←
∑

t∈Ik
sCPAk(t)

32: OptimalSettingk ← Xk

when received (CPA MSG) do

33: pk ← 0

34: assign CPA()

when received (ZERO SHARE MSG,k′) do

35: sCPAk(k′)← 0

when received (BACKTRACK MSG) do

36: assign CPA()

when received (COMPLETE) do

37: Xk ← OptimalSettingk

38: Terminate

The procedure init. Every agent Ak initializes all entries in his vector sCPAk225

as well as pk to zero (Lines 1-2). Then, every agent Ak, k > 1, initializes

sUBk to zero, while A1 initializes it to q∞ (Lines 3-6). Such settings imply that

q∞ =
∑n
k=1 sUBk mod S, in agreement with Eq. (4) (since the initial upper

bound is set to q∞). Finally, the procedure init triggers the search by having

A1 call the procedure assign CPA (Line 7).230

The procedure assign CPA. If this procedure is called when pk = 0, it means

that Ak now begins a new traversal over his domain. Hence, in such a case he

generates a new random ordering, wk, of Dk (Lines 8-9). In order to move to

the next value in wk, Ak increments the pointer pk (Line 10). If pk becomes

greater than |Dk| it means that the domain Dk was already fully scanned, so235

Ak performs the procedure backtrack (discussed below) in order to return the

search torch back to the preceding agent Ak−1 (Lines 11-12). Otherwise, Ak

assigns v := wk(pk) to Xk (Line 14). Consequently, as Xk has a new value, the

CPA’s cost is changed, so new random shares of that cost must be computed.

This is done by calling the sub-protocol update shares in CPA(k, v) (Line 15),240

12

which recomputes sCPAk(t) and sCPAt(k), for all t ∈ I−k , so that the right-hand

side of Eq. (3) equals the new CPA’s cost. (We discuss that sub-protocol in

Section 3.3.)

We now separate the discussion according to the index k of the operating

agent. If k = n, then a new full assignment is reached. It is needed to compare

its cost, which equals
∑n
k=1

∑
t∈Ik sCPAk(t) mod S, Eq. (3), to the current

upper bound,
∑n
k=1 sUBk mod S, (Eq. (4)). This comparison must be done in

a secure manner. To that end, An invokes compare CPA cost to upper bound

(Line 17), a secure multiparty sub-protocol that we discuss in Section 3.4. It

returns true if the cost of the current full assignment is lower than the upper

bound, namely, if

n∑
k=1

∑
t∈Ik

sCPAk(t) mod S <

n∑
k=1

sUBk mod S , (5)

and false otherwise. If the current full assignment does improve the upper

bound, then An broadcasts the message NEW OPTIMUM FOUND (Line245

18). Upon receiving such a message, every agent Ak stores the sum of his current

shares,
∑
t∈Ik sCPAk(t), in sUBk and he also stores the current assignment ofXk

in OptimalSettingk (Lines 31-32). Finally, whether the current full assignment

is a new optimum or not, An calls the procedure assign CPA again in order to

test the next value in his domain (Line 19).250

If k < n, the agents examine the possibility to prune the search space: they

first check whether the CPA’s cost is already greater than or equal to the upper

bound, by invoking compare CPA cost to upper bound (Line 21). If it returns

false then Eq. (5) does not hold, i.e., the cost of the CPA is already greater than

or equal to the upper bound. In such a case there is no point in pursuing the255

current path in the search space, so Ak calls the procedure assign CPA again in

order to test the next value in his domain (Line 22). Otherwise, Ak passes the

torch onward to Ak+1 (by sending him the message CPA MSG in Line 24) in

order to continue the search over CPAs with the currently selected assignments

to X1, . . . , Xk. When Ak+1 receives the message CPA MSG, he zeroes the260

pointer pk+1 to his domain Dk+1, in order to start traversing all values in Dk+1

13

as possible extensions to the current k-CPA, and then he calls the procedure

assign CPA (Lines 33-34).

The procedure backtrack. When agent Ak, k > 1, executes the procedure

backtrack, he does two things. First, he zeroes sCPAk(t) for all t ∈ I−k (Line 26)265

and sends a ZERO SHARE MSG message, with his index k, to all agents

that precede him and are constrained with him (Line 27). Any such agent, upon

receiving the ZERO SHARE MSG message, zeroes the relevant share in his

own array (Line 35). As a result of the above two actions, Eq. (3) still holds

for the reduced CPA that is obtained after this backtracking. Afterwards, Ak270

sends a BACKTRACK MSG message to Ak−1 (Line 28). When the latter

receives that message, he calls assign CPA in order to change the assignment

of his variable to the next value in his domain and proceed the search with the

new modified CPA (Line 36).

When A1 performs backtrack, it means that he completed a traversal of275

D1, and, consequently, the entire search space (D1 × · · · × Dn) was scanned.

Therefore, the algorithm terminates with the last optimum found being the

global optimum. In such a case A1 broadcasts the message COMPLETE

(Line 30). When receiving such a message, every agent Ak assigns to his variable

Xk the value OptimalSettingk (which was his assignment in the last optimal280

solution that was found) and then he terminates (Lines 37-38).

3.3. The sub-protocol update shares in CPA

This subsection is organized as follows. In Section 3.3.1 we introduce the

Paillier cipher, which is the main cryptographic tool that we use in the sub-

protocol update shares in CPA. In Section 3.3.2 we describe the initial compu-285

tations that each agent has to perform in the outset of the protocol, in prepa-

ration for the sub-protocol update shares in CPA, which is described in Section

3.3.3.

14

3.3.1. On probabilistic homomorphic encryption

A cipher is called public-key (or asymmetric) if its encryption function E(·)290

of a plaintext depends on one key, Ke, which is publicly known, while the

corresponding decryption function E−1(·) of a ciphertext depends on a private

key, Kd, that is known only to the owner of the cipher, and Kd’s derivation

from Ke is computationally hard.

A cipher is called (additively) homomorphic if for every two plaintexts, m1295

and m2, E(m1 + m2) = E(m1) · E(m2). When the encryption function is ran-

domized (in the sense that E(m) depends on m as well as on a random string),

E is called probabilistic. Hence, a probabilistic encryption function is a one-to-

many mapping (every plaintext m has many encryptions m′ = E(m)), while

the corresponding decryption function is a many-to-one mapping (all possible300

encryptions m′ of the same plaintext m are mapped by E−1(·) to the same m).

Using probabilistic encryption is essential when the underlying domain of

plaintexts is sufficiently small to allow exhaustive search. For example, in our

implementation, as we describe in Sections 3.3.2 and 3.3.3 below, the plain-

texts are either 0 or 1. Hence, in order to securely hide them, a probabilistic305

encryption is in order.

The semantically secure Paillier cipher [28] is a public-key cipher that is

both homomorphic and probabilistic. Its plaintext domain is Zν , for a modulus

ν which is the product of two large primes. Its ciphertext domain is Z∗ν2 . The

reader is referred to [28] for a full description of this cipher.310

3.3.2. Initial computations

Before starting PC-SyncBB, each of the agents Ak, k < n, creates a key pair

in a Paillier cipher. Specifically, Ak generates a Paillier modulus νk > S and the

proceeds to generate a key pair. Letting Ek denote the encryption function in

Ak’s cipher, then Ek is a function from Zνk to Z∗
ν2
k
. It is additively homomorphic,315

in the sense that for every two plaintexts x and y, Ek(x + y) = Ek(x) · Ek(y),

where addition is modulo νk and multiplication is modulo ν2k .

After doing so, Ak sends the corresponding modulus νk and public encryption

15

function Ek to At for all t ∈ I+k .

After creating Ek, Ak computes a vector z1k of length |Dk| where z1k(1) =320

Ek(1) and z1k(i) = Ek(0) for all 2 ≤ i ≤ |Dk|. It is important to compute

the latter |Dk| − 1 encryptions with |Dk| − 1 independently selected random

strings. Then, Ak defines the vectors zik = CRS
(
zi−1k

)
, for 2 ≤ i ≤ |Dk|, where

CRS(·) is a circular right-shift by one position of the vector entries. Hence,

zik encrypts the vector (0, . . . , 0, 1, 0, . . . , 0) where the 1 appears in the i-th325

entry, 1 ≤ i ≤ |Dk|. Given the manner in which those vectors were computed

and the probabilistic and semantic security properties of the Paillier cipher, a

polynomially-bounded adversary who gets any random sequence of those vectors

(i.e. zi1k , z
i2
k , . . .) will not be able to distinguish between the Ek(1) and the Ek(0)

entries in them (with a non-negligible probability of success).330

3.3.3. The sub-protocol

We are now ready to describe the sub-protocol update shares in CPA (Al-

gorithm 2). It is triggered by Ak whenever he assigns a new value v to his

variable, Xk. When that happens, it is needed to update the shares of all

agents A1, . . . , Ak so that the validity of Eq. (3) is maintained. The shares that335

should be modified in wake of such an assignment are sCPAk(t) and sCPAt(k)

for all t ∈ I−k . Those shares will be modified so that, in view of Eq. (2), the

sum of sCPAk(t) and sCPAt(k), for any fixed t ∈ I−k , will equal Ct,k(Xt, Xk)

for the current assignments of Xt and Xk (Xk’s assignment equals v, and it is

passed to the sub-protocol as an input).340

Assume that t ∈ I−k . Then the contribution of the pair Xt and Xk to the

CPA is Mt,k(r, s), where ut(r) = Xt and uk(s) = Xk (see Eq. (1)). Recall

that At does not know s while Ak does not know r. In order to compute the

new respective shares, sCPAk(t) and sCPAt(k), so that Eq. (2) holds, these two

agents perform the following computation.345

When At performed last time the procedure assign CPA and set there the

current assignment to Xt, he called update shares in CPA (Algorithm 2), see

Line 15 in PC-SyncBB. In Line 8 of Algorithm 2 he sent to all agents in I+t the

16

vector zjt which encodes his assignment at that point in time. Going back to

the present, when Ak executes update shares in CPA he holds a vector zt that

he received from At, for every t ∈ I−k . That vector equals zrt , where r is the

index in ut in which the current assignment to Xt is stored. Even though Ak

cannot infer from zt the current value of Xt, he can still correctly update his

shares vis-a-vis At. To that end, Ak computes

yt :=

|Dt|∏
i=1

zt(i)
[(Mt,k(i,s)−ρ) mod S] , (6)

where s is the index of the entry in uk that holds v – the current assignment to

Xk, and ρ is a value that Ak selected uniformly at random (independently for

each At) from ZS (Lines 2-3 of Algorithm 2). The key observation here is the

equality in the following lemma.

Lemma 1. The homomorphism of Et implies that yt = Et ([(Mt,k(r, s)− ρ) mod S]).350

Proof. Recall that the vector zt is an Ek-encryption of the vector er =

(0, . . . , 0, 1, 0, . . . , 0), where the value 1 is stored in the r-th component, and r

is the index such that ut(r) is the current assignment to Xt. Hence, by Eq. (6),

yt =

|Dt|∏
i=1

Ek(er(i))
[(Mt,k(i,s)−ρ) mod S] .

Since Ek is homomorphic, it follows that for any x ∈ Zνk and integer m,

Ek(x)m = Ek(x ·m). Hence,

yt =

|Dt|∏
i=1

Ek(er(i) · [(Mt,k(i, s)− ρ) mod S]) .

Using the homomorphism once again, we infer that

yt = Ek

|Dt|∑
i=1

er(i) · [(Mt,k(i, s)− ρ) mod S]

 .

Finally, since er(i) = 1 when i = r and er(i) = 0 otherwise, we conclude that

yt = Ek([(Mt,k(r, s)− ρ) mod S]) . 2

17

Next (Algorithm 2, Line 4), Ak sends yt to At who decrypts it and stores

it in sCPAt(k). In view of Lemma 1, At obtains sCPAt(k) = (Mt,k(r, s) − ρ)

mod S whereas Ak sets sCPAk(t) = ρ (Algorithm 2, Lines 5-6). Those two

uniformly random shares satisfy Mt,k(r, s) = (sCPAt(k) + sCPAk(t)) mod S,

which fulfils the required equality in Eq. (2).355

The above described updates are carried out by Ak and At for all t ∈ I−k .

After completing all those updates, the updated shares satisfy Eq. (3).

Algorithm 2 – The sub-protocol update shares in CPA

when received k, the index of the agent Ak that invokes the procedure, and v, Ak’s

current assignment

1: for all t ∈ I−k do

2: Ak selects uniformly at random ρ ∈ ZS

3: Ak computes yt as given in Eq. (6), where zt is the vector that Ak received

from At in the last time

4: Ak sends the computed yt to At

5: At sets sCPAt(k)← E−1
t (yt)

6: Ak sets sCPAk(t)← ρ

7: if k < n do

8: Ak sends to all At where t ∈ I+k the vector zj
k where j is the index for which

uk(j) = v

Example. Suppose that the torch is passed to agent Ak, and let t ∈ I−k .

Suppose that Ak’s ordered domain is Dk = (10, 20, 30) while At’s is Dt =

(40, 50, 60, 70). Assume that At’s current assignment is Xt = 50, namely, the360

value in Dt that is identified by the assignment index r = 2, while Ak’s is

Xk = 30, i.e., its assignment index is s = 3. At this point, Ak already holds

zt = (Et(0, rnd1), Et(1, rnd2), Et(0, rnd3), Et(0, rnd4)) — the vector that he re-

ceived from At after the latter had set his current assignment. (Recall that the

encryption function Et is a probabilistic one, in the sense that it depends not365

only on the plaintext, being 0 or 1 in our case, but also on random independent

18

values that we mark here by rndi.) Now, Ak chooses a random value ρ ∈ ZS
and locally computes

yt :=
∏4
i=1 zt(i)

[(Mt,k(i,3)−ρ) mod S] =

Et(0, rnd1)[(Mt,k(1,3)−ρ) mod S] · Et(1, rnd2)[(Mt,k(2,3)−ρ) mod S] ·

Et(0, rnd3)[(Mt,k(3,3)−ρ) mod S] · Et(0, rnd4)[(Mt,k(4,3)−ρ) mod S] .

Ak sends that value to At, who proceeds to apply on it the decryption function

E−1t . By Lemma 1, the value that At obtains after decryption is (Mt,k(2, 3)−ρ)370

mod S, which he sets as his new share sCPAt(k). Note that as that value

incorporates the random and secret addend ρ, then At can learn from it no

information on Mt,k(2, 3), and hence remains totally oblivious to Ak’s current

assignment index value s = 3. Ak, on the other hand, sets sCPAk(t) = ρ.

Ak too remains oblivious of At’s current assignment since that assignment was375

conveyed to him only through Et-encrypted values. Mission is thus complete:

At and Ak now hold two new random shares whose sum equals the cost relating

to their current assignments, i.e., sCPAt(k) + sCPAk(t) = Mt,k(2, 3) mod S.

3.4. The sub-protocol compare CPA cost to upper bound

The sub-protocol compare CPA cost to upper bound verifies the inequality380

in Eq. (5). Agent Ak, 1 ≤ k ≤ n, holds two integers modulo S: ak :=∑
t∈Ik sCPAk(t) mod S and bk := sUBk mod S. The goal is to determine

whether the integer ã :=
∑n
k=1 ak mod S is smaller than the integer b̃ :=∑n

k=1 bk mod S or not.

That verification is carried out by a secure multiparty computation (MPC385

hereinafter). In Section 3.4.1 we provide a prelude to the topic of MPC. Then,

in Sections 3.4.2 and 3.4.3 we describe two possible MPC solutions for the

verification of the inequality in Eq. (5).

3.4.1. A prelude to secure multiparty computation

The MPC protocols that we will use to privately verify the inequality in390

Eq. (5) are secure under two assumptions: all agents are semi-honest, and

19

there exists among them an honest majority. We proceed to explain those

assumptions.

Semi-honest and malicious agents. Like in all prior art on privacy-preserving

DCOP algorithms (which we review in the Introduction), we assume that the395

agents are semi-honest; namely, they follow the prescribed protocol but try to

glean more information than allowed from the protocol transcript.

Another type of parties4 that is considered in the MPC literature is the

malicious type. Malicious parties may deviate from the prescribed protocol and

may also provide wrong inputs, in attempt to sabotage the computation and,400

possibly, use the resulting messages that they receive from other parties in order

to infer sensitive information on other parties’ inputs. MPC protocols that are

designed to be immune to malicious parties are usually significantly costlier

than the corresponding MPC protocols for semi-honest parties. In addition,

the presence of a malicious party introduces a new severe problem, known as405

the input consistency problem; namely, the need to verify that each party uses

all the time the same input, and does not try to inject into different stages of

the computation different and incorrect inputs. General solutions for the input

consistency problem are quite expensive and, hence, a tailored input consistency

mechanism should be devised in our context. In view of all of the above, the case410

of malicious parties/agents is one that introduces new and significant challenges,

and, consequently, we defer the study of such a case to a future work.

Honest majority. In contrast to prior art, we assume that some of the agents

may collude in order to combine their inputs and messages received during the

execution of the protocol, for the purpose of extracting private information on415

other agents. However, we assume that the number of colluding agents is less

than half of the agents. (Such an assumption is referred to in the MPC literature

as the honest majority assumption).

4We note that in the cryptographic literature on MPC it is customary to speak of parties;

in the context of DCOPs, one speaks of agents. We shall use those terms here interchangeably.

20

An MPC protocol allows the agents A1, . . . , An to compute any function f

over private inputs that they hold, x1, . . . , xn, so that at the end of the protocol

everyone learns f(x1, . . . , xn) but nothing else beyond what every agent may

naturally infer from the final output and his own input.5 In our context, the

private input of agent Ak is xk = (ak, bk), where ak =
∑
t∈Ik sCPAk(t) and

bk = sUBk. Hereinafter, all values and all additions are modulo S (we omit

the mod S notation for convenience). The function f that needs to be securely

evaluated is

f ((a1, b1), . . . , (an, bn)) =

{
ã :=

n∑
k=1

ak
?
< b̃ :=

n∑
k=1

bk

}
, (7)

where, hereinafter, x
?
< y denotes a bit that equals 1 if x < y and 0 otherwise.

MPC protocols require the function f to be represented by a circuit C such420

that for every set of inputs, x1, . . . , xn, the output of the circuit, C(x1, . . . , xn),

equals f(x1, . . . , xn). A circuit representation of a function f is essentially a

directed acyclic graph (DAG), G = (V,E), with the following properties. The

graph has a leaf node (i.e., a node with indegree zero) for every input of f , and

a root node (i.e., a node with outdegree zero) for every output of f . The former425

nodes are called input gates, while the latter ones are called output gates. (In

our case, the function f in Eq. (7) has a single output.) In addition, the graph

may have multiple internal nodes (ones with positive indegrees and outdegrees)

that are called operation gates, or simply, gates.

For a gate g, we denote by Succg the set {g′ | (g, g′) ∈ E}, i.e., all gates430

g′ such that there exists a directed edge from g to g′. Similarly, we denote

by Predg the set {g′ | (g′, g) ∈ E}, i.e., all gates g′ such that there exists

a directed edge from g′ to g. We restrict our attention to circuits in which

for each gate g, |Predg| = 2 while |Succg| is unbounded. Namely, each gate

has exactly two predecessor gates, Predg := {g`, gr}, to which we refer as the435

left/right predecessor gates of g. Letting α` and αr denote the output values of

5For example, if f outputs the median among x1, . . . , xn, then every agent may learn that

there are at least n
2

values greater (or smaller) than his own.

21

g` and gr, respectively, then the output of gate g is a simple function of those

two values, g(α`, αr). (We slightly abuse notation and use g for both a gate and

its function.)

The private values x1, . . . , xn determine the input values to all of the cir-440

cuit’s input gates. Then, the following process is performed repeatedly: for

each operation gate g, once both g` and gr are assigned values, say α` and αr,

respectively, the gate g is assigned the value g(α`, αr). This process is repeated

until all output gates are assigned. The output of C(x1, . . . , xn) is defined to be

the values assigned to all output gates of C at the end of an evaluation process.445

Two main types of circuits are discussed in the MPC literature: an arith-

metic circuit, meaning that the values assigned to gates are from an arbitrary

finite field F, and the operation gates are either the addition or the multipli-

cation functions (over two operands); and a Boolean circuit, meaning that the

values assigned to each gate are from {0, 1}, and the operation gates are either450

the logical XOR or AND functions. It is well known that both types of circuits

can express any function (i.e., they are Turing-complete). However, some func-

tions are ‘better’ represented by an arithmetic circuit, while others are ‘better’

represented by a Boolean circuit. In the context of MPC, the suitability of a

circuit to the relevant function is determined by the complexity of the circuit,455

denoted |C|, which is commensurate with the number of multiplication or AND

gates in the circuit, and the circuit’s depth (the length of the longest path from

an input gate to an output gate), denoted d(C).

Protocols for secure computation of arithmetic circuits substantially differ

from protocols for secure computation of Boolean circuits. While the former460

protocols heavily rely on secret sharing [29], the latter ones are based on a

cryptographic primitive called ‘garbled circuits’ [30]. While secret-sharing-based

protocols require parties to perform fast efficient arithmetic operations, garbled-

circuit-based protocols require costly cryptographic operations like computing

pseudorandom functions. Additionally, the communication complexity of each465

party in secret-sharing-based protocols (e.g., [31, 32]) is O(|C| · `) where ` =

dlogSe (i.e., the length of the binary representation of each value); in particular,

22

it is independent of the number of parties n. However, the communication

complexity of each party in garbled-circuit-based protocols is O(n2 · |C| · κ),

where κ is a protocol’s security parameter (κ = 128 is standard); in particular,470

that complexity does depend on n. On the other hand, the advantage of garbled-

circuit-based protocols is that they are constant-round, i.e. the parties have

to sequentially interact with each other only a constant number of times; in

particular, this constant does not depend on the circuit’s structure. In contrast,

in secret-sharing-based protocols the number of rounds is proportional to the475

depth of the circuit; hence, a secure evaluation of deeper circuits takes more

time.

Jumping ahead, we found out that secure protocols for arithmetic circuits

are very efficient in our context. Thus, we use the generic secret-sharing-based

protocol of Damg̊ard and Nielsen [31], enhanced by a recent work by Chida et480

al. [32] that demonstrates some performance optimizations. We plug into that

protocol a circuit representation of the function f (Eq. (7)). Since the values ã

and b̃ can be computed by addition gates only, the dominant part of the function

f (i.e., the part that involves multiplication gates) is the comparison ã
?
< b̃. For

that purpose, we use the comparison circuit representation by Nishide and Ohta485

[33]. A more detailed discussion is given later on.

We describe herein two MPC methods for computing Eq. (7). We begin

with the method that we applied in the preliminary version of this study [25],

that uses a Boolean circuit (Section 3.4.2). Then, we describe an alternative

method that uses an arithmetic circuit (Section 3.4.3). We compare the two490

methods, theoretically and experimentally, in Section 5.

3.4.2. Secure computation of Eq. (7) using a garbled-circuit-based protocol

In [25] we used a Boolean circuit. In order to enable a smaller representation

of the Boolean circuit, we took there S to be the smallest power of 2 greater

than 2q∞. With such a setting of S, the computation of Eq. (7) is carried out

as follows. Instead of holding two inputs, ak and bk, each Ak needs only to hold

one input, dk := (bk − ak) mod S. Then, the Boolean circuit that was used in

23

[25] evaluates the function

f ′(d1, . . . , dn) := msb

(
n∑
k=1

dk mod S

)
. (8)

The key observation in [25] is that if S is selected so that S > 2q∞, then

f ′(d1, . . . , dn) in Eq. (8) equals f((a1, b1), . . . , (an, bn)) in Eq. (7). Thus, the

circuit only sums up n values modulo S and then outputs the most significant495

bit in the sum. Since f ′ outputs the most significant bit of
∑n
k=1 dk, a Boolean

circuit is the more fitting choice for evaluating f ′.

Hence, we used in [25] a garbled-circuit-based protocol (specifically, the Ben-

Efraim-Omri protocol [34]). We note that garbled-circuit-based protocols typi-

cally consist of two phases: a garbling (or offline) phase in which the interacting500

agents jointly generate an encrypted version of the circuit C, and an evaluation

(or online) phase in which the circuit’s output on the given inputs is computed.

In the course of Algorithm 1, the agents would need to compute f ′ (Eq. (8))

several times, each time on a different set of inputs. While the Boolean circuit

C that computes f ′ is fixed, in each such computation the agents need to use505

an independent garbled version of C. They could produce upfront many such

garbled versions of C (by running the offline phase of the Ben-Efraim-Omri pro-

tocol). But in order to compute its output on each set of inputs, they would

need to run the online phase of the Ben-Efraim-Omri protocol only when those

inputs are known. (We refer the reader to [25] for a more detailed description of510

the Ben-Efraim-Omri protocol for computing our comparison function f ′, Eq.

(8).)

Garbling scheme. In order to provide the reader a taste of what a garbled

circuit looks like, we consider the simpler case of only two parties: a garbler, who

is given a description of a Boolean circuit C and produces the garbled version515

of C, called garbled circuit and denoted C̃; and an evaluator, who is given the

garbled circuit C̃ and a single key for each input wire (a wire is either an edge

that connects two operation gates or an edge connected to an input/output gate

only), then, using the evaluation procedure of the garbling scheme he can obtain

24

the corresponding key of the output wire. The keys obtained in the evaluation520

process hide the actual values that are carried through the wires. To enable the

evaluator to learn the actual output of C (and not only the key that hides it),

the garbler supplies a decoding map from a key to an actual bit. A description

of a simple garbled-circuit-based protocol follows:

1. The garbler and evaluator agree on a Boolean circuit, C, that they wish525

to compute securely.

2. Garbler.

(a) For each wire, w, in the circuit, choose two random keys kw,0, kw,1 ←

{0, 1}κ, where κ is the security parameter of the scheme.

(b) For each gate, g, in the circuit, denote the function of that gate by530

g : {0, 1}2 → {0, 1}.

(c) For each gate, g, produce the garbled-gate, g̃, as follows: Let α, β,

and γ be the left/right input wires and output wire of g, respectively.

The garbled gate g̃ is a quadruple (g̃00, g̃01, g̃10, g̃11) where

g̃00 = Ekα,0,kβ,0(kγ,g(0,0))

g̃01 = Ekα,0,kβ,1(kγ,g(0,1))

g̃10 = Ekα,1,kβ,0(kγ,g(1,0))

g̃11 = Ekα,1,kβ,1(kγ,g(1,1))

such that E is a double encryption scheme (i.e., a scheme that ap-535

plies two consecutive encryptions, with two independent keys) with

a property that allows one to know, for a given ciphertext c and two

keys k1, k2, whether c is the output of Ek1,k2(m) for some m or not.

(d) For each gate, g, randomly permute the quadruple g̃.

(e) The garbled circuit C̃ is the collection of all garbled gates. That is,540

C̃ = {g̃ | g ∈ C}.

(f) For each output wire, w, with keys kw,0, kw,1, set the decoding map

to decodew := {kw,0 → 0, kw,1 → 1}.

(g) Send C̃ and decodew for all circuit output wires, w, to the evaluator.

25

3. Obtaining inputs. The evaluator needs to obtain a single key (out of545

the two possible) for each input wire of C. There are wires that are

associated with the garbler’s input bits and wires that are associated with

the evaluator’s inputs bits:

(a) For each input wire, w, that is associated with the garbler’s input

bit, x, the garbler sends the key kw,x to the evaluator.550

(b) For each input wire, w, that is associated with the evaluator’s input

bit, x, the garbler and the evaluator execute an oblivious transfer

(OT) protocol. OT allows the evaluator to obtain kw,x ∈ {kw,0, kw,1},

so that the garbler remains oblivious of the value of the selection bit x

and the evaluator remains oblivious of the non-obtained key kw,1−x.555

4. Evaluator.

(a) Given the garbled circuit C̃ = {g̃ | g ∈ C} and a single key for

each input wire, the evaluator proceeds as follows: Traverse the cir-

cuit in a topological order from the input wire to the output wires;

then, for each gate g on the way, let α and β be g’s input wires560

and γ be its output wire. The evaluator has the keys kα and kβ .

He computes k′00 = E−1(g̃00), k′01 = E−1(g̃01), k′10 = E−1(g̃10),

and k′11 = E−1(g̃11). The special property of the encryption scheme

implies that only one of k′00, k
′
01, k

′
10, k

′
11 is valid, so the evaluator

concludes that this is the key for the output wire γ, namely, this is565

kγ .

(b) For each circuit output wire, w, compute bw = decodew(kw), where

kw is the key obtained by the evaluation process above. The evaluator

outputs bw.

The security of the garbling scheme follows from the fact that it is not570

possible for the evaluator to obtain two keys for the same wire, as guaranteed

by the OT sub-protocol. In addition, when decrypting (i.e., when computing

E−1), the entry for which decryption succeeds tells nothing about the actual

value carried through the wire, because the quadruple g̃ is arranged in a random

order.575

26

As mentioned above, only Steps 3-4 above require the parties’ inputs; Step

2 can be performed in an offline (pre-processing) phase.

We note that the above example assumes only two parties. In our context,

though, we use the multiparty version of Ben-Efraim and Omri. In that version,

all parties take both roles of garblers and evaluators.580

The structure of the Boolean circuit. Let dk denote the `-bit input of

agent Ak. Let dik, 0 ≤ i ≤ `− 1, denote the bits in the binary representation of

dk. Then the circuit takes as input `n bits: dik, 1 ≤ k ≤ n, 0 ≤ i ≤ `− 1. The

circuit needs to compute
∑n
k=1 dk mod S. This can be done by implementing

n−1 sub-circuits, each of which adds two `-bit integers. Note that since S = 2`585

and we are interested in the sum modulo S, we may ignore “spill-over” bits

(corresponding to 2`) that may occur when adding the two `-bit addends.

Let the two `-bit addends be x =
∑`−1
i=0 xi2

i and y =
∑`−1
i=0 yi2

i, and let z =∑`−1
i=0 zi2

i be their sum modulo S. Let t1, . . . , t`−1 be `− 1 temporary Boolean

variables. We have z0 = x0 ⊕ y0 and t1 = x0 ∧ y0. Then, for i = 1, . . . , ` − 2590

we have zi = xi ⊕ yi ⊕ ti and ti+1 = (xi ∧ yi) ∨ (xi ∧ ti) ∨ (yi ∧ ti). Finally, we

compute z`−1 = x`−1⊕ y`−1⊕ t`−1. In view of the above, the complexity of the

sub-circuit that computes z from x and y is 1 + (` − 2) · 5 AND gates (since an

OR gate can be implemented using a single AND gate). Overall, the entire circuit

that adds the n agents’ `-bit inputs consists of (n− 1)
(
1 + (`− 2) · 5

)
AND gates595

and it has a depth of (`− 1) log n.

3.4.3. Secure computation of Eq. (7) using a secret-sharing-based protocol

In the present study we were pleasantly surprised to find out that even

though our desired function, Eq. (7), can be represented by Eq. (8), which

strongly suggests using a Boolean circuit, an arithmetic circuit representation600

turns out to be much more efficient. This counter-intuitive finding is due to the

following reasons:

(1) As described at the end of Section 3.4.2, a Boolean representation of

the function f ′ in Eq. (8) has to include n − 1 sub-circuits of `-bits full-adder

(` = logS), where a full-adder sub-circuit has roughly 5` AND gates. In contrast,605

27

an arithmetic circuit that computes f directly (Eq. (7)) first adds up all ak’s

and all bk’s in order to obtain ã and b̃, and then performs the comparison. As

mentioned above, the complexity of an arithmetic circuit is determined only

by the number of multiplication gates. Since obtaining ã and b̃ requires only

addition gates, which are essentially ‘for free’, the complexity of the circuit C610

equals the complexity of a circuit for a single comparison. Moreover, |C| no

longer depends on the number of parties n.

(2) The main benefit of using a Boolean circuit representation and hence a

garbled-circuit-based protocol, is that it is constant-round. However, we observe

that this fact is not relevant in our case, since it is possible to represent the615

comparison function by an arithmetic circuit with a constant depth. Such a

circuit representation was found by Nishide and Ohta [33]. Thus, the secret-

sharing-based protocol for computing that circuit is constant-round as well, just

like a garbled circuit.

In view of the above arguments, we introduce in this paper a secure protocol620

for computing Eq. (7) which is based on an arithmetic circuit. To that end,

we used the secret-sharing-based protocol of Damg̊ard and Nielsen [31]. That

protocol relies on the same two assumptions as ours (see the beginning of Section

3.4.1): semi-honesty of all agents, and an honest majority. Their protocol builds

on Shamir’s threshold secret sharing scheme [29]. Such a scheme allows a ‘dealer’625

to ‘split’ a secret s that he holds into n ‘shares’, s1, . . . , sn, so that any subset

of up to t shares, where t < n is some predetermined threshold, reveals nothing

about s, whereas any subset of t + 1 shares enables the full reconstruction of

the secret s.

Shamir threshold secret sharing. The Shamir threshold secret sharing630

scheme has two procedures: Share and Reconstruct, which we proceed to de-

scribe:

• Sharet,n(s). Given a secret s ∈ F, the procedure samples a uniformly

random polynomial p(·) over F, of degree t, where the free coefficient is

s. That is, p(x) = s + α1x + α2x
2 + . . . + αtx

t, where αj , 1 ≤ j ≤ t, are635

28

selected uniformly at random from F. The procedure outputs n values –

p(1), . . . , p(n) – where si = p(i) is the share given to agent Ai, 1 ≤ i ≤ n.

Together, the tuple 〈s1, . . . , sn〉 is called a t-sharing of s, and is denoted

by [s]t. It is easy to see that any selection of t shares out of s1, . . . , sn

reveals nothing about the secret s, whereas any subset of t + 1 or more640

shares fully determines s, by means of polynomial interpolation.

• Reconstructt(s1, . . . , sn). The procedure is given any selection of t + 1

shares out of 〈s1, . . . , sn〉, and it then interpolates a polynomial p(·) of

degree at most t using the given points {(i, si)}i, and outputs s = p(0).

MPC based on Shamir sharing. Here we describe the general methodology645

in Shamir-sharing-based MPC. To do this, we show how to securely compute

two types of arithmetic gates: addition and multiplication.

Let t be an integer smaller than n/2. Herein we use the setting t = b(n −

1)/2c. Then the construction that we proceed to describe below will be based

on Shamir’s t-out-of-n secret sharing scheme.650

First, we show how the parties can obtain a sharing of a random value

that is unknown to anyone: Each party Ai picks a random value si and calls

Sharet,n(si). By that, every party Aj obtains n shares: s1j , . . . , s
n
j . Then, Aj

sums up all shares that he received in order to obtain sj =
∑
i s
i
j . It is easy to

verify that sj is a valid share of the value s = s1 + . . . + sn, which is random655

(since it is a sum of random values) and unknown to anyone (since every party

contributes to that sum his own random share that is known only to him).

Similar to that procedure, the parties may also generate a 2t-sharing of the

same secret s, by replacing the call to Sharet,n(si) with a call to Share2t,n(si).

This becomes handy in the procedure for multiplying two secrets, as described660

below.

We are now ready to describe the addition and multiplication procedures:

• Addition. Given the sharing [a]t and [b]t (i.e., each party Ai holds two

shares, ai and bi, in a and b, respectively), the parties wish to obtain a

29

t-sharing of a + b without revealing anything about a or b. This can be665

done easily, without any interaction between the parties, since ci := ai+bi

is a valid share for Ai in c = a+b. Note that addition with a constant also

works in a similar manner. That is, given a t-sharing [a]t and a constant

c, the set a1 + c, . . . , an+ c is a valid t-sharing of a+ c, i.e., it is equivalent

to [a+ c]t.670

• Multiplication. In contrast to addition, the multiplication procedure for

computing c = a · b requires interaction. Given the sharing [a]t and [b]t

(i.e., each party Ai holds two shares, ai and bi, in a and b, respectively),

the parties wish to obtain a t-sharing of c = a·b without revealing anything

about a or b.675

As before, we first have each party Ai multiply his own shares to obtain

ci = ai · bi. But now, notice that c1, . . . , cn is not a t-sharing anymore,

but a 2t-sharing; indeed, such a multiplication is equivalent to multiplying

two degree-t polynomials p(·) and q(·), hiding a and b, respectively, and

such a multiplication yields a new polynomial of degree 2t. The task is,680

then, to reduce the degree of the secret sharing polynomial back to t.

To this end, the parties produce t- and 2t-sharings of the same random

value. We shall denote this random value by r (in the context of the

t-sharing) as well as by R = r (in the context of the 2t-sharing). Let

us denote those sharings by [r]t and [R]2t, respectively (where r = R).685

Now, the parties obtain a 2t-sharing of c̃ := c + R, by each party locally

computing c̃i = ci + Ri. Then, each party Ai sends c̃i to A1, who runs

c̃← Reconstruct2t(c̃1, . . . , c̃n) and broadcasts it to everyone. Finally, each

party Ai locally computes ĉi = c̃ − ri. Note that the set ĉ1, . . . , ĉn is a

valid t-sharing of c = a · b, since [r]t is a t-sharing of r, c̃ is a constant,690

and c̃− r = a · b+R− r = a · b.

Securely comparing cost(CPA) and UB. In the context of our protocol,

each agent Ak has private inputs ak :=
∑
t sCPAk(t) mod S and bk := sUBk.

To input those values to the computation, Ak calls Sharet,n(ak) and Sharet,n(bk),

30

which results in the sharings [ak]t and [bk]t. Then, the parties use the addition695

procedure described above to obtain sharings of the sum of ak’s and bk’s. That

is, [ã]t = [
∑
k ak]t and [b̃]t = [

∑
k bk]t. Finally, the parties run a protocol for

securely comparing two secret values ã and b̃. Such task is, on its own, a subject

for a line of research in the MPC literature; therefore, we only describe the high

level idea of the state of the art, leaving the details out of the scope of this700

paper.

Nishide and Ohta [33] proposed a circuit representation for comparing two

shared values, ã and b̃, in an indirect fashion. Namely, instead of a circuit

that verifies whether ã < b̃ over the two secrets ã and b̃ directly, they designed

a circuit that obtains the same result, indirectly. Their circuit first computes

three comparisons between some secret and a public value; such circuits are

much lighter (in comparison to circuits that compare two values that are both

secret). Then, the circuit combines the results from these three comparisons in

order to obtain the result of the desired direct comparison. Specifically, instead

of the comparison u
?
< v, with u and v being the two secrets, one can compute

u
?
< v from w, x, y where w := u

?
< S/2, x := v

?
< S/2 and y := (u − v)

mod S
?
< S/2 by

u
?
< v = wx̄ ∨ w̄x̄ȳ ∨ wxȳ .

The equality above can be readily verified by its truth table. We stress that the

intermediate values w, x, y remain secret from the agents, while only the final

comparison result is revealed.

The key insight from the circuit design of Nishide and Ohta is that a circuit705

that directly computes a comparison of two secrets has a much higher complexity

than a circuit that breaks that comparison into three comparisons between a

secret and a public value, and then combines those three results (which remain

hidden) in order to get the final result.

The number of multiplication gates in the arithmetic circuit Cf is given by710

279 · log p+ 5 in a circuit of depth 15, when ã, b̃ ∈ Zp. Note that in the secret-

sharing-based approach the communication complexity does not depend on the

31

number of parties, since all preliminary addition operations are done locally and

there is only a single invocation of a comparison between two values.

3.5. Properties of PC-SyncBB715

The main properties of this algorithm are stated below.

Theorem 2. PC-SyncBB is complete and sound.

Proof. The completeness of PC-SyncBB follows from the exhaustive search

structure. Only partial assignments whose cost reach the upper bound are not

extended and therefore it is guaranteed that the algorithm finds an optimal720

solution. Termination also follows from the exhaustive structure of the Branch-

and-Bound algorithm in which no partial assignment can be explored twice.

PC-SyncBB is sound, in the sense that it outputs a correct solution, as

implied by the correctness of update shares in CPA (which guarantees that Eqs.

(3) and (4) are always correct) and compare CPA cost to upper bound (which725

guarantees the correctness of validating Eq. (5)). 2

Theorem 3. PC-SyncBB provides constraint-, topology-, and assignment/decision-

privacy. Even if any subset B A of agents collude, where |B| < n/2, they

would not be able to infer information on (values or existence of) constraints

between two agents outside the coalition, or on value assignments or final deci-730

sions of such agents.

Proof. The only way in which privacy can be breached is through the data

which is transmitted between agents. In the main body of PC-SyncBB (Al-

gorithm 1) the only data which the agents transmit between themselves are

command messages. Those messages convey information only with regard to735

the sizes of the variable domains, |Dk|, 1 ≤ k ≤ n, but those domains are

assumed to be publicly known anyway. Since the order in which each agent

traverses his domain during the search is random and kept secret from all other

agents (as discussed in Section 3.1), such messages do not include any infor-

mation regarding the assignments, the final decisions, the constraints, or the740

constraint graph topology.

32

In addition to those command messages, information is exchanged also in

the two sub-protocols. In update shares in CPA, the agent Ak receives from

every At, where t ∈ I−k , his vector zt. That vector is computed by At whenever

he assigns a new value from his domain to Xt. As each of those computations745

is made independently of previous computations, and as the Paillier cipher is

semantically secure, Ak cannot infer from zt any information on the current

assignment of At. Moreover, as At sends the same vector zt to all agents Ak, k ∈

I+t , upon their request, no coalition, of any size, can gain additional knowledge

on At’s assignments. Another place in update shares in CPA in which data is750

exchanged is in Line 4. There, agent Ak sends to At the value yt, which includes

the Et-encryption of [(Mt,k(r, s) − ρ) mod S]. Since ρ is selected uniformly at

random from ZS , this value contains no information at all. Moreover, since Ak

selects in Line 3 an independent random ρ for each At, also here there is no

point in performing coalitions.755

As for the compare CPA cost to upper bound sub-protocol, it is secure, un-

der the assumption of honest majority, since it implements either the Ben-

Efraim-Omri protocol or the Damg̊ard-Nielsen protocol, which were both shown

to be secure under that assumption [31, 34]. 2

3.5.1. On potential information leakages of the protocol760

Like all preceding papers on privacy-preserving solution of DCOPs, our al-

gorithm does not guarantee perfect privacy, as it may leak some very benign

information on the constraint graph topology. While achieving perfect privacy

is possible, in theory, in any multiparty computation, it is very hard to do

so while maintaining practicality. Hence, in almost all studies that deal with765

privacy-preserving solutions of practical problems, one accepts benign informa-

tion leakages. We proceed to elaborate on that matter below.

In the context of MPC, quantifying the amount of information leakage and

identifying all possible scenarios in which information may leak is, in general, an

exhausting task. Hence, in order to analyze the privacy guarantees of an MPC770

protocol that is designed to compute some functionality, the following approach

33

is common in the MPC literature. One considers a theoretical scenario in which

the parties (agents) compute the same desired functionality by delegating their

private inputs to an imaginary third party T ; then T performs the computation

of the functionality by itself and provides the computed output to the designated775

party or parties. In that theoretical scenario, T is trusted by all parties to be

perfectly honest and use the secret inputs that were revealed to him only for the

sake of the computation. In particular, T is assumed not to reveal the secret

information to any of the real parties.

The goal in designing MPC protocols is to render them secure against cor-780

rupted parties; namely, parties that attempt to use the information that they

receive during the execution of the protocol in order to infer sensitive informa-

tion on other parties. An MPC protocol is considered perfectly secure if any

information that the corrupted parties may infer about other parties’ inputs

during the real protocol, is an information that they could have also inferred785

in the theoretical protocol that involves the imaginary trusted party. If during

the real protocol the parties may infer information that would have not been

revealed to them during the theoretical protocol with T , then such information

is considered to be an information leakage.

Let us illustrate those concepts with a toy example. Let us assume a case790

where two parties, P1 and P2, wish to compute the average of their numbers

x1 and x2, respectively. In a protocol involving an imaginary party, T , the two

parties, P1 and P2, send x1 and x2 to T . Then, T proceeds to compute the

average m = (x1 + x2)/2 and he then sends the computed m back to them. In

this example, if P1 is corrupted, then he may learn P2’s input x2 even when T795

is involved, since x2 = 2m − x1. Therefore, a real cryptographic protocol that

reveals x2 to P1 would still be considered perfectly secure.

Now, consider an extension of the above example to the case of three parties,

P1, P2, P3, with inputs x1, x2, x3, respectively. Now, if P1 is corrupted, it no

longer learns x2 (nor x3) when T is involved. He only learns some relation800

between x2 and x3; specifically, he learns that x2 + x3 = 3m − x1, where m is

the computed average of the three inputs. In such a case, a real protocol that

34

may reveal to P1 the value of x2, or any linear combination of x2 and x3 other

than x2 + x3, would be considered as not perfectly secure, and such an excess

information would be considered an information leakage of the protocol.805

In our context, we consider an imaginary trusted party T that replaces all in-

vocations of the sub-protocols update shares in CPA and compare CPA cost to upper bound.

In the theoretical protocol that simulates update shares in CPA, T waits for two

parties At and Ak to input their current assignments to Xt and Xk, and then

he returns random shares, sCPAt(k) to At and sCPAk(t) to Ak, so that their810

sum equals Ct,k(Xt, Xk). Obviously, if only At is corrupted, he learns nothing

about Xk (and vice versa) since each of the two shares are truly random. In the

theoretical protocol that simulates compare CPA cost to upper bound, T waits

for each party Ak to input two shares: the share for the cost of the current vari-

able assignments, that is, ak =
∑
t∈Ik sCPAk(t), and the share of the minimal815

cost that was found so far, bk = sUBk. Note that the actual cost of the current

assignment is
∑
k ak and the actual minimal cost found so far is

∑
k bk. Thus,

T computes ã =
∑
k ak and b̃ =

∑
k bk and outputs true if ã < b̃ and false

otherwise. In this case, it is guaranteed that no collusion of corrupted parties

can learn the actual values ã or b̃, but only their order, namely, whether ã < b̃,820

since this is what T outputs.

The crucial point to notice is that while each separate invocation of our MPC

protocols update shares in CPA and compare CPA cost to upper bound is per-

fectly secure, the ”bigger protocol” may reveal excess information, even when

T is involved! This is due to the reason that the bigger protocol, PC-SyncBB, in-825

vokes the two sub-protocols update shares in CPA and compare CPA cost to upper bound

many times and on related inputs, and that may allow some privacy loss.

To demonstrate such a potential privacy loss, consider the case of n = 3

agents, and let us assume that A1 is corrupted. Assume further that X1 is

not constrained with either X2 or X3, and that |D1| = |D2| = |D3| = d.830

Suppose that A1 has an auxiliary information by which either (a) X2 and X3

are not constrained or, (b) X2 and X3 are constrained and all entries in the

cost matrix M2,3 are distinct. A1 may learn which of the two possible cases,

35

(a) or (b), holds (with high probability) by observing the number of times he

receives the message NEW OPTIMUM FOUND during the execution of835

the protocol. The maximum possible number of times is d2. However, if X2

and X3 are not constrained, then the upper bound will drop from q∞ to zero

immediately, while if they are constrained, the lower bound will be updated

d2/2 times, on average. Hence, if case (a) holds, A1 will observe exactly one

NEW OPTIMUM FOUND message, while if case (b) holds he will observe840

that message on average d2/2 times. So the larger d is (the domain size), the

easier it is for A1 to distinguish between the two possible cases.

Clearly, the above scenario is highly contrived, but its sole purpose is to illus-

trate the manners in which corrupted parties may, in theory, extract undesired

excess information from their view during the execution of the PC-SyncBB pro-845

tocol. It seems that in more realistic scenarios (where each agent is constrained

with at least one other agent, n is larger, the domains are of different sizes,

and the auxiliary information available to the corrupted agent and the desired

inference task are of a more realistic nature), corrupted agents will be unable

to extract meaningful information from their view during the protocol.850

Can we achieve perfect privacy?

The answer is yes, but the implication is that no pruning of the search tree

would be possible, since any such branch not visited leaks some information

about the relation of the other agents’ private assignments and their constraints.

Alas, such a protocol, that would be indeed perfectly secure, would no longer855

be a secure implementation of the SyncBB algorithm; it would be a secure

implementation of an exhaustive search, which is clearly an impractical approach

for solving an NP-hard problem.

4. Two variants of the basic PC-SyncBB

In the previous section we described the basic version of PC-SyncBB. That860

version is immune against coalitions of size smaller than n/2. The main bot-

tleneck of that algorithm is the MPC protocol (either Ben-Efraim-Omri [34] or

36

Damg̊ard-Nielsen [31], depending on the selected implementation) that is in-

voked by compare CPA cost to upper bound (see the experimental evaluation

in Section 5). In the basic variant of PC-SyncBB, as described in Section 3.4,865

the MPC protocol is executed by all n agents. In this section we propose two

variants of the compare CPA cost to upper bound sub-protocol, which invoke

the MPC protocol with smaller number of executing parties. By doing so, we

put stricter limitations on the size of coalitions among the interacting parties;

however, by invoking smaller scale instances of the MPC protocol, the overall870

runtime of PC-SyncBB reduces significantly and, as a consequence, it can be

executed in larger problem settings.

Being able to rely on a smaller set of parties who conduct the secure com-

putation has implications on the communication and computation costs of the

protocol. The overall communication complexity of securely computing Eq. (7)875

is O(n2|C|), when using the Ben-Efraim-Omri protocol, or O(n|C|) when us-

ing the Damg̊ard-Nielsen protocol. Therefore, smaller number of parties imply

smaller communication complexities. In particular, fixing that number to a

constant means that the communication complexity does no longer depend on

the number of agents, what may permit better scaling. As a side effect, since880

each random-secret-sharing and each secure-multiplication requires the parties

to perform interpolation over a set of points whose size equals the number of

participants, reducing this number improves the efficiency of those computations

as well.

Note that the round complexity would not be affected since in both the Ben-885

Efraim-Omri and the Damg̊ard-Nielsen cases, the protocols are constant-round

(i.e., the round complexity is independent of the number of parties).

We refer the reader to Section 5.2.3 for the concrete improvement in perfor-

mance for committees of 5,7, and 11 parties (i.e., with coalition size of 2,3, and

5, respectively).890

37

4.1. A variant immune to coalitions of size ≤ c < (n− 1)/2

The first variant that we describe herein assumes that the coalition size is

≤ c for some constant c < (n − 1)/2. Such a limitation on the coalition size

enables higher efficiency in terms of runtime and communication costs. The idea

is to delegate the inequality verification that is carried out in the sub-protocol895

compare CPA cost to upper bound to a randomly selected committee of agents

C ⊂ A = {A1, A2, . . . , An}, where |C| = 2c + 1. The inequality verification

is carried out exactly as described in Section 3.4; however, as the number of

interacting parties is 2c + 1 < n, the runtime and communication costs of the

MPC protocol will be smaller than those in the original variant (in which the900

MPC protocol is carried out by all n agents). Under the assumption that the

number of colluding agents is no larger than c, such a variant provides the same

privacy guarantees as the original variant, but with reduced costs.

To that end, whenever the sub-protocol compare CPA cost to upper bound

is called, the n agents select a committee C ⊂ A, where |C| = 2c + 1. The

selection is made randomly and independently each time the sub-protocol is

called. We defer for later the description of the selection process. Assume that

the selected committee is

C = {Ai0 , Ai1 , . . . , Ai2c} , where 1 ≤ i0 < i1 < · · · < i2c ≤ n .

We recall that the computation that the agents need to perform at this stage

is the one described by the function f at Eq. (7). That is, agent Ak has secrets

ak and bk. To perform that verification in a more efficient manner that involves

only the 2c + 1 committee members and not all n agents, agents Ak ∈ A \ C

‘deal’ their secrets to agents in C. Specifically, Ak splits ak and bk to 2c + 1

random shares, ak,i0 , . . . , ak,i2c and bk,i0 , . . . , bk,i2c respectively, so that

ak =

c∑
j=0

ak,ij mod S , and bk =

c∑
j=0

bk,ij mod S ,

and then he sends ak,ij and bk,ij to agent Aij ∈ C, 0 ≤ j ≤ 2c. Now, each Aij

38

updates his own secret input to the MPC protocol as follows:

aij ←

aij +
∑

Ak∈A\C

ak,ij

 mod S and bij ←

bij +
∑

Ak∈A\C

bk,ij

 mod S .

After such an update, the committee members alone can compute Eq. (7) by

invoking the MPC protocol, as described in Section 3.4, only that this time the905

number of interacting parties is smaller (2c+ 1 instead of n).

It remains only to discuss the details of committee selection. To that end,

we adopt the method of counter-mode encryption [35]. First, all n agents select

a random 256-bit key K in the symmetric block cipher AES [36]. Specifically,

each agent Ai selects his own random key Ki and then K is set to ⊕ni=1Ki, i.e.,

the bitwise XOR. For the purpose of performing this joint computation, each

agent can just broadcast his own key to all other agents. Such a joint key K

can be used by the agents in order to produce, each one independently on his

own, the very same stream Σ of pseudorandom bits, as follows:

K 7→ Σ := AESK(0)||AESK(1)||AESK(2)|| · · · .

Then, whenever a new committee is to be selected, each of the agents can recover

on his own the same committee by running independently Algorithm 3. (Here,

q := dlog2 ne, is the number of bits needed to identify one of the n agents.)

Algorithm 3 – Committee Selection Algorithm

1: for all 0 ≤ k ≤ n− 1 do

2: Selected(k)← false

3: CommSize← 0

4: C ← ∅

5: while CommSize < 2c+ 1 do

6: h← next q bits from Σ

7: if h < n and ¬Selected(h) do

8: Selected(h)← true

9: CommSize← CommSize+ 1

10: C ← C
⋃
{Ah+1}

39

4.2. A mediated variant immune to any coalition size910

In this variant we also delegate the verification of Eq. (7) to a committee of

size 2c+ 1, and assume that no more than c of them may collude. However, in

this case the committee is external to A and is fixed. Such a variant follows the

computation model that is known in cryptography as “the mediated model”,

see e.g. [22, 23, 24]. In that model, there is a set of interacting agents that915

execute an MPC protocol. They export some of the computations to an ex-

ternal mediator (that can consist of several independent parties). The external

mediators are expected to act honestly (namely, perform the computations that

are delegated to them correctly), but at the same time they are not allowed

access to private inputs of the agents.920

Let C = {B0, B1, · · · , B2c} be the committee. Here, agent Ak splits his secret

inputs ak and bk to random shares, ak,0, . . . , ak,2c and bk,0, . . . , bk,2c respectively,

so that

ak =

c∑
j=0

ak,j mod S , and bk =

c∑
j=0

bk,j mod S ,

and then he sends ak,j and bk,j to committee member Bj ∈ C, 0 ≤ j ≤ 2c.

Then, Bj defines αj =
∑n
k=1 ak,j and βj =

∑n
k=1 bk,j . From that point, the

committee members proceed to verify Eq. (7) by invoking the MPC protocol

with the secret input αj and βj , 0 ≤ j ≤ 2c.

We note that this variant is immune to any coalition among the agents925

themselves, since any such coalition that does not include all agents cannot use

the shares that they hold in the CPA cost and in the upper bound in order to

infer information on those values, nor on private information of agents outside

the coalition. However, as stated earlier, it is assumed that among the external

committee of mediators there is an honest majority (i.e., if some of them collude,930

the number of colluding mediators is at most c).

5. Experimental evaluation

We divide the experimental evaluation to two main parts. We begin by

evaluating in Section 5.1 the runtime and communication complexity of the

40

compare CPA cost to upper bound sub-protocol, which is a central and com-935

putationally expensive part of PC-SyncBB. Subsequently, we evaluate the per-

formance of the full PC-SyncBB algorithm in Section 5.2.

5.1. Evaluation of the compare CPA cost to upper bound sub-protocol

For efficiency and reproducibility we use the implementation of Chida et al.

[32] for the Damg̊ard-Nielsen protocol [31], and the Ben-Efraim [37] implemen-940

tation for the Ben-Efraim-Omri protocol [34], and compare them over identical

settings. Both implementations are open source and available online. The exe-

cutions were over LAN with EC2 machines of type c5.large in Amazon’s North

Virginia data center, with every agent running on a separate machine.

We measured performance for various values of n, where q (the maximum945

value of a single binary constraint) was set to 100. Hence, the maximum cost

of any solution is q∞ :=
(
n
2

)
q + 1.

We now discuss the setting of the parameter S (the size of the group ZS in

which all computations take place). In the execution of the Ben-Efraim-Omri

protocol, we set S to be the smallest power of 2 greater than 2q∞, as required950

by [25]. In that case, the number of agents, n, fully determines S and the

corresponding number of bits, ` = logS. Consequently, the value of n also

determines the size of the circuit C that the protocol uses. In the execution

of the Damg̊ard-Nielsen protocol, on the other hand, the domain ZS has to

be a field. Hence, we set S to be a prime p larger than q∞. As it turns out,955

selecting the prime p to be a Mersenne prime (a prime of the form p = 2t − 1

for some integer t > 1) is advantageous in secret-sharing-based protocols, since

multiplication of two field elements in such cases can be done without performing

an expensive division (in case the multiplication result exceeds the modulus).

We used two selections of Mersenne primes: p1 := 213 − 1 and p2 := 231 − 1. In960

experiments with n ≤ 13 we set S = p1 (since for those values of n, p1 > q∞),

while in experiments with 13 < n ≤ 19 we used S = p2 (since p2 > q∞ for this

range of n values).

Table 1 shows a comparison of the runtimes of the two protocols. For the

41

Ben-Efraim-Omri protocol, the table presents the input bit length, ` = logS, as965

a function of n, under the above stated assumption of q = 100. It also presents

the size of the corresponding Boolean circuit size, denoted |Cf ′ |, being the num-

ber of AND gates in it. Finally, it shows the runtime for securely evaluating that

circuit in order to compute Eq. (8), where we separate between the overall run-

time (namely, offline and online phases combined) and the runtime of the online970

phase alone (a number which may be of significance in settings where there is a

sufficient time for running the offline phase ahead, and then execute in real time

only the online phase). As for the Damg̊ard-Nielsen protocol, the table presents

the number of bits in the prime S that we used for each n (i.e., either S = p1

or S = p2 as discussed above), the size of the corresponding arithmetic circuit,975

denoted |Cf | (counting the number of multiplication gates), and the runtime

for securely evaluating that circuit in order to compute Eq. (7). All runtimes

are in milliseconds and they represent an average over 100 executions.

The number of multiplication gates in the arithmetic circuit Cf is given

by 279 · log p + 5 in a circuit of depth 15. Thus, when p = 213 − 1 we have980

|Cf | = 3632, whereas when p = 231 − 1 we have |Cf | = 8654. Note that the

Boolean circuits are much smaller than the arithmetic ones, in terms of number

of “expensive” gates (i.e., AND gates in the Boolean case, and multiplication gates

in the arithmetic case). Nonetheless, the Damg̊ard-Nielsen protocol is much

faster than the complete (i.e., offline and online) Ben-Efraim-Omri protocol, as985

is evident from the runtimes in Table 1. There are two reasons for that:

(1) As mentioned above, the underlying operations in the Damg̊ard-Nielsen

protocol are simple arithmetic field operations, i.e., addition and multiplication

of (up to) 32-bit field elements. On the other hand, the underlying operations in

the Ben-Efraim-Omri protocol are expensive AES [36] pseudorandom functions.990

Although the latter functions are implemented via CPU intrinsic instructions,

they are still much more expensive than integer arithmetic.

(2) We execute the implementation by Chida et al. [32] of the Damg̊ard-

Nielsen protocol. That implementation introduced a very important optimiza-

tion to the Damg̊ard-Nielsen protocol. Specifically, the communication required995

42

in their implementation for a sum-of-products operation equals the communi-

cation required by a single multiplication gate. That is, while in the original

Damg̊ard-Nielsen protocol, in order to securely compute a sub-circuit described

as
∑m
i=1 xi · yi, each party has to communicate O(m) field elements, in the op-

timization by Chida et al. the corresponding communication cost is only O(1).1000

Having said that, the Ben-Efraim-Omri protocol can be a better choice in

settings where the agents may prepare in advance by generating upfront a suf-

ficient number of garbles circuits for evaluating f ′ (Eq. (8)), and then during

the real time computation perform only the online phase.

n Ben-Efraim-Omri Damg̊ard-Nielsen

` |Cf ′ | total time time online log p |Cf | time

5 11 184 7.21 0.51 13 3632 4.3

6 12 255 10.23 0.68 13 3632 4.9

7 13 336 13.25 0.85 13 3632 6.6

8 13 392 17.37 1.08 13 3632 11.1

9 13 448 21.5 1.3 13 3632 12.7

10 14 549 27.7 1.45 13 3632 12.8

11 14 610 33.9 1.6 13 3632 16.5

12 14 671 41.75 2 13 3632 16.8

13 14 732 49.6 2.4 13 3632 18.5

14 15 858 62.05 2.45 31 8654 20.1

15 15 924 74.5 2.5 31 8654 20.7

16 15 990 85.75 2.6 31 8654 21.9

17 15 1056 97 2.7 31 8654 23.1

18 15 1122 117.95 3.15 31 8654 23.8

19 16 1278 138.9 3.6 31 8654 26

Table 1: Runtime in milliseconds, depending on the number of parties n for the Ben-Efraim-

Omri and Damg̊ard-Nielsen protocols.

Table 2 presents a comparison of the concrete communication complexity1005

43

between the two protocols, denoted BO and DN. For BO, the circuit size refers

to the number of AND gates in the Boolean circuit that computes Eq. (8),

whereas for DN the circuit size refers to the number of multiplication gates in

the circuit that computes Eq. (7). Communication rounds refer to the number

of times the parties have to interact. For BO, κ refers to the computational1010

security parameter, which equals 128 in their implementation. As mentioned

above, for DN, log p = 13 for n ≤ 13 and log p = 31 for 13 < n ≤ 19.

The communication analysis, like the runtime analysis, suggests that in cases

where the agents may prepare upfront, the Ben-Efraim-Omri protocol may be

a better choice. Indeed, as can be seen from Table 2, the number of communi-1015

cation rounds in the online phase in that protocol is only 2, comparing to 17 in

Damg̊ard-Nielsen, and the number of messages in that online phase is smaller

than the corresponding number in Damg̊ard-Nielsen for n ≤ 8.

Ben-Efraim-Omri Damg̊ard-Nielsen

Circuit size |Cf ′ | = (n− 1)(1 + 5(`− 2)) |Cf | = 279 log p+ 5

offline online

Communication rounds 3 2 17

Number of messages 3n2 2n2 17n

Total communication 8n2κ|Cf ′ | n2κ` 3n|Cf | log p

Table 2: Communication complexities of the Ben-Efraim-Omri and Damg̊ard-Nielsen pro-

tocols. The total communication measure is in bits. Recall that the circuit size |Cf ′ | was

calculated in Section 3.4.2, while the circuit size |Cf | is as reported in Nishide and Ohta

[33] (see our discussion in Section 3.4.3). In addition, round, message, and communication

complexities are taken from the reports of Ben-Efraim-Omri [34] and Damg̊ard-Nielsen [31].

5.2. Evaluation of the full PC-SyncBB algorithm

Now we turn to the performance evaluation of the full PC-SyncBB algorithm.1020

In order to asses the toll of privacy preservation, we compare PC-SyncBB to

other algorithms that maintain the Branch & Bound structure – P-SyncBB [18]

that preserves privacy only under the assumption of non-colluding agents, and

the basic insecure SyncBB [5].

44

The conclusion from our discussion in Section 5.1 indicates that there is no1025

clear “winner” regarding the protocol to be used in compare CPA cost to upper

bound. While the Damg̊ard-Nielsen protocol [31] is overall faster, the Ben-

Efraim-Omri protocol [34] may be advantageous in applications that allow offline

computations. Consequently, we present three results for PC-SyncBB: (i) PC-

SyncBB-BO, which is the overall effort using the Ben-Efraim-Omri protocol,1030

(ii) PC-SyncBB-BO-online, which represents only the online computation when

using the Ben-Efraim-Omri protocol, and (iii) PC-SyncBB-DN, which is the

overall effort using the Damg̊ard-Nielsen protocol.

The algorithms were implemented6 and executed in the AgentZero simula-

tor7 [38], running on a hardware comprised of an Intel i7-6820HQ processor and1035

32GB memory, except for the calls to the compare CPA cost to upper bound

procedure that were executed on the machines from Amazon’s North Virginia

data center, in order to simulate as realistically as possible a truly distributed

environment. We followed the simulated time [39] approach in all the subse-

quent experiments. The results are shown in a logarithmic scale and are the1040

average over 50 problem instances (for each setting/benchmark).

5.2.1. Runtime performance in various benchmarks

In accordance with the experiments of P-SyncBB [18], we use four bench-

marks for evaluating the performance of PC-SyncBB – random DCOPs, graph

coloring problems, scale-free networks, and meeting scheduling problems.1045

The first benchmark consists of unstructured randomly generated DCOPs

on which we perform two experiments. In the first experiment, presented in

Figure 1, we fix the number of agents to n = 7 and the domain sizes to d = 6,

and vary the constraint density 0.3 ≤ p1 ≤ 0.9. (Using lower density values

p1 < 0.3 results in unconnected constraint graphs.) As can be clearly seen,1050

constraint density only mildly affects the runtime performance of all the eval-

6https://github.com/grinshpo/PCSyncBB_implementation_and_experiments
7AgentZero Tutorial, including installation instructions: https://docs.google.com/

document/d/1B19TNQd8TaoAQVX6njo5v9uR3DBRPmFLhZuK0H9Wiks/view

45

https://github.com/grinshpo/PCSyncBB_implementation_and_experiments
https://docs.google.com/document/d/1B19TNQd8TaoAQVX6njo5v9uR3DBRPmFLhZuK0H9Wiks/view
https://docs.google.com/document/d/1B19TNQd8TaoAQVX6njo5v9uR3DBRPmFLhZuK0H9Wiks/view

uated algorithms. However, the toll of privacy preservation is evidently high,

with each layer of protection adding about two orders of magnitude to the run-

time. Specifically, the online part of PC-SyncBB-BO requires about one order

of magnitude more time than P-SyncBB, and PC-SyncBB-DN is faster than the1055

overall (offline+online) PC-SyncBB-BO.

0.01

0.1

1

10

100

1000

0.3 0.4 0.5 0.6 0.7 0.8 0.9

S
im

u
la

te
d

 r
u

n
ti

m
e

(s
ec

)

Constraint density (p1)

PC-SyncBB-BO

PC-SyncBB-BO-

online

PC-SyncBB-DN

P-SyncBB

SyncBB

Figure 1: Runtime performance in random DCOPs (n = 7, d = 6, varying p1).

In the second experiment, shown in Figure 2, we fix the constraint density to

p1 = 0.3 and the domain sizes to d = 6, and vary the number of agents 5 ≤ n ≤ 9.

It is clear that the number of agents has a major effect on the performance of

all the evaluated algorithms, in accordance with known results regarding the1060

scalability of Branch & Bound algorithms in computationally hard problems.

Interestingly, P-SyncBB scales slightly better, probably due to its inherent use

of sorted value ordering.

Next, we evaluate the scalability in more structured benchmarks. The second

benchmark consists of distributed 3-color graph coloring problems in which each1065

pair of equal values of constrained agents imposes a random and private cost of

up to q = 100. The structure in these problems lies in the diagonal constraint

matrices between every pair of neighboring agents.

Figure 3 depicts the runtime performance in distributed 3-color graph col-

oring problems (p1 = 0.4, 5 ≤ n ≤ 19) and shows similar scalability trends1070

to those of random DCOPs. However, the small domain size (d = 3) enables

46

0.001

0.01

0.1

1

10

100

1000

10000

5 6 7 8 9

S
im

u
la

te
d

 r
u

n
ti

m
e

(s
ec

)

Number of agents (n)

PC-SyncBB-BO

PC-SyncBB-BO-

online

PC-SyncBB-DN

P-SyncBB

SyncBB

Figure 2: Runtime performance in random DCOPs (p1 = 0.3, d = 6, varying n).

running problems of larger size, which clearly show that PC-SyncBB-DN scales

better than PC-SyncBB-BO.

0.0001

0.001

0.01

0.1

1

10

100

1000

10000

100000

5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

S
im

u
la

te
d

 r
u

n
ti

m
e

(s
ec

)

Number of agents (n)

PC-SyncBB-BO

PC-SyncBB-BO-

online

PC-SyncBB-DN

P-SyncBB

SyncBB

Figure 3: Runtime performance in 3-color graph coloring problems (p1 = 0.4, varying n).

Similar trends are also witnessed in the other benchmarks. Figure 4 presents

the runtime performance in scale-free networks (7 ≤ n ≤ 13, domains of size1075

d = 5), which are structured networks that are generated according to the

Barabási-Albert model [40]. As part of the Barabási-Albert network construc-

tion procedure, we use an initial set of m0 = 4 connected agents, and connect

every new added agent to m = 2 existing agents in the network in a probabil-

ity that is proportional to the number of links that the existing agents already1080

have. The Barabási-Albert model is commonly used for the representation of

large networks with hubs; the results in Figure 4 indicate that the PC-SyncBB

47

algorithm is not suitable for such networks.

0.001

0.01

0.1

1

10

100

1000

10000

100000

7 8 9 10 11 12 13

S
im

u
la

te
d

 r
u

n
ti

m
e

(s
ec

)

Number of agents (n)

PC-SyncBB-BO

PC-SyncBB-BO-

online

PC-SyncBB-DN

P-SyncBB

SyncBB

Figure 4: Runtime performance in scale-free networks (m0 = 4, m = 2, d = 5, varying n).

Finally, we examine the scalability of runtime performance in distributed

meeting scheduling problems, which are highly structured real-world problems.1085

We construct the problems similarly to the PEAV (Private Events As Vari-

ables) formulation [2], which is aimed for scenarios where privacy is a concern.

The PEAV formulation generates multiple-variable agents. However, the pre-

sentation of most DCOP algorithms assumes a single variable per agent, so

for simplicity and clarity reasons we follow the experimental setting of the P-1090

SyncBB experiments [18], which uses the decomposition method that turns each

variable into a virtual agent [41].

As in the setting of Grinshpoun and Tassa [18], inspired by the meeting

scheduling experiments of Léauté and Faltings [14], the number of meetings m

is varied, while the number of participants per meeting is fixed to 2. For each1095

meeting, participants were randomly drawn from a common pool of 3 agents.

The goal is to assign a time to each meeting among d = 8 available time slots.

Two types of preferences are considered – time preference (a cost of 0, . . . , 3 for

each time slot) and meeting importance (a cost of 5, . . . , 9 for each meeting).

Figure 5 presents the runtime performance in the described meeting scheduling1100

problems. Clearly, this highly structured setting shows similar scalability trends

to those of the other benchmarks.

48

0.0001

0.001

0.01

0.1

1

10

100

1000

10000

100000

3 4 5 6 7 8 9

S
im

u
la

te
d

 r
u

n
ti

m
e

(s
ec

)

Number of meetings (m)

PC-SyncBB-BO

PC-SyncBB-BO-

online

PC-SyncBB-DN

P-SyncBB

SyncBB

Figure 5: Runtime performance in meeting scheduling problems with varying number of meet-

ings m. Each meeting includes 2 agents (out of a pool of 3 agents in total). There are d = 8

available time slots for the meetings. Costs are given to time preferences [0, . . . , 3] and meet-

ings importance [5, . . . , 9].

5.2.2. Communication complexity

Communication complexity in DCOPs is traditionally measured in terms

of the total number of messages exchanged throughout the solving process.1105

However, in cases where there are considerable differences in message sizes, it

is also desired to evaluate the network load, i.e., the overall size of exchanged

information. Such metric is common when evaluating inference-based DCOP

algorithms [42, 43], which typically involve messages of exponential size. The

privacy-preserving algorithms herein also require exchanging large messages,1110

because, for instance, an encrypted number typically requires using a dynamic-

size structure, such as BigInteger (Java), instead of a primitive int. Hence,

we use herein both the number of messages and the network load metrics to

evaluate the communication complexity.

We start by returning to the setting of Figure 1 (random DCOPs, n = 71115

agents, domain sizes of d = 6, and constraint densities of 0.3 ≤ p1 ≤ 0.9), and

counting the total number of sent messages in this setting. The results, given in

Figure 6, show that like in the case of runtime performance, the communication

complexity is also only mildly affected by the varying constraint density. Simi-

larly to the trends in Figure 1, the overhead of the PC-SyncBB versions is about1120

49

two orders of magnitude compared to P-SyncBB. However, the differences be-

tween the PC-SyncBB versions are mild, with PC-SyncBB-DN exchanging only

a slightly higher number of messages than PC-SyncBB-BO-online.

1E+1

1E+2

1E+3

1E+4

1E+5

1E+6

1E+7

1E+8

0.3 0.4 0.5 0.6 0.7 0.8 0.9

N
u

m
b

er
 o

f
m

es
sa

g
es

Constraint density (p1)

PC-SyncBB-BO

PC-SyncBB-BO-

online

PC-SyncBB-DN

P-SyncBB

SyncBB

Figure 6: Total number of messages in random DCOPs (n = 7, d = 6, varying p1).

Figure 7 displays the network load results (in kilobytes) for the same setting.

Here, the differences between the versions of PC-SyncBB are more substantial,1125

and especially the gap between the online part and overall network load of

PC-SyncBB-BO.

1E+1

1E+2

1E+3

1E+4

1E+5

1E+6

1E+7

1E+8

0.3 0.4 0.5 0.6 0.7 0.8 0.9

N
et

w
o

rk
 l

o
ad

 (
K

B
)

Constraint density (p1)

PC-SyncBB-BO

PC-SyncBB-BO-

online

PC-SyncBB-DN

P-SyncBB

SyncBB

Figure 7: Network load in random DCOPs (n = 7, d = 6, varying p1).

Next, in order to evaluate the scalability of the algorithms in terms of com-

munication, we return to the setting of Figure 3 (distributed 3-color graph

coloring problems, p1 = 0.4, 5 ≤ n ≤ 19). Figure 8 depicts the total num-1130

ber of messages for this setting, and shows a very interesting phenomenon –

50

PC-SyncBB-DN exchanges less messages even than just the online part of PC-

SyncBB-BO, for n ≥ 9. Nevertheless, the communication complexity in terms

of the number of messages is rather similar between the versions of PC-SyncBB,

and between the online and offline phases of PC-SyncBB-BO.1135

1E+0

1E+1

1E+2

1E+3

1E+4

1E+5

1E+6

1E+7

1E+8

1E+9

5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

N
u

m
b

er
 o

f
m

es
sa

g
es

Number of agents (n)

PC-SyncBB-BO

PC-SyncBB-BO-

online

PC-SyncBB-DN

P-SyncBB

SyncBB

Figure 8: Total number of messages in 3-color graph coloring problems (p1 = 0.4, varying n).

The story is quite different when considering the network load in this setting,

see Figure 9. Regarding network load, PC-SyncBB-online scales considerably

better than the overall PC-SyncBB-BO that also includes the offline phase. In

fact, it is just over an order of magnitude larger than that of P-SyncBB. Also

interesting is the network load of PC-SyncBB-DN, which rises steeply when1140

moving from n = 13 to n = 14. This is due to the required change in the

Mersenne prime used, see Section 5.1.

1E-1
1E+0
1E+1
1E+2
1E+3
1E+4
1E+5
1E+6
1E+7
1E+8
1E+9

1E+10
1E+11

5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

N
et

w
o

rk
 l

o
ad

 (
K

B
)

Number of agents (n)

PC-SyncBB-BO

PC-SyncBB-BO-

online

PC-SyncBB-DN

P-SyncBB

SyncBB

Figure 9: Network load in 3-color graph coloring problems (p1 = 0.4, varying n).

51

Communication complexity shows very similar scalability trends in other

benchmarks (random DCOPs, scale-free networks, meeting scheduling), hence

such graphs are omitted.1145

5.2.3. Varying size of committees

In Section 4.1 we introduced a variant of our algorithm that enables im-

munity against coalitions of size c smaller than (n − 1)/2. Here we conduct

experiments on varying size of coalitions.

In order to show meaningful results, we chose to focus on the graph coloring1150

benchmark, which enables running problems with relatively large number of

agents. Figure 10 depicts the runtime performance on the same distributed

3-color graph coloring problems as in Figure 3 (p1 = 0.4, 5 ≤ n ≤ 19). For

coalitions of size 1 we use the P-SyncBB algorithm [18]. We also depict the

runtime when running PC-SyncBB while limiting the maximal coalition sizes to1155

2, 3, and 5, by PC-SyncBB-c2, PC-SyncBB-c3, and PC-SyncBB-c5, respectively.

Finally, PC-SyncBB depicts the runtime of the standard PC-SyncBB algorithm,

without limitation on the maximal coalition size (except for the honest majority

assumption). In all versions of PC-SyncBB herein, we use the Damg̊ard-Nielsen

[31] variant. The same trends between the Damg̊ard-Nielsen and Ben-Efraim-1160

Omri protocols that were shown in Figure 3 also hold here, so we omit the

Ben-Efraim-Omri results for clarity of presentation.

The results in Figure 10 show that limiting coalition sizes improves the

runtime performance by up to 5-6 times (according to the difference between

PC-SyncBB and PC-SyncBB-c2 for n = 19 agents). Such a difference is indeed1165

significant, so running PC-SyncBB according to an a priori known maximal

number of colluders is a good idea. Another interesting phenomenon is that the

runtime of P-SyncBB is orders of magnitude shorter than that of PC-SyncBB-

c2. This comes as no surprise, since P-SyncBB does not need to incorporate

protection mechanisms against coalitions, and is thus inherently faster. Hence,1170

whenever there is no suspicion of colluding agents, P-SyncBB should be used

for improved performance.

52

0.01

0.1

1

10

100

1000

10000

5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

S
im

u
la

te
d

 r
u

n
ti

m
e

(s
ec

)

Number of agents (n)

PC-SyncBB

PC-SyncBB-c5

PC-SyncBB-c3

PC-SyncBB-c2

P-SyncBB

Figure 10: Runtime performance for different coalition sizes in 3-color graph coloring problems

(p1 = 0.4, varying n).

The trends are similar, although gaps are smaller, when considering the total

number of messages metric, see Figure 11.

1E+1

1E+2

1E+3

1E+4

1E+5

1E+6

1E+7

1E+8

5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

N
u

m
b

er
 o

f
m

es
sa

g
es

Number of agents (n)

PC-SyncBB

PC-SyncBB-c5

PC-SyncBB-c3

PC-SyncBB-c2

P-SyncBB

Figure 11: Total number of messages for different coalition sizes in 3-color graph coloring

problems (p1 = 0.4, varying n).

Figure 12 displays the corresponding results for the network load measure.1175

Here, we can see that assuming smaller sizes of coalitions can drastically reduce

the network load. This is due to the change in the Mersenne prime used for

problems with n ≥ 14. Such a change is no longer required when limiting the

size of coalitions to up to c = 6.

53

1E+1

1E+2

1E+3

1E+4

1E+5

1E+6

1E+7

1E+8

1E+9

5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

N
et

w
o

rk
 l

o
ad

 (
K

B
)

Number of agents (n)

PC-SyncBB

PC-SyncBB-c5

PC-SyncBB-c3

PC-SyncBB-c2

P-SyncBB

Figure 12: Network load for different coalition sizes in 3-color graph coloring problems (p1 =

0.4, varying n).

6. Conclusion1180

We proposed herein PC-SyncBB, the first privacy-preserving DCOP algo-

rithm which is secure against coalitions. It is based on the complete SyncBB

algorithm. We showed how the agents can simulate all of SyncBB’s input-

dependent operations while preserving the privacy of their sensitive constraint,

topology and assignment/decision information, even in the presence of coali-1185

tions smaller than half the number of agents. We analyzed the properties of the

algorithm and evaluated its performance. Our experiments demonstrate that

PC-SyncBB is feasible for moderately-sized problems.

We also proposed two additional variants of the algorithm. The first variant

is secure against coalitions of size ≤ c, for some constant c < (n − 1)/2. Our1190

experiments show that this variant improves the performance of the algorithm,

and especially the network load. The second variant incorporates the mediated

model. As a consequence, it is immune to agent coalitions of any size, but it

relies on an external committee of mediators with an honest majority.

A major limitation on the scalability of PC-SyncBB is due to the cryp-1195

tographic MPC protocols invoked by the compare CPA cost to upper bound

sub-protocol. In the preliminary version of this study [25], we used a garbled-

circuit-based protocol – the Ben-Efraim-Omri (BO) protocol [34]. We chose an

54

MPC protocol that is based on a Boolean circuit because the desired function

that needs to be computed in compare CPA cost to upper bound, Eq. (7), can1200

be represented by Eq. (8), which strongly suggests using a Boolean circuit.

However, an arithmetic circuit representation turns out to be much more effi-

cient. Specifically, the solution that we present here computes Eq. (7) by a

secure emulation of an arithmetic circuit; the secure emulation of that circuit

is carried out by the Damg̊ard-Nielsen (DN) protocol [31]. Our experiments1205

show that the DN-based implementation is more efficient than the BO-based

implementation. However, the BO-based implementation can be significantly

more efficient in applications that allow offline computations.

As explained in the Introduction, all existing privacy-preserving DCOP al-

gorithms base their security on assuming solitary conduct of the agents. Alas,1210

such an assumption may not always hold, and if indeed two or more corrupted

agents collude, they may breach the privacy guarantees of those algorithms.

This study is the first one that addresses this risk of privacy-breach, by intro-

ducing the first privacy-preserving algorithm that is secure against coalitions.

We chose to depart from SyncBB, the first DCOP algorithm [5], because it1215

is a complete algorithm (i.e., it outputs an optimal solution), and its informa-

tion flow enabled a rather simple cryptographic reconstruction that achieves the

desired properties. However, it is necessary to develop privacy-preserving and

collision-secure implementations of other DCOP algorithms. We believe that im-

mediate efforts should be invested in incomplete DCOP algorithms, that could1220

offer better scalability.

This work can be extended in future work in several directions. We as-

sume in this study that all constraints are binary. This common assumption is

widely used in DCOP literature, and in fact in all prior art on privacy-preserving

DCOPs, following the equivalence result of Rossi et al. [44]. Nevertheless, mod-1225

eling a problem with only binary constraints is not always efficient [45]; thus, the

extension of PC-SyncBB to an algorithm that handles non-binary constraints

is an important future prospect. Another important extension is that to the

asymmetric DCOP model (ADCOP) [46], in which a constraint may impact

55

differently the agents that share it, as is commonly the case in many multi-1230

agent settings. The asymmetry of constraints introduces an additional type of

privacy concern, namely internal constraint privacy [47], hence privatizing an

asymmetric version of SyncBB is an interesting challenge. However, the move

from DCOP to ADCOP is not trivial and requires substantial algorithmic effort,

e.g. [42, 46, 48, 49], and is thus left for a separate thorough study. Finally,1235

another interesting future research direction is to devise secure implementa-

tions of SyncBB that are secure in the presence of malicious agents, i.e., agents

that might deviate from the prescribed protocol in attempt to extract sensitive

information on other agents.

56

Appendix A. Illustrating the operation of PC-SyncBB1240

In this section we illustrate the operation of PC-SyncBB on a small prob-

lem. We consider a setting with n = 4 agents that control four variables,

X1, X2, X3, X4. The constraint graph between those variables is depicted in

Figure A.13. As can be seen there, four out of the six pairs of variables are

constrained. Hence Γ(X2, X4) = Γ(X3, X4) = 0, while Γ(Xi, Xj) = 1 otherwise.1245

X1 X2

X4X3

Figure A.13: The constraint graph of the exemplified DCOP over four variables.

We assume that the upper bound on any single binary constraint cost is

q = 10. Hence, the upper bound that we set in PC-SyncBB on the cost of any

solution is q∞ =
(
4
2

)
· q+ 1 = 61. Consequently, all computations will be carried

out modulo S = 67, which is the smallest prime larger than q∞.

For simplicity, we shall assume that all domains are the same, Dk = {10, 20, 30},1250

and that the fixed order on all of them is uk = (10, 20, 30), 1 ≤ k ≤ 4. The

constraint matrices between every pair of constrained variables are given in

57

Table A.3.

X2

X1

10 20 30

10 5 6 4

20 7 9 1

30 10 4 0

X3

X1

10 20 30

10 2 3 4

20 1 2 1

30 3 4 0

X4

X1

10 20 30

10 9 8 9

20 7 6 10

30 10 7 0

X3

X2

10 20 30

10 0 6 7

20 0 6 3

30 0 9 5

Table A.3: The constraint matrices between every pair of constrained variables

Next, we begin the description of PC-SyncBB’s run on the above problem.

We do so by a sequence of 52 “snapshots” of that run, which correspond to one1255

possible execution of PC-SyncBB. (Recall that PC-SyncBB is an algorithm in

which the agents make randomized decisions, so it may have several execution

scenarios on the very same problem.)

Each snapshot shows:

• The cost of the current partial assignment, cost(CPA), and the current1260

upper bound (being the minimal cost of a full solution that was found so

far), UB.

• The list of agents, where the currently active agent is marked by blue.

• The list of variables and their currently assigned value (for the variables

that are included in the CPA).1265

• Shares of pairwise costs, i.e. sCPAk(t) for all pairs 1 ≤ kconstraint 6= t ≤

n = 4.

58

• Shares of the upper bound, sUBk.

• The current optimal setting for each variable Xk.

• The random ordering by which each agent Ak traverses his domain Dk.1270

Recall that this ordering is denoted wk, and it is generated at random by

Ak whenever he begins a new traversal over his domain.

• The pointer pk that points to a value in the ordering wk; the current

assignment to Xk is given by wk(pk) and it is marked by blue.

For convenience, we mark in each snapshot the values that had changed in that1275

step by red.

Snapshot 1 illustrates the initialization of variables as done in PC-SyncBB’s

procedure init: all shares of pairwise costs are initialized to zero (Line 1), all

pointers pk are set to zero (Line 2), and the shares of the upper bound are set

according to Lines 3-6.1280

Snapshot 2 illustrates the execution of the assign CPA procedure by A1.

He generates a new random ordering w1 over his domain, increments p1 to 1

and assigns to X1 the value w1(p1) = 20. As the current CPA involves only X1,

all sCPAk(t) shares, 1 ≤ k 6= t ≤ 4, remain zero, and cost(CPA) = 0. That cost

is compared to UB, which is currently set to q = 61. Since that comparison1285

(PC-SyncBB, Line 21) yields a true value, the search torch is passed on to A2

(Line 24).

Snapshot 3 illustrates the similar actions that A2 performs in assign CPA.

Note that here cost(CPA) = 1, since that is the cost when X1 = 20 and X2 =

30. This value is encoded in the two shares sCPA1(2) and sCPA2(1). Agents1290

A1 and A2 compute those shares, securely, by running update shares in CPA

(Line 15). The resulting random shares in the illustrated example are, as shown

in the snapshot, sCPA1(2) = 33 and sCPA2(1) = 35. Indeed, the sum of those

two values modulo S = 67 equals cost(CPA) = 1. Note that all other shares

are still zero, since only X1 and X2 have assigned values at this point. Since1295

cost(CPA) = 1 is still smaller than UB = 61, the search torch is passed on to

59

A3.

Snapshots 4-5 describe the assignments to X3 and X4. At this stage we

have a full set of assignments, as shown in Snapshot 5. The overall cost of that

full assignment is cost(CPA) = 8, as can be easily verified against Table A.3.1300

Recall that cost(CPA) is not stored anywhere; its only existence is through

the shares sCPAk(t). We leave it to the reader to verify that for each pair

of constrained variables, Xt and Xk, where t < k, the sum of sCPAt(k) and

sCPAk(t) modulo S equals Ct,k(Xt, Xk) (as given in Table A.3), in accord with

Eq. (2). Consequently, the sum of all those shares, over all 1 ≤ k 6= t ≤ n = 4,1305

equals cost(CPA) = 8 modulo S = 67 (see Eq. (3)).

When the last agent A4 triggers an execution of the comparison procedure

compare CPA cost to upper bound (Line 17) in order to compare cost(CPA) =

8 to UB = 61, the result is true.

Snapshots 6: As a result, a message NEW OPTIMUM FOUND is1310

broadcast (Line 18). Consequently, all shares sUBk are updated according

to Line 31 in PC-SyncBB. For example, sUB2 = sCPA2(1) + sCPA2(3) +

sCPA2(4) = 35 + 42 + 0 = 10 mod S = 67. Now, the sum of all those shares

equals the new upper bound, namely,
∑4
k=1 sUBk = 44 + 10 + 18 + 3 = 75,

equals UB = 8 mod S = 67. Additionally, all agents store their optimal setting1315

in the solution that was just found to be the optimal solution thus far in the

search (PC-SyncBB, Line 32).

Snapshots 7: Here, A4 proceeds to assign the next value in his domain (Line

19). To that end he increments p4 to 2 (Line 10) and assigns X4 ← w4(p4) = 10

(Line 14). As X4 is constrained only with X1 then only the two shares sCPA1(4)1320

and sCPA4(1) are updated. Now they equal 66 and 8, respectively, so that their

sum modulo S = 67 equals 7, which is C1,4(X1 = 20, X2 = 10) = 7. Now, in

wake of that assignment, cost(CPA) grew by 1, from 8 to 9. Therefore, the

comparison in this case (Line 17) yields a false value. In that case, all that is

left to do is to proceed to assign the next value from D4 (Line 19).1325

In Snapshot 8 A4 proceeds to assign the next value from D4 tp X4. That

assignment does not produce a new optimum either. Hence, in Snapshot 9 A4

60

executes once again assign CPA (Line 19). But this time, since he completed

a full scan over D4, he backtracks (Line 12). As part of backtracking, A4 zeros

his share with each of the agents in I−4 = {A1} (Line 26); in our case that1330

amounts to zeroing sCPA4(1). In addition, he sends a ZERO SHARE MSG

message to A1 (Line 27), who, subsequently, sets sCPA1(4) = 0 (Line 35). As

a result, the remaining shares add up to cost(CPA) = 2 mod S = 67, which

is indeed the cost of the reduced CPA over the first three variables, as was the

case in Snapshot 4. Next, A4 sends a BACKTRACK MSG message to A31335

(Line 28); upon receiving that message, A3 calls the assign CPA procedure

(Line 36).

Snapshot 10: Here, A3 assigns the next value from w3 to X3. The resulting

cost(CPA) is 12. Indeed, by Table A.3, C1,2(X1 = 20, X2 = 30) = 1, C1,3(X1 =

20, X3 = 20) = 2, and C2,3(X2 = 30, X3 = 20) = 9, and the sum of the above1340

three costs is 12. The reader can see that exactly four shares sCPAk(t) changed

(all those that relate to the changed variable X3) and the sum of all shares

indeed add up to 12. As that value is greater than UB = 8, the comparison in

Line 12 issues a false answer. Hence, there is no need to examine the rest of

this search path, and thus A3 proceeds to examine the next value in his domain1345

(Line 22).

Snapshot 11: Here, A3 assignsX3 ← w3(3) = 30. The resulting cost(CPA)

is 7, which is smaller than UB = 8 (i.e., the comparison in Line 21 issued a

true result). As a consequence, A3 sends a CPA MSG message to A4 (Line

24).1350

Snapshot 12: Upon receiving the CPA MSG message, A4 prepares for

a new traversal of his domain D4: he sets p4 ← 0 (Line 33), calls assign CPA

(Line 34), generates a new random ordering w4 over D4 (Line 9), increment p4

to 1 (Line 10), and then sets a new value to X4 (Line 14). The resulting cost of

the CPA turns out to be 17, which is larger than UB (false in Line 17). Hence,1355

A4 calls once again assign CPA (Line 19).

Snapshots 13-14: Here, A4 tests the remaining two values in his domain

against the current assignments of X1, X2, X3. Neither of them produces a new

61

optimum.

In Snapshot 15 A4 backtracks. In doing so, the two shares sCPA1(4) and1360

sCPA4(1) are zeroed, and then cost(CPA) reduces to 7, as it was in Snapshot

11, since now the CPA involves only X1, X2, X3.

Then, in Snapshot 16 also A3 backtracks since he had exhausted his do-

main. Once again, all shares that relate toX3 are zeroed and cost(CPA) reduces

to 1, its historic value from Snapshot 3, since now the CPA involves only X1, X2.1365

We arrive at Snapshot 17 where A2 increments p2 in order to test the

next assignment from his domain. The examination of the CPA X1 = w1(1)

and X2 = w2(2) proceeds in Snapshots 18-21. That search yields no new

optimum. In Snapshot 22 the CPA X1 = w1(1) and X2 = w2(3) is tested.

Since the cost of that single binary constraint is 9, which is larger than UB = 8,1370

that CPA is abandoned very quickly. After A2 backtracks in Snapshot 23, A1

advances his variable assignment to the next value in w1, which is 30 (Snapshot

24).

The search proceeds in that manner. A new optimum of UB = 7, which

improves on the previous optimum of UB = 8, is found in Snapshot 30.1375

Another improvement, to UB = 3, is reached in Snapshot 40. The search

terminates in Snapshot 52 with a message of COMPLETE (Lines 30 and

37-38 in PC-SyncBB).

62

Snapshot 1

𝐴1 𝐴2 𝐴3 𝐴4Agents

Variables 𝑋1 𝑋2 𝑋3 𝑋4

𝑠𝐶𝑃𝐴1 2 = 0
𝑠𝐶𝑃𝐴1 3 = 0
𝑠𝐶𝑃𝐴1 4 = 0

𝑠𝐶𝑃𝐴2 1 = 0
𝑠𝐶𝑃𝐴2 3 = 0
𝑠𝐶𝑃𝐴2 4 = 0

𝑠𝐶𝑃𝐴3 1 = 0
𝑠𝐶𝑃𝐴3 2 = 0
𝑠𝐶𝑃𝐴3 4 = 0

𝑠𝐶𝑃𝐴4 1 = 0
𝑠𝐶𝑃𝐴4 2 = 0
𝑠𝐶𝑃𝐴4 3 = 0

Shares of
pairwise costs

Shares of best
known global cost

𝑠𝑈𝐵1 = 61 𝑠𝑈𝐵2 = 0 𝑠𝑈𝐵3 = 0 𝑠𝑈𝐵4 = 0

OptimalSetting − − − −

Pointer 𝑝1 = 0 𝑝2 = 0 𝑝3 = 0 𝑝4 = 0

Random ordering

Snapshot 2

𝐴1 𝐴2 𝐴3 𝐴4Agents

Variables 𝑋1 = 20 𝑋2 𝑋3 𝑋4

𝑠𝐶𝑃𝐴1 2 = 0
𝑠𝐶𝑃𝐴1 3 = 0
𝑠𝐶𝑃𝐴1 4 = 0

𝑠𝐶𝑃𝐴2 1 = 0
𝑠𝐶𝑃𝐴2 3 = 0
𝑠𝐶𝑃𝐴2 4 = 0

𝑠𝐶𝑃𝐴3 1 = 0
𝑠𝐶𝑃𝐴3 2 = 0
𝑠𝐶𝑃𝐴3 4 = 0

𝑠𝐶𝑃𝐴4 1 = 0
𝑠𝐶𝑃𝐴4 2 = 0
𝑠𝐶𝑃𝐴4 3 = 0

Shares of
pairwise costs

Shares of best
known global cost

𝑠𝑈𝐵1 = 61 𝑠𝑈𝐵2 = 0 𝑠𝑈𝐵3 = 0 𝑠𝑈𝐵4 = 0

OptimalSetting − − − −

Pointer 𝑝1 = 1 𝑝2 = 0 𝑝3 = 0 𝑝4 = 0

Random ordering 𝒘1 = (20,30,10)

Cost(CPA) = 0 UpperBound = 61< = true

63

Snapshot 3

𝐴1 𝐴2 𝐴3 𝐴4Agents

Variables 𝑋1 = 20 𝑋2 = 30 𝑋3 𝑋4

𝑠𝐶𝑃𝐴1 2 = 33
𝑠𝐶𝑃𝐴1 3 = 0
𝑠𝐶𝑃𝐴1 4 = 0

𝑠𝐶𝑃𝐴2 1 = 35
𝑠𝐶𝑃𝐴2 3 = 0
𝑠𝐶𝑃𝐴2 4 = 0

𝑠𝐶𝑃𝐴3 1 = 0
𝑠𝐶𝑃𝐴3 2 = 0
𝑠𝐶𝑃𝐴3 4 = 0

𝑠𝐶𝑃𝐴4 1 = 0
𝑠𝐶𝑃𝐴4 2 = 0
𝑠𝐶𝑃𝐴4 3 = 0

Shares of
pairwise costs

Shares of best
known global cost

𝑠𝑈𝐵1 = 61 𝑠𝑈𝐵2 = 0 𝑠𝑈𝐵3 = 0 𝑠𝑈𝐵4 = 0

OptimalSetting − − − −

Pointer 𝑝1 = 1 𝑝2 = 1 𝑝3 = 0 𝑝4 = 0

Random ordering 𝒘1 = (20,30,10) 𝒘2 = (30,10,20)

Cost(CPA) = 1 UpperBound = 61< = true

Snapshot 4

𝐴1 𝐴2 𝐴3 𝐴4Agents

Variables 𝑋1 = 20 𝑋2 = 30 𝑋3 = 10 𝑋4

𝑠𝐶𝑃𝐴1 2 = 33
𝑠𝐶𝑃𝐴1 3 = 8
𝑠𝐶𝑃𝐴1 4 = 0

𝑠𝐶𝑃𝐴2 1 = 35
𝑠𝐶𝑃𝐴2 3 = 42
𝑠𝐶𝑃𝐴2 4 = 0

𝑠𝐶𝑃𝐴3 1 = 60
𝑠𝐶𝑃𝐴3 2 = 25
𝑠𝐶𝑃𝐴3 4 = 0

𝑠𝐶𝑃𝐴4 1 = 0
𝑠𝐶𝑃𝐴4 2 = 0
𝑠𝐶𝑃𝐴4 3 = 0

Shares of
pairwise costs

Shares of best
known global cost

𝑠𝑈𝐵1 = 61 𝑠𝑈𝐵2 = 0 𝑠𝑈𝐵3 = 0 𝑠𝑈𝐵4 = 0

OptimalSetting − − − −

Pointer 𝑝1 = 1 𝑝2 = 1 𝑝3 = 1 𝑝4 = 0

Random ordering 𝒘1 = (20,30,10) 𝒘2 = (30,10,20) 𝒘3 = (10,20,30)

Cost(CPA) = 2 UpperBound = 61< = true

1380

64

Snapshot 5

𝐴1 𝐴2 𝐴3 𝐴4Agents

Variables 𝑋1 = 20 𝑋2 = 30 𝑋3 = 10 𝑋4 = 20

𝑠𝐶𝑃𝐴1 2 = 33
𝑠𝐶𝑃𝐴1 3 = 8
𝑠𝐶𝑃𝐴1 4 = 3

𝑠𝐶𝑃𝐴2 1 = 35
𝑠𝐶𝑃𝐴2 3 = 42
𝑠𝐶𝑃𝐴2 4 = 0

𝑠𝐶𝑃𝐴3 1 = 60
𝑠𝐶𝑃𝐴3 2 = 25
𝑠𝐶𝑃𝐴3 4 = 0

𝑠𝐶𝑃𝐴4 1 = 3
𝑠𝐶𝑃𝐴4 2 = 0
𝑠𝐶𝑃𝐴4 3 = 0

Shares of
pairwise costs

Shares of best
known global cost

𝑠𝑈𝐵1 = 61 𝑠𝑈𝐵2 = 0 𝑠𝑈𝐵3 = 0 𝑠𝑈𝐵4 = 0

OptimalSetting − − − −

Pointer 𝑝1 = 1 𝑝2 = 1 𝑝3 = 1 𝑝4 = 1

Cost(CPA) = 8

Random ordering 𝒘1 = (20,30,10) 𝒘2 = (30,10,20) 𝒘3 = (10,20,30) 𝒘4 = (20,10,30)

UpperBound = 61< = true

Snapshot 6

𝐴1 𝐴2 𝐴3 𝐴4Agents

Variables 𝑋1 = 20 𝑋2 = 30 𝑋3 = 10 𝑋4 = 20

𝑠𝐶𝑃𝐴1 2 = 33
𝑠𝐶𝑃𝐴1 3 = 8
𝑠𝐶𝑃𝐴1 4 = 3

𝑠𝐶𝑃𝐴2 1 = 35
𝑠𝐶𝑃𝐴2 3 = 42
𝑠𝐶𝑃𝐴2 4 = 0

𝑠𝐶𝑃𝐴3 1 = 60
𝑠𝐶𝑃𝐴3 2 = 25
𝑠𝐶𝑃𝐴3 4 = 0

𝑠𝐶𝑃𝐴4 1 = 3
𝑠𝐶𝑃𝐴4 2 = 0
𝑠𝐶𝑃𝐴4 3 = 0

Shares of
pairwise costs

Shares of best
known global cost

𝑠𝑈𝐵1 = 44 𝑠𝑈𝐵2 = 10 𝑠𝑈𝐵3 = 18 𝑠𝑈𝐵4 = 3

OptimalSetting 20 30 10 20

Pointer 𝑝1 = 1 𝑝2 = 1 𝑝3 = 1 𝑝4 = 1

Cost(CPA) = 8

Random ordering 𝒘1 = (20,30,10) 𝒘2 = (30,10,20) 𝒘3 = (10,20,30) 𝒘4 = (20,10,30)

UpperBound = 8 NEW_OPTIMUM_FOUND

65

Snapshot 7

𝐴1 𝐴2 𝐴3 𝐴4Agents

Variables 𝑋1 = 20 𝑋2 = 30 𝑋3 = 10 𝑋4 = 10

𝑠𝐶𝑃𝐴1 2 = 33
𝑠𝐶𝑃𝐴1 3 = 8
𝑠𝐶𝑃𝐴1 4 = 66

𝑠𝐶𝑃𝐴2 1 = 35
𝑠𝐶𝑃𝐴2 3 = 42
𝑠𝐶𝑃𝐴2 4 = 0

𝑠𝐶𝑃𝐴3 1 = 60
𝑠𝐶𝑃𝐴3 2 = 25
𝑠𝐶𝑃𝐴3 4 = 0

𝑠𝐶𝑃𝐴4 1 = 8
𝑠𝐶𝑃𝐴4 2 = 0
𝑠𝐶𝑃𝐴4 3 = 0

Shares of
pairwise costs

Shares of best
known global cost

𝑠𝑈𝐵1 = 44 𝑠𝑈𝐵2 = 10 𝑠𝑈𝐵3 = 18 𝑠𝑈𝐵4 = 3

OptimalSetting 20 30 10 20

Pointer 𝑝1 = 1 𝑝2 = 1 𝑝3 = 1 𝑝4 = 2

Cost(CPA) = 9

Random ordering 𝒘1 = (20,30,10) 𝒘2 = (30,10,20) 𝒘3 = (10,20,30) 𝒘4 = (20,10,30)

UpperBound = 8< = false

Snapshot 8

𝐴1 𝐴2 𝐴3 𝐴4Agents

Variables 𝑋1 = 20 𝑋2 = 30 𝑋3 = 10 𝑋4 = 30

𝑠𝐶𝑃𝐴1 2 = 33
𝑠𝐶𝑃𝐴1 3 = 8
𝑠𝐶𝑃𝐴1 4 = 5

𝑠𝐶𝑃𝐴2 1 = 35
𝑠𝐶𝑃𝐴2 3 = 42
𝑠𝐶𝑃𝐴2 4 = 0

𝑠𝐶𝑃𝐴3 1 = 60
𝑠𝐶𝑃𝐴3 2 = 25
𝑠𝐶𝑃𝐴3 4 = 0

𝑠𝐶𝑃𝐴4 1 = 5
𝑠𝐶𝑃𝐴4 2 = 0
𝑠𝐶𝑃𝐴4 3 = 0

Shares of
pairwise costs

Shares of best
known global cost

𝑠𝑈𝐵1 = 44 𝑠𝑈𝐵2 = 10 𝑠𝑈𝐵3 = 18 𝑠𝑈𝐵4 = 3

OptimalSetting 20 30 10 20

Pointer 𝑝1 = 1 𝑝2 = 1 𝑝3 = 1 𝑝4 = 3

Cost(CPA) = 12

Random ordering

UpperBound = 8< = false

𝒘1 = (20,30,10) 𝒘2 = (30,10,20) 𝒘3 = (10,20,30) 𝒘4 = (20,10,30)

66

Snapshot 9

𝐴1 𝐴2 𝐴3 𝐴4Agents

Variables 𝑋1 = 20 𝑋2 = 30 𝑋3 = 10 𝑋4

𝑠𝐶𝑃𝐴1 2 = 33
𝑠𝐶𝑃𝐴1 3 = 8
𝑠𝐶𝑃𝐴1 4 = 0

𝑠𝐶𝑃𝐴2 1 = 35
𝑠𝐶𝑃𝐴2 3 = 42
𝑠𝐶𝑃𝐴2 4 = 0

𝑠𝐶𝑃𝐴3 1 = 60
𝑠𝐶𝑃𝐴3 2 = 25
𝑠𝐶𝑃𝐴3 4 = 0

𝑠𝐶𝑃𝐴4 1 = 0
𝑠𝐶𝑃𝐴4 2 = 0
𝑠𝐶𝑃𝐴4 3 = 0

Shares of
pairwise costs

Shares of best
known global cost

𝑠𝑈𝐵1 = 44 𝑠𝑈𝐵2 = 10 𝑠𝑈𝐵3 = 18 𝑠𝑈𝐵4 = 3

OptimalSetting 20 30 10 20

Pointer 𝑝1 = 1 𝑝2 = 1 𝑝3 = 1 𝑝4 = 4

Cost(CPA) = 2

Random ordering

UpperBound = 8

𝒘1 = (20,30,10) 𝒘2 = (30,10,20) 𝒘3 = (10,20,30)

ZERO_SHARE_MSG

Snapshot 10

𝐴1 𝐴2 𝐴3 𝐴4Agents

Variables 𝑋1 = 20 𝑋2 = 30 𝑋3 = 20 𝑋4

𝑠𝐶𝑃𝐴1 2 = 33
𝑠𝐶𝑃𝐴1 3 = 18
𝑠𝐶𝑃𝐴1 4 = 0

𝑠𝐶𝑃𝐴2 1 = 35
𝑠𝐶𝑃𝐴2 3 = 60
𝑠𝐶𝑃𝐴2 4 = 0

𝑠𝐶𝑃𝐴3 1 = 51
𝑠𝐶𝑃𝐴3 2 = 16
𝑠𝐶𝑃𝐴3 4 = 0

𝑠𝐶𝑃𝐴4 1 = 0
𝑠𝐶𝑃𝐴4 2 = 0
𝑠𝐶𝑃𝐴4 3 = 0

Shares of
pairwise costs

Shares of best
known global cost

𝑠𝑈𝐵1 = 44 𝑠𝑈𝐵2 = 10 𝑠𝑈𝐵3 = 18 𝑠𝑈𝐵4 = 3

OptimalSetting 20 30 10 20

Pointer 𝑝1 = 1 𝑝2 = 1 𝑝3 = 2 𝑝4 = 4

Cost(CPA) = 12

Random ordering

UpperBound = 8

𝒘1 = (20,30,10) 𝒘2 = (30,10,20) 𝒘3 = (10,20,30)

< = false

67

Snapshot 11

𝐴1 𝐴2 𝐴3 𝐴4Agents

Variables 𝑋1 = 20 𝑋2 = 30 𝑋3 = 30 𝑋4

𝑠𝐶𝑃𝐴1 2 = 33
𝑠𝐶𝑃𝐴1 3 = 26
𝑠𝐶𝑃𝐴1 4 = 0

𝑠𝐶𝑃𝐴2 1 = 35
𝑠𝐶𝑃𝐴2 3 = 39
𝑠𝐶𝑃𝐴2 4 = 0

𝑠𝐶𝑃𝐴3 1 = 42
𝑠𝐶𝑃𝐴3 2 = 33
𝑠𝐶𝑃𝐴3 4 = 0

𝑠𝐶𝑃𝐴4 1 = 0
𝑠𝐶𝑃𝐴4 2 = 0
𝑠𝐶𝑃𝐴4 3 = 0

Shares of
pairwise costs

Shares of best
known global cost

𝑠𝑈𝐵1 = 44 𝑠𝑈𝐵2 = 10 𝑠𝑈𝐵3 = 18 𝑠𝑈𝐵4 = 3

OptimalSetting 20 30 10 20

Pointer 𝑝1 = 1 𝑝2 = 1 𝑝3 = 3 𝑝4 = 4

Cost(CPA) = 7

Random ordering

UpperBound = 8

𝒘1 = (20,30,10) 𝒘2 = (30,10,20) 𝒘3 = (10,20,30)

< = true

Snapshot 12

𝐴1 𝐴2 𝐴3 𝐴4Agents

Variables 𝑋1 = 20 𝑋2 = 30 𝑋3 = 30 𝑋4 = 30

𝑠𝐶𝑃𝐴1 2 = 33
𝑠𝐶𝑃𝐴1 3 = 26
𝑠𝐶𝑃𝐴1 4 = 8

𝑠𝐶𝑃𝐴2 1 = 35
𝑠𝐶𝑃𝐴2 3 = 39
𝑠𝐶𝑃𝐴2 4 = 0

𝑠𝐶𝑃𝐴3 1 = 42
𝑠𝐶𝑃𝐴3 2 = 33
𝑠𝐶𝑃𝐴3 4 = 0

𝑠𝐶𝑃𝐴4 1 = 2
𝑠𝐶𝑃𝐴4 2 = 0
𝑠𝐶𝑃𝐴4 3 = 0

Shares of
pairwise costs

Shares of best
known global cost

𝑠𝑈𝐵1 = 44 𝑠𝑈𝐵2 = 10 𝑠𝑈𝐵3 = 18 𝑠𝑈𝐵4 = 3

OptimalSetting 20 30 10 20

Pointer 𝑝1 = 1 𝑝2 = 1 𝑝3 = 3 𝑝4 = 1

Cost(CPA) = 17

Random ordering

UpperBound = 8

𝒘1 = (20,30,10) 𝒘2 = (30,10,20) 𝒘3 = (10,20,30) 𝒘4 = (30,20,10)

< = false

68

Snapshot 13

𝐴1 𝐴2 𝐴3 𝐴4Agents

Variables 𝑋1 = 20 𝑋2 = 30 𝑋3 = 30 𝑋4 = 20

𝑠𝐶𝑃𝐴1 2 = 33
𝑠𝐶𝑃𝐴1 3 = 26
𝑠𝐶𝑃𝐴1 4 = 4

𝑠𝐶𝑃𝐴2 1 = 35
𝑠𝐶𝑃𝐴2 3 = 39
𝑠𝐶𝑃𝐴2 4 = 0

𝑠𝐶𝑃𝐴3 1 = 42
𝑠𝐶𝑃𝐴3 2 = 33
𝑠𝐶𝑃𝐴3 4 = 0

𝑠𝐶𝑃𝐴4 1 = 2
𝑠𝐶𝑃𝐴4 2 = 0
𝑠𝐶𝑃𝐴4 3 = 0

Shares of
pairwise costs

Shares of best
known global cost

𝑠𝑈𝐵1 = 44 𝑠𝑈𝐵2 = 10 𝑠𝑈𝐵3 = 18 𝑠𝑈𝐵4 = 3

OptimalSetting 20 30 10 20

Pointer 𝑝1 = 1 𝑝2 = 1 𝑝3 = 3 𝑝4 = 2

Cost(CPA) = 13

Random ordering

UpperBound = 8

𝒘1 = (20,30,10) 𝒘2 = (30,10,20) 𝒘3 = (10,20,30) 𝒘4 = (30,20,10)

< = false

Snapshot 14

𝐴1 𝐴2 𝐴3 𝐴4Agents

Variables 𝑋1 = 20 𝑋2 = 30 𝑋3 = 30 𝑋4 = 10

𝑠𝐶𝑃𝐴1 2 = 33
𝑠𝐶𝑃𝐴1 3 = 26
𝑠𝐶𝑃𝐴1 4 = 14

𝑠𝐶𝑃𝐴2 1 = 35
𝑠𝐶𝑃𝐴2 3 = 39
𝑠𝐶𝑃𝐴2 4 = 0

𝑠𝐶𝑃𝐴3 1 = 42
𝑠𝐶𝑃𝐴3 2 = 33
𝑠𝐶𝑃𝐴3 4 = 0

𝑠𝐶𝑃𝐴4 1 =60
𝑠𝐶𝑃𝐴4 2 = 0
𝑠𝐶𝑃𝐴4 3 = 0

Shares of
pairwise costs

Shares of best
known global cost

𝑠𝑈𝐵1 = 44 𝑠𝑈𝐵2 = 10 𝑠𝑈𝐵3 = 18 𝑠𝑈𝐵4 = 3

OptimalSetting 20 30 10 20

Pointer 𝑝1 = 1 𝑝2 = 1 𝑝3 = 3 𝑝4 = 3

Cost(CPA) = 14

Random ordering

UpperBound = 8

𝒘1 = (20,30,10) 𝒘2 = (30,10,20) 𝒘3 = (10,20,30) 𝒘4 = (30,20,10)

< = false

1385

69

Snapshot 15

𝐴1 𝐴2 𝐴3 𝐴4Agents

Variables 𝑋1 = 20 𝑋2 = 30 𝑋3 = 30 𝑋4

𝑠𝐶𝑃𝐴1 2 = 33
𝑠𝐶𝑃𝐴1 3 = 26
𝑠𝐶𝑃𝐴1 4 = 0

𝑠𝐶𝑃𝐴2 1 = 35
𝑠𝐶𝑃𝐴2 3 = 39
𝑠𝐶𝑃𝐴2 4 = 0

𝑠𝐶𝑃𝐴3 1 = 42
𝑠𝐶𝑃𝐴3 2 = 33
𝑠𝐶𝑃𝐴3 4 = 0

𝑠𝐶𝑃𝐴4 1 = 0
𝑠𝐶𝑃𝐴4 2 = 0
𝑠𝐶𝑃𝐴4 3 = 0

Shares of
pairwise costs

Shares of best
known global cost

𝑠𝑈𝐵1 = 44 𝑠𝑈𝐵2 = 10 𝑠𝑈𝐵3 = 18 𝑠𝑈𝐵4 = 3

OptimalSetting 20 30 10 20

Pointer 𝑝1 = 1 𝑝2 = 1 𝑝3 = 3 𝑝4 = 4

Cost(CPA) = 7

Random ordering

UpperBound = 8

𝒘1 = (20,30,10) 𝒘2 = (30,10,20) 𝒘3 = (10,20,30)

ZERO_SHARE_MSG

Snapshot 16

𝐴1 𝐴2 𝐴3 𝐴4Agents

Variables 𝑋1 = 20 𝑋2 = 30 𝑋3 𝑋4

𝑠𝐶𝑃𝐴1 2 = 33
𝑠𝐶𝑃𝐴1 3 = 0
𝑠𝐶𝑃𝐴1 4 = 0

𝑠𝐶𝑃𝐴2 1 = 35
𝑠𝐶𝑃𝐴2 3 = 0
𝑠𝐶𝑃𝐴2 4 = 0

𝑠𝐶𝑃𝐴3 1 = 0
𝑠𝐶𝑃𝐴3 2 = 0
𝑠𝐶𝑃𝐴3 4 = 0

𝑠𝐶𝑃𝐴4 1 = 0
𝑠𝐶𝑃𝐴4 2 = 0
𝑠𝐶𝑃𝐴4 3 = 0

Shares of
pairwise costs

Shares of best
known global cost

𝑠𝑈𝐵1 = 44 𝑠𝑈𝐵2 = 10 𝑠𝑈𝐵3 = 18 𝑠𝑈𝐵4 = 3

OptimalSetting 20 30 10 20

Pointer 𝑝1 = 1 𝑝2 = 1 𝑝3 = 4 𝑝4 = 4

Cost(CPA) = 1

Random ordering

UpperBound = 8

𝒘1 = (20,30,10) 𝒘2 = (30,10,20)

ZERO_SHARE_MSG

70

Snapshot 17

𝐴1 𝐴2 𝐴3 𝐴4Agents

Variables 𝑋1 = 20 𝑋2 = 10 𝑋3 𝑋4

𝑠𝐶𝑃𝐴1 2 = 34
𝑠𝐶𝑃𝐴1 3 = 0
𝑠𝐶𝑃𝐴1 4 = 0

𝑠𝐶𝑃𝐴2 1 = 40
𝑠𝐶𝑃𝐴2 3 = 0
𝑠𝐶𝑃𝐴2 4 = 0

𝑠𝐶𝑃𝐴3 1 = 0
𝑠𝐶𝑃𝐴3 2 = 0
𝑠𝐶𝑃𝐴3 4 = 0

𝑠𝐶𝑃𝐴4 1 = 0
𝑠𝐶𝑃𝐴4 2 = 0
𝑠𝐶𝑃𝐴4 3 = 0

Shares of
pairwise costs

Shares of best
known global cost

𝑠𝑈𝐵1 = 44 𝑠𝑈𝐵2 = 10 𝑠𝑈𝐵3 = 18 𝑠𝑈𝐵4 = 3

OptimalSetting 20 30 10 20

Pointer 𝑝1 = 1 𝑝2 = 2 𝑝3 = 4 𝑝4 = 4

Cost(CPA) = 7

Random ordering

UpperBound = 8

𝒘1 = (20,30,10) 𝒘2 = (30,10,20)

< = true

Snapshot 18

𝐴1 𝐴2 𝐴3 𝐴4Agents

Variables 𝑋1 = 20 𝑋2 = 10 𝑋3 = 20 𝑋4

𝑠𝐶𝑃𝐴1 2 = 34
𝑠𝐶𝑃𝐴1 3 = 1
𝑠𝐶𝑃𝐴1 4 = 0

𝑠𝐶𝑃𝐴2 1 = 40
𝑠𝐶𝑃𝐴2 3 = 60
𝑠𝐶𝑃𝐴2 4 = 0

𝑠𝐶𝑃𝐴3 1 = 1
𝑠𝐶𝑃𝐴3 2 = 13
𝑠𝐶𝑃𝐴3 4 = 0

𝑠𝐶𝑃𝐴4 1 = 0
𝑠𝐶𝑃𝐴4 2 = 0
𝑠𝐶𝑃𝐴4 3 = 0

Shares of
pairwise costs

Shares of best
known global cost

𝑠𝑈𝐵1 = 44 𝑠𝑈𝐵2 = 10 𝑠𝑈𝐵3 = 18 𝑠𝑈𝐵4 = 3

OptimalSetting 20 30 10 20

Pointer 𝑝1 = 1 𝑝2 = 2 𝑝3 = 1 𝑝4 = 4

Cost(CPA) = 15

Random ordering

UpperBound = 8

𝒘1 = (20,30,10) 𝒘2 = (30,10,20) 𝒘3 = (20,30,10)

< = false

71

Snapshot 19

𝐴1 𝐴2 𝐴3 𝐴4Agents

Variables 𝑋1 = 20 𝑋2 = 10 𝑋3 = 30 𝑋4

𝑠𝐶𝑃𝐴1 2 = 34
𝑠𝐶𝑃𝐴1 3 = 34
𝑠𝐶𝑃𝐴1 4 = 0

𝑠𝐶𝑃𝐴2 1 = 40
𝑠𝐶𝑃𝐴2 3 = 1
𝑠𝐶𝑃𝐴2 4 = 0

𝑠𝐶𝑃𝐴3 1 = 34
𝑠𝐶𝑃𝐴3 2 = 6
𝑠𝐶𝑃𝐴3 4 = 0

𝑠𝐶𝑃𝐴4 1 = 0
𝑠𝐶𝑃𝐴4 2 = 0
𝑠𝐶𝑃𝐴4 3 = 0

Shares of
pairwise costs

Shares of best
known global cost

𝑠𝑈𝐵1 = 44 𝑠𝑈𝐵2 = 10 𝑠𝑈𝐵3 = 18 𝑠𝑈𝐵4 = 3

OptimalSetting 20 30 10 20

Pointer 𝑝1 = 1 𝑝2 = 2 𝑝3 = 2 𝑝4 = 4

Cost(CPA) = 15

Random ordering

UpperBound = 8

𝒘1 = (20,30,10) 𝒘2 = (30,10,20) 𝒘3 = (20,30,10)

< = false

Snapshot 20

𝐴1 𝐴2 𝐴3 𝐴4Agents

Variables 𝑋1 = 20 𝑋2 = 10 𝑋3 = 10 𝑋4

𝑠𝐶𝑃𝐴1 2 = 34
𝑠𝐶𝑃𝐴1 3 = 2
𝑠𝐶𝑃𝐴1 4 = 0

𝑠𝐶𝑃𝐴2 1 = 40
𝑠𝐶𝑃𝐴2 3 = 20
𝑠𝐶𝑃𝐴2 4 = 0

𝑠𝐶𝑃𝐴3 1 = 66
𝑠𝐶𝑃𝐴3 2 = 47
𝑠𝐶𝑃𝐴3 4 = 0

𝑠𝐶𝑃𝐴4 1 = 0
𝑠𝐶𝑃𝐴4 2 = 0
𝑠𝐶𝑃𝐴4 3 = 0

Shares of
pairwise costs

Shares of best
known global cost

𝑠𝑈𝐵1 = 44 𝑠𝑈𝐵2 = 10 𝑠𝑈𝐵3 = 18 𝑠𝑈𝐵4 = 3

OptimalSetting 20 30 10 20

Pointer 𝑝1 = 1 𝑝2 = 2 𝑝3 = 3 𝑝4 = 4

Cost(CPA) = 8

Random ordering

UpperBound = 8

𝒘1 = (20,30,10) 𝒘2 = (30,10,20) 𝒘3 = (20,30,10)

< = false

72

Snapshot 21

𝐴1 𝐴2 𝐴3 𝐴4Agents

Variables 𝑋1 = 20 𝑋2 = 10 𝑋3 𝑋4

𝑠𝐶𝑃𝐴1 2 = 34
𝑠𝐶𝑃𝐴1 3 = 0
𝑠𝐶𝑃𝐴1 4 = 0

𝑠𝐶𝑃𝐴2 1 = 40
𝑠𝐶𝑃𝐴2 3 = 0
𝑠𝐶𝑃𝐴2 4 = 0

𝑠𝐶𝑃𝐴3 1 = 0
𝑠𝐶𝑃𝐴3 2 = 0
𝑠𝐶𝑃𝐴3 4 = 0

𝑠𝐶𝑃𝐴4 1 = 0
𝑠𝐶𝑃𝐴4 2 = 0
𝑠𝐶𝑃𝐴4 3 = 0

Shares of
pairwise costs

Shares of best
known global cost

𝑠𝑈𝐵1 = 44 𝑠𝑈𝐵2 = 10 𝑠𝑈𝐵3 = 18 𝑠𝑈𝐵4 = 3

OptimalSetting 20 30 10 20

Pointer 𝑝1 = 1 𝑝2 = 2 𝑝3 = 4 𝑝4 = 4

Cost(CPA) = 7

Random ordering

UpperBound = 8

𝒘1 = (20,30,10) 𝒘2 = (30,10,20)

ZERO_SHARE_MSG

Snapshot 22

𝐴1 𝐴2 𝐴3 𝐴4Agents

Variables 𝑋1 = 20 𝑋2 = 20 𝑋3 𝑋4

𝑠𝐶𝑃𝐴1 2 = 5
𝑠𝐶𝑃𝐴1 3 = 0
𝑠𝐶𝑃𝐴1 4 = 0

𝑠𝐶𝑃𝐴2 1 = 4
𝑠𝐶𝑃𝐴2 3 = 0
𝑠𝐶𝑃𝐴2 4 = 0

𝑠𝐶𝑃𝐴3 1 = 0
𝑠𝐶𝑃𝐴3 2 = 0
𝑠𝐶𝑃𝐴3 4 = 0

𝑠𝐶𝑃𝐴4 1 = 0
𝑠𝐶𝑃𝐴4 2 = 0
𝑠𝐶𝑃𝐴4 3 = 0

Shares of
pairwise costs

Shares of best
known global cost

𝑠𝑈𝐵1 = 44 𝑠𝑈𝐵2 = 10 𝑠𝑈𝐵3 = 18 𝑠𝑈𝐵4 = 3

OptimalSetting 20 30 10 20

Pointer 𝑝1 = 1 𝑝2 = 3 𝑝3 = 4

Cost(CPA) = 9

Random ordering

UpperBound = 8

𝒘1 = (20,30,10) 𝒘2 = (30,10,20)

𝑝4 = 4

< = false

73

Snapshot 23

𝐴1 𝐴2 𝐴3 𝐴4Agents

Variables 𝑋1 = 20 𝑋2 𝑋3 𝑋4

𝑠𝐶𝑃𝐴1 2 = 0
𝑠𝐶𝑃𝐴1 3 = 0
𝑠𝐶𝑃𝐴1 4 = 0

𝑠𝐶𝑃𝐴2 1 = 0
𝑠𝐶𝑃𝐴2 3 = 0
𝑠𝐶𝑃𝐴2 4 = 0

𝑠𝐶𝑃𝐴3 1 = 0
𝑠𝐶𝑃𝐴3 2 = 0
𝑠𝐶𝑃𝐴3 4 = 0

𝑠𝐶𝑃𝐴4 1 = 0
𝑠𝐶𝑃𝐴4 2 = 0
𝑠𝐶𝑃𝐴4 3 = 0

Shares of
pairwise costs

Shares of best
known global cost

𝑠𝑈𝐵1 = 44 𝑠𝑈𝐵2 = 10 𝑠𝑈𝐵3 = 18 𝑠𝑈𝐵4 = 3

OptimalSetting 20 30 10 20

Pointer 𝑝1 = 1 𝑝2 = 4 𝑝3 = 4

Cost(CPA) = 0

Random ordering

UpperBound = 8

𝒘1 = (20,30,10)

ZERO_SHARE_MSG

𝑝4 = 4

Snapshot 24

𝐴1 𝐴2 𝐴3 𝐴4Agents

Variables 𝑋1 = 30 𝑋2 𝑋3 𝑋4

𝑠𝐶𝑃𝐴1 2 = 0
𝑠𝐶𝑃𝐴1 3 = 0
𝑠𝐶𝑃𝐴1 4 = 0

𝑠𝐶𝑃𝐴2 1 = 0
𝑠𝐶𝑃𝐴2 3 = 0
𝑠𝐶𝑃𝐴2 4 = 0

𝑠𝐶𝑃𝐴3 1 = 0
𝑠𝐶𝑃𝐴3 2 = 0
𝑠𝐶𝑃𝐴3 4 = 0

𝑠𝐶𝑃𝐴4 1 = 0
𝑠𝐶𝑃𝐴4 2 = 0
𝑠𝐶𝑃𝐴4 3 = 0

Shares of
pairwise costs

Shares of best
known global cost

𝑠𝑈𝐵1 = 44 𝑠𝑈𝐵2 = 10 𝑠𝑈𝐵3 = 18 𝑠𝑈𝐵4 = 3

OptimalSetting 20 30 10 20

Pointer 𝑝1 = 2 𝑝3 = 4

Cost(CPA) = 0

Random ordering

UpperBound = 8

𝒘1 = (20,30,10)

𝑝4 = 4𝑝2 = 4

< = true

1390

74

Snapshot 25

𝐴1 𝐴2 𝐴3 𝐴4Agents

Variables 𝑋1 = 30 𝑋2 = 10 𝑋3 𝑋4

𝑠𝐶𝑃𝐴1 2 = 55
𝑠𝐶𝑃𝐴1 3 = 0
𝑠𝐶𝑃𝐴1 4 = 0

𝑠𝐶𝑃𝐴2 1 = 22
𝑠𝐶𝑃𝐴2 3 = 0
𝑠𝐶𝑃𝐴2 4 = 0

𝑠𝐶𝑃𝐴3 1 = 0
𝑠𝐶𝑃𝐴3 2 = 0
𝑠𝐶𝑃𝐴3 4 = 0

𝑠𝐶𝑃𝐴4 1 = 0
𝑠𝐶𝑃𝐴4 2 = 0
𝑠𝐶𝑃𝐴4 3 = 0

Shares of
pairwise costs

Shares of best
known global cost

𝑠𝑈𝐵1 = 44 𝑠𝑈𝐵2 = 10 𝑠𝑈𝐵3 = 18 𝑠𝑈𝐵4 = 3

OptimalSetting 20 30 10 20

Pointer 𝑝1 = 2 𝑝2 = 1 𝑝3 = 4

Cost(CPA) = 10

Random ordering

UpperBound = 8

𝒘1 = (20,30,10) 𝒘2 = (10,20,30)

< = false

𝑝4 = 4

Snapshot 26

𝐴1 𝐴2 𝐴3 𝐴4Agents

Variables 𝑋1 = 30 𝑋2 = 20 𝑋3 𝑋4

𝑠𝐶𝑃𝐴1 2 = 3
𝑠𝐶𝑃𝐴1 3 = 0
𝑠𝐶𝑃𝐴1 4 = 0

𝑠𝐶𝑃𝐴2 1 = 1
𝑠𝐶𝑃𝐴2 3 = 0
𝑠𝐶𝑃𝐴2 4 = 0

𝑠𝐶𝑃𝐴3 1 = 0
𝑠𝐶𝑃𝐴3 2 = 0
𝑠𝐶𝑃𝐴3 4 = 0

𝑠𝐶𝑃𝐴4 1 = 0
𝑠𝐶𝑃𝐴4 2 = 0
𝑠𝐶𝑃𝐴4 3 = 0

Shares of
pairwise costs

Shares of best
known global cost

𝑠𝑈𝐵1 = 44 𝑠𝑈𝐵2 = 10 𝑠𝑈𝐵3 = 18 𝑠𝑈𝐵4 = 3

OptimalSetting 20 30 10 20

Pointer 𝑝1 = 2 𝑝2 = 2 𝑝3 = 4

Cost(CPA) = 4

Random ordering

UpperBound = 8

𝒘1 = (20,30,10) 𝒘2 = (10,20,30)

< = true

𝑝4 = 4

75

Snapshot 27

𝐴1 𝐴2 𝐴3 𝐴4Agents

Variables 𝑋1 = 30 𝑋2 = 20 𝑋3 = 20 𝑋4

𝑠𝐶𝑃𝐴1 2 = 3
𝑠𝐶𝑃𝐴1 3 = 2
𝑠𝐶𝑃𝐴1 4 = 0

𝑠𝐶𝑃𝐴2 1 = 1
𝑠𝐶𝑃𝐴2 3 = 30
𝑠𝐶𝑃𝐴2 4 = 0

𝑠𝐶𝑃𝐴3 1 = 2
𝑠𝐶𝑃𝐴3 2 = 43
𝑠𝐶𝑃𝐴3 4 = 0

𝑠𝐶𝑃𝐴4 1 = 0
𝑠𝐶𝑃𝐴4 2 = 0
𝑠𝐶𝑃𝐴4 3 = 0

Shares of
pairwise costs

Shares of best
known global cost

𝑠𝑈𝐵1 = 44 𝑠𝑈𝐵2 = 10 𝑠𝑈𝐵3 = 18 𝑠𝑈𝐵4 = 3

OptimalSetting 20 30 10 20

Pointer 𝑝1 = 2 𝑝2 = 2 𝑝3 = 1

Cost(CPA) = 14

Random ordering

UpperBound = 8

𝒘1 = (20,30,10) 𝒘2 = (10,20,30) 𝒘3 = (20,10,30)

< = false

𝑝4 = 4

Snapshot 28

𝐴1 𝐴2 𝐴3 𝐴4Agents

Variables 𝑋1 = 30 𝑋2 = 20 𝑋3 = 10 𝑋4

𝑠𝐶𝑃𝐴1 2 = 3
𝑠𝐶𝑃𝐴1 3 = 2
𝑠𝐶𝑃𝐴1 4 = 0

𝑠𝐶𝑃𝐴2 1 = 1
𝑠𝐶𝑃𝐴2 3 = 20
𝑠𝐶𝑃𝐴2 4 = 0

𝑠𝐶𝑃𝐴3 1 = 1
𝑠𝐶𝑃𝐴3 2 = 47
𝑠𝐶𝑃𝐴3 4 = 0

𝑠𝐶𝑃𝐴4 1 = 0
𝑠𝐶𝑃𝐴4 2 = 0
𝑠𝐶𝑃𝐴4 3 = 0

Shares of
pairwise costs

Shares of best
known global cost

𝑠𝑈𝐵1 = 44 𝑠𝑈𝐵2 = 10 𝑠𝑈𝐵3 = 18 𝑠𝑈𝐵4 = 3

OptimalSetting 20 30 10 20

Pointer 𝑝1 = 2 𝑝2 = 2 𝑝3 = 2

Cost(CPA) = 7

Random ordering

UpperBound = 8

𝒘1 = (20,30,10) 𝒘2 = (10,20,30) 𝒘3 = (20,10,30)

< = true

𝑝4 = 4

76

Snapshot 29

𝐴1 𝐴2 𝐴3 𝐴4Agents

Variables 𝑋1 = 30 𝑋2 = 20 𝑋3 = 10 𝑋4 = 30

𝑠𝐶𝑃𝐴1 2 = 3
𝑠𝐶𝑃𝐴1 3 = 2
𝑠𝐶𝑃𝐴1 4 = 32

𝑠𝐶𝑃𝐴2 1 = 1
𝑠𝐶𝑃𝐴2 3 = 20
𝑠𝐶𝑃𝐴2 4 = 0

𝑠𝐶𝑃𝐴3 1 = 1
𝑠𝐶𝑃𝐴3 2 = 47
𝑠𝐶𝑃𝐴3 4 = 0

𝑠𝐶𝑃𝐴4 1 = 35
𝑠𝐶𝑃𝐴4 2 = 0
𝑠𝐶𝑃𝐴4 3 = 0

Shares of
pairwise costs

Shares of best
known global cost

𝑠𝑈𝐵1 = 44 𝑠𝑈𝐵2 = 10 𝑠𝑈𝐵3 = 18 𝑠𝑈𝐵4 = 3

OptimalSetting 20 30 10 20

Pointer 𝑝1 = 2 𝑝2 = 2 𝑝3 = 2 𝑝4 = 1

Cost(CPA) = 7

Random ordering

UpperBound = 8

𝒘1 = (20,30,10) 𝒘2 = (10,20,30) 𝒘3 = (20,10,30) 𝒘4 = (30,10,20)

< = true

Snapshot 30

𝐴1 𝐴2 𝐴3 𝐴4Agents

Variables 𝑋1 = 30 𝑋2 = 20 𝑋3 = 10 𝑋4 = 30

𝑠𝐶𝑃𝐴1 2 = 3
𝑠𝐶𝑃𝐴1 3 = 2
𝑠𝐶𝑃𝐴1 4 = 32

𝑠𝐶𝑃𝐴2 1 = 1
𝑠𝐶𝑃𝐴2 3 = 20
𝑠𝐶𝑃𝐴2 4 = 0

𝑠𝐶𝑃𝐴3 1 = 1
𝑠𝐶𝑃𝐴3 2 = 47
𝑠𝐶𝑃𝐴3 4 = 0

𝑠𝐶𝑃𝐴4 1 = 35
𝑠𝐶𝑃𝐴4 2 = 0
𝑠𝐶𝑃𝐴4 3 = 0

Shares of
pairwise costs

Shares of best
known global cost

𝑠𝑈𝐵1 = 37 𝑠𝑈𝐵2 = 21 𝑠𝑈𝐵3 = 48 𝑠𝑈𝐵4 = 35

OptimalSetting 30 20 10 30

Pointer 𝑝1 = 2 𝑝2 = 2 𝑝3 = 2 𝑝4 = 1

Cost(CPA) = 7

Random ordering

UpperBound = 7

𝒘1 = (20,30,10) 𝒘2 = (10,20,30) 𝒘3 = (20,10,30) 𝒘4 = (30,10,20)

NEW_OPTIMUM_FOUND

77

Snapshot 31

𝐴1 𝐴2 𝐴3 𝐴4Agents

Variables 𝑋1 = 30 𝑋2 = 20 𝑋3 = 10 𝑋4 = 10

𝑠𝐶𝑃𝐴1 2 = 3
𝑠𝐶𝑃𝐴1 3 = 2
𝑠𝐶𝑃𝐴1 4 = 9

𝑠𝐶𝑃𝐴2 1 = 1
𝑠𝐶𝑃𝐴2 3 = 20
𝑠𝐶𝑃𝐴2 4 = 0

𝑠𝐶𝑃𝐴3 1 = 1
𝑠𝐶𝑃𝐴3 2 = 47
𝑠𝐶𝑃𝐴3 4 = 0

𝑠𝐶𝑃𝐴4 1 = 1
𝑠𝐶𝑃𝐴4 2 = 0
𝑠𝐶𝑃𝐴4 3 = 0

Shares of
pairwise costs

Shares of best
known global cost

𝑠𝑈𝐵1 = 37 𝑠𝑈𝐵2 = 21 𝑠𝑈𝐵3 = 48 𝑠𝑈𝐵4 = 35

OptimalSetting 30 20 10 30

Pointer 𝑝1 = 2 𝑝2 = 2 𝑝3 = 2 𝑝4 = 2

Cost(CPA) = 17

Random ordering

UpperBound = 7

𝒘1 = (20,30,10) 𝒘2 = (10,20,30) 𝒘3 = (20,10,30) 𝒘4 = (30,10,20)

< = false

Snapshot 32

𝐴1 𝐴2 𝐴3 𝐴4Agents

Variables 𝑋1 = 30 𝑋2 = 20 𝑋3 = 10 𝑋4 = 20

𝑠𝐶𝑃𝐴1 2 = 3
𝑠𝐶𝑃𝐴1 3 = 2
𝑠𝐶𝑃𝐴1 4 = 8

𝑠𝐶𝑃𝐴2 1 = 1
𝑠𝐶𝑃𝐴2 3 = 20
𝑠𝐶𝑃𝐴2 4 = 0

𝑠𝐶𝑃𝐴3 1 = 1
𝑠𝐶𝑃𝐴3 2 = 47
𝑠𝐶𝑃𝐴3 4 = 0

𝑠𝐶𝑃𝐴4 1 = 66
𝑠𝐶𝑃𝐴4 2 = 0
𝑠𝐶𝑃𝐴4 3 = 0

Shares of
pairwise costs

Shares of best
known global cost

𝑠𝑈𝐵1 = 37 𝑠𝑈𝐵2 = 21 𝑠𝑈𝐵3 = 48 𝑠𝑈𝐵4 = 35

OptimalSetting 30 20 10 30

Pointer 𝑝1 = 2 𝑝2 = 2 𝑝3 = 2 𝑝4 = 3

Cost(CPA) = 14

Random ordering

UpperBound = 7

𝒘1 = (20,30,10) 𝒘2 = (10,20,30) 𝒘3 = (20,10,30) 𝒘4 = (30,10,20)

< = false

78

Snapshot 33

𝐴1 𝐴2 𝐴3 𝐴4Agents

Variables 𝑋1 = 30 𝑋2 = 20 𝑋3 = 10 𝑋4

𝑠𝐶𝑃𝐴1 2 = 3
𝑠𝐶𝑃𝐴1 3 = 2
𝑠𝐶𝑃𝐴1 4 = 0

𝑠𝐶𝑃𝐴2 1 = 1
𝑠𝐶𝑃𝐴2 3 = 20
𝑠𝐶𝑃𝐴2 4 = 0

𝑠𝐶𝑃𝐴3 1 = 1
𝑠𝐶𝑃𝐴3 2 = 47
𝑠𝐶𝑃𝐴3 4 = 0

𝑠𝐶𝑃𝐴4 1 = 0
𝑠𝐶𝑃𝐴4 2 = 0
𝑠𝐶𝑃𝐴4 3 = 0

Shares of
pairwise costs

Shares of best
known global cost

𝑠𝑈𝐵1 = 37 𝑠𝑈𝐵2 = 21 𝑠𝑈𝐵3 = 48 𝑠𝑈𝐵4 = 35

OptimalSetting 30 20 10 30

Pointer 𝑝1 = 2 𝑝2 = 2 𝑝3 = 2 𝑝4 = 4

Cost(CPA) = 7

Random ordering

UpperBound = 7

𝒘1 = (20,30,10) 𝒘2 = (10,20,30) 𝒘3 = (20,10,30)

ZERO_SHARE_MSG

Snapshot 34

𝐴1 𝐴2 𝐴3 𝐴4Agents

Variables 𝑋1 = 30 𝑋2 = 20 𝑋3 = 30 𝑋4

𝑠𝐶𝑃𝐴1 2 = 3
𝑠𝐶𝑃𝐴1 3 = 0
𝑠𝐶𝑃𝐴1 4 = 0

𝑠𝐶𝑃𝐴2 1 = 1
𝑠𝐶𝑃𝐴2 3 = 1
𝑠𝐶𝑃𝐴2 4 = 0

𝑠𝐶𝑃𝐴3 1 = 0
𝑠𝐶𝑃𝐴3 2 = 2
𝑠𝐶𝑃𝐴3 4 = 0

𝑠𝐶𝑃𝐴4 1 = 0
𝑠𝐶𝑃𝐴4 2 = 0
𝑠𝐶𝑃𝐴4 3 = 0

Shares of
pairwise costs

Shares of best
known global cost

𝑠𝑈𝐵1 = 37 𝑠𝑈𝐵2 = 21 𝑠𝑈𝐵3 = 48 𝑠𝑈𝐵4 = 35

OptimalSetting 30 20 10 30

Pointer 𝑝1 = 2 𝑝2 = 2 𝑝3 = 3 𝑝4 = 4

Cost(CPA) = 7

Random ordering

UpperBound = 7

𝒘1 = (20,30,10) 𝒘2 = (10,20,30) 𝒘3 = (20,10,30)

< = false

1395

79

Snapshot 35

𝐴1 𝐴2 𝐴3 𝐴4Agents

Variables 𝑋1 = 30 𝑋2 = 20 𝑋3 𝑋4

𝑠𝐶𝑃𝐴1 2 = 3
𝑠𝐶𝑃𝐴1 3 = 0
𝑠𝐶𝑃𝐴1 4 = 0

𝑠𝐶𝑃𝐴2 1 = 1
𝑠𝐶𝑃𝐴2 3 = 0
𝑠𝐶𝑃𝐴2 4 = 0

𝑠𝐶𝑃𝐴3 1 = 0
𝑠𝐶𝑃𝐴3 2 = 0
𝑠𝐶𝑃𝐴3 4 = 0

𝑠𝐶𝑃𝐴4 1 = 0
𝑠𝐶𝑃𝐴4 2 = 0
𝑠𝐶𝑃𝐴4 3 = 0

Shares of
pairwise costs

Shares of best
known global cost

𝑠𝑈𝐵1 = 37 𝑠𝑈𝐵2 = 21 𝑠𝑈𝐵3 = 48 𝑠𝑈𝐵4 = 35

OptimalSetting 30 20 10 30

Pointer 𝑝1 = 2 𝑝2 = 2 𝑝3 = 4

Cost(CPA) = 4

Random ordering

UpperBound = 7

𝒘1 = (20,30,10) 𝒘2 = (10,20,30)

ZERO_SHARE_MSG

𝑝4 = 4

Snapshot 36

𝐴1 𝐴2 𝐴3 𝐴4Agents

Variables 𝑋1 = 30 𝑋2 = 30 𝑋3 𝑋4

𝑠𝐶𝑃𝐴1 2 = 0
𝑠𝐶𝑃𝐴1 3 = 0
𝑠𝐶𝑃𝐴1 4 = 0

𝑠𝐶𝑃𝐴2 1 = 0
𝑠𝐶𝑃𝐴2 3 = 0
𝑠𝐶𝑃𝐴2 4 = 0

𝑠𝐶𝑃𝐴3 1 = 0
𝑠𝐶𝑃𝐴3 2 = 0
𝑠𝐶𝑃𝐴3 4 = 0

𝑠𝐶𝑃𝐴4 1 = 0
𝑠𝐶𝑃𝐴4 2 = 0
𝑠𝐶𝑃𝐴4 3 = 0

Shares of
pairwise costs

Shares of best
known global cost

𝑠𝑈𝐵1 = 37 𝑠𝑈𝐵2 = 21 𝑠𝑈𝐵3 = 48 𝑠𝑈𝐵4 = 35

OptimalSetting 30 20 10 30

Pointer 𝑝1 = 2 𝑝2 = 3 𝑝3 = 4

Cost(CPA) = 0

Random ordering

UpperBound = 7

𝒘1 = (20,30,10) 𝒘2 = (10,20,30)

< = true

𝑝4 = 4

80

Snapshot 37

𝐴1 𝐴2 𝐴3 𝐴4Agents

Variables 𝑋1 = 30 𝑋2 = 30 𝑋3 = 20 𝑋4

𝑠𝐶𝑃𝐴1 2 = 0
𝑠𝐶𝑃𝐴1 3 = 2
𝑠𝐶𝑃𝐴1 4 = 0

𝑠𝐶𝑃𝐴2 1 = 0
𝑠𝐶𝑃𝐴2 3 = 5
𝑠𝐶𝑃𝐴2 4 = 0

𝑠𝐶𝑃𝐴3 1 = 2
𝑠𝐶𝑃𝐴3 2 = 4
𝑠𝐶𝑃𝐴3 4 = 0

𝑠𝐶𝑃𝐴4 1 = 0
𝑠𝐶𝑃𝐴4 2 = 0
𝑠𝐶𝑃𝐴4 3 = 0

Shares of
pairwise costs

Shares of best
known global cost

𝑠𝑈𝐵1 = 37 𝑠𝑈𝐵2 = 21 𝑠𝑈𝐵3 = 48 𝑠𝑈𝐵4 = 35

OptimalSetting 30 20 10 30

Pointer 𝑝1 = 2 𝑝2 = 3 𝑝3 = 1 𝑝4 = 4

Cost(CPA) = 13

Random ordering

UpperBound = 7

𝒘1 = (20,30,10) 𝒘2 = (10,20,30) 𝒘3 = (20,10,30)

< = false

Snapshot 38

𝐴1 𝐴2 𝐴3 𝐴4Agents

Variables 𝑋1 = 30 𝑋2 = 30 𝑋3 = 10 𝑋4

𝑠𝐶𝑃𝐴1 2 = 0
𝑠𝐶𝑃𝐴1 3 = 26
𝑠𝐶𝑃𝐴1 4 = 0

𝑠𝐶𝑃𝐴2 1 = 0
𝑠𝐶𝑃𝐴2 3 = 21
𝑠𝐶𝑃𝐴2 4 = 0

𝑠𝐶𝑃𝐴3 1 = 44
𝑠𝐶𝑃𝐴3 2 = 46
𝑠𝐶𝑃𝐴3 4 = 0

𝑠𝐶𝑃𝐴4 1 = 0
𝑠𝐶𝑃𝐴4 2 = 0
𝑠𝐶𝑃𝐴4 3 = 0

Shares of
pairwise costs

Shares of best
known global cost

𝑠𝑈𝐵1 = 37 𝑠𝑈𝐵2 = 21 𝑠𝑈𝐵3 = 48 𝑠𝑈𝐵4 = 35

OptimalSetting 30 20 10 30

Pointer 𝑝1 = 2 𝑝2 = 3 𝑝3 = 2

Cost(CPA) = 3

Random ordering

UpperBound = 7

𝒘1 = (20,30,10) 𝒘2 = (10,20,30) 𝒘3 = (20,10,30)

< = true

𝑝4 = 4

81

Snapshot 39

𝐴1 𝐴2 𝐴3 𝐴4Agents

Variables 𝑋1 = 30 𝑋2 = 30 𝑋3 = 10 𝑋4 = 30

𝑠𝐶𝑃𝐴1 2 = 0
𝑠𝐶𝑃𝐴1 3 = 26
𝑠𝐶𝑃𝐴1 4 = 30

𝑠𝐶𝑃𝐴2 1 = 0
𝑠𝐶𝑃𝐴2 3 = 21
𝑠𝐶𝑃𝐴2 4 = 0

𝑠𝐶𝑃𝐴3 1 = 44
𝑠𝐶𝑃𝐴3 2 = 46
𝑠𝐶𝑃𝐴3 4 = 0

𝑠𝐶𝑃𝐴4 1 = 37
𝑠𝐶𝑃𝐴4 2 = 0
𝑠𝐶𝑃𝐴4 3 = 0

Shares of
pairwise costs

Shares of best
known global cost

𝑠𝑈𝐵1 = 37 𝑠𝑈𝐵2 = 21 𝑠𝑈𝐵3 = 48 𝑠𝑈𝐵4 = 35

OptimalSetting 30 20 10 30

Pointer 𝑝1 = 2 𝑝2 = 3 𝑝3 = 2 𝑝4 = 1

Cost(CPA) = 3

Random ordering

UpperBound = 7

𝒘1 = (20,30,10) 𝒘2 = (10,20,30) 𝒘3 = (20,10,30) 𝒘4 = (30,20,10)

< = true

Snapshot 40

𝐴1 𝐴2 𝐴3 𝐴4Agents

Variables 𝑋1 = 30 𝑋2 = 30 𝑋3 = 10 𝑋4 = 30

𝑠𝐶𝑃𝐴1 2 = 0
𝑠𝐶𝑃𝐴1 3 = 26
𝑠𝐶𝑃𝐴1 4 = 30

𝑠𝐶𝑃𝐴2 1 = 0
𝑠𝐶𝑃𝐴2 3 = 21
𝑠𝐶𝑃𝐴2 4 = 0

𝑠𝐶𝑃𝐴3 1 = 44
𝑠𝐶𝑃𝐴3 2 = 46
𝑠𝐶𝑃𝐴3 4 = 0

𝑠𝐶𝑃𝐴4 1 = 37
𝑠𝐶𝑃𝐴4 2 = 0
𝑠𝐶𝑃𝐴4 3 = 0

Shares of
pairwise costs

Shares of best
known global cost

𝑠𝑈𝐵1 = 56 𝑠𝑈𝐵2 = 21 𝑠𝑈𝐵3 = 23 𝑠𝑈𝐵4 = 37

OptimalSetting 30 30 10 30

Pointer 𝑝1 = 2 𝑝2 = 3 𝑝3 = 2 𝑝4 = 1

Cost(CPA) = 3

Random ordering

UpperBound = 3

𝒘1 = (20,30,10) 𝒘2 = (10,20,30) 𝒘3 = (20,10,30) 𝒘4 = (30,20,10)

NEW_OPTIMUM_FOUND

82

Snapshot 41

𝐴1 𝐴2 𝐴3 𝐴4Agents

Variables 𝑋1 = 30 𝑋2 = 30 𝑋3 = 10 𝑋4 = 20

𝑠𝐶𝑃𝐴1 2 = 0
𝑠𝐶𝑃𝐴1 3 = 26
𝑠𝐶𝑃𝐴1 4 = 4

𝑠𝐶𝑃𝐴2 1 = 0
𝑠𝐶𝑃𝐴2 3 = 21
𝑠𝐶𝑃𝐴2 4 = 0

𝑠𝐶𝑃𝐴3 1 = 44
𝑠𝐶𝑃𝐴3 2 = 46
𝑠𝐶𝑃𝐴3 4 = 0

𝑠𝐶𝑃𝐴4 1 = 3
𝑠𝐶𝑃𝐴4 2 = 0
𝑠𝐶𝑃𝐴4 3 = 0

Shares of
pairwise costs

Shares of best
known global cost

𝑠𝑈𝐵1 = 56 𝑠𝑈𝐵2 = 21 𝑠𝑈𝐵3 = 23 𝑠𝑈𝐵4 = 37

OptimalSetting 30 30 10 30

Pointer 𝑝1 = 2 𝑝2 = 3 𝑝3 = 2 𝑝4 = 2

Cost(CPA) = 10

Random ordering

UpperBound = 3

𝒘1 = (20,30,10) 𝒘2 = (10,20,30) 𝒘3 = (20,10,30) 𝒘4 = (30,20,10)

< = false

Snapshot 42

𝐴1 𝐴2 𝐴3 𝐴4Agents

Variables 𝑋1 = 30 𝑋2 = 30 𝑋3 = 10 𝑋4 = 10

𝑠𝐶𝑃𝐴1 2 = 0
𝑠𝐶𝑃𝐴1 3 = 26
𝑠𝐶𝑃𝐴1 4 = 5

𝑠𝐶𝑃𝐴2 1 = 0
𝑠𝐶𝑃𝐴2 3 = 21
𝑠𝐶𝑃𝐴2 4 = 0

𝑠𝐶𝑃𝐴3 1 = 44
𝑠𝐶𝑃𝐴3 2 = 46
𝑠𝐶𝑃𝐴3 4 = 0

𝑠𝐶𝑃𝐴4 1 = 5
𝑠𝐶𝑃𝐴4 2 = 0
𝑠𝐶𝑃𝐴4 3 = 0

Shares of
pairwise costs

Shares of best
known global cost

OptimalSetting 30 30 10 30

Pointer 𝑝1 = 2 𝑝2 = 3 𝑝3 = 2 𝑝4 = 3

Cost(CPA) = 13

Random ordering

UpperBound = 3

𝒘1 = (20,30,10) 𝒘2 = (10,20,30) 𝒘3 = (20,10,30) 𝒘4 = (30,20,10)

< = false

𝑠𝑈𝐵1 = 56 𝑠𝑈𝐵2 = 21 𝑠𝑈𝐵3 = 23 𝑠𝑈𝐵4 = 37

83

Snapshot 43

𝐴1 𝐴2 𝐴3 𝐴4Agents

Variables 𝑋1 = 30 𝑋2 = 30 𝑋3 = 10 𝑋4

𝑠𝐶𝑃𝐴1 2 = 0
𝑠𝐶𝑃𝐴1 3 = 26
𝑠𝐶𝑃𝐴1 4 = 0

𝑠𝐶𝑃𝐴2 1 = 0
𝑠𝐶𝑃𝐴2 3 = 21
𝑠𝐶𝑃𝐴2 4 = 0

𝑠𝐶𝑃𝐴3 1 = 44
𝑠𝐶𝑃𝐴3 2 = 46
𝑠𝐶𝑃𝐴3 4 = 0

𝑠𝐶𝑃𝐴4 1 = 0
𝑠𝐶𝑃𝐴4 2 = 0
𝑠𝐶𝑃𝐴4 3 = 0

Shares of
pairwise costs

Shares of best
known global cost

OptimalSetting 30 30 10 30

Pointer 𝑝1 = 2 𝑝2 = 3 𝑝3 = 2 𝑝4 = 4

Cost(CPA) = 3

Random ordering

UpperBound = 3

𝒘1 = (20,30,10) 𝒘2 = (10,20,30) 𝒘3 = (20,10,30)

ZERO_SHARE_MSG

𝑠𝑈𝐵1 = 56 𝑠𝑈𝐵2 = 21 𝑠𝑈𝐵3 = 23 𝑠𝑈𝐵4 = 37

Snapshot 44

𝐴1 𝐴2 𝐴3 𝐴4Agents

Variables 𝑋1 = 30 𝑋2 = 30 𝑋3 = 30 𝑋4

𝑠𝐶𝑃𝐴1 2 = 0
𝑠𝐶𝑃𝐴1 3 = 0
𝑠𝐶𝑃𝐴1 4 = 0

𝑠𝐶𝑃𝐴2 1 = 0
𝑠𝐶𝑃𝐴2 3 = 2
𝑠𝐶𝑃𝐴2 4 = 0

𝑠𝐶𝑃𝐴3 1 = 0
𝑠𝐶𝑃𝐴3 2 = 3
𝑠𝐶𝑃𝐴3 4 = 0

𝑠𝐶𝑃𝐴4 1 = 0
𝑠𝐶𝑃𝐴4 2 = 0
𝑠𝐶𝑃𝐴4 3 = 0

Shares of
pairwise costs

Shares of best
known global cost

OptimalSetting 30 30 10 30

Pointer 𝑝1 = 2 𝑝2 = 3 𝑝3 = 3

Cost(CPA) = 5

Random ordering

UpperBound = 3

𝒘1 = (20,30,10) 𝒘2 = (10,20,30) 𝒘3 = (20,10,30)

< = false

𝑝4 = 4

𝑠𝑈𝐵1 = 56 𝑠𝑈𝐵2 = 21 𝑠𝑈𝐵3 = 23 𝑠𝑈𝐵4 = 37

1400

84

Snapshot 45

𝐴1 𝐴2 𝐴3 𝐴4Agents

Variables 𝑋1 = 30 𝑋2 = 30 𝑋3 𝑋4

𝑠𝐶𝑃𝐴1 2 = 0
𝑠𝐶𝑃𝐴1 3 = 0
𝑠𝐶𝑃𝐴1 4 = 0

𝑠𝐶𝑃𝐴2 1 = 0
𝑠𝐶𝑃𝐴2 3 = 0
𝑠𝐶𝑃𝐴2 4 = 0

𝑠𝐶𝑃𝐴3 1 = 0
𝑠𝐶𝑃𝐴3 2 = 0
𝑠𝐶𝑃𝐴3 4 = 0

𝑠𝐶𝑃𝐴4 1 = 0
𝑠𝐶𝑃𝐴4 2 = 0
𝑠𝐶𝑃𝐴4 3 = 0

Shares of
pairwise costs

Shares of best
known global cost

OptimalSetting 30 30 10 30

Pointer 𝑝1 = 2 𝑝2 = 3 𝑝3 = 4

Cost(CPA) = 0

Random ordering

UpperBound = 3

𝒘1 = (20,30,10) 𝒘2 = (10,20,30)

ZERO_SHARE_MSG

𝑝4 = 4

𝑠𝑈𝐵1 = 56 𝑠𝑈𝐵2 = 21 𝑠𝑈𝐵3 = 23 𝑠𝑈𝐵4 = 37

Snapshot 46

𝐴1 𝐴2 𝐴3 𝐴4Agents

Variables 𝑋1 = 30 𝑋2 𝑋3 𝑋4

𝑠𝐶𝑃𝐴1 2 = 0
𝑠𝐶𝑃𝐴1 3 = 0
𝑠𝐶𝑃𝐴1 4 = 0

𝑠𝐶𝑃𝐴2 1 = 0
𝑠𝐶𝑃𝐴2 3 = 0
𝑠𝐶𝑃𝐴2 4 = 0

𝑠𝐶𝑃𝐴3 1 = 0
𝑠𝐶𝑃𝐴3 2 = 0
𝑠𝐶𝑃𝐴3 4 = 0

𝑠𝐶𝑃𝐴4 1 = 0
𝑠𝐶𝑃𝐴4 2 = 0
𝑠𝐶𝑃𝐴4 3 = 0

Shares of
pairwise costs

Shares of best
known global cost

OptimalSetting 30 30 10 30

Pointer 𝑝1 = 2 𝑝2 = 4 𝑝3 = 4

Cost(CPA) = 0

Random ordering

UpperBound = 3

𝒘1 = (20,30,10)

ZERO_SHARE_MSG

𝑝4 = 4

𝑠𝑈𝐵1 = 56 𝑠𝑈𝐵2 = 21 𝑠𝑈𝐵3 = 23 𝑠𝑈𝐵4 = 37

85

Snapshot 47

𝐴1 𝐴2 𝐴3 𝐴4Agents

Variables 𝑋1 = 10 𝑋2 𝑋3 𝑋4

𝑠𝐶𝑃𝐴1 2 = 0
𝑠𝐶𝑃𝐴1 3 = 0
𝑠𝐶𝑃𝐴1 4 = 0

𝑠𝐶𝑃𝐴2 1 = 0
𝑠𝐶𝑃𝐴2 3 = 0
𝑠𝐶𝑃𝐴2 4 = 0

𝑠𝐶𝑃𝐴3 1 = 0
𝑠𝐶𝑃𝐴3 2 = 0
𝑠𝐶𝑃𝐴3 4 = 0

𝑠𝐶𝑃𝐴4 1 = 0
𝑠𝐶𝑃𝐴4 2 = 0
𝑠𝐶𝑃𝐴4 3 = 0

Shares of
pairwise costs

Shares of best
known global cost

OptimalSetting 30 30 10 30

Pointer 𝑝1 = 3 𝑝2 = 4 𝑝3 = 4

Cost(CPA) = 0

Random ordering

UpperBound = 3

𝒘1 = (20,30,10)

< = true

𝑝4 = 4

𝑠𝑈𝐵1 = 56 𝑠𝑈𝐵2 = 21 𝑠𝑈𝐵3 = 23 𝑠𝑈𝐵4 = 37

Snapshot 48

𝐴1 𝐴2 𝐴3 𝐴4Agents

Variables 𝑋1 = 10 𝑋2 = 30 𝑋3 𝑋4

𝑠𝐶𝑃𝐴1 2 = 5
𝑠𝐶𝑃𝐴1 3 = 0
𝑠𝐶𝑃𝐴1 4 = 0

𝑠𝐶𝑃𝐴2 1 = 66
𝑠𝐶𝑃𝐴2 3 = 0
𝑠𝐶𝑃𝐴2 4 = 0

𝑠𝐶𝑃𝐴3 1 = 0
𝑠𝐶𝑃𝐴3 2 = 0
𝑠𝐶𝑃𝐴3 4 = 0

𝑠𝐶𝑃𝐴4 1 = 0
𝑠𝐶𝑃𝐴4 2 = 0
𝑠𝐶𝑃𝐴4 3 = 0

Shares of
pairwise costs

Shares of best
known global cost

OptimalSetting 30 30 10 30

Pointer 𝑝1 = 3 𝑝2 = 1 𝑝3 = 4 𝑝4 = 4

Cost(CPA) = 4

Random ordering

UpperBound = 3

𝒘1 = (20,30,10) 𝒘2 = (30,10,20)

< = false

𝑠𝑈𝐵1 = 56 𝑠𝑈𝐵2 = 21 𝑠𝑈𝐵3 = 23 𝑠𝑈𝐵4 = 37

86

Snapshot 49

𝐴1 𝐴2 𝐴3 𝐴4Agents

Variables 𝑋1 = 10 𝑋2 = 10 𝑋3 𝑋4

𝑠𝐶𝑃𝐴1 2 = 62
𝑠𝐶𝑃𝐴1 3 = 0
𝑠𝐶𝑃𝐴1 4 = 0

𝑠𝐶𝑃𝐴2 1 = 10
𝑠𝐶𝑃𝐴2 3 = 0
𝑠𝐶𝑃𝐴2 4 = 0

𝑠𝐶𝑃𝐴3 1 = 0
𝑠𝐶𝑃𝐴3 2 = 0
𝑠𝐶𝑃𝐴3 4 = 0

𝑠𝐶𝑃𝐴4 1 = 0
𝑠𝐶𝑃𝐴4 2 = 0
𝑠𝐶𝑃𝐴4 3 = 0

Shares of
pairwise costs

Shares of best
known global cost

OptimalSetting 30 30 10 30

Pointer 𝑝1 = 3 𝑝2 = 2

Cost(CPA) = 5

Random ordering

UpperBound = 3

𝒘1 = (20,30,10) 𝒘2 = (30,10,20)

< = false

𝑝3 = 4 𝑝4 = 4

𝑠𝑈𝐵1 = 56 𝑠𝑈𝐵2 = 21 𝑠𝑈𝐵3 = 23 𝑠𝑈𝐵4 = 37

Snapshot 50

𝐴1 𝐴2 𝐴3 𝐴4Agents

Variables 𝑋1 = 10 𝑋2 = 20 𝑋3 𝑋4

𝑠𝐶𝑃𝐴1 2 = 3
𝑠𝐶𝑃𝐴1 3 = 0
𝑠𝐶𝑃𝐴1 4 = 0

𝑠𝐶𝑃𝐴2 1 = 3
𝑠𝐶𝑃𝐴2 3 = 0
𝑠𝐶𝑃𝐴2 4 = 0

𝑠𝐶𝑃𝐴3 1 = 0
𝑠𝐶𝑃𝐴3 2 = 0
𝑠𝐶𝑃𝐴3 4 = 0

𝑠𝐶𝑃𝐴4 1 = 0
𝑠𝐶𝑃𝐴4 2 = 0
𝑠𝐶𝑃𝐴4 3 = 0

Shares of
pairwise costs

Shares of best
known global cost

OptimalSetting 30 30 10 30

Pointer 𝑝1 = 3 𝑝2 = 3

Cost(CPA) = 6

Random ordering

UpperBound = 3

𝒘1 = (20,30,10) 𝒘2 = (30,10,20)

< = false

𝑝3 = 4 𝑝4 = 4

𝑠𝑈𝐵1 = 56 𝑠𝑈𝐵2 = 21 𝑠𝑈𝐵3 = 23 𝑠𝑈𝐵4 = 37

87

Snapshot 51

𝐴1 𝐴2 𝐴3 𝐴4Agents

Variables 𝑋1=10 𝑋2 𝑋3 𝑋4

𝑠𝐶𝑃𝐴1 2 = 0
𝑠𝐶𝑃𝐴1 3 = 0
𝑠𝐶𝑃𝐴1 4 = 0

𝑠𝐶𝑃𝐴2 1 = 0
𝑠𝐶𝑃𝐴2 3 = 0
𝑠𝐶𝑃𝐴2 4 = 0

𝑠𝐶𝑃𝐴3 1 = 0
𝑠𝐶𝑃𝐴3 2 = 0
𝑠𝐶𝑃𝐴3 4 = 0

𝑠𝐶𝑃𝐴4 1 = 0
𝑠𝐶𝑃𝐴4 2 = 0
𝑠𝐶𝑃𝐴4 3 = 0

Shares of
pairwise costs

Shares of best
known global cost

OptimalSetting 30 30 10 30

Pointer 𝑝1 = 3 𝑝2 = 4

Cost(CPA) = 0

Random ordering

UpperBound = 3

𝒘1 = (20,30,10)

ZERO_SHARE_MSG

𝑝3 = 4 𝑝4 = 4

𝑠𝑈𝐵1 = 56 𝑠𝑈𝐵2 = 21 𝑠𝑈𝐵3 = 23 𝑠𝑈𝐵4 = 37

Snapshot 52

𝐴1 𝐴2 𝐴3 𝐴4Agents

Variables 𝑋1 𝑋2 𝑋3 𝑋4

𝑠𝐶𝑃𝐴1 2 = 0
𝑠𝐶𝑃𝐴1 3 = 0
𝑠𝐶𝑃𝐴1 4 = 0

𝑠𝐶𝑃𝐴2 1 = 0
𝑠𝐶𝑃𝐴2 3 = 0
𝑠𝐶𝑃𝐴2 4 = 0

𝑠𝐶𝑃𝐴3 1 = 0
𝑠𝐶𝑃𝐴3 2 = 0
𝑠𝐶𝑃𝐴3 4 = 0

𝑠𝐶𝑃𝐴4 1 = 0
𝑠𝐶𝑃𝐴4 2 = 0
𝑠𝐶𝑃𝐴4 3 = 0

Shares of
pairwise costs

Shares of best
known global cost

OptimalSetting 𝟑𝟎 𝟑𝟎 𝟏𝟎 𝟑𝟎

Pointer 𝑝1 = 4 𝑝2 = 4 𝑝3 = 4 𝑝4 = 4

Cost(CPA)

Random ordering

UpperBound = 3 COMPLETE

𝑠𝑈𝐵1 = 56 𝑠𝑈𝐵2 = 21 𝑠𝑈𝐵3 = 23 𝑠𝑈𝐵4 = 37

88

Acknowledgements1405

This work was partially supported by the Ariel Cyber Innovation Center in

conjunction with the Israel National Cyber Directorate in the Prime Minister’s

Office. The authors would also like to thank Vadim Levit for his help with

running the experiments.

References1410

[1] P. Meseguer, J. Larrosa, Constraint satisfaction as global optimization, in:

IJCAI, 1995, pp. 579–584.

[2] R. Maheswaran, M. Tambe, E. Bowring, J. Pearce, P. Varakantham, Taking

DCOP to the real world: Efficient complete solutions for distributed multi-

event scheduling, in: AAMAS, 2004, pp. 310–317.1415

[3] A. Farinelli, A. Rogers, A. Petcu, N. Jennings, Decentralised coordination

of low-power embedded devices using the max-sum algorithm, in: AAMAS,

2008, pp. 639–646.

[4] F. Lezama, J. Palominos, A. Rodŕıguez-González, A. Farinelli, E. Munoz de

Cote, Agent-based microgrid scheduling: An ICT perspective, Mobile Net-1420

works and Applications 24 (5) (2017) 1682–1698.

[5] K. Hirayama, M. Yokoo, Distributed partial constraint satisfaction prob-

lem, in: CP, 1997, pp. 222–236.

[6] A. Gershman, A. Meisels, R. Zivan, Asynchronous forward bounding for

distributed COPs, Journal of Artificial Intelligence Research 34 (2009) 61–1425

88.

[7] R. Mailler, V. Lesser, Solving distributed constraint optimization problems

using cooperative mediation, in: AAMAS, 2004, pp. 438–445.

[8] P. Modi, W. Shen, M. Tambe, M. Yokoo, ADOPT: asynchronous dis-

tributed constraint optimization with quality guarantees, Artificial Intelli-1430

gence 161 (2005) 149–180.

89

[9] A. Petcu, B. Faltings, A scalable method for multiagent constraint opti-

mization, in: IJCAI, 2005, pp. 266–271.

[10] W. Yeoh, A. Felner, S. Koenig, BnB-ADOPT: An asynchronous branch-

and-bound DCOP algorithm, Journal of Artificial Intelligence Research 381435

(2010) 85–133.

[11] H. Katagishi, J. Pearce, Kopt: Distributed DCOP algorithm for arbitrary

k-optima with monotonically increasing utility, in: DCR, 2007.

[12] B. Ottens, C. Dimitrakakis, B. Faltings, DUCT: An upper confidence bound

approach to distributed constraint optimization problems, ACM Transac-1440

tions on Intelligent Systems and Technology (TIST) 8 (5) (2017) 69.

[13] W. Zhang, G. Wang, Z. Xing, L. Wittenburg, Distributed stochastic search

and distributed breakout: properties, comparison and applications to con-

straint optimization problems in sensor networks, Artificial Intelligence

161 (1-2) (2005) 55–87.1445

[14] T. Léauté, B. Faltings, Protecting privacy through distributed computation

in multi-agent decision making, Journal of Artificial Intelligence Research

47 (2013) 649–695.

[15] M. Silaghi, D. Mitra, Distributed constraint satisfaction and optimization

with privacy enforcement, in: IAT, 2004, pp. 531–535.1450

[16] M. Ben-Or, S. Goldwasser, A. Wigderson, Completeness theorems for non-

cryptographic fault-tolerant distributed computation, in: STOC, 1988, pp.

1–10.

[17] R. Greenstadt, B. Grosz, M. Smith, SSDPOP: improving the privacy of

DCOP with secret sharing, in: AAMAS, 2007, pp. 171:1–171:3.1455

[18] T. Grinshpoun, T. Tassa, P-SyncBB: A privacy preserving branch and

bound DCOP algorithm, Journal of Artificial Intelligence Research 57

(2016) 621–660.

90

[19] T. Tassa, T. Grinshpoun, R. Zivan, Privacy preserving implementation of

the Max-Sum algorithm and its variants, Journal of Artificial Intelligence1460

Research 59 (2017) 311–349.

[20] T. Grinshpoun, T. Tassa, V. Levit, R. Zivan, Privacy preserving region

optimal algorithms for symmetric and asymmetric DCOPs, Artificial Intel-

ligence 266 (2019) 27–50.

[21] C. Kiekintveld, Z. Yin, A. Kumar, M. Tambe, Asynchronous algorithms1465

for approximate distributed constraint optimization with quality bounds,

in: AAMAS, 2010, pp. 133–140.

[22] J. Alwen, J. Katz, Y. Lindell, G. Persiano, A. Shelat, I. Visconti, Collusion-

free multiparty computation in the mediated model, in: CRYPTO, 2009,

pp. 524–540.1470

[23] J. Alwen, A. Shelat, I. Visconti, Collusion-free protocols in the mediated

model, in: CRYPTO, 2008, pp. 497–514.

[24] J. Schneider, Lean and fast secure multi-party computation: Minimizing

communication and local computation using a helper, in: SECRYPT, 2016,

pp. 223–230.1475

[25] T. Tassa, T. Grinshpoun, A. Yanai, A privacy preserving collusion secure

DCOP algorithm, in: IJCAI, 2019, pp. 4774–4780.

[26] A. Chechetka, K. Sycara, No-commitment branch and bound search for

distributed constraint optimization, in: AAMAS, 2006, pp. 1427 – 1429.

[27] T. Grinshpoun, T. Tassa, A privacy-preserving algorithm for distributed1480

constraint optimization, in: AAMAS, 2014, pp. 909–916.

[28] P. Paillier, Public-key cryptosystems based on composite degree residuosity

classes, in: Eurocrypt, 1999, pp. 223–238.

[29] A. Shamir, How to share a secret, Commun. ACM 22 (11) (1979) 612–613.

91

[30] A. Yao, Protocols for secure computation, in: FOCS, 1982, pp. 160–164.1485

[31] I. Damg̊ard, J. B. Nielsen, Scalable and unconditionally secure multiparty

computation, in: CRYPTO, 2007, pp. 572–590.

[32] K. Chida, D. Genkin, K. Hamada, D. Ikarashi, R. Kikuchi, Y. Lindell,

A. Nof, Fast large-scale honest-majority MPC for malicious adversaries, in:

CRYPTO, 2018, pp. 34–64.1490

[33] T. Nishide, K. Ohta, Multiparty computation for interval, equality, and

comparison without bit-decomposition protocol, in: PKC, 2007, pp. 343–

360.

[34] A. Ben-Efraim, E. Omri, Concrete efficiency improvements for multiparty

garbling with an honest majority, in: LATINCRYPT, 2017, pp. 289–308.1495

[35] H. Lipmaa, P. Rogaway, D. Wagner, Comments to NIST concerning AES-

modes of operations: CTR-mode encryption (October 2000).

[36] J. Daemen, V. Rijmen, The Design of Rijndael: AES - The Advanced

Encryption Standard, Information Security and Cryptography, Springer,

2002.1500

[37] A. Ben-Efraim, The Ben-Efraim-Omri protocol implementation,

https://github.com/cryptobiu/Protocols/tree/master/Concrete_

Efficiency_Improvements_to_Multiparty_Garbling_with_an_

Honest_Majority.

[38] B. Lutati, I. Gontmakher, M. Lando, A. Netzer, A. Meisels, A. Grubshtein,1505

AgentZero: A framework for simulating and evaluating multi-agent algo-

rithms, in: Agent-Oriented Software Engineering, 2014, pp. 309–327.

[39] E. Sultanik, R. N. Lass, W. C. Regli, DCOPolis: a framework for simulating

and deploying distributed constraint reasoning algorithms, in: AAMAS

(demos), 2008, pp. 1667–1668.1510

92

https://github.com/cryptobiu/Protocols/tree/master/Concrete_Efficiency_Improvements_to_Multiparty_Garbling_with_an_Honest_Majority
https://github.com/cryptobiu/Protocols/tree/master/Concrete_Efficiency_Improvements_to_Multiparty_Garbling_with_an_Honest_Majority
https://github.com/cryptobiu/Protocols/tree/master/Concrete_Efficiency_Improvements_to_Multiparty_Garbling_with_an_Honest_Majority
https://github.com/cryptobiu/Protocols/tree/master/Concrete_Efficiency_Improvements_to_Multiparty_Garbling_with_an_Honest_Majority
https://github.com/cryptobiu/Protocols/tree/master/Concrete_Efficiency_Improvements_to_Multiparty_Garbling_with_an_Honest_Majority

[40] A.-L. Barabási, R. Albert, Emergence of scaling in random networks, Sci-

ence 286 (5439) (1999) 509–512.

[41] M. Yokoo, K. Hirayama, Algorithms for distributed constraint satisfaction:

A review, Autonomous Agents and Multi-Agent Systems 3 (2) (2000) 185–

207.1515

[42] Y. Deng, Z. Chen, D. Chen, W. Zhang, X. Jiang, AsymDPOP: complete

inference for asymmetric distributed constraint optimization problems, in:

IJCAI, 2019, pp. 223–230.

[43] D. Chen, Y. Deng, Z. Chen, W. Zhang, Z. He, HS-CAI: A hybrid DCOP

algorithm via combining search with context-based inference, in: AAAI,1520

2020.

[44] F. Rossi, C. J. Petrie, V. Dhar, On the equivalence of constraint satisfaction

problems., in: ECAI, 1990, pp. 550–556.

[45] F. Bacchus, X. Chen, P. Van Beek, T. Walsh, Binary vs. non-binary con-

straints, Artificial Intelligence 140 (1-2) (2002) 1–37.1525

[46] T. Grinshpoun, A. Grubshtein, R. Zivan, A. Netzer, A. Meisels, Asym-

metric distributed constraint optimization problems, Journal of Artificial

Intelligence Research 47 (2013) 613–647.

[47] T. Grinshpoun, When you say (DCOP) privacy, what do you mean? -

categorization of DCOP privacy and insights on internal constraint privacy,1530

in: ICAART, 2012, pp. 380–386.

[48] D. Chen, Y. Deng, Z. Chen, Z. He, W. Zhang, A hybrid tree-based algo-

rithm to solve asymmetric distributed constraint optimization problems,

Autonomous Agents and Multi-Agent Systems 34 (2) (2020) 1–42.

[49] R. Zivan, T. Parash, L. Cohen-Lavi, Y. Naveh, Applying Max-sum to asym-1535

metric distributed constraint optimization problems, Autonomous Agents

and Multi-Agent Systems 34 (1) (2020) 1–29.

93

	Introduction
	DCOP definitions
	A Secure Synchronous Branch and Bound
	Preliminaries
	The PC-SyncBB algorithm
	The sub-protocol update_shares_in_CPA
	On probabilistic homomorphic encryption
	Initial computations
	The sub-protocol

	The sub-protocol compare_CPA_cost_to_upper_bound
	A prelude to secure multiparty computation
	Secure computation of Eq. (7) using a garbled-circuit-based protocol
	Secure computation of Eq. (7) using a secret-sharing-based protocol

	Properties of PC-SyncBB
	On potential information leakages of the protocol

	Two variants of the basic PC-SyncBB
	A variant immune to coalitions of size c < (n-1)/2
	A mediated variant immune to any coalition size

	Experimental evaluation
	Evaluation of the compare_CPA_cost_to_upper_bound sub-protocol
	Evaluation of the full PC-SyncBB algorithm
	Runtime performance in various benchmarks
	Communication complexity
	Varying size of committees

	Conclusion
	Illustrating the operation of PC-SyncBB

