
A Secure Voting System for Score Based Elections
Lihi Dery

lihid@ariel.ac.il

Ariel Cyber Innovation Center

Ariel University

Israel

Tamir Tassa

tamirta@openu.ac.il

The Open University

Israel

Avishay Yanai

yanaia@vmware.com

VMware Research

Israel

Arthur Zamarin

arthurzam@gmail.com

The Open University

Israel

ABSTRACT
Dery et al. recently proposed [3] a secure voting protocol for score-

based elections, where independent talliers perform the tallying

procedure. The protocol offers perfect ballot secrecy: it outputs

the identity of the winner(s), but keeps all other information se-

cret, even from the talliers. This high level of privacy, which may

encourage voters to vote truthfully, and the protocol’s extremely

lightweight nature, make it a most adequate and powerful tool for

democracies of any size. We have implemented that system and in

this work we describe the system’s components – election adminis-

trators, voters and talliers – and its operation. Our implementation

is in Python and is open source. We view this demo as an essen-

tial step towards convincing decision makers in communities that

practice score-based elections to adopt it as their election platform.

KEYWORDS
Electronic Voting, Secure Multiparty Computation, Perfect Ballot

Secrecy, Voting Protocols, Computational Social Choice

ACM Reference Format:
Lihi Dery, Tamir Tassa, Avishay Yanai, and Arthur Zamarin. 2021. A Secure

Voting System for Score Based Elections. In Proceedings of the 2021 ACM
SIGSAC Conference on Computer and Communications Security (CCS ’21),
November 15–19, 2021, Virtual Event, Republic of Korea. ACM, New York, NY,

USA, 3 pages. https://doi.org/10.1145/3460120.3485343

1 INTRODUCTION
Ballot secrecy is an essential goal in the design of voting systems,

since when voters are concerned for their privacy, theymight decide

to vote differently from their real preferences, or even abstain from

voting altogether.

Dery et al. [3] presented a secure protocol with perfect ballot

secrecy to compute election results for score-based voting rules.

Perfect ballot secrecy [1] means that, given any coalition of voters,

the protocol does not reveal any information on the ballots, beyond

what can be inferred from the published results.

Permission to make digital or hard copies of part or all of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for third-party components of this work must be honored.

For all other uses, contact the owner/author(s).

CSS’21, November 15–19, 2021, Seoul, South Korea
© 2021 Copyright held by the owner/author(s).

ACM ISBN 978-1-4503-8454-4/21/11.

https://doi.org/10.1145/3460120.3485343

In score-based elections overM candidates, C = {C1, . . . ,CM },

each voter, Vn ∈ V = {V1, . . . ,VN }, submits a ballot vector, wn :=

(wn (1), . . . ,wn (M)), that holds the scores that she gives to each

of theM candidates. The winner is the candidate that receives the

highest aggregated score from all voters (or the K highest, if the

elections need to determine K ≥ 1 selected candidates).

Each rule in this family defines the allowed ballot vectors. E.g., in

the Plurality rule, each ballot vector must contain a single 1-entry,

while the remainingM − 1 entries are 0; the 1-entry is placed in the

position corresponding to the voter’s favorite candidate. Other rules

in this family are: Approval (the ballot vector includes 1-entries for

candidates that the voter approves, and 0-entries otherwise); Veto

(the ballot vector includes a 1-entry for the voter’s least preferred

candidate, and 0-entries for all others); Range (the ballot vector

contains scores for the candidates, where the scores are in a preset

range [0,L]); and Borda (the ballot vector wn is a permutation of

{0, 1, . . . ,M − 1} which describes Vn ’s ranking of the candidates).
The protocol involves a set of talliers,T = {T1, . . . ,TD }, to whom

the voters send shares in their ballot vectors. The talliers validate the

legality of the cast ballots, aggregate them, and eventually compute

the final voting results, where all those computations are carried

out by invoking secure multiparty sub-protocols, so that the talliers

never obtain access to the actual ballots or other computational

results such as the final scores of candidates. The protocol is secure

under the assumption that the talliers have an honest majority.
Employing more talliers (higher values of D) will imply higher

costs, but at the same time it will provide enhanced security against

coalitions of corrupted talliers. Such perfect ballot privacy, by which

the ballots and aggregated scores are not disclosed even to the

talliers, may increase the voters’ confidence and, consequently,

encourage them to vote according to their true preferences.

2 THE PROTOCOL
Protocol 1 is a high level description of the protocol presented in

[3]. All computations are carried out in some finite field Zp .
The heart of the protocol is in Steps 4 and 6. In Step 4 the talliers

run an MPC (Multi-Party Computation) sub-protocol for validat-

ing the legality of the ballot wn , in which they received shares

in Step 3 (the vectors wn,d , d ∈ [D] := {1, . . . ,D}), without actu-
ally constructing it. The process of validating a ballot consists of

computing products and sums of shared values. For example, for

Plurality, each of the ballot entries must be either 0 or 1, which

can be validated by computing the product wn (m) · (wn (m) − 1),

https://doi.org/10.1145/3460120.3485343
https://doi.org/10.1145/3460120.3485343


CSS’21, November 15–19, 2021, Seoul, South Korea Dery, Tassa, Yanai and Zamarin

for allm ∈ [M] := {1, . . . ,M}. Those validations, for each of the

five rules, are carried out by invoking the MPC sub-protocol of

Damgård and Nielsen [2] for computing products of shared values.

In Step 6, the talliers sort the vector of aggregated scores (w =∑
wn , where the sum goes over all legal ballots), in which they only

hold shares (ŵd ), in order to find the K largest entries in it. This is

done by computing an arithmetic circuit, presented in [5], which

performs an MPC comparison of two secret values u,v ∈ Zp . Let
u and v be two entries in the aggregated vector of scores w. Each

tallier Td , d ∈ [D], holds shares ud and vd in u and v , respectively,
in a Shamir’s D ′

-out-of-D secret sharing scheme [6], where D ′
:=

⌊(D+1)/2⌋. The circuit outputs the bit that indicates whetheru < v .
That way, the talliers can find the winning candidates without

learning any other information on the ballots or on the aggregated

vector of scores.

Protocol 1 A protocol for secure score-based voting

Input: Ballot vectors, wn , n ∈ [N ] := {1, . . . ,N }.

Output: The K candidates with highest aggregated scores.

1: Each voterVn , n ∈ [N ], constructs a ballot vectorwn according

to the voting rule.

2: Each voter Vn , n ∈ [N ], generates a random polynomial дn,m
of degree D ′ − 1, where D ′ = ⌊(D + 1)/2⌋ and дn,m (0) =

wn (m), ∀m ∈ [M]. Then, she creates the share vector wn,d =

(дn,1(d), . . . ,дn,M (d)), for each d ∈ [D].
3: Vn , ∀n ∈ [N ], sends wn,d to Td , ∀d ∈ [D].
4: The talliers T jointly validate the legality of each of the cast

ballots wn , without revealing them.

5: Td , ∀d ∈ [D], computes ŵd =
∑
wn,d , where the sum is over

all n ∈ [N ] for which wn is legal.

6: The talliers T jointly find the K indices with largest entries in

w (the sum of all legal ballot vectors) and output them.

3 IMPLEMENTATION
We have implemented a demo of a voting system that is based on

Protocol 1. The demo illustrates the three modules of the system:

election administrator, voters and talliers, and it allows users to

experience a simple interface for the administrator and voters, and

to witness the efficiency of the protocol.

The system is implemented in Python. We chose this program-

ming language for best cross-platform support. In addition, it ren-

ders the code easier to read, to verify, and to modify as required.

The full source code of our demo is open source and can be found

at GitHub: https://github.com/arthurzam/SecureVoting.

3.1 The election administrator
The first module of the system is the election administrator. That is

the module which initiates a new election campaign. The adminis-

trator determines:

• The election title (e.g., "Electing a new faculty dean").

• The set of candidates C = {C1, . . . ,CM } and their indexing.

• The set of eligible voters, V = {V1, . . . ,VN }, together with

their email addresses and unique identifiers.

• The voting rule.

• The number K of candidates out of C that need to be elected.

• The number D of talliers, and their TCP/IP ports/addresses.

• The election termination condition (e.g., a specified time).

After establishing a new election campaign, the election adminis-

tratorwill receive a config.json file that will hold all configuration
details of the election. The administrator will send that file to all

talliers, and a shortened version of that file (without the details of

all voters) to each of the voters.

3.2 The voter module
The voter module can be executed on various devices (laptops,

tablets, smartphones), and is intended to be operated by non-expert

voters. Hence, the main design goal here was to keep the module

simple, so that it will be easy to migrate it between platforms, and

to keep the interface simple and clear.

The simple graphical interface presents the voter with the list

of candidates, and instructs her on how to enter her ballot. For

example, in Plurality, the voter is asked to select exactly one

candidate. In Range, the voter needs to insert a score, out of a given

range, for each of the candidates. In Borda, the voter is instructed

to rearrange the order of the candidates from her most favorite to

her least favorite.

Once the voter has finished entering her ballot, the voter’s mod-

ule will use the config.json file in order to create the proper ballot
vector (Step 1 in Protocol 1), create shares in them (Step 2), and

send those shares, signed and encrypted using SSL, to the talliers’

addresses as listed in the configuration file config.json (Step 3).

In order to support various types of voting devices, we developed

a specialized version of the voter module, implemented on fully

client-side web code. It receives the election information through

the URL parameters, presents them to the user, manages the vote

casting and the connection to the talliers. This module is imple-

mented using HTML and JavaScript, and can thus be run on any

browser in any device.

3.3 The tallier module
The tallier module is the most complex one: it establishes the syn-

chronized network with other peer talliers, collects the ballot shares

from all voters (Step 3 in Protocol 1), validates their legality, to-

gether with the other tallier modules (Step 4), aggregates shares

of all legal ballots (Step 5), and consequently takes part in an MPC

sub-protocol (with the other tallier modules) in order to determine

the winner(s) (Step 6).

As this module handles heavy network transport and a signifi-

cant load of mathematical computations, our implementation uses

concurrency, as provided by Python’s coroutines from the asyncio
library. Our implementation is self-contained and does not depend

on external libraries. In particular, we fully implemented the MPC

sub-protocols for multiplication [2] and number comparison [5].

To improve the performance of an MPC evaluation of a given

(arithmetic) circuit, it is usually better to construct the whole circuit

(which is a directed acyclic graph over addition and multiplication

gate nodes), and then to compute in parallel all gates in a given

layer of the circuit, since those gates are independent. However,

such implementations result in great inflexibility, as they are hard

to read, maintain and modify. Therefore, we decided to depend on

the asynchronous nature of the network, and use network corou-

tines for asynchronous development of each gate by itself, and

https://github.com/arthurzam/SecureVoting


A Secure Voting System for Score Based Elections CSS’21, November 15–19, 2021, Seoul, South Korea

D M
Voters

latency

(msec)

Max

load

(per sec)

Time to

compute

the winner

(sec)

Network

transport

(MB)

L W L W L W L W

3 2 14 1,679 300 100 0.12 5.99 0.06 0.02

3 8 108 1,787 111 67 0.80 21.89 0.34 0.11

3 32 683 1,721 26 19 5.12 41.85 2.53 0.77

9 2 112 2,132 90 77 0.39 7.29 0.28 0.19

9 8 469 2,018 37 30 2.13 24.03 1.73 0.60

9 32 2,211 2,565 9 6 13.92 51.44 10.77 4.19

Table 1: Election measurements for D talliers and M candi-
dates (L and W stand for LAN and WAN)
pass the responsibility of scheduling the network buffers to the

operating system’s network schedulers. Such schedulers run effi-

cient algorithms for managing network traffic, which are based

on heavily-researched network queueing disciplines. One possible

consequence of our approach is that it might result in large num-

bers of small packets that could reduce efficiency. We address that

potential problem by tweaking Nagle’s algorithm [4] as needed.

Using the config.json file that was sent by the election admin-

istrator at the initiation of the election campaign, the talliers set the

synchronous network and start accepting ballots from the voters

and replying with the vote validation result. After the voting period

ends, the talliers engage in an MPC protocol that computes the

winner(s).

The reader is referred to the ReadMe file in our GitHub project

for more explanations about the system. In particular, it includes

instructions on how to set up a new election campaign, how to vote,

and how the results are announced. The readme file includes also

screenshots of the different module interfaces.

4 EXPERIMENTS
We evaluated our system on both Local and Wide Area Networks

(LAN and WAN). All benchmarks were performed with D ∈ {3, 9}

talliers, M ∈ {2, 8, 32} candidates, and one (K = 1) winner. The

underlying field was Zp with p = 2
31 − 1. We implemented all five

voting rules, but in the presented benchmarks the voting rule was

Range with L = 10. We simulated ballots from N = 10
4
voters,

using two extreme voting throughput scenarios: onewith sequential

voting and one in which all ballots were submitted simultaneously.

We stress that our current implementation can be applied efficiently

for up to roughly 500M voters, and can handle even larger scenarios

by simple code adjustments.

When running local elections (say, selecting a faculty dean or

members to a company’s board), the talliers’ servers are expected

to be nodes in a LAN. Such settings result in short Round Trip

Time. We ran the LAN tests on AWS EC2m5d.4xlarge (16 cores, 3.1
GHz Intel Xeon Platinum 8175M processors, with 64GB memory).

The machines were selected in the same availability zone in a data

center in Ohio, over a network with bandwidth 7.5Gbps.

To simulate elections with voters that are spread over a wide area

(say, national elections), we tested the performance of our voting

system when the talliers are nodes in a WAN. To that end we set up

aWAN over Amazon servers (16 cores, 3.1 GHz Intel Xeon Platinum

8175M processors, with 64GB memory), with talliers that are spread

evenly in Ohio, Ireland and Singapore. Such settings result in longer

Round Trip Time, which significantly affect the runtime of MPC

computations. The network bandwidth was around 26-40 MBps.

In the sequential voting scenario, we generated a slow and steady

stream of votes, and measured the voter’s latency, i.e., the time that

elapsed since the voter had submitted her ballot until she received a

confirmation that the ballot was legal and processed (Table 1, third

column). On the other hand, in the simultaneous voting scenario,

where all N = 10
4
ballots were submitted at the same time, we

measured the max load per second, i.e., the number of ballots that

could be processed simultaneously (Table 1, fourth column). In

addition, we measured in both scenarios the time to compute the
winner of the election, at the completion of the election period

(Table 1, fifth column), and the total network transport usage for
each tallier (Table 1, sixth column). All measured values are reported

for both LAN and WAN (left and right sub-columns, respectively).

The measurements on LAN show that even our current imple-

mentation of the demo can hold against high loads of voters, so

that it can be readily deployed in real life elections.

When measuring on WAN, the CPU usage was very low (around

5-10%) because the main bottleneck was the network. Memory us-

age was high (up to 260 MB), mainly due to network buffers. We

witnessed a better transport layer utilization owing to our configu-

ration of the operating system that uses Nagle’s algorithm [4].

On the voter’s end, the time to generate secret shares from the

voter’s ballot vector with M = 8 candidates and D = 9 talliers

was around 25 ± 1 µsec on a PC (4 cores, 3.5 GHz Intel Core i5-

6600K processors, with 8GB memory), and around 30 ± 2 µsec on a

mobile phone (OnePlus 3T, 4 cores, 2.35 GHz Qualcomm MSM8996

Snapdragon 821 processors, with 6GB memory). Those are clearly

practical runtimes.

5 CONCLUSION
We demonstrate that the secure electronic voting protocol of Dery

et al. [3], based on secure multiparty computation (MPC), is practi-

cal, even with a relatively large number of talliers and over WAN.

One of our conclusions is that in application scenarios where the

main bottleneck is the network (rather than CPU time), it is ben-

eficial to write the system in a high level language, like Python,
which increases openness, readability, and mutability, and hence

potentially also increases the trust in the system. We encourage

developers of similar applications to follow that direction.

ACKNOWLEDGMENTS
Lihi Dery’s work was supported by the Ariel Cyber Innovation

Center in conjunction with the Israel National Cyber Directorate

in the Prime Minister’s Office.

REFERENCES
[1] David Chaum. 1988. Elections with Unconditionally-Secret Ballots and Disruption

Equivalent to Breaking RSA. In EUROCRYPT. 177–182.
[2] Ivan Damgård and Jesper Buus Nielsen. 2007. Scalable and Unconditionally Secure

Multiparty Computation. In CRYPTO. 572–590.
[3] Lihi Dery, Tamir Tassa, and Avishay Yanai. 2021. Fear not, vote truthfully: Secure

Multiparty Computation of score based rules. Expert Syst. Appl. 168 (2021), 114434.
[4] John Nagle. 1995. Congestion control in IP/TCP internetworks. Comput. Commun.

Rev. 25 (1995), 61–65.
[5] Takashi Nishide and Kazuo Ohta. 2007. Multiparty Computation for Interval,

Equality, and Comparison Without Bit-Decomposition Protocol. In PKC. 343–360.
[6] Adi Shamir. 1979. How to Share a Secret. Commun. ACM 22 (1979), 612–613.


	Abstract
	1 Introduction
	2 The protocol
	3 Implementation
	3.1 The election administrator
	3.2 The voter module
	3.3 The tallier module

	4 Experiments
	5 Conclusion
	Acknowledgments
	References

