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Abstract

Electronic voting systems have significant advantages in comparison
with physical voting systems. One of the main challenges in e-voting
systems is to secure the voting process: namely, to certify that the com-
puted results are consistent with the cast ballots and that the voters’
privacy is preserved. We propose herein a secure voting protocol for
elections that are governed by order-based voting rules. Our protocol
offers perfect ballot secrecy in the sense that it issues only the required
output while no other information on the cast ballots is revealed. Such
perfect secrecy, achieved by employing secure multiparty computation
tools, may increase the voters’ confidence and, consequently, encour-
age them to vote according to their true preferences. Evaluation of
the protocol’s computational costs establishes that it is lightweight
and can be readily implemented in real-life electronic elections. Key-
words: Secure voting, Perfect ballot secrecy, Multiparty computation,
Computational social choice, Virtual elections

1 Introduction

Electronic voting has significant advantages in comparison with the more
commonplace physical voting: it is faster, it reduces costs, it is more sus-
tainable, and in addition, it may increase voters’ participation. One of the
main challenges in holding e-voting is to secure the voting process: namely,
to make sure that it is secure against attempted manipulations so that the
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computed results are consistent with the cast ballots and that the privacy of
the voters is preserved.

The usual meaning of voter privacy is that the voters remain anonymous.
Namely, the linkage between ballots and the voters that cast them remains
hidden, thus preserving anonymity. However, the final election results and the
full tally (i.e., all ballots) are revealed. While such information exposure may
be deemed benign or even desired, in some cases, it may be problematic. For
example, in small-scale elections (say, elections to university senates), the full
tally may put the voters’ privacy at risk; say, if Alice promised Bob to vote
for him, but at the end of the day, no one had voted for him, Alice’s failure to
keep her promise to Bob would be exposed. Such potential privacy breaches
may be an obstacle for some voters to vote truthfully. In some cases, exposing
the full tally might severely damage the image of some candidates who may,
consequently, refrain from submitting their candidacy again in future elections.
Such problems can be averted if the voting system is tally-hiding (Szepieniec
and Preneel, 2015); namely, if it reveals only the desired final results and
nothing else. The final results could be just the identity of the winner (say,
when selecting an editor-in-chief or a prime minister), K > 1 winners (e.g.,
when needing to select K new board members), K > 1 winners with their
ranking (say, when needing to award first, second and third prizes), or a
score for each candidate (as is the case in elections for parliament, where the
candidates are parties and the score for each party is the number of seats in
the parliament).

In this paper, we design a tally-hiding voting system that offers perfect
ballot secrecy, or full privacy (Chaum, 1988); i.e., given any coalition of voters,
the protocol does not reveal any information on the ballots beyond what
can be inferred from the published results. Such full privacy may reduce the
possibility of voters’ coercion and also increase the voters’ confidence that
their vote remains secret. Hence, full privacy may encourage voters to vote
according to their true preferences.

There are various families of voting rules that can be used in elections. For
example, in score-based voting rules, a score for each candidate is computed
subject to the specifications of the underlying voting rule, and then the
winning candidate is the one whose aggregated score is the highest. In this
study we focus on order-based (a.k.a pairwise-comparison) voting rules, where
the relative order of the candidates is considered by the underlying voting
rule (Brandt and Sandholm, 2005).

In order to provide privacy for the voters, it is necessary to protect their
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private data (i.e. their ballots) from the tallier while still allowing the tallier to
perform the needed computations on the ballots in order to output the required
election results. The cryptographic tool that is commonly used towards
that end is homomorphic encryption, namely, a form of encryption that
preserves algebraic structure and thus enables the performance of meaningful
computations on the ciphertexts. However, homomorphic encryption has
a significant computational overhead. The main idea that underlies our
suggested system is to use distributed tallying. Namely, our system involves
D > 1 independent talliers to whom the voters send information relating to
their private ballots. With such distributed tallying, it is possible to replace
the costly cryptographic protection shield of homomorphic encryption with
the much lighter-weight cryptographic shield of secret sharing. The talliers
then engage in specially designed protocols of multiparty computation that
allow them to validate that each cast ballot is a legitimate ballot (in the sense
that it complies with the specifications of the underlying voting rule) and
then to compute from the cast ballots the required election results, while still
remaining totally oblivious to the content of those ballots.

A high-level description of our system is presented in Figure 1. The first
phase is the voting phase: the voters send to each of the talliers messages
(shares) relating to their secret ballots. In the second phase, the talliers
communicate amongst themselves in order to validate each of the incoming
ballots (which remain secret to them) and then, at the end of the day, perform
the tallying over all legal ballots according to the underlying rule. Finally,
the talliers broadcast the results back to the voters.

Our contributions. We consider elections that are governed by an
order-based voting rule. We focus on two such rules – Copeland (Copeland,
1951), and Maximin (Simpson, 1969) (a.k.a Kramer-Simpson). We devise
a fully private protocol that the talliers perform on secret shares of the voters’
ballots. At the end of the protocol the talliers deduce a (partial) ranking
of the candidates from which they can infer the identity of the winners and
publish those results to the voters. Our protocol is lightweight and can be
readily implemented in virtual elections.

We devise a fully private protocol for computing the election results.
The election output is a ranking of the candidates from which the winning
candidate(s) can be determined. Our protocol is lightweight and can be
readily implemented in virtual elections. In Appendices G and H we describe
two other order-based rules, Kemeny-Young (Kemeny, 1959; Young, 1995)
and Modal Ranking (Caragiannis et al., 2014), and describe the extension
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Figure 1: A high-level description of the protocol.

of our methods for those rules as well.
The paper is structured as follows. In Section 2 we explain the crypto-

graphic foundations on which our protocol is based. In Section 3 we present
our secure voting protocol for Copeland and Maximin rules and then, in
Section 4, we evaluate its computational costs. A survey of related work is
given in Section 5, and we conclude in Section 6.

2 Cryptographic preliminaries

Our protocol relies heavily on cryptographic machinery. This section pro-
vides the required cryptographic background and an explanation of how the
presented techniques are implemented in our protocol. In Section 2.1 we
provide a brief introduction to secret sharing. In Section 2.2 we describe
the cryptographic principles of our protocol. Then, in the following sections
(Sections 2.3-2.6) we provide the details of specific computations that we use
in our protocol.

We note that while Sections 2.1 and 2.2 are necessary for understanding
our protocol that is presented in Section 3, they are also sufficient, in the
sense that readers who are less interested in the cryptographic details may
skip Sections 2.3-2.6 and still be able to fully understand the secure voting
protocol.
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2.1 Secret sharing

Secret sharing schemes (Shamir, 1979) enable distributing a secret s among
a set of parties, T = {T1, . . . , TD}. Each party, Td, d ∈ [D] := {1, . . . , D},
is given a random value sd, called a share, that relates to the secret s.
Those shares satisfy the following conditions: (a) s can be reconstructed
only by combining the shares given to specific subsets of parties, which are
called authorized subsets (the collection of all authorized subsets is called the
access structure); (b) shares held by any other subset of parties reveal zero
information on s.

The notion of secret sharing was introduced, independently, by Shamir
(1979) and Blakley (1979), for the case of threshold secret sharing. In threshold
secret sharing there is some threshold D′ ≤ D and then the access structure
consists of all subsets of size at least D′. Such secret sharing schemes are
called D′-out-of-D.

Shamir’s D′-out-of-D secret sharing scheme operates over a finite field Zp,
where p > D is a prime sufficiently large so that all possible secrets may be
represented in Zp. It has two procedures: Share and Reconstruct:
• ShareD′,D(x). The procedure samples a uniformly random polynomial

g(·) over Zp, of degree at most D′−1, where the free coefficient is the secret s.
That is, g(x) = s+ a1x+ a2x

2 + . . .+ aD′−1x
D′−1, where aj, 1 ≤ j ≤ D′ − 1,

are selected independently and uniformly at random from Zp. The procedure
outputs sd = g(d), d ∈ [D], where sd is the share given to the dth party, Td,
d ∈ [D].
• ReconstructD′(s1, . . . , sD). The procedure is given any selection of D′

shares out of {s1, . . . , sD}; it then interpolates a polynomial g(·) of degree
at most D′ − 1 using the given points and outputs s = g(0). Clearly, any
selection of D′ shares out of the D shares will yield the same polynomial g(·)
that was used to generate the shares, as D′ point values determine a unique
polynomial of degree at most D′ − 1. Hence, any selection of D′ shares will
issue the secret s. On the other hand, any selection of D′ − 1 shares reveals
nothing about the secret.

We note that there are secret sharing schemes that realize more general
access structures, e.g, (Brickell, 1989; Farràs et al., 2012; Shamir, 1979; Tassa
and Dyn, 2006), but for our purposes the basic Shamir’s scheme suffices.
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2.2 The cryptographic principles of our protocol

Our protocol involves two sets of parties: voters, V = {V1, . . . , VN}, and
talliers, {T1, . . . , TD}. The talliers are assumed to be semi-honest, i.e., they
follow the prescribed protocol, but try to extract from their view in the
protocol information on the private inputs of the voters. We also assume
them to have an honest majority, in the sense that if some of them are
corrupted by a malicious adversary, their number is smaller than

D′ := b(D + 1)/2c . (1)

On the other hand, the voters (any number of them) may be malicious. Hence,
our protocol includes mechanisms to detect potential deviations from the
prescribed protocol in order to ensure that the computed election results
correctly identify the winners as dictated by all legal ballot and the underlying
rule. During the entire process, the sensitive information that should be kept
secret are the private ballots as well as all intermediate computed values.

In the protocol, each voter creates shares of his1 private ballot and dis-
tributes them to the D talliers. As those ballots are matrices (see the
definitions in Section 3), the secret sharing is carried out for each matrix
entry independently.

We use Shamir’s D′-out-of-D secret sharing, where hereinafter D′ is as
defined in Eq. (1). With that selection of the threshold D′, at least half of
the talliers would need to collude in order to recover the secret ballots. Under
our assumption that the set of talliers has an honest majority, our protocol
provides information-theoretic security. Higher values of D will imply greater
security against coalitions of corrupted talliers, but they will also imply higher
costs.

The first thing that the talliers need to do when receiving from a voter his
ballot matrix shares is to verify that those shares correspond to a legal ballot
(see Section 3.2 where we explain what constitutes a legal ballot). Then, at
the end of the election period, the talliers need to compute the identity of the
winning candidates, as dictated by the rule. Those tasks would be easy if the
talliers could use their shares in order to recover the ballots. However, they
must not do so, in order to protect the voters’ privacy. Instead, they must
perform those computations on the distributed shares, without revealing the

1For the sake of simplicity, we keep referring to parties by the pronoun “he”. In our
context, those parties may be voters, who are humans of any gender, or talliers, that are
typically (genderless) servers.
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shares to each other. As we shall see later on, those computations boil down
to the four specific tasks that we proceed to describe.

Let x1, . . . , xL be L secrets in the underlying field Zp (L is any integer)
and assume that the talliers hold D′-out-of-D shares in each one of those
secrets. Then the talliers need to perform the following computational tasks
without recovering the secrets x1, . . . , xL or learn anything about them:

1. If y = f(x1, . . . , xL), where f is some public arithmetic function, com-
pute D′-out-of-D shares in y.

2. If y = 1x1<x2 is the bit that equals 1 if x1 < x2 and 0 otherwise2,
compute D′-out-of-D shares in y.

3. If p > 2N (N is the number of voters) and x1 ∈ [−N,N ], compute
D′-out-of-D shares in the bit 1x1>0.

4. If p > 2N and x1 ∈ [−N,N ], compute D′-out-of-D shares in the bit
1x1=0.

In the next subsections, we describe sub-protocols of secure multiparty com-
putation (MPC) (Yao, 1982) for performing those computations.

2.3 Evaluating polynomials

Let f(x1, . . . , xL) be an L-variate polynomial. Assume that the talliers have
D′-out-of-D shares in each of the L inputs and they wish to compute D′-
out-of-D shares in the output y = f(x1, . . . , xL) To do so, it is necessary to
solve the following problems: given D′-out-of-D shares in two secret values
u, v ∈ Zp, compute D′-out-of-D shares in au+ bv, where a, b are public field
elements, and in u ·v, without reconstructing any of those values (u, v, au+bv
and u · v).

Let ud and vd denote the shares held by Td, d ∈ [D], in the two input
values u and v, respectively. The linearity of secret sharing implies that
aud + bvd, d ∈ [D], are proper D′-out-of-D shares in au+ bv. Hence, linear
combinations may be resolved without any interaction amongst the talliers.

The procedure for resolving multiplication is trickier and requires the
talliers to interact. In our protocol, we use the construction proposed by

2Hereinafter, for any predicate Π, we let 1Π denote the binary variable that equals 1 iff
(if and only if) the predicate Π holds.
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Damg̊ard and Nielsen (2007), enhanced by a work by Chida et al. (2018)
that demonstrates some performance optimizations. The details of this
computation are not essential for understanding our secure voting protocol,
but for the sake of completeness we describe the computation in Appendix A.

The complexity of securely evaluating arithmetic functions is measured
by the number of multiplications (as those are the operations that require
significantly more computational and communication costs), and the degree
of the polynomial (as it determines the number of rounds of communication).

2.4 Secure Comparison

Assume that T1, . . . , TD hold D′-out-of-D shares in two integers a and b,
where both a and b are smaller than p, which is the size of the underlying
field Zp. They wish to compute D′-out-of-D secret shares in the bit 1a<b
without learning any other information on a and b. A protocol that does that
is called secure comparison.

Nishide and Ohta (2007) presented a method for secure comparison that
is based on the following simple observation. Let us denote the bits 1a< p

2
,

1b< p
2
, 1[(a−b) mod p]< p

2
, and 1a<b by w, x, y, z, respectively. Then

z = w(1− x) + (1− w)(1− x)(1− y) + wx(1− y)

= 1− x− y + xy + w(x+ y − 2xy) .
(2)

Hence, we reduced the problem of comparing two secret shared values, a and
b, to computing three other comparison bits — w, x, y, and then evaluating an
arithmetic function of them, Eq. (2). What makes this expression efficiently
computable is the fact that in the comparison bits, w = 1a< p

2
, x = 1b< p

2
, and

y = 1[(a−b) mod p]< p
2
, the right-hand side is p

2
, as we proceed to explain.

Lemma 1. Given a finite field Zp and a field element q ∈ Zp, then q < p
2

iff
the least significant bit (LSB) of (2q mod p) is zero.

(The proofs of all lemmas and theorems are given in Appendices B–F.)
In view of Lemma 1, the talliers may compute D′-out-of-D shares in

w = 1a< p
2

(and similarly for x = 1b< p
2
, and y = 1[(a−b) mod p]< p

2
) as follows:

each Td will translate the share he holds in a to a share in 2a by multiplying
the share by 2; then, all talliers will use their shares in 2a in order to compute
shares in the LSB of 2a (Nishide and Ohta, 2007).
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We conclude this section by commenting on the complexity of the above
described secure comparison protocol. Computing shares in the LSB of a
shared value requires 13 rounds of communication and 93`+ 1 multiplications,
where hereinafter ` = log2(p). Since we have to compute three such bits
(i.e., w, x, and y) then we can compute shares of those three bits in 13
rounds and a total of 279`+ 3 multiplications. Finally, we should evaluate
the expression in Eq. (2), which entails two additional rounds and two
additional multiplications. Hence, the total complexity is 15 rounds and
279`+ 5 multiplications.

2.5 Secure testing of positivity

Let x be an integer in the range [−N,N ]. Assume that T1, . . . , TD hold D′-
out-of-D shares in x, where the underlying field is Zp, and p > 2N . Our goal
here is to design an MPC protocol that will issue to T1, . . . , TD D′-out-of-D
shares in the bit 1x>0, without learning any further information on x.

Lemma 2. Under the above assumptions, x > 0 iff the LSB of (−2x mod p)
is 1.

Lemma 2 implies that testing the positivity of a secret requires a single
LSB computation. Hence, in view of the discussion in Section 2.4, the
computational cost of that task is 13 rounds of communication and 93`+ 1
multiplications.

2.6 Secure testing of equality to zero

Let x be an integer in the range [−N,N ]. Assume that T1, . . . , TD hold D′-
out-of-D shares in x, where the underlying field is Zp, and p > 2N . Our goal
here is to design an MPC protocol that will issue to T1, . . . , TD D′-out-of-D
shares in the bit 1x=0, without learning any further information on x. It is
possible to solve that problem by implementing the MPC positivity testing
that we described above in Section 2.5, once for x and once for −x. Clearly,
x = 0 iff both of those tests fail. However, we can solve that problem in a
much more efficient manner, as we proceed to describe.

Fermat’s little theorem states that if x ∈ Zp \ {0} then xp−1 = 1 mod
p. Hence, 1x 6=0 = (xp−1 mod p). Therefore, shares in the bit 1x 6=0 can
be obtained by computing xp−1 mod p. The latter computation can be
carried out by the square-and-multiply algorithm with up to 2` consecutive
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multiplications, where, as before, ` = log p. Finally, as 1x=0 = 1− 1x 6=0, then
shares in 1x 6=0 can be readily translated into shares in 1x=0. The cost of the
above described computation is significantly smaller than the cost of the
alternative approach that performs positivity testing of both x and −x.

3 A secure order based voting protocol

In this section, we describe our method for securely computing the winners
in two order-based voting rules, Copeland and Maximin. We begin with
formal definitions in Section 3.1. Then, in Section 3.2, we characterize legal
ballot matrices for each of the two rules. Such a characterization is an essential
part of our method since the talliers need to verify, in an oblivious manner,
that each cast ballot is indeed legal, and does not hide a malicious attempt to
cheat or sabotage the elections. In other words, the talliers need to verify the
legality of each cast ballot only through its secret shares, without recovering
the actual ballot. The characterization that we describe in Section 3.2 will be
used later on to perform such an oblivious validation.

Then, in Section 3.3 we introduce our secure voting protocol. That
protocol description includes a sub-protocol for validating the cast ballots and
sub-protocols for computing the final election results from all legal ballots.
The validation sub-protocols are described in Sections 3.4 and 3.5. The
sub-protocols for computing the election results are described in Sections 3.6
and 3.7 for Copeland and Maximin rules, respectively.

We conclude this section with a discussion of the overall security of our
protocol (Section 3.8) and its implementation in an end-to-end voting system
(Section 3.9).

3.1 Formal definitions

We consider a setting in which there are N voters, V = {V1, . . . , VN}, that
wish to hold an election over M candidates, C = {C1, . . . , CM}, and select
1 ≤ K < M out of them. We proceed to define the two order-based rules for
which we devise a secure MPC protocol in this section.

Copeland. Define for each Vn a ballot matrix Pn = (Pn(m,m′) : m,m′ ∈
[M ]), where Pn(m,m′) = 1 if Cm is ranked higher than Cm′ in Vn’s ranking,
Pn(m,m′) = −1 if Cm is ranked lower than Cm′ , and all diagonal entries are
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0. Then the aggregated ballot matrix,

P =
N∑
n=1

Pn , (3)

induces the following score for each candidate:

w(m) := |{m′ 6= m : P (m,m′) > 0}|+ α|{m′ 6= m : P (m,m′) = 0}| . (4)

Namely, w(m) equals the number of candidates Cm′ that a majority of the
voters ranked lower than Cm, plus α times the number of candidates Cm′ who
broke even with Cm. The parameter α can be set to any rational number
between 0 and 1. The most common setting is α = 1

2
; the Copeland rule

with this setting of α is known as Copeland
1
2 (Faliszewski et al., 2009).

Maximin. Define the matrices Pn so that Pn(m,m′) = 1 if Cm is ranked
higher than Cm′ in Vn’s ranking, while Pn(m,m′) = 0 otherwise. As in
Copeland rule, we let P denote the sum of all ballot matrices, see Eq. (3).
Then P (m,m′) is the number of voters who preferred Cm over Cm′ . The final
score of Cm, m ∈ [M ], is then set to w(m) := minm′ 6=m P (m,m′).

3.2 Characterization of legal ballot matrices in the Copeland
and Maximin rules

Here, we characterize the ballot matrices in each of the two order-based rules
that we consider. Such a characterization will be used later on in the secure
voting protocol.

Theorem 3. An M ×M matrix Q is a valid ballot under the Copeland
rule iff it satisfies the following conditions:

1. Q(m,m′) ∈ {−1, 1} for all 1 ≤ m < m′ ≤M ;

2. Q(m,m) = 0 for all m ∈ [M ];

3. Q(m′,m) +Q(m,m′) = 0 for all 1 ≤ m < m′ ≤M ;

4. The set {Qm :=
∑

m′∈[M ]Q(m′,m)}m∈[M ] consists of M distinct values.

Theorem 4. An M ×M matrix Q is a valid ballot under the Maximin rule
iff it satisfies the following conditions:
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1. Q(m,m′) ∈ {0, 1} for all 1 ≤ m < m′ ≤M ;

2. Q(m,m) = 0 for all m ∈ [M ];

3. Q(m′,m) +Q(m,m′) = 1 for all 1 ≤ m < m′ ≤M ;

4. The set {Qm :=
∑

m′∈[M ]Q(m′,m)}m∈[M ] consists of M distinct values.

We conclude this section with the following observation. Let us define a
projection mapping Γ : ZM×Mp 7→ ZM(M−1)/2

p , which takes an M ×M matrix
Q ∈ ZM×Mp and outputs its upper triangle,

Γ(Q) := (Q(m,m′) : 1 ≤ m < m′ ≤M) .

Conditions 2 and 3 in Theorems 3 and 4 imply that every ballot matrix, Pn,
is fully determined by its upper triangle, Γ(Pn), in either of the two voting
rules that we consider.

3.3 A secure voting protocol

Here we present Protocol 1, a privacy-preserving implementation of the
Copeland and Maximin order-based rules. The protocol computes, in a
privacy-preserving manner, the winners in elections that are governed by
those rules. It has two phases.

Phase 1 (Lines 1-8) is the voting phase. Here, each voter Vn, n ∈ [N ] :=
{1, . . . , N}, constructs his ballot matrix, Pn (Line 2). He then samples
a random share-generating polynomial of degree D′ − 1 for each of the
M(M − 1)/2 entries in Γ(Pn), where Γ is the projection mapping defined in
Section 3.2 (Lines 3-5). Finally, he sends to each tallier his relevant share in
each of those entries, namely, the value of the corresponding share-generating
polynomial at x = d, d ∈ [D] (Lines 6-7). Following that, the talliers engage
in an MPC sub-protocol to verify the legality of Vn’s ballot, without actually
recovering that ballot (Line 8). We describe the validation sub-protocol in
Section 3.4. Ballots that are found to be illegal are discarded.

Phase 2 of the protocol (Lines 9-11) is carried out after the voting phase
had ended. First (Lines 9-10), each of the talliers, Td, d ∈ [D], computes
his D′-out-of-D share, denoted Gd(m,m

′), in the (m,m′)th entry of the
aggregated ballot matrix P , see Eq. (3), for all 1 ≤ m < m′ ≤M . The heart
of the protocol is in Line 11: here, the talliers engage in an MPC sub-protocol
in order to find the indices of the K winning candidates. We describe the
details of those computations in Sections 3.6 and 3.7.
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Protocol 1: A basic protocol for secure order-based voting

Input: A set of M candidates C; K ∈ [M ]; a set of voters V.
1 forall Vn, n ∈ [N ], do
2 Construct the ballot matrix, Pn, according to the selected

indexing of candidates and the voting rule;
3 forall 1 ≤ m < m′ ≤M do
4 Select uniformly at random an,m,m′,j ∈ Zp, 1 ≤ j ≤ D′ − 1;

5 Set gn,m,m′(x) = Pn(m,m′) +
∑D′−1

j=1 an,m,m′,jx
j;

6 forall d ∈ [D] do
7 Send to Td the set {n,m,m′, gn,m,m′(d) : 1 ≤ m < m′ ≤M};
8 After all talliers receive their shares in Vn’s ballot, they engage in

an MPC sub-protocol to check its legality;
9 forall Td, d ∈ [D] do

10 Set Gd(m,m
′) =

∑
n∈[N ] gn,m,m′(d), for all 1 ≤ m < m′ ≤M ;

11 T1, . . . , TD find the indices of the K winners and publish them;
Output : The K winning candidates from C.

3.4 Verifying the legality of the cast ballots

Voters may attempt to cheat by submitting illegal ballots in order to help
their preferred candidate, or in order to sabotage the proper aggregation of
the ballots. In real-life electronic elections, where voters typically cast their
ballots on certified computers in voting centers, the chances of hacking such
computers and tampering with the software are small. However, for full-proof
security and as a countermeasure against dishonest voters that might manage
to hack the voting system, we proceed to describe an MPC sub-protocol that
enables the talliers to verify the legality of each ballot, even though those
ballots remain hidden from them.

We note that in case a ballot is found to be illegal, it is possible to notify
the voter that his ballot was rejected and allow him to resubmit it once again.
If the resubmitted ballot is still illegal, the talliers may reconstruct it (by
means of interpolation from the shares of D′ talliers) and use the recovered
ballot as proof of the voter’s dishonesty. The ability to construct such proofs,
which could be used in legal actions against dishonest voters, might deter
voters from attempting to cheat in the first place.

We proceed to explain how the talliers can verify the legality of the cast
ballots in each of the two order-based rules. That validation is based on
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the characterizations of legal ballots as provided in Theorems 3 and 4 for
Copeland and Maximin, respectively. Note that the talliers need only to
verify conditions 1 and 4; condition 2 needs no verification since the voters do
not distribute shares in the diagonal entries, as those entries are known to be
zero; and condition 3 needs no verification since the voters distribute shares
only in the upper triangle and then the talliers use condition 3 in order to
infer the lower triangle from the shared upper triangle.

Verifying condition 1. Consider the shares that a voter distributed in
Γ(Q), where Q is his ballot matrix. The talliers need to verify that each
entry in the shared Γ(Q) is either 1 or −1 in Copeland, or either 1 or 0
in Maximin. The verification is performed independently on each of the
M(M − 1)/2 entries of the shared upper triangle. A shared scalar x is in
{−1, 1} (resp. in {0, 1}) iff (x+ 1) · (x− 1) = 0 (resp. x · (x− 1) = 0). Hence,
the talliers use their shares in x to compute the product (x + 1) · (x − 1)
for Copeland or x · (x − 1) for Maximin, as described in Section 2.3. If
the computed product is zero for each of the M(M − 1)/2 entries of Γ(Q),
then Γ(Q) satisfies condition 1 in Theorem 3 (Copeland) or in Theorem 4
(Maximin). If, on the other hand, some of the multiplication gates issue a
nonzero output, then the ballot will be rejected.

Verifying condition 4. First, we make the following observation. Let
x, y ∈ Zp be two values that are shared among the talliers. Denote by xd
and yd the D′-out-of-D shares that Td has in x and y, respectively. Then if
a, b ∈ Zp are two publicly known field elements, it is easy to see that axd+ byd
is a proper D′-out-of-D share in ax + by, d ∈ [D]. Also a + xd is a proper
D′-out-of-D share in a+ x.

Using the above observation regarding the linearity of secret sharing, then
once the talliers receive D′-out-of-D shares in each entry in Γ(Q), they can
proceed to compute D′-out-of-D shares in the corresponding column sums,
Qm, m ∈ [M ], as we proceed to show.

In Copeland, conditions 2 and 3 in Theorem 3 imply that

Qm =
∑

m′∈[M ]

Q(m′,m) =
∑
m′<m

Q(m′,m)−
∑
m<m′

Q(m,m′) . (5)

Since the talliers hold shares in Q(m′,m) for all 1 ≤ m′ < m ≤ M , they
can use Eq. (5) and the linearity of secret sharing to compute shares in Qm,
m ∈ [M ]. In Maximin, on the other hand, conditions 2 and 3 in Theorem 4
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imply that

Qm =
∑
m′<m

Q(m′,m)−
∑
m<m′

Q(m,m′) + (M −m) . (6)

Here too, the linearity of sharing and the relation in Eq. (6) enable the talliers
to compute shares in Qm, m ∈ [M ], also in the case of Maximin.

Now, it is necessary to verify that all M values Qm, m ∈ [M ], are distinct.
That condition can be verified by computing the product

F (Q) :=

( ∏
1≤m′<m≤M

(Qm −Qm′)

)2

. (7)

Condition 4, in both rules, holds iff F (Q) 6= 0. Hence, the talliers, who hold
shares in Qm, m ∈ [M ], may compute F (Q) and then accept the ballot iff
F (Q) 6= 0.

Privacy of the verification sub-protocol. A natural question that
arises is whether the above described validation process poses a risk to the
privacy of the voters. In other words, a voter that casts a legal ballot wants
to be ascertained that the validation process only reveals that the ballot is
legal, while all other information is kept hidden from the talliers. We proceed
to examine that question.

The procedure for verifying condition 1 in Theorems 3 and 4 offers perfect
privacy for honest voters. If the ballot Q is legal then all multiplication gates
will issue a zero output. Hence, apart from the legality of the ballot, the
talliers will not learn anything about the content of the ballot.

The procedure for verifying condition 4 in Theorems 3 and 4 also offers
perfect privacy, as we proceed to argue. If Q is a valid ballot in Copeland,
then the ordered tuple (Q1, . . . , QM) is a permutation of the ordered tuple
(−M + 1,−M + 3, . . . ,M − 3,M − 1). This statement follows from the proof
of condition 4 in Theorem 3. Hence, as can be readily verified,∏

1≤m′<m≤M

(Qm −Qm′) = ±2(M
2 ) ·

∏
1≤m′<m≤M

(m−m′) , (8)

where the sign of the product in Eq. (8) is determined by the signature of
(Q1, . . . , QM) when viewed as a permutation of the ordered tuple (−M +
1,−M + 3, . . . ,M − 3,M − 1). Hence, as the talliers compute F (Q), Eq. (7),
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which equals the square of the product on the left hand side of Eq. (8), then
for any legal ballot they will always recover the same value, which is

F (Q) =

(
2(M

2 ) ·
∏

1≤m′<m≤M

(m−m′)

)2

.

Similarly, the procedure for verifying condition 4 in Theorem 4, for Max-
imin, is also privacy-preserving in the same manner. Indeed, in the case of
Maximin, (Q1, . . . , QM ) is a permutation of the ordered tuple (0, 1, . . . ,M −
2,M − 1), and, therefore,

F (Q) =

( ∏
1≤m′<m≤M

(m−m′)

)2

.

Computational cost. Verifying condition 1 can be performed in parallel
for all M(M − 1)/2 entries in a given ballot, and also for several different
ballots. Hence, in order to perform a batch validation of B ballots, the talliers
need to compute BM(M − 1)/2 simultaneous multiplication gates.

The verification of condition 4 over a single ballot requires performing a
sequence of M(M − 1)/2 multiplications. Hence, in order to perform a batch
validation of B ballots, the talliers need to go through M(M − 1)/2 rounds,
where in each round they compute B simultaneous multiplication gates.

3.5 Verifying the legality of the secret sharing

A malicious voter V may attempt to sabotage the election by distributing to
the D talliers shares that do not correspond to a polynomial of degree D′− 1.
Namely, if {s1, . . . , sD} are the shares that V distributed to T1, . . . , TD in one
of the entries in his ballot matrix, it is possible that there is no polynomial
g of degree (up to) D′ − 1 such that g(d) = sd for all d ∈ [D]. By carefully
selecting those shares, they may still pass the verification tests as described
in Section 3.4 with some non-negligible probability, and then they would be
integrated in the final computation of the winners. Since such shares do not
correspond to a legal vote, they may sabotage the final computation of the
winners (as we describe later on in Sections 3.6 and 3.7). To prevent such
an attack, we explain herein how the talliers may detect it without learning
anything on the submitted ballot (beyond the mere legality of the secret
sharing that was applied to it). To that end the talliers proceed as follows:
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1. Each tallier Td, d ∈ [D], produces a random number rd and distributes
to all talliers D′-out-of-D shares in it, denoted {rd,1, . . . , rd,D}.

2. Each Td, d ∈ [D], computes ŝd = sd +
∑

j∈[D] rj,d. Namely, Td adds to
the share that he had received from V in the secret entry in V ’s ballot
matrix the shares received from all talliers in the random numbers that
they had produced.

3. Each Td, d ∈ [D], broadcasts ŝd.

4. All talliers compute a polynomial f of degree up to D − 1 such that
f(d) = ŝd, d ∈ [D].

5. If deg f ≤ D′ − 1 then the set of shares {s1, . . . , sD} that V had
distributed is a legal D′-out-of-D sharing of some scalar in the field.

6. Otherwise, the ballot is rejected.

Lemma 5. The above procedure is correct and fully preserves the voter’s
privacy.

We note that the first step can be executed even before the election period
starts. Namely, once the number of registered voters, N , and the number
of candidates, M , are determined, the talliers can produce NM(M − 1)/2
random values and distribute shares in them to be used later on in masking
the M(M − 1)/2 entries in each voter’s ballot matrix.

3.6 Computing the winners in Copeland rule

The parameter α in Eq. (4) is always a rational number; typical settings of α
are 0, 1, or 1

2
(Faliszewski et al., 2009). Assume that α = s

t
for some integers

s and t. Then

t ·w(m) = t ·
∑
m′ 6=m

1P (m,m′)>0 + s ·
∑
m′ 6=m

1P (m,m′)=0 . (9)

The expression in Eq. (9) involves all entries in P outside the diagonal.
However, the talliers hold D′-out-of-D shares, denoted Gd(m,m

′), d ∈ [D], in
P (m,m′) only for entries above the diagonal, 1 ≤ m < m′ ≤ M (see Lines
9-10 in Protocol 1). Hence, we first translate Eq. (9) into an equivalent
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expression that involves only entries in P above the diagonal. Condition 3 in
Theorem 3, together with Eq. (3), imply that P (m′,m) = −P (m,m′). Hence,
for all m′ < m, we can replace 1P (m,m′)=0 with 1P (m′,m)=0, while 1P (m,m′)>0

can be replaced with 1−P (m′,m)>0. Hence,

t ·w(m) =t ·

{∑
m′>m

1P (m,m′)>0 +
∑
m′<m

1−P (m′,m)>0

}
+

s ·

{∑
m′>m

1P (m,m′)=0 +
∑
m′<m

1P (m′,m)=0

} (10)

Eq. (10) expresses the score of candidate Cm, re-scaled by a factor of t, only
by entries in P above the diagonal, in which the talliers hold D′-out-of-D
secret shares.

In view of the above, the talliers may begin by computing secret shares
in the bits of positivity in the first sum on the right-hand side of Eq. (10),
by using the MPC sub-protocol described in Section 2.5. As for the bits
of equality to zero in the second sum on the right-hand side of Eq. (10),
the talliers can compute secret shares in them using the MPC sub-protocol
described in Section 2.6. As the value of t ·w(m) is a linear combination of
those bits, the talliers can then use the secret shares in those bits and Eq.
(10) in order to get secret shares in t ·w(m), for each of the candidates, Cm,
m ∈ [M ].

Next, they perform secure comparisons among the values tw(m), m ∈ [M ],
in order to find the K candidates with the highest scores. To do that, they
need to perform M − 1 secure comparisons (as described in Section 2.4)
in order to find the candidate with the highest score, M − 2 additional
comparisons to find the next one, and so forth down to M −K comparisons
in order to find the Kth winning candidate. Namely, the overall number
of comparisons in this final stage is

∑M−1
m=M−Km = K ·

(
M − K+1

2

)
, which

is bounded by M(M − 1)/2 for all K < M . Once this computational task
is concluded, the talliers publish the indices of the K winners (Line 11 in
Protocol 1)).

We summarize the above described computation in Sub-protocol 2, which
is an implementation of Line 11 in Protocol 1. It assumes that the talliers hold
D′-out-of-D secret shares in P (m,m′) for all 1 ≤ m < m′ ≤M . Indeed, that
computation has already taken place in Lines 9-10 of Protocol 1. Sub-protocol
2 starts with a computation of D′-out-of-D shares in all of the positivity bits
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and equality to zero bits that relate to the entries above the diagonal in P
(Lines 1-4). Then, in Lines 5-7, the talliers use those shares in order to obtain
D′-out-of-D shares in t ·w(m) for each of the candidates, using Eq. (10); the
D′-out-of-D shares in t ·w(m) are denoted {wd(m) : d ∈ [D]}. Finally, using
the secure comparison sub-protocol, they find the K winners (Lines 8-10).

Sub-Protocol 2: Computing the winners in Copeland rule

Input: Td, d ∈ [D], has Gd(m,m
′) (a share in P (m,m′)) for all

1 ≤ m < m′ ≤M .
1 forall 1 ≤ m < m′ ≤M do
2 The talliers apply the positivity sub-protocol to translate

{Gd(m,m
′) : d ∈ [D]} into shares {σ+

d (m,m′) : d ∈ [D]} in
1P (m,m′)>0;

3 The talliers apply the positivity sub-protocol to translate
{Gd(m,m

′) : d ∈ [D]} into shares {σ−d (m,m′) : d ∈ [D]} in
1−P (m,m′)>0;

4 The talliers apply the equality to zero sub-protocol to translate
{Gd(m,m

′) : d ∈ [D]} into shares {σ0
d(m,m

′) : d ∈ [D]} in
1P (m,m′)=0;

5 forall d ∈ [D] do
6 forall m ∈ [M ] do
7 Td computes

wd(m) = t ·
{∑

m′>m σ
+
d (m,m′) +

∑
m′<m σ

−
d (m′,m)

}
+

s ·
{∑

m′>m σ
0
d(m,m

′) +
∑

m′<m σ
0
d(m

′,m)
}

;

8 forall k ∈ [K] := {1, . . . , K} do
9 The talliers perform M − k invocations of the secure comparison

sub-protocol over the M − k + 1 candidates in C in order to find
the kth elected candidate;

10 The talliers output the candidate that was found and remove him
from C;

Output : The K winning candidates from C.

3.7 Coputing the winners in Maximin rule

Fixing m ∈ [M ], the talliers need first to find the index m′ 6= m which
minimizes P (m,m′); once m′ is found then w(m) = P (m,m′). To do that
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(finding a minimum among M − 1 values), the talliers need to perform M − 2
secure comparisons. That means an overall number of M(M − 2) secure
comparisons for the first stage in the talliers’ computation of the final results
(namely, the computation of the scores for all candidates under the Maximin
rule). The second stage is just like in Copeland — finding the indices
of the K candidates with the highest w scores. As analyzed earlier, that
task requires an invocation of the secure comparison sub-protocol at most
M(M − 1)/2 times. Namely, the determination of the winners in the case of
Maximin requires performing the comparison sub-protocol less than 1.5M2

times.

3.8 The protocol’s security

The talliers hold D′-out-of-D shares in each of the ballot matrices, Pn, n ∈ [N ],
as well as in the aggregated ballot matrix P . Under our assumption of
honest majority, and our setting of D′, Eq. (1), the talliers cannot infer any
information on any entry in any of the ballot matrices nor in the aggregated
ballot matrix. They then use those shares in the following sub-protocols:

(a) validating the legality of secret sharing (Section 3.5),
(b) validating the legality of the ballots (Section 3.4), and
(c) computing the final election results (Sub-protocol 2).
All of those sub-protocols are perfectly secure, as we proceed to explain.

The protocol for validating the legality of secret sharing preserves perfect
privacy, as shown in Lemma 5. The validation protocols of Section 3.4
are based on the arithmetic circuit construction of (Damg̊ard and Nielsen,
2007) and (Chida et al., 2018), which was shown there to be secure. Finally,
Sub-protocol 2 invokes the positivity testing sub-protocol (Lines 2-3), the
sub-protocol that tests equality to zero (Line 4), and the secure comparison
sub-protocol (Line 9), that we described in Sections 2.4–2.6. The secure
comparison sub-protocol is perfectly secure, as was shown in (Nishide and
Ohta, 2007). The positivity testing sub-protocol that we presented here
is just an implementation of one component from the secure comparison
sub-protocol, hence it is also perfectly secure. Finally, the testing of equality
to zero invokes the arithmetic circuit construction of (Damg̊ard and Nielsen,
2007) and (Chida et al., 2018), which was shown there to be secure.

In summary, Protocol 1 invokes five MPC sub-protocols, each of which is
perfectly secure under the assumption of an honest majority. In view of the
Modular Composition Theorem (Canetti, 2000), we arrive at the following
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conclusion.

Theorem 6. Under the assumption that the talliers are all semi-honest and
that they have an honest majority, Protocol 1 is secure against malicious
voters, it outputs the correct election results, and it fully preserves the voters’
privacy.

We observe that in performing the secure comparisons, the talliers may
learn information which exceeds the desired election results. Specifically, at
the end of the protocol the talliers learn, for some pairs of candidates, the
ranking between them (or even the full ranking of all candidates). However,
they output to the voters only the desired results, being the identity of the
K winners, with or without the internal ranking between them. It is possible
to enhance our protocols so that also the talliers, and not just the voters,
learn only the desired output without additional ranking information, using
techniques as presented recently in (Tassa and Yanai, 2024).

3.9 End-to-end system

We would like to stress that our protocols focus on securing the computation
of the election results. Needless to say that those protocols must be integrated
into a comprehensive system that takes care of other aspects of voting systems.
For example, it is essential to guarantee that only registered voters can vote
and that each one can vote just once. It is possible to ensure such conditions
by standard means, outside our MPC protocols.

Another requirement is the need to prevent attacks from malicious ad-
versaries. In the context of our protocols, an adversary may eavesdrop on
the communication link between some voter Vn and at least D′ of the talliers
and intercept the messages that Vn sends to them (in Protocol 1’s Line 7) to
recover Vn’s ballot. That adversary may also replace Vn’s original messages
to all D talliers with other messages (say, ones that carry shares of a ballot
that reflects the adversary’s preferences). Such attacks can be easily thwarted
by requiring each party (a voter or a tallier) to have a certified public key,
encrypt each message that he sends out using the receiver’s public key and
then sign it using his own private key; also, when receiving messages, each
party must first verify them using the public key of the sender and then send
a suitable message of confirmation to the receiver. Namely, each message
that a voter Vn sends to a tallier Td in Line 7 of Protocol 1 should be signed
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with Vn’s private key and then encrypted by Td’s public key; and Td must
acknowledge its receipt and verification.

Lastly, an important aspect of every voting system is verifiability. This
property can be achieved by applying techniques such as the ones presented by
Huber et al. (2022). Those techniques do not depend on the underlying voting
rule, and they can be applied on top of our MPC protocols for computing
the election results in a secure manner. We note, however, that Huber et al.
(2022) point out a trade-off between full privacy and verifiability; specifically,
for a system to be verifiable, the talliers must learn at least the aggregated
votes.

4 Evaluation: Computational costs

Our goal herein is to establish the practicality of our protocol. Our protocol
relies on expensive cryptographic sub-protocols — secure comparisons and
secure multiplications. All other operations that the voters and talliers do
(random number generation, and standard/non-secure additions and multi-
plications) have negligible costs in comparison to those of the cryptographic
computations. In this section, we provide upper bounds for the overall cost of
the cryptographic computations, in various election settings, in order to show
that our protocol is viable and can be implemented in practical elections with
very light overhead.

4.1 Parameters

Four parameters affect the performance of our protocol:
(a) The size p of the underlying field. We chose the prime p = 231−1

as the size of the underlying field, which is sufficiently large for our purposes
(as discussed in Appendix I). Moreover, that specific setting of p serves us
well also due to another reason: p = 231 − 1 is a Mersenne prime (namely,
a prime of the form 2t − 1 for some integer t). Choosing such primes is
advantageous, from a computational point of view, since multiplying two
elements in such fields can be done without performing an expensive division
(in case the multiplication result exceeds the modulus).

(b) The number D of talliers. We set that number to be D ∈
{3, 5, 7, 9}.
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(c) The number M of candidates. Order-based rules require each
voter to provide a full ordering of the entire set of candidates. Pairwise
comparison is a common method for eliciting voter preferences when a full
order is required. A sequence of comparative questions in the form of “Which
of the following two candidates do you prefer?” are easier for the voter than
a request for a complete order, see (David, 1963). Whether the voters are
required to submit a full ranking of the set of M candidates, or they need to
compare pairs of candidates (in which case roughly log2(M !) questions are
needed in order to determine a full ordering of the M candidates), it is clear
that such order-based rules are relevant only for a small number of candidates.
In our evaluation, we considered M ∈ {5, 10, 20}.

(d) The number N of voters. That number affects only the time for
validating the cast ballots. We provide here runtimes for validating batches of
B ballots, for B ∈ {500, 5000, 25000}. Those runtimes should be multiplied
by N/B in order to get the overall time for validating all incoming ballots.

4.2 The cost of batch validation of ballots

As discussed in Section 3.4, the batch validation of B ballots involves BM(M−
1)/2 simultaneous multiplications (for verifying condition 1) and M(M −
1)/2 consecutive rounds with B simultaneous multiplications in each (for
verifying condition 4). We can perform the verification of both conditions
in parallel by spreading the BM(M − 1)/2 simultaneous multiplications for
verifying condition 1 overM(M−1)/2 consecutive rounds with B simultaneous
multiplications in each. Hence, the total workload would be M(M − 1)/2
rounds with 2B simultaneous multiplications in each round.

Chida et al. (2018) report runtimes for performing secure multiplications.
Their experiments were carried on Amazon AWS m5.4xlarge machines at N.
Virginia over a network with bandwidth 9.6Gbps. They experimented over
a larger field of size p′ = 261 − 1 (which is also a Mersenne prime). Clearly,
runtimes for our smaller prime, p = 231 − 1, would be shorter; but since we
are interested only in upper-bounding the computational overhead of our
protocol, in order to establish its practicality, those numbers will suffice for
our needs. They experimented with a circuit that consists of one million
multiplication gates that are evenly spread over {20, 100, 1000} layers; hence,
in each layer there are {5 · 104, 104, 103} multiplication gates, respectively.
The reported runtimes as a function of D, the number of talliers, are shown
in Table 1.

23



#layers #multiplication gates
per layer

D = 3 D = 5 D = 7 D = 9

20 50000 826 844 1058 1311

100 10000 842 989 1154 1410

1000 1000 1340 1704 1851 2243

Table 1: Runtimes (milliseconds) for computing 106 multiplication gates,
spread evenly over 20, 100, and 1000 layers, as a function of the number D of
talliers. The first two columns show the number of layers and the number of
multiplication gates per layer in each setting.

We begin by computing the needed runtimes for performing batch val-
idations when M = 20. We exemplify the computation in two cases: one
in which the batch size is B = 500 and another in which the batch size is
increased 50-fold, i.e., B = 25000.

To validate B = 500 ballots when M = 20 it is necessary to perform
M(M − 1)/2 = 190 rounds of 2B = 1000 simultaneous multiplications in
each. The runtimes for such a computation can be inferred from the third
row in Table 1, if we multiply the runtimes shown there by a factor of 190

1000
.

That is, the batch validation of B = 500 ballots would take 255/324/352/426
mili-seconds when D = 3/5/7/9. Therefore, to validate a million ballots, it
would take 510/648/704/852 seconds.

Those runtimes may be improved by enlarging the batch size. The time
to validate a batch of B = 25000 ballots, when M = 20, can be inferred
from the first row in Table 1, if we multiply the runtimes shown there by a
factor of 190

20
. That is, the batch validation of B = 25000 ballots would take

7.847/8.018/10.051/12.454 seconds when D = 3/5/7/9. Therefore, validating
a million ballots, would take 314/321/402/498 seconds.

In general, it is not hard to see that the runtimes for validating one million
ballots in batches of size B = 500/5000/25000 can be read from Table 1
by multiplying the times reported there in the third/second/first row by
a factor of M(M − 1). Table 2 includes runtimes for validating 1 million
ballots in batches of B ∈ {500, 5000, 25000} ballots when M ∈ {5, 10, 20}, for
D = 3/5/7/9.

Elections usually span a long time (typically at least 1 day) and the batch
validation of ballots can take place along that period whenever a number of B
new ballots were received. Hence, the above analysis shows that the runtimes
for validating incoming ballots are very realistic and are not expected to slow
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B = 500 B = 5000 B = 25000

M = 5 27/34/37/45 17/20/23/28 16/17/21/26

M = 10 121/153/167/202 76/89/104/127 74/76/95/118

M = 20 510/648/704/852 320/376/439/536 314/321/402/498

Table 2: Runtimes (seconds) for validating 1 million ballots in order-based
rules, as a function of the number of candidates M , the batch size B, and
the number of talliers D. The table’s entry relating to M and B shows the
validation runtimes for D = 3/5/7/9.

down the election process.

4.3 The cost of computing final election results

Sub-protocol 2 computes the final election results in the Copeland rule.
It requires M(M − 1) invocations of the secure positivity test (Section 2.5),
M(M − 1)/2 invocations of the equality to zero test (Section 2.6), and finally
K ·
(
M − K+1

2

)
≤M(M−1)/2 secure comparisons (Section 2.4). As discussed

in Sections 2.5 and 2.6, the costs of the MPC computations to determine
positivity and equality to zero are upper bounded by the cost of a secure
comparison. Hence, the cost of Sub-protocol 2 can be upper bounded by
4M(M − 1) secure comparisons.

To evaluate the runtime of performing the secure comparison sub-protocol
we ran it on Amazon AWS m5.4xlarge machines at N. Virginia over a network
with bandwidth 9.6Gbps. We performed our evaluation with D ∈ {3, 5, 7, 9}
talliers. The measured runtimes are given in Table 3.

Number of talliers D = 3 D = 5 D = 7 D = 9

Time (msecs) to compute a
secure comparison

9.07 9.54 9.64 15.0

Table 3: Runtimes (milliseconds) for a secure comparison sub-protocol with a
varying number of talliers.

As can be seen, the implied runtimes are negligible. For example, when
M = 5, the runtime of this stage is upper bounded by 1.2 seconds, when
using the highest number of talliers, D = 9, while for M = 20 it is upper
bounded by 22.8 seconds. The runtimes in the case of Maximin are even
smaller, since then the number of secure comparisons is bounded only by
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1.5 ·M2 (see Section 3.7). In summary, it is possible to achieve perfect ballot
secrecy, as our protocol offers, at a very small computational price.

5 Related work

Secure e-voting can be approached using various cryptographic techniques.
The earliest suggestion is that of Chaum (1981), who suggested using a mix
network (mixnet). The idea is to treat the ballots as ciphertexts. Voters
encrypt their ballots and agents collect and shuffle these messages and thus
anonymity of the ballots is preserved. Other studies followed and improved
this model, e.g. (Sako and Kilian, 1995; Adida, 2008; Boneh and Golle, 2002;
Jakobsson et al., 2002; Lee et al., 2003; Neff, 2001). However, while such
systems preserve anonymity, the talliers are exposed to the actual ballots.
The mere anonymity of the ballots might not provide sufficient security and
this may encourage voters to abstain or vote untruthfully (Dery et al., 2021).

One of the approaches towards achieving tally-hiding privacy, and not just
anonymity, is by employing homomorphic encryption. The most common
ciphers of that class are additively homomorphic, in the sense that the product
of several ciphertexts is the encryption of the sum of the corresponding
plaintexts. Such encryptions are suitable for secure voting, as was first
suggested by Benaloh (1986). The main idea is to encrypt the ballots using a
public-key homomorphic cipher. An agent aggregates the encrypted ballots
and then sends an aggregated encrypted value to the tallier. The tallier
decrypts the received ciphertexts and recovers the aggregation of the ballots,
but is never exposed to the ballots themselves. Secure voting protocols that
are based on homomorphic encryption were presented in e.g. (Cramer et al.,
1997; Damg̊ard et al., 2010; Hevia and Kiwi, 2004; Yang et al., 2018; Fan
et al., 2020; Rezaeibagha et al., 2019; Priya et al., 2018).

While most studies on secure voting offered protocols for securing the
voting process, some studies considered the question of private execution
of the computation that the underlying voting rule dictates. We begin our
survey with works that considered score-based voting rules. Canard et al.
(2018) considered the Majority Judgment (MJ) voting rule (Balinski and
Laraki, 2007). They first translated the complex control flow and branching
instructions that the MJ rule entails into a branchless algorithm; then they
devised a privacy-preserving implementation of it using homomorphic encryp-
tion, distributed decryption schemes, distributed evaluation of Boolean gates,
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and distributed comparisons. Nair et al. (2015) suggested to use secret sharing
for the tallying process in Plurality voting (Brandt et al., 2016). Their
protocol provides anonymity but does not provide perfect secrecy as it reveals
the final aggregated score of each candidate. In addition, their protocol is
vulnerable to cheating attacks, as it does not include means for detecting
illegal votes. Küsters et al. (2020) introduced a secure end-to-end verifiable
tally-hiding e-voting system, called Ordinos, that implements the Plurality
rule and outputs the K candidates that received the highest number of votes,
or those with number votes that is greater than some threshold. Dery et al.
(2021) offered a solution based on MPC in order to securely determine the
winners in elections governed by score-based voting rules, including Plural-
ity, Approval, Veto, Range and Borda. Their protocols offer perfect
privacy and very attractive runtimes.

Recently, few researchers began looking at order-based voting rules. Haines
et al. (2019) proposed a solution for the order-based Schulze’s rule (Schulze,
2011). Their solution does not preserve the privacy of voters who are indifferent
between some pairs of candidates. In addition, their solution is not scalable to
large election campaigns, as they report a runtime of 25 hours for an election
with 10,000 voters. Hertel et al. (2021) proposed solutions for Copeland,
Maximin and Schulze voting rules. The evaluation of the Schulze method
took 135 minutes for 5 candidates and 9 days, 10 hours, and 27 minutes
for 20 candidates. Finally, Cortier et al. (2022) considered the Single
Transferable Vote (STV) rule, which is a multi-stage rule, as well as
Schulze’s rule. Even though their method is much more efficient than the
one in (Hertel et al., 2021) for the Schulze rule, it is still not scalable to
large election settings, as it took 8 hours and 50 minutes for N = 1024 voters
and M = 20 candidates.

Our study is the first one that proposes protocols for order-based rules that
are both fully private and lightweight so they offer a feasible solution even for
very large democracies. For example, our protocols can handle Copeland
rule computations over 1 million voters and 20 candidates with a runtime of
roughly 500 seconds (see Table 2). This is achieved mainly by our novel idea
of distributed tallying. However, applying distributed tallying for tackling
more complex rules such as Schulze’s rule requires further research and is
left for future work.
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6 Conclusion

We presented a protocol for the secure computation of order-based voting
rules. Securing the voting process is an essential step toward a fully online
voting process. Secure voting systems that rely on fully trusted talliers (that
is, talliers who receive the actual ballots from the voters) assume that the
talliers do not misuse the ballot information and that they keep it secret. In
contrast, our protocol significantly reduces the trust vested in the talliers, as
it denies the talliers access to the actual ballots and utilizes MPC techniques
in order to compute the desired output. Such a reduction of trust in the
talliers is essential to increase the confidence of the voters in the voting system
so that they would be further motivated to exercise their right to vote and,
moreover, vote according to their true preferences, without fearing that their
private vote will be disclosed to anyone.

Our protocol offers perfect ballot secrecy. The design of a mechanism
that offers perfect ballot secrecy must be tailored to the specific voting rule
that governs the elections. We demonstrated our solution on Copeland and
Maximin. In the Appendix we present our solution for Kemeny-Young and
Modal-Ranking. Ours is the first study that offers a fully private solution
for order-based voting rules that is lightweight and practical for elections in
real-life democracies of any size.
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(2021). Extending the tally-hiding ordinos system: Implementations for
borda, hare-niemeyer, condorcet, and instant-runoff voting. In E-Vote-ID
2021, pp. 269–284. University of Tartu Press.

Hevia, A. and M. Kiwi (2004). Electronic jury voting protocols. Theoretical
Computer Science 321 (1), 73–94.
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A Emulating multiplication gates

Here we describe how the generic secret-sharing-based protocol of Damg̊ard
and Nielsen (2007) emulates multiplication gates. That computation requires
the interacting parties to generate shares in a random field element r, such
that r distributes uniformly on Zp and it remains unknown to all parties. We
begin by describing a manner in which this latter task can be carried out.

To generate shares in a random field element, each party Td, d ∈ [D],
generates a uniformly random field value ρd and performs a D′-out-of-D
sharing of it among T1, . . . , TD. At the completion of this stage, each Td adds
up all the D shares that he received and gets a value that we denote by rd. It
is easy to see that {r1, . . . , rD} is a D′-out-of-D sharing of the random value
ρ =

∑
d∈[D] ρd. Clearly, ρ is a uniformly random field element, as it is a sum

of uniformly random independent field elements.
Now we turn to explain the processing of multiplication gates. Let

{u1, . . . , uD} be D′-out-of-D shares in u, which were generated by a polyno-
mial f(·) of degree D′−1, and {v1, . . . , vD} be D′-out-of-D shares in v, which
were generated by a polynomial g(·) also of degree D′− 1. The party Td holds
ud and vd, d ∈ [D]. The goal is to let the parties have D′-out-of-D shares in
w = u · v.

First, Td computes wd = ud · vd, d ∈ [D]. Those values are point values
of the polynomial f(·)g(·), which is a polynomial of degree 2D′ − 2. Hence,
{w1, . . . , wD} is a (2D′ − 1)-out-of-D sharing of w. Note that as D′ :=
b(D + 1)/2c, then 2D′ − 1 ≤ D; therefore, the D parties have a sufficient
number of shares in order to recover w. However, our goal is to obtain a
D′-out-of-D sharing of w, namely a set of shares in w, of which any selection
of only D′ shares can be used to reconstruct w. Hence, we proceed to describe
a manner in which the parties can translate this (2D′ − 1)-out-of-D sharing
of w into a D′-out-of-D sharing of w. To do that, the parties generate two
sharings of the same uniformly random (and unknown) field element R: a
D′-out-of-D sharing, denoted {r1, . . . , rD}, and a (2D′ − 1)-out-of-D sharing,
denoted {R1, . . . , RD}. Next, each Td computes w̃d = wd +Rd and sends the
result to T1. Since {w̃1, . . . , w̃d} is a (2D′ − 1)-out-of-D sharing of w + R,
T1 can use any 2D′ − 1 of those shares in order to reconstruct w̃ := w + R.
T1 broadcasts that value to all parties. Consequently, each Td computes
ŵd = w̃ − rd, d ∈ [D]. Since w̃ is a constant and rd is a D′-out-of-D share
in R, then ŵd is a D′-out-of-D share in w̃ −R = w +R−R = w, as needed.
This procedure is perfectly secure since w̃ = w + R reveals no information
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on w because R is a uniformly random field element that is unknown to the
parties.

B Proof of Lemma 1

If q < p
2

then 2q < p. Hence, 2q mod p = 2q (there is no modular reduction),
and therefore, as 2q is even, its LSB is 0. On the other hand, if q > p

2
then

2q > p. Hence, 2q mod p = 2q− p. Since that number is odd, its LSB is 1. �

C Proof of Lemma 2

Recall that x ∈ [−N,N ] and N < p
2
. Assume that x > 0, namely, that

x ∈ (0, N ]. Hence, −2x ∈ [−2N, 0). Therefore, as 2N < p, (−2x mod p) =
−2x+ p. As that number is odd, its LSB is 1. If, on the other hand, x ≤ 0,
then x ∈ [−N, 0]. Hence, −2x ∈ [0, 2N ] ⊂ [0, p − 1]. Therefore, (−2x
mod p) = −2x. As that number is even, its LSB is 0. �

D Proof of Theorem 3

Assume that the ordering of a voter over the set of candidates C is (Cj1 , . . . , CjM )
where j := (j1, . . . , jM) is some permutation of [M ]. Then the ballot matrix
that such an ordering induces is

Q = (Q(m,m′))1≤m,m′≤M

where Q(m,m′) = 1 if m appears before m′ in the sequence j, Q(m,m′) = −1
if m appears after m′ in j, and Q(m,m) = 0 for all m ∈ [M ]. Such a matrix
clearly satisfies conditions 1, 2 and 3 in the theorem. It also satisfies condition
4, as we proceed to show. Fix m ∈ [M ] and let k ∈ [M ] be the unique index
for which m = jk. Then the mth column in Q consists of exactly k− 1 entries
that equal 1, M − k entries that equal −1, and a single entry on the diagonal
that equals 0. Hence, Qm, which is the sum of entries in that column, equals
2k−M − 1. Clearly, all those values are distinct, since the mapping m 7→ k is
a bijection. That completes the first part of the proof: every legal Copeland
ballot matrix satisfies conditions 1-4.

Assume next that Q is an M ×M matrix that satisfies conditions 1-4.
Then for each m ∈ [M ], the mth column in the matrix consists of a single 0
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entry on the diagonal where all other entries are either 1 or −1. Assume that
the number of 1 entries in the column equals k(m)− 1, for some k(m) ∈ [M ],
while the number of −1 entries equals M−k(m). Then the sum Qm of entries
in that column equals 2k(m)−M − 1. As, by condition 4, all Qm values are
distinct, then k(m) 6= k(m′) when m 6= m′. Stated otherwise, the sequence
k := (k(1), . . . , k(M)) is a permutation of [M ]. Let j := (j1, . . . , jM) be the
inverse permutation of k; i.e., for each m ∈ [M ], jk(m) = m. Then it is easy
to see that the matrix Q is the Copeland ballot matrix that corresponds to
the ordering j. That completes the second part of the proof: every matrix
that satisfies conditions 1-4 is a legal Copeland ballot matrix. �

E Proof of Theorem 4

The proof of Theorem 4 is similar to that of Theorem 3 and thus omitted.

F Proof of Lemma 5

Assume that V is honest. Then there exists a polynomial g of degree at most
D′ − 1 such that sd = g(d), d ∈ [D]. Define

G := g +
∑
j∈[D]

gj , (11)

where gj , j ∈ [D], is the polynomial of degree D′−1 that Tj used for generating
the secret shares in its random value rj (Step 1 above). Then

G(d) = g(d) +
∑
j∈[D]

gj(d) = sd +
∑
j∈[D]

rj,d = ŝd , d ∈ [D] . (12)

Hence, the interpolating polynomial f that the talliers compute in Step 4
coincides with G. As G is a sum of polynomials of degree D′ − 1 at most,
the validation in Step 5 will pass successfully. In that case, the talliers would
learn G(0) = g(0) +

∑
j∈[D] rj. Here, g(0) is the secret entry in V ’s ballot

matrix and rj is the secret random value that Tj had chosen in Step 1, j ∈ [D].
Hence, G(0) reveals no information on g(0). Since all other coefficients in
G are also random numbers that are not related to g(0), this validation
procedure provides perfect privacy for the voter.
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Assume next that V had distributed illegal shares in one of his ballot
matrix entries. Namely, V had distributed shares {s1, . . . , sD} such that the
minimum-degree polynomial g that satisfies g(d) = sd for all d ∈ [D] is of
degree t > D′ − 1. In that case, the polynomial f that the talliers compute
in Step 4 would be f = g +

∑
j∈[D] gj. Since the degree of that polynomial is

t > D′ − 1, they would reject the ballot. Hence, the verification procedure is
correct and provides perfect privacy. �

G The Kemeny-Young rule

Here we consider the Kemeny-Young rule (Kemeny, 1959; Young, 1995)
and discuss its secure implementation. In this rule, the ballot of each voter
is a ranking of all candidates, where ties are allowed. Hence, the ballot of
Vn, n ∈ [N ], may be described by an M -dimensional array, Rn, where the
mth entry in that array, Rn(m), m ∈ [M ], is a number in [M ] that equals the
rank of Cm in Vn’s preference list.

For example, assume that there are four candidates: Alice (C1), Bob (C2),
Carol (C3) and David (C4). Then if Vn ranks Carol as her top candidate,
Bob as her second choice, and either Alice or David as her last choices, then
her ballot would be the vector Rn = (3, 2, 1, 3). This vector ballot is then
translated into a matrix Pn of dimensions M ×M , where Pn(m, `) = 1 if Cm
is ranked strictly higher than C` in Rn, and Pn(m, `) = 0 otherwise. In the
above example,

Pn =


0 0 0 0
1 0 0 1
1 1 0 1
0 0 0 0

 .

The talliers aggregate the incoming ballots by computing P =
∑

n∈[N ] Pn.

For every 1 ≤ m 6= ` ≤ N , P (m, `) equals the number of voters who ranked
Cm strictly higher than C`. The matrix P induces a score for each of the
possible M ! rankings over C = {C1, . . . , CM}. Let ρ = (σ1, . . . , σM), where
(σ1, . . . , σM) is a permutation of {1, . . . ,M}, be such a ranking. Here, for
each m ∈ [M ], σm is the rank of Cm in the ranking. For example, if M = 4
then ρ = (3, 1, 4, 2) is the ranking in which C2 is the top candidate and C3 is
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the least favored candidate. The score of a ranking ρ is defined as

w(ρ) =
∑

`,m∈[M ]:σm<σ`

P (m, `) ; (13)

namely, one goes over all pairs of candidates Cm and C` such that ρ ranks
Cm higher than C` (in the sense that σm < σ`) and adds up the number of
voters who agreed with this pairwise comparison. The ranking ρ with the
highest score is selected, and the K leading candidates in that ranking are
the winners of the election.

We now turn to the secure implementation of the Kemeny-Young rule.
As in Protocol 1 for Copeland and Maximin, each voter Vn secret shares
the entries of his ballot matrix Pn among the D talliers using a D′-out-of-D
scheme. Secret sharing is applied on each of the M2−M non-diagonal entries
of Pn, since the diagonal entries are always zero.

To validate each in-coming ballot matrix, the talliers only need to check
that all entries are in {0, 1} and that for every 1 ≤ m < ` ≤ M , Pn(m, `) +
Pn(`,m) ∈ {0, 1}. Indeed, the sum of two opposing entries, Pn(m, `) and
Pn(`,m), will always equal 1 (if one of Cm and C` is ranked higher than the
other) or 0 (if both are in a tie). The validation of such conditions goes along
the lines that we described in Section 3.4.

After validating the cast ballots, the talliers add up their shares in Pn, for
all validated ballot matrices, and then get D′-out-of-D shares in each of the
non-diagonal entries in P .

To compute secret shares in the score of each possible ranking ρ, the
talliers need only to perform summation according to Eq. (13). Note that
that computation does not require the talliers to interact. Finally, it is needed
to find the ranking with the highest score. That computation can be done by
performing secure comparisons, as described in Section 2.4.

H Modal ranking

In Modal Ranking (Caragiannis et al., 2014), every voter submits a ranking
of all candidates, where the ranking has no ties. Namely, if RC is the set
of all M ! rankings of the M candidates in C, the ballot of each voter is a
selection of one ranking from RC, as determined by his preferences. The
rule then outputs the ranking that was selected by the largest number of
voters (i.e., the mode of the distribution of ballots over RC). In case there
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are several rankings that were selected by the greatest number of voters, the
rule outputs all of them, and then the winners are usually the candidates
whose average position in those rankings is the highest.

The Modal Ranking rule is an order-based voting rule over C, but it
is equivalent to the Plurality score-based voting rule (see (Brandt et al.,
2016)) over the set of candidate rankings RC. Hence, it can be securely
implemented by the protocol that was presented in (Dery et al., 2021).

I A lower bound on the field’s size

Here we comment on the requirements of our protocol regarding the size p of
the underlying field Zp.

The prime p should be selected to be greater than the following four
values:

(i) D, as that is the number of talliers (see Section 2.1).
(ii) 2N , since the field should be large enough to hold the entries of the

sum P of all ballot matrices, Eq. (3), and the entries of that matrix are
confined to the range [−N,N ].

(iii) max{t, s} · (M − 1), since that is the upper bound on t ·w(m), see
Eq. (9), which is secret-shared among the talliers.

(iv) 2(M − 1), since in validating a given ballot matrix Q, the talliers need
to test the equality to zero of F (Q), see Eq. (7). As F (Q) is a product of the
differences Qm −Qm′ , and each of those differences can be at most 2(M − 1)
(in Copeland) or M − 1 (in Maximin), it is necessary to set p to be larger
than that maximal value.

Hence, in summary, p should be selected to be larger than each of the
above four values. Since D (number of talliers), M (number of candidates),
and s and t (the numerator and denominator in the coefficient α in Copeland
rule, Eq. (4)), are typically much smaller than N , number of voters, the
essential lower bound on p is 2N . In our evaluation, we selected p = 231 − 1,
which is sufficiently large for any conceivable election scenario.
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