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Abstract

We consider off-line vector assignment problems. The goal is to assign input vectors to
machines so that a given target function is minimized. The target function usually gives
some measure of the quality of the distribution of input vectors among machines. In [8]
we dealt with this problem where the cost function is symmetric; namely, all machines are
identical. The dynamic programming techniques that were used in [8] do not extend to
asymmetric settings. Here, we deal with an asymmetric setting where the cost functions
per machine may be different for different machines. Using graph-based techniques, we
design a polynomial time approximation scheme for a wide class of asymmetric target
functions. Other than a significant extension of the class of cost functions to which our
current scheme applies, the present PTAS is much simpler than the one in [8]. It should
be noted that asymmetric cost functions appear very naturally in the so called line-up
problem that motivated the study in [8] and the present study.

Keywords: scheduling, optimization, approximation schemes, layered graphs.
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1 Introduction

A general framework for Vector Assignment Problems (VAPs) was presented in [8]. In a VAP,
one is given a set of vectors,

I = {xi ∈ (R+)d : 1 ≤ i ≤ n} (1)

and aims at finding an assignment of those vectors to m machines,

A : {1, . . . , n} → {1, . . . ,m} (2)

such that the value of some target function is minimized. Typical target functions take the
form

F (A) = f(g(`1), . . . , g(`m)) (3)

where

• `k, 1 ≤ k ≤ m, are the corresponding load vectors on each of the machines,

`k =
∑

A(i)=k

xi , 1 ≤ k ≤ m ;

• g : (R+)d →R+ is a function that evaluates the cost per machine; and

• f : (R+)m →R+ is a function that evaluates the final cost over all machines.

Such problems are usually NP-hard. Hence, polynomial time approximation schemes (PTAS)
are sought. Such schemes produce a solution (i.e., an assignment (2)) whose cost is larger than
that of an optimal solution by a factor of no more than (1 + Cε), where ε > 0 is an arbitrary
parameter and C is a constant independent of the input data (n, m and xi, 1 ≤ i ≤ n) and ε;
namely, if Φo is the optimal cost, the scheme produces a solution A that satisfies

F (A) ≤ (1 + Cε) · Φo . (4)

The running time of such schemes is polynomial in n and m for every fixed ε and d.
This general framework encompasses most of the known scheduling, load balancing and as-

signment problems. In [8] we review some of the problems that are covered by this framework,
e.g., the makespan problem [10, 12], the `p minimization problem [1, 2], the extensible bin
packing problem [5, 6] and the vector scheduling problem [4]. The reader is referred to that
paper for a discussion of related problems and additional corresponding references. By consid-
ering the general setting (3), instead of the many private cases that were studied previously,
and by carefully analyzing the necessary properties of the cost functions f and g, we were
able to obtain a PTAS for a wide class of cost functions, using standard dynamic program-
ming and linear programming methods. A novel idea introduced there enabled even a further
generalization of our results: by replacing the small input vectors in I with other vectors of
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larger magnitude such that the impact on the value of the target function is small, we were
able to design a PTAS even for the case where the inner cost function g is not monotone (a
similar preprocessing step was used in [1]; however, the procedure there was much simpler
since it was implemented for scalars). A typical family of non-monotone cost functions is that
of the Sobolev norms; those norms take into account also an `p measure of the differences of
the vector components. As described in [8], some applications call for such a non-monotone
measure of the quality of the assignment.

The results of [8] strongly relied upon the symmetry assumption, i.e., the value of the target
function is invariant under interchanges between the machines. We proceed to recall some of
the ingredients of the core algorithm in [8] in order to clarify this dependency on the symmetry
assumption. In the core algorithm, [8, Section 4.4], given an assignment of the input vectors
to the machines and an approximation parameter ε, we approximate the load vector on each
machine by a Discretized Load Configuration, or DLC, which is a pair of discretized vectors
that approximate the sum of large input vectors and the sum of small input vectors on that
machine. It is then shown that the number of possible DLCs, denoted by t, depends only on
d, f , g and ε, and that by replacing the actual load vector with the sum of the two vectors in
the DLC that represents it, the value of the cost function increases by a multiplicative factor
of no more than (1 + O(ε)) (see Lemma 2 there). Letting Ω denote the set of all t possible
DLCs, each assignment of DLCs from Ω to the m machines may be uniquely described by an
Assignment Configuration Vector, or ACV, of the following form:

ACV = (m1, . . . , mt) where 0 ≤ mτ ≤ m, 1 ≤ τ ≤ t and
t∑

τ=1

mτ = m

(mτ denotes the number of machines that were assigned DLCs of type τ , 1 ≤ τ ≤ t). The
number of ACVs is bounded by mt. As t is a constant that depends solely on d, f , g and ε,
the number of ACVs to consider is polynomial in m. Then, the algorithm proceeds to scan
all possible ACVs in order to find the one that minimizes the cost function. This is the place
where symmetry is essential. The ACVs only record how many machines were assigned a DLC
of a specific type. This is a sufficient information in case the machines are identical. The
number of possible assignments in such settings is bounded by the polynomial mt. However,
if the machines were not identical, the information encoded by an ACV would be insufficient.
In such cases we would need to record the type of DLC per machine. The number of such
configurations would be tm, which is exponential in m.

The approach that we take here is entirely different and it does not present this obstacle.
It enables us to extend the framework (3) to

F (A) = f(g1(`1), . . . , gm(`m)) . (5)

Namely, the per-machine cost evaluator, gk(·), may be different for each machine (for example,
it may depend on various machine parameters, such as capacity, speed or priority). In addition,
the outer cost function f could be asymmetric.
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We would like to point out that the application that was described in [8, Section 2] – the
so-called line up problem – which motivated that study and the present one, may indeed give
rise to asymmetric cost functions. In that problem, the input vectors represent different TV
programs (e.g., CNN, PBS or the Sports Channel); more specifically, each vector represents
the bit-rate of one TV program during some sampling period. The m machines, on the other
hand, represent channels on which those programs should be transmitted to their destination.
The TV programs need to be assigned to channels and, subsequently, all programs that were
assigned to the same channel need to be multiplexed (i.e., merged together) and then ”packed”
into that channel. Since each TV program is characterized by a variable bit-rate while the
channels are characterized by a fixed bit-rate, it is possible that at some time intervals the sum
of bit-rates of the programs that were assigned to the same channel will be larger than the fixed
bit-rate of that channel. When such an overflow occurs, it is necessary to apply compression
to the input programs in order to make the packing possible. Such compression results in loss
of data and, hence, quality degradation. The target function in this context is a measure of
the output quality. The goal, then, is to find an assignment of programs to channels that,
based on the sampled behavior of those programs, yields the best quality at the output. There
are several target functions that may serve as an adequate measure to the output quality.
Some of those functions depend on the capacities of the output channels. Hence, in settings
that include channels of different capacities (this is the case in TV broadcast centers where
different modulation methods are employed in different channels), the target function may be
asymmetric.

We implement here a graph-based approach that is different from the dynamic and linear
programming approach that was used in [8]. Graph based techniques were used in the literature
in [11, 3, 7]. All these papers, however, deal with problems that are one-dimensional; namely,
the items (jobs) to be scheduled in those problems are characterized by a scalar size. We
generalize the method to deal with vectors. The improvements that are offered by the graph
based approach, compared to the dynamic and linear programming approach in [8], are as
follows:

1. The graph-based approach enables us to design a PTAS in the asymmetric setting.

2. It yields a much simpler algorithm than the one devised in [8]. While the latter was an
iterative algorithm that implemented a binary search in order to approximate the optimal
solution, the algorithm devised herein is not iterative and it arrives at the approximate
solution in a single phase.

3. Our present results apply to a wider class of cost functions. More specifically, the outer
cost function f need not be harmonic and the inner cost functions gk need not be con-
vex nor stable with respect to linear multiplications (see Section 2 for a definition and
discussion of those properties).

Terminology and Notations. Throughout this paper we adopt the following conventions:
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• The term set may refer also to multisets in some cases.

• Small case letters denote scalars; bold face small case letters denote vectors.

• A superscript of a vector denotes the index of the vector; a subscript of a vector indicates
a component in that vector. E.g., `k

j denotes the jth component of the vector `k.

• If γ(k) is any expression that depends on k, then f(γ(k))1≤k≤m stands for f(γ(1), . . . , γ(m)).

• If x and y are vectors and c is a scalar, then x ≤ y and x ≤ c mean that the inequality
holds component-wise.

The extended abstract [9] reports the main results of both [8] and this paper.

2 The Cost Functions

Herein we list the assumptions that we make on the outer cost function f(·) and the inner cost
function g(·).

Definition 1

1. A function h : (R+)n →R+ is monotone if

h(x) ≤ h(y) ∀x,y ∈ (R+)n such that x ≤ y .

2. The function h : (R+)n → R+ dominates the function h̃ : (R+)n → R+ if there exists a
constant η such that

h̃(x) ≤ ηh(x) ∀x ∈ (R+)n .

3. The function h : (R+)n → R+ is Lipschitz continuous if there exists a constant M such
that

|h(x)− h(y)| ≤ M‖x− y‖∞ ∀x,y ∈ (R+)n .

Assumption 1 The function f : (R+)m →R+ is:

1. monotone;

2. linear with respect to scalar multiplications, i.e., f(cx) = cf(x) for all c ∈ R+ and
x ∈ (R+)m;

3. dominating the `∞ norm with a domination factor ηf that is independent of m;

4. Lipschitz continuous with a constant Mf that is independent of m;

5. computable by a recurrent formula (explained below).
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Assumption 2 The functions gk : (R+)d →R+ are:

1. dominating the `∞ and the `1 norms with a uniform domination factor ηg that is inde-
pendent of m;

2. Lipschitz continuous with a uniform constant Mg that is independent of m.

By assuming that f is computable by a recurrent formula we mean that there exists a family
of functions ψk(·, ·), 1 ≤ k ≤ m, such that

f(g1, . . . , gk, 0, . . . , 0) = ψk
(
f(g1, . . . , gk−1, 0, . . . , 0), gk

)
(6)

(note that f(0, . . . , 0) = 0 in view of Assumption 1-2). For example, if f is a weighted `p norm
on Rm, 1 ≤ p ≤ ∞, with weights (w1, . . . , wm), then ψk is the `p norm on R2 with weights
(1, wk).

Next, we see what functions comply with the above assumptions. Assumption 1 dictates
a quite narrow class of outer cost functions. f = max is the most prominent member of that
class (luckily, in many applications this is the only relevant choice of f). Other functions f for
which our results apply are the `p norms taken on the t largest values in the argument vector,
for some constant t < m; e.g., the sum of the two largest components. Assumption 1 is not
satisfied by any of the usual `p norms for p < ∞ because of the conjunction of conditions 3
and 4: no matter how we rescale an `p norm, p < ∞, one of the parameters ηf (condition 3)
or Mf (condition 4) would depend on m.

As for gk, basically any norm on Rd is allowed. The most interesting choices are the `p

norms and the Sobolev norms, ‖`‖1,p := ‖`‖p +‖∆`‖p where ∆` ∈ Rd−1 and ∆`j = `j+1−`j ,
1 ≤ j ≤ d− 1. Another natural choice is the ”extensible bin” cost function,

gk(`k) = ‖max{`k, ck}‖ = ‖(max{`k
1, c

k
1}, . . . , max{`k

d, c
k
d})‖; (7)

here ck is a constant vector reflecting the parameters of the kth machine and the outer norm
may be any norm. In [8] we described a problem that arises in video transmission and broad-
casting, the so called line up problem, where the above described choices for the inner cost
functions are meaningful.

It is interesting to note that the set of functions that comply with either Assumption 1 or
2 is closed under positive linear combinations. For example, if f1 and f2 satisfy Assumption
1, so would c1f1 + c2f2 for all c1, c2 > 0.

We conclude this section by describing the difference between the above assumptions made
on the cost functions, and the ones that we made in [8]. In [8], the outer cost function f had to
comply with Assumption 1 above and, in addition, be symmetric with respect to its arguments
and harmonic (A function h : (R+)m → R+ is harmonic if h(x) ≥ h(x̄) for all x ∈ (R+)m,
where x̄ = (x̄, . . . , x̄) and x̄ = 1

m ·∑m
i=1 xi). By removing these two properties, we are able to

cover also weighted norms (such norms are neither symmetric nor harmonic).
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As for the inner cost functions, the main improvement is that they may be different (com-
pare (6) to (3)). Hence, the PTAS that we present here applies also to the case where the
inner cost functions depend on different parameters, e.g., (11). A generalization of that sort
is essential in the context of the line-up problem since different TV channels may be assigned
different priorities, or may be associated with different mutiplexing hardware or software, and
such differences would manifest themselves through different parameters in the inner cost func-
tions. In addition, the assumptions that were made in [8] and are no longer required here are
convexity and stable dependence with respect to scalar multiplications. The latter assumption
means that g(cx) ≤ α(c)g(x) for all c ∈ R+ and x ∈ (R+)d, where α(c) is such that lg lg α(c)
is bounded by a polynomial in c. That assumption was needed in order to bound the number
of steps in the binary search that was implemented in [8] for the sake of approximating the
optimal cost. Since the new method that we present here yields the required approximation
in a one-time run and does not involve a binary search, we do not need to make this as-
sumption on the inner cost functions. As it is hard to imagine reasonable cost functions that
fail to satisfy this assumption, the removal of this assumption has mainly an aesthetic merit.
Regarding the removal of the convexity assumption, this certainly extends the class of cost
functions to which our analysis applies, since Assumption 2 does not imply convexity. For
example, if p : R+ → R+ is a non-convex function that dominates the identity function, then
g(`) =

∑d
i=1 p(`k

i ) is a function that complies with Assumption 2 above, but does not comply
with Assumption 2 in [8].

We recall, see [8, Section 2], that the most suitable inner cost function for the line-up
problem takes the form

gk(`k) =

∥∥∥∥∥
(`k − ck)+

`k

∥∥∥∥∥ =

∥∥∥∥∥

(
(`k

1 − ck)+
`k
1

, . . . ,
(`k

d − ck)+
`k
d

)∥∥∥∥∥

where ck is a constant that stands for the bandwidth capacity of the kth channel while the
outer norm may be any norm that best captures the requirements of the application (this cost
function represents the reduction in the quality of the video at the output). This cost function
is not convex, hence, the method in [8] does not apply to it. Regretfully, it does not comply
with our Assumption 2-1 either; however, the method that we present here brings us one step
closer to being able to cope with such cost functions as well.

3 A Graph Based Scheme

3.1 Preprocessing the vectors by means of truncation

Let I be the original instance of the VAP, (1). As in [8], we start by modifying I into another
problem instance Ī where the vectors x̄i are defined by

x̄i
j =

{
xi

j if xi
j ≥ ε‖xi‖∞

0 otherwise
1 ≤ i ≤ n , 1 ≤ j ≤ d . (8)
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The following lemma is an extension of [8, Lemma 1].

Lemma 1 Let A be a solution to I and let Ā be the corresponding solution to Ī. Then

(1− C1ε)F (Ā) ≤ F (A) ≤ (1 + C1ε)F (Ā) where C1 = Mgηg . (9)

Proof. Let `k and ¯̀k, 1 ≤ k ≤ m, denote the load vectors in A and Ā respectively. In view of
(12),

¯̀k ≤ `k ≤ ¯̀k + ε
∑

A(i)=k

‖xi‖∞ (10)

Since ‖xi‖∞ = ‖x̄i‖∞ ≤ ‖x̄i‖1 we conclude that
∑

A(i)=k ‖xi‖∞ ≤ ‖¯̀k‖1. Recalling Assump-
tion 2-1 we get that ∑

A(i)=k

‖xi‖∞ ≤ ηgg
k(¯̀k) . (11)

Therefore, by (14) and (15),
¯̀k ≤ `k ≤ ¯̀k + εηgg

k(¯̀k) .

Next, by the uniform Lipschitz continuity of gk we conclude that

(1− C1ε)gk(¯̀k) ≤ gk(`k) ≤ (1 + C1ε)gk(¯̀k) where C1 = Mgηg .

Finally, we invoke the monotonicity of f and its linear dependence on scalar multiplications to
arrive at (13). ¤
We assume henceforth that the input vectors have been subjected to the truncation procedure
(12). To avoid cumbersome notations we shall keep denoting the truncated vectors by xi and
their collection by I.

3.2 Large and small vectors

Let Φo denote the optimal cost, let Ao be an optimal solution, F (Ao) = Φo, and let `k,
1 ≤ k ≤ m, be the load vectors in that solution. Then, in view of Assumption 1-3 and
Assumption 2-1,

`k ≤ ηfηgΦo 1 ≤ k ≤ m .

Consequently, we conclude that all input vectors satisfy the same bound,

xi ≤ ηfηgΦo 1 ≤ i ≤ n .

Hence, we get the following lower bound for the optimal cost:

Φo ≥ Φ :=
max1≤i≤n ‖xi‖∞

ηfηg
. (12)
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This lower bound induces a decomposition of the set of input vectors (1) into two subsets of
large and small vectors as follows:

L = {xi : ‖xi‖∞ ≥ Φε2d+1, 1 ≤ i ≤ n} ,

S = {xi : ‖xi‖∞ < Φε2d+1, 1 ≤ i ≤ n} .

We describe below a technique to replace S with another set of vectors S̃ = {z1, . . . , zν̃} where

ν̃ = |S̃| ≤ ν = |S| and ‖zi‖∞ = Φε2d+1 1 ≤ i ≤ ν̃ . (13)

In other words, all vectors in S̃ are large.
We would like to stress that this technique was already introduced in [8] and we include its

description here for the sake of completeness. It should be noted that in [8] the value of Φ was
a test-value in the binary search that aims to approximate the optimal value. Hence, while in
the PTAS described herein the technique that we proceed to describe is executed exactly once
(with the value of Φ as in (20)), in [8] it is executed once in each iteration of the binary search.

Let x ∈ S. Then, in view of the truncation procedure (12),

ε ≤ xj

‖x‖∞ ≤ 1 ∀xj > 0 , 1 ≤ j ≤ d .

Next, we define a geometric mesh on the interval [ε, 1]:

ξ0 = ε ; ξi = (1 + ε)ξi−1 , 1 ≤ i ≤ q ; q :=
⌊ − lg ε

lg(1 + ε)

⌋
+ 1 .

Every nonzero component of x/‖x‖∞ lies in an interval [ξi−1, ξi) for some 1 ≤ i ≤ q. Next, we
define

x′ = ‖x‖∞H
(

x
‖x‖∞

)
,

where the operator H retains components that are 0 or 1 and replaces every other component
by the left end point of the interval [ξi−1, ξi) where it lies. Hence, since H may return one of
the q + 2 values 0, ξ0, . . . , ξq−1, 1, the vector x′ may be in one of

s = (q + 2)d − 1

linear subspaces of dimension 1 in Rd; we denote those subspaces by W σ, 1 ≤ σ ≤ s, and refer
to them as types. In view of the above, we define the set

S ′ = {x′ : x ∈ S} . (14)

Next, we define for each type

wσ =
∑

{x′ : x′ ∈ S ′ ∩W σ} 1 ≤ σ ≤ s ; (15)
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namely, wσ aggregates all vectors x′ of type σ. We now slice this vector into large identical
”slices”, where each of those slices and the number of slices are given by:

w̃σ =
wσ

‖wσ‖∞ · Φε2d+1 and κσ =
⌈‖wσ‖∞

Φε2d+1

⌉
. (16)

Finally, we define the set S̃ as follows:

S̃ =
s⋃

σ=1

{zσ,k = w̃σ : 1 ≤ k ≤ κσ} . (17)

Namely, the new set S̃ includes for each type σ the ”slice”-vector w̃σ, (30), repeated κσ times.
As implied by (30), the `∞ norm of all vectors in S̃ is Φε2d+1, in accord with (23). Also, the
number of vectors in S̃, ν̃ =

∑s
σ=1 κσ, is obviously no more than ν as the construction of the

new vectors implies that κσ ≤ |S ′ ∩W σ| (recall that ‖x′‖∞ < Φε2d+1 for all x′ ∈ S ′).
So we have modified the original problem instance I, having n input vectors L ∪ S, into an
intermediate problem instance I ′ = L ∪ S ′, see (28), and then to a new problem instance,

Ĩ = L ∪ S̃ , (18)

see (29)-(31), that has ñ = n − ν + ν̃ input vectors. The following theorem states that those
problem instances are close in the sense that for each solution of one problem instance there
exists a solution of the other problem instance whose cost is almost the same. As it is a
modified version of Theorem 3 in [8], we omit its proof.

Theorem 1 For each solution A ∈ {1, . . . , m}{1,...,n} of I there exists a solution
Ã ∈ {1, . . . ,m}{1,...,ñ} of Ĩ such that

(1− C1ε) ·
(
F (Ã)− C2Φε

)
≤ F (A) ≤ (1 + C1ε) ·

(
F (Ã) + C2Φε

)
, (19)

where C1 is given in (13) and
C2 = MfMg .

Conversely, for each solution Ã ∈ {1, . . . , m}{1,...,ñ} of Ĩ there exists a solution
A ∈ {1, . . . ,m}{1,...,n} of I that satisfies (33).

3.3 The scheme

In view of the previous two subsections, we assume that the original set of input vectors I was
subjected to the truncation procedure, along the lines of §3.1, and then modified into a problem
instance Ĩ where all vectors are large, using the procedure described in §3.2. For convenience,
we shall keep denoting the number of input vectors in Ĩ by n and the input vectors by xi,
1 ≤ i ≤ n. Hence, all vectors in Ĩ satisfy

‖xi‖∞ ≥ Φε2d+1 1 ≤ i ≤ n .

11



This, together with (12) on one hand and (20) on the other hand, yield the following lower
and upper bounds:

ε2d+2 ≤ xi
j

Φ
≤ ηfηg for 1 ≤ i ≤ n, 1 ≤ j ≤ d and xi

j 6= 0 . (20)

Next, we define a geometric mesh on the interval given in (35):

ξ0 = ε2d+2 ; ξi = (1 + ε)ξi−1 , 1 ≤ i ≤ q ; q :=

⌊
lg(ηfηgε

−2(d+1))
lg(1 + ε)

⌋
+ 1 . (21)

Every nonzero component of xi/Φ, 1 ≤ i ≤ n, lies in an interval [ξi−1, ξi) for some 1 ≤ i ≤ q.
We use this in order to define a new set of vectors,

Î =
{
x̂i = ΦH

(
xi

Φ

)
: xi ∈ Ĩ

}
, (22)

where the operator H replaces each nonzero component in the vector on which it operates by
the left end point of the interval [ξi−1, ξi) where it lies.

Theorem 2 Let Ã be a solution of Ĩ and let Â be the corresponding solution of Î. Then

(1− C1ε)F (Â) ≤ F (Ã) ≤ (1 + C1ε)F (Â) , (23)

where C1 is given in (13).

Proof. Let ˜̀k
and ˆ̀k

, 1 ≤ k ≤ m, be the load vectors in Ã and Â. Then

ˆ̀k ≤ ˜̀k ≤ (1 + ε)ˆ̀
k

1 ≤ k ≤ m .

Hence, ‖˜̀k − ˆ̀k‖∞ ≤ ε‖ˆ̀k‖∞; using Assumptions 2-2 and 2-1 we get that

|gk(˜̀
k
)− gk(ˆ̀

k
)| ≤ εMgηgg

k(ˆ̀
k
) 1 ≤ k ≤ m ,

or, equivalently,

(1− C1ε)gk(ˆ̀
k
) ≤ gk(˜̀

k
) ≤ (1 + C1ε)gk(ˆ̀

k
) 1 ≤ k ≤ m where C1 = Mgηg .

These inequalities, together with the monotonicity of f and its linearity with respect to scalar
multiplications (Assumptions 1-1 and 1-2) imply (38). ¤

The vectors in Î belong to the set

W = X d where X = {0, ξ0, . . . , ξq−1} .

As the size of W is s = (q + 1)d, it may be ordered:

W = {w1, . . . ,ws} . (24)
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With this, the set of modified vectors Î may be identified by a configuration vector

z = (z1, . . . , zs) where zi = #{x̂ ∈ Î : x̂ = wi} , 1 ≤ i ≤ s . (25)

Next, we may describe all possible assignments of vectors from Î to the m machines using
a layered graph G = (V,E). To that end, assume that Â : Î → {1, . . . ,m} is one of these
assignments. We let Îk denote the subset of Î consisting of those vectors that were assigned
to one of the first k machines,

Îk = {x̂ ∈ Î : Â(x̂) ≤ k} 1 ≤ k ≤ m .

Furthermore, we define the corresponding state vector

zk = (zk
1, . . . , z

k
s) 1 ≤ k ≤ m where zk

i = #{x̂ ∈ Îk : x̂ = wi} , 1 ≤ i ≤ s .

We note that
∅ = Î0 ⊆ Î1 ⊆ . . . ⊆ Îm−1 ⊆ Îm = Î

and
0 = z0 ≤ z1 ≤ . . . ≤ zm−1 ≤ zm = z ,

where z is given in (41). In addition, when 0 < k < m, Îk may be any subset of Î while zk

may be any vector in
Z = {y ∈ Zs : 0 ≤ y ≤ z} . (26)

With this, we define the graph G = (V, E) as follows:

• The set of vertices consists of m + 1 layers, V =
⋃m

k=0 V k. If v ∈ V is a vertex in the
kth layer, V k, then it represents one of the possible state vectors after assigning vectors
to the first k machines. Hence V 0 = {0}, V m = {z} and the intermediate layers are
V k = Z, see (44), 0 < k < m.

• The set of edges consists of m subsets:

E =
m⋃

k=1

Ek where Ek = {(u,v) : u ∈ V k−1 , v ∈ V k , u ≤ v} .

In other words, there is an edge connecting two vertices in adjacent layers, u ∈ V k−1 and
v ∈ V k, if and only if there exists an assignment to the kth machine that would change
the state vector from u to v.

Note that all intermediate layers, V k, 0 < k < m, are composed of the same number of vertices,
t, given by the number of sub-vectors that z has:

t = |Z| =
s∏

i=1

(zi + 1) ≤ (n + 1)s .
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Next, we turn the graph into a weighted graph, using a weight function w : E → R+ that
computes the cost that the given edge implies on the corresponding machine: Let e = (u,v) ∈
Ek. Then the difference v − u tells us how many vectors of each of the s types are assigned
by this edge to the kth machine. The weight of this edge is therefore defined as

w(e) = gk(T (v − u)) where T (v − u) =
s∑

i=1

(vi − ui)wi ,

wi are as in (40). We define a cost function on the vertices, r : V → R+; this cost function is
defined recursively using Assumption 1-5:

r(v) = 0 , v ∈ V 0 ;

r(v) = min
{

ψk(r(u), w(e)) : u ∈ V k−1, e = (u, v) ∈ Ek
}

, v ∈ V k

(the functions ψk are as in (10)). This cost function coincides with the cost function of the
VAP, (6). More specifically, if v ∈ V k and it represents a subset of vectors Îk ⊆ Î, then r(v)
equals the value of an optimal assignment of the vectors in Îk to the first k machines. Hence,
the cost of the end vertex, r(v), v ∈ V m, equals the value of an optimal solution of the VAP
for Î.

The goal is to find the shortest path from V 0 to V m that achieves this minimal cost. Namely,
we look for a sequence of vertices vk ∈ V k, 0 ≤ k ≤ m, such that

ek := (vk−1, vk) ∈ Ek 1 ≤ k ≤ m

and
f(w(e1), . . . , w(em)) = r(vm) .

We may apply a standard algorithm to find this minimal path within O(|V |+ |E|) steps. As

|V | ≤ 2 + (m− 1) · (n + 1)s (27)

and

|E| =
m∑

k=1

|Ek| ≤ m · (n + 1)2s , (28)

where s = (q + 1)d and q depends only on d, f , g and ε, see (36), the running time would be
polynomial in n and m.

The shortest path thus found represents an assignment of the vectors of the modified set Î,

Â : Î = {x̂1, . . . , x̂n} → {1, . . . , m} .

We need to translate this assignment into an assignment of the original vectors,

A : I = {x1, . . . ,xn} → {1, . . . , m} .

To that end, let us review all the problem modifications that we performed:

14



• First modification: I to Ī, see (12) and Lemma 1.

• Second modification: Ī to Ĩ, see (29)-(32) and Theorem 1.

• Third modification: Ĩ to Î, see (37) and Theorem 2.

In view of the above, we translate the solution that we found, Â, into a solution Ã of Ĩ, then
– along the lines of Theorem 1 – we translate it into a solution Ā of Ī and finally we take the
corresponding solution A of I.

Theorem 3 Let Φo be the optimal cost of the original problem instance I. Let A be the solution
of I that is obtained using the above scheme. Then A satisfies (5) with a constant that depends
only on ηg, Mg and Mf .

Proof. Let Φ̂o denote the optimal cost of Î. Then, using the left inequalities in Lemma 1,
Theorem 1 and Theorem 2, together with (20), we conclude that

Φ̂o ≤ 1
1− C1ε

·
(

1
(1− C1ε)2

+ C2ε

)
Φo ≤ (1 + Tε)Φo , (29)

for an appropriate choice of T that depends only on C1 and C2. However, Φ̂o is no other than
the cost of the shortest path that we found in the graph, namely, the cost of the solution Â

that we found for Î. As A is the solution of I that is obtained from Â, we may upper bound
its cost using the right inequalities in Lemma 1, Theorem 1 and Theorem 2:

F (A) ≤ (1 + C1ε)2 ·
(
(1 + C1ε)Φ̂o + C2Φoε

)
. (30)

The Inequalities (56) and (57) imply that

F (A) ≤ (1 + C1ε)2 · ((1 + C1ε)(1 + Tε) + C2ε)Φo ≤ (1 + Cε)Φo ,

where the constant C depends only on C1 = Mgηg and C2 = MfMg. ¤

The complexity of the preprocessing steps, i.e., the computation of the configuration vector
z, (41), that corresponds to the input vectors I, is O(nd). This is also the complexity of the
a-posteriori steps that aim to recover an assignment of the original vectors that corresponds
to the minimal path in the graph. Hence, the overall complexity of our scheme is determined
by the complexity of the algorithm to find the shortest path, which equals

O(|V |+ |E|) = O(|E|) = O(m · (n + 1)2s) where s =

(⌊
lg(ηfηgε

−2(d+1))
lg(1 + ε)

⌋
+ 2

)d

,

see (52), (53) and (36).
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