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ABSTRACT
Distributed constraint optimization problems enable the rep-
resentation of many combinatorial problems that are dis-
tributed by nature. An important motivation for such prob-
lems is to preserve the privacy of the participating agents
during the solving process. The present paper introduces
a novel privacy-preserving algorithm for this purpose. The
proposed algorithm requires a secure solution of several mul-
tiparty computation problems. Consequently, appropriate
novel secure protocols are devised and analyzed.

Categories and Subject Descriptors
[Computing Methodologies]: Artificial Intelligence—Dis-
tributed Artificial Intelligence

General Terms
Algorithms
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1. INTRODUCTION
Distributed constraint optimization (DCOP) [13, 21] is a

general model for representing and solving distributed com-
binatorial problems, in which the variables of the problem
are owned by different agents. The ability of the model
to represent real-world problems such as meeting schedul-
ing [20], sensor nets [31], and vehicle routing [15], resulted
in the development of various complete DCOP algorithms.
Most of those algorithms, such as SyncBB [13], ADOPT [21],
NCBB [2], AFB [6], and BnB-ADOPT [29], are based on
search. Other paradigms for solving DCOPs include group-
ing of sub-problems (OptAPO [19]) and dynamic program-
ming (DPOP [23]).

One of the main motivations for solving constraint prob-
lems in a distributed manner is that of privacy. The term
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privacy is quite broad, a fact that gave rise to several cate-
gorizations of the different types of privacy [5, 8, 10]. Only
one privacy type is common to these various categorizations
– constraint privacy, meaning that constraint information
must be known only to the agents whose variables are in-
volved in the constraints. Indeed, most research on DCOP
privacy focused on constraint privacy.

Some work has focused on measuring the extent of con-
straint privacy loss. Most notably is Maheswaran et al. [17]
who proposed the VPS framework that was initially used to
measure the constraint privacy loss in SyncBB and
OptAPO. Later, VPS was also applied to the DPOP and
ADOPT algorithms [9]. Doshi et al. proposed to inject
privacy-loss as a criterion to the problem solving process [3].
Some previous work was also directed towards reducing
constraint privacy loss. Most effort in the development of
privacy-preserving search algorithms focused on DCSP,
which is the satisfaction variant of DCOP. Examples in-
clude [22, 25, 30]. The work of Silaghi and Mitra [25] ad-
dressed both satisfaction and optimization problems. How-
ever, the proposed solution is strictly limited to small scale
problems since it depends on an exhaustive search over all
possible assignments. Several privacy-preserving versions of
the dynamic programming algorithm, DPOP, were proposed
in the past [8, 24]. Recently, Léauté and Faltings [16] pro-
posed several versions of DPOP that provide strong privacy
guarantees. While these versions are aimed for DCSPs, some
of them may be also applicable to DCOPs. Considering a
different aspect of constraint privacy, researchers have ad-
dressed problems in which the nature of a constraint is dis-
tributed among the constrained agents. Solutions to such
problems include the PEAV formulation [18] and asymmet-
ric DCOPs [11]. Here, we restrict ourselves to the tradi-
tional symmetric DCOPs.

In the present paper we devise a novel DCOP algorithm
that preserves constraint privacy. The new algorithm is
based on SyncBB [13], which is the most basic DCOP search
algorithm. We chose that algorithm since the search
paradigm is applicable for a large variety of problems. Con-
trary to that, in DPOP the size of messages grows exponen-
tially in the arity of the constraints [23]; this fact renders
DPOP inapplicable for solving dense problems [7]. OptAPO
is also inappropriate for this purpose since it inherently in-
volves comprehensive information sharing throughout the
problem solving process, a fact that is counterproductive
when considering privacy aspects. Moreover, OptAPO was
shown to have rather poor runtime performance [12].



In the course of developing the privacy-preserving algo-
rithm we encountered several secure computation problems.
In the main problem, a group of agents needs to compare the
sum of private inputs held by those agents against an upper
bound which is held by another agent, such that none of
them learns information on neither the sum nor on the pri-
vate inputs of his peers. We introduce here a novel protocol
for solving that problem. In addition, we devise a novel pro-
tocol for solving Yao’s Millionaires’ Problem [28] that does
not depend on costly oblivious transfer [4] sub-protocols.

The plan of the paper is as follows. After some preliminar-
ies (Section 2), the new privacy-preserving search algorithm
is presented in Section 3. Several secure protocols are in-
voked during the run of the algorithm. These protocols are
introduced in Section 4, along with analysis of their privacy
properties. Section 5 includes communication and compu-
tation analysis of the security protocols, as well as experi-
mental evaluation of the overall performance of the search
algorithm. Conclusions are drawn in Section 6.

2. PRELIMINARIES

2.1 Distributed constraint optimization
A Distributed Constraint Optimization Problem

(DCOP) [13] is a tuple < A,X ,D,R > where A is a set of
agentsA1, A2, . . . , An, X is a set of variablesX1, X2, . . . , Xm,
D is a set of finite domains D1, D2, . . . , Dm, and R is a
set of relations (constraints). Each variable Xi takes val-
ues in the domain Di, and it is held by a single agent.
Each constraint C ∈ R defines a non-negative cost for ev-
ery possible value combination of a set of variables, and is
of the form C : Di1 × · · · × Dik → R+ := [0,∞), for some
1 ≤ i1 < · · · < ik ≤ m.

An assignment is a pair including a variable, and a value
from that variable’s domain. We denote by ai the value as-
signed to the variable Xi. A partial assignment (PA) is a set
of assignments in which each variable appears at most once.
A constraint C ∈ R is applicable to a PA if all variables
that are constrained by C are included in the PA. The cost
of a PA is the sum of all applicable constraints to the PA.
A full assignment is a partial assignment that includes all of
the variables. The objective is to find a full assignment of
minimal cost.

For simplicity, and due to page limitation, we assume that
each agent holds exactly one variable, i.e., n = m. We let
n denote hereinafter the number of agents and the number
of variables. For the same reasons we also concentrate on
binary DCOPs, in which all constraints are binary, i.e., they
refer to exactly two variables. Such constraints take the form
Ci,j : Di ×Dj → R+. These assumptions are customary in
DCOP literature (e.g., [21, 23]).

2.2 Security notions
A secure multiparty protocol is a protocol that enables

several parties to jointly compute a function over their in-
puts, while at the same time keeping these inputs private.
Such a protocol is considered perfectly secure if it does not
reveal to any of the interacting parties any information on
the private inputs of his peers beyond what is implied by his
own input and the final output of the protocol. This notion
of security coincides with the disclosure of semi-private in-
formation, a concept that was suggested in the context of
distributed constraint satisfaction [5].

When looking for practical solutions, however, some relax-
ations of the notion of perfect privacy are usually inevitable,
provided that the excess information is deemed benign (see
examples of such protocols in [14, 26, 27, 32]). For each
of the security protocols that we present in this paper, we
bound the excess information that it may leak to the inter-
acting agents and explain why such leakage of information
is benign, or how it may be reduced.

3. PRIVACY-PRESERVING DCOP SEARCH
Synchronous Branch-and-Bound (SyncBB) [13] was the

first complete algorithm developed for solving DCOPs.
SyncBB operates in a completely sequential manner, a fact
that inherently renders its synchronous behavior. It is also
the most basic search algorithm for solving DCOPs, and
many more sophisticated DCOP search algorithms, such
as NCBB [2] and AFB [6], are actually enhancements of
SyncBB. Taking into account these comprehensions and con-
sidering the clear information flow within its search process,
SyncBB is an ideal candidate to serve as the basis of a new
privacy-preserving DCOP search algorithm.

The objective in this context is to allow the interacting
agents to solve a given DCOP while maintaining constraint
privacy. Namely, the value of Ci,j(ai, aj), for any two as-
signments ai ∈ Di and aj ∈ Dj , should not be disclosed
to any agent other than Ai and Aj . We proceed to present
the Privacy-preserving Synchronous Branch-and-Bound al-
gorithm (P-SyncBB).

3.1 The P-SyncBB algorithm
When considering a version of SyncBB that preserves con-

straint privacy, one must pay special attention to the upper
bound. In SyncBB, the upper bound is the most fundamen-
tal piece of information during the problem solving process,
and it is publicly known to all agents. The effectiveness of
the algorithm lies in the continuous comparisons of the costs
of partial assignments with the current upper bound, in or-
der to prune the search space. Curious agents may collect
information on costs of partial assignments in attempt to in-
fer information on private constraints of other agents. This
is a major source of trouble from the perspective of con-
straint privacy. Following that, the most fundamental task
in the design of the privacy-preserving version, P-SyncBB,
is to separate between the costs of partial assignments and
the upper bound, while still enabling pruning of the search
space. Such separation is achieved by preventing any agent
at any stage from knowing both the upper bound and the
current partial assignment (CPA).

We assume that there is a static public ordering of the
agents, A1, . . . , An. Agent A1 is the perfect candidate to
hold the upper bound, since according to the original SyncBB
algorithm, A1 never sees the assignments of the other agents.
The other agents receive the CPA from their preceding agents
throughout the search process, so at each stage they know
the assignments of the agents preceding them in the order.
Thus, in order to enable the above desired separation, agents
A2, . . . , An must not be aware of the upper bound.

In the original SyncBB algorithm, the CPA traverses the
search space by each agent assigning a value to its variable
and passing the augmented CPA to the next agent in the
order along with the current cost of the CPA. After an agent
completes assigning all values in the domain to his variable,
he backtracks, i.e., he sends the CPA back to the preceding



agent. To prevent exhaustive traversal of the entire search
space, the agents maintain an upper bound, which is the cost
of the best solution found thus far. Whenever an agent sees
that the cost of the CPA combined with the cost added by
his variable reaches the upper bound, he prunes this branch
of the search space by assigning the next value to his variable
without sending the CPA to the succeeding agent.

Contrary to the case of SyncBB, in the P-SyncBB algo-
rithm the cost of the CPA must not be known to any agent,
since the cost of a CPA may leak private constraint infor-
mation. Consequently, at each pruning decision point, the
agent holding the CPA must compare between the cost of the
CPA (including the cost added by his own assignment) and
the upper bound in a secure manner, i.e., without learning
neither the cost of the CPA nor the upper bound. Such non-
trivial task is achieved by restraining the information flow in
the algorithm and by introducing secure protocols for sum-
mation and comparison. The pseudo-code of P-SyncBB is
given in Algorithm 1 and described in detail next, whereas a
full description of the secure protocols is given in Section 4.

The run of P-SyncBB starts by agent A1 initially setting
the upper bound B to infinity (line 2). Agent A1 also sets
the flag ComputedCPA to true (line 3). This flag indicates
whether an agent has already computed the cost of the CPA
that was received from his preceding agent. Since A1 is the
first in order he never needs to compute this cost, so he ini-
tiates the flag accordingly. Next, A1 runs the assign CPA
procedure. According to the initial value of ComputedCPA
and the fact that at this preliminary stage there is no pos-
sibility of backtracking, A1 simply chooses a value from his
variable’s domain (line 21), assigns it to his variable in the
CPA (line 35), and sends a CPA MSG with the updated
CPA to agent A2 (line 36). In lines 31-34, the current agent
checks whether the cost of the CPA which was conveyed to
him from his preceding agent is already too large and thus
this branch of the search can be pruned. Those lines are
irrelevant for A1 so he skips them. For privacy reasons it
may be decided that also agents A2 and A3 skip them too
(see Section 4.2.2). These special cases were discarded from
the pseudo-code for clarity reasons.

When agent Ak, k ≥ 2, receives the CPA MSG, he first
updates his CPA with the received partial assignment (line
5). Next, he performs value ordering according to the added
cost to the CPA which is incurred by each value in his do-
main (lines 6-7). The cost that Ak’s assignment adds is

xk =

k−1∑
i=1

Ci,k(ai, ak) , (1)

where ai, ak are the assignments of the variables that are
governed by agents Ai and Ak, respectively. Hence, for each
v ∈ Dk, agent Ak computes xk(v) =

∑k−1
i=1 Ci,k(ai, v) and

then he orders those values so that the sequence of added
costs xk(v) is non-decreasing. Note that agent A1 never re-
ceives a CPA MSG, so he does not perform value ordering.
Finally, the ComputedCPA flag is set to false (line 8), before
the agent runs the assign CPA procedure.

The assign CPA procedure begins with the agent choos-
ing the next value from the pre-ordered domain (line 21).
In case no values remain, the agent backtracks (lines 22-23).
Any agent which is not the last one An skips to line 28.
We will relate to agent An (lines 24-26) later. In case the
ComputedCPA flag is false, the agent invokes a secure com-
putation of the CPA’s cost, i.e.,

∑k−1
i=2 xi (where xi are as in

Eq. (1)), and sets the flag to true (lines 28-30). The secure

Algorithm 1 - P-SyncBB (executed by agent Ak)

procedure init
1: if Ak = A1 do
2: B ←∞
3: ComputedCPA← true
4: assign CPA()

when received (CPA MSG,PA) do
5: CPA← PA
6: for each v ∈ Dk do compute xk

7: order values of Dk according to the computed xk’s
8: ComputedCPA← false
9: assign CPA()

when received (BACKTRACK MSG) do
10: remove Xk from CPA
11: assign CPA()

when received (CHECK SOLUTION MSG) do
12: Cost← invoke Protocol 2 to securely compute the solution’s cost

(i.e.,
∑n

i=2 xi)

13: if Cost < B do
14: B ← Cost
15: send(SOLUTION ANS MSG,true) to An

16: else
17: send(SOLUTION ANS MSG,false) to An

when received (SOLUTION ANS MSG,Answer) do
18: if Answer = true do
19: BestSolution← CPA
20: backtrack()

procedure assign CPA
21: choose next value v in order from Dk

22: if no value exists do
23: backtrack()
24: else if Ak = An do
25: Xk ← v
26: send(CHECK SOLUTION MSG) to A1

27: else
28: if ComputedCPA = false do
29: invoke Protocol 3 to securely compute CPA.cost (i.e.,∑k−1

i=2 xi)

30: ComputedCPA← true
31: ShouldBacktrack ← invoke Protocol 4 to securely check

whether CPA.cost + xk ≥ B
32: if ShouldBacktrack = true do
33: backtrack()
34: else
35: Xk ← v
36: send(CPA MSG,CPA) to Ak+1

procedure backtrack
37: if Ak = A1 do
38: broadcast(TERMINATE)
39: else
40: remove Xk from CPA
41: send(BACKTRACK MSG) to Ak−1

computation in line 29 is performed by invoking Protocol 3
(Section 4.1). The outcome of this computation is that Ak

holds one additive share of the CPA’s cost, while A1 holds
another share. Hence, the actual cost is never disclosed to
any single agent.

At this stage, the agent reaches a pruning decision point.
In the original SyncBB, this means checking whether the
cost of the CPA combined with Ak’s added cost xk reaches
the upper bound. If so, then the pruning of this branch of
the search space is achieved by backtracking. In P-SyncBB,
this check is performed without Ak knowing neither the cost
of the CPA nor the upper bound. This is achieved by invok-
ing Protocol 4 (Section 4.2) in line 31. In case the output
of Protocol 4 is true, the agent backtracks (lines 32-33).
Otherwise, he assigns his variable in the CPA and sends a
CPA MSG to the subsequent agent (lines 35-36).



Note that the usage of the ComputedCPA flag ensures
that the cost of any given CPA (i.e., the sum of constraints
incurred by assignments to X1, . . . , Xk−1) is computed only
once (Protocol 3). Whenever Ak changes his assignment to
Xk, only Protocol 4 is invoked, in order to compare the cost
of the augmented CPA (involving X1, . . . , Xk−1, Xk) to the
current upper bound.

Now we return to the case of the last agent An (lines 24-
26). In this case, the CPA is actually a full assignment, so a
CHECK SOLUTION MSG is sent to agent A1 who can
verify whether the CPA’s cost is better than the cost of the
best solution that was found thus far.

When agent A1 receives the CHECK SOLUTION
MSG, he invokes Protocol 2 (Section 4.1) with k = n in or-
der to compute the cost of the candidate solution (line 12).
Due to the sequential operation of P-SyncBB, as each agent
Ak, k ≥ 2, has a local version of the CPA, he knows the cur-
rent assignments a1, . . . , ak of X1, . . . , Xk. Hence, the cost
of the CPA equals the sum of the private values xk, k ≥ 2,
as defined in Eq. (1). (Note that the fact that A1 computes
the sum of private inputs which are held by other agents
demonstrates the information separation in the protocol.)
In case the cost of the new solution is lower than the exist-
ing upper bound, the new upper bound is updated (line 14).
Finally, A1 notifies An whether this is a new best solution or
not by sending an appropriate SOLUTION ANS MSG.

When agent An, who knows the full assignment (a1, . . . ,
an), receives the SOLUTION ANS MSG, he checks the
input Answer from A1 and updates the best solution in case
it is true (lines 18-19). Regardless of the value of Answer,
An then backtracks (line 20), since he does not need to check
any of the subsequent values in his domain as they will issue
worse solutions (due to the value pre-ordering).

Next, we discuss the backtrack procedure. In the case of
A1, a backtrack means that the entire search space was tra-
versed, and so the algorithm terminates (lines 37-38). Any
other agent just removes his variable from the CPA (line 40)
and sends a BACKTRACK MSG to the preceding agent
(line 41). An agent that receives a BACKTRACK MSG
removes his value from the CPA (line 10) and continues the
search by assigning the next value in order (line 11).

At the end, the full assignment of the best solution is
known only to An and its cost only to A1. According to the
application and its privacy requirements, agents A1 and An

can decide what to share with their peers. In any case, An

must at least inform each of the other agents of their own
value assignments in the best solution.

Theorem 1. P-SyncBB is sound and complete.

Proof. The soundness and completeness of P-SyncBB
follow from those of SyncBB. The details of the standard
proof are omitted due to page limitations.

4. SECURE PROTOCOLS
In this section we present the secure protocols that are

invoked by P-SyncBB, Algorithm 1. We assume herein that
Ci,j(ai, aj) ≤ c for some publicly known c, for all 1 ≤ i <
j ≤ n and ai ∈ Di, aj ∈ Dj . Hence, C :=

(
n
2

)
c is a pub-

licly known upper bound on the cost of any partial or full
assignment. In Section 4.1 we discuss the secure summation
protocols that are invoked in lines 12 and 29 of P-SyncBB.
Our main cryptographic contribution is given in Section 4.2,
which describes the secure comparison protocol that is in-
voked in line 31.

4.1 Secure summation protocols
The computational problem in line 12 of P-SyncBB is the

classical problem of secure summation of private integers.
It can be solved by a slight modification of Benaloh’s pro-
tocol [1], which is described in Protocol 2. Here, S denotes
an arbitrary integer much larger than C (the upper bound
on the inputs and their sum).

Protocol 2 - Secure summation of private inputs

Input: C, S ∈ Z+ such that S � C;
Agent Ai, 2 ≤ i ≤ k, has an integer xi ∈ [0, C], such that

x :=
∑k

i=2 xi ≤ C.
Output: A1 gets x.

1: Each Ai, 2 ≤ i ≤ k, selects random values xi,j ∈ ZS := [0, S− 1],

2 ≤ j ≤ k, such that
∑k

j=2 xi,j = xi mod S.

2: Ai sends xi,j to Aj , for all 2 ≤ i 6= j ≤ k.

3: Aj computes sj =
∑k

i=2 xi,j mod S, for all 2 ≤ j ≤ k.

4: Agents A2, . . . , Ak send s2, . . . , sk to A1.
5: A1 computes x← s2 + · · ·+ sk mod S.

Theorem 2. Protocol 2 is perfectly secure: none of the
agents A2, . . . , Ak learns any information about the inputs
of his peers, nor about the overall sum x, while A1 learns no
information on the inputs of the other agents beyond what
is implied by the overall sum x.

Proof. The perfect security of the protocol is a direct
consequence of the fact that each agent breaks up his input
to modular additive shares which are chosen independently
and uniformly at random. We omit further details of this
standard proof.

Next, we discuss the secure implementation of line 29 in
P-SyncBB. Here, it is needed to compute the cost of the
CPA that is incurred by the assignments a1, . . . , ak−1 of all
preceding agents. That cost equals x :=

∑k−1
i=2 xi, where

xi =
∑i−1

j=1 Cj,i(aj , ai) is a value that is known to Ai. While
the summation in line 12 computes the cost of a full assign-
ment, and the sum is revealed only to agent A1 who does
not know the actual assignments, the summation in line 29,
which occurs more frequently than the previous summation,
needs to be executed for partial assignments. Revealing the
resulting sum to any of the agents, even to agent A1 who
is not aware of the actual assignments, might be hazardous
since it may be used to infer information on the private in-
puts of other agents. Hence, instead of letting a single agent
reveal the sum x =

∑k−1
i=2 xi, Protocol 3 ends with agents

A1 and Ak sharing that sum.

Protocol 3 - Computing additive shares in the sum of pri-
vate inputs

1: Agents A2, . . . , Ak−1 perform Steps 1-3 of Protocol 2 for
x2, . . . , xk−1.

2: Agents A3, . . . , Ak−1 send s3, . . . , sk−1 to Ak.
3: Ak computes sk ← s3 + · · ·+ sk−1 mod S.
4: A2 sends s2 to A1.

Protocol 3 starts by implementing the first three steps of
Protocol 2 (Step 1). Then, agents A3, . . . , Ak−1 send their
shares to Ak who adds them up to get sk (Steps 2-3), while
agent A2 sends his share to A1 (Step 4). Consequently, the
two agents A1 and Ak hold two values s2 and sk that are
random modular shares in the sum x. Namely, each of those
values distributes uniformly at random over ZS (as a result
of the uniform selection of shares xi,j in Step 1 of Protocol
2) and s2 + sk = x mod S. Protocol 3, which is a small



variant of Protocol 2, is also perfectly secure, as it does not
reveal to the interacting agents any information about the
sum x or about the inputs of the other agents.

4.2 A secure comparison protocol
The main computational problem occurs in line 31 of

P-SyncBB. There, agent Ak needs to check whether
CPA.cost + xk ≥ B where: (i) CPA.cost is the cost of
the CPA which is incurred by the assignments a1, . . . , ak−1

of all preceding agents, (ii) xk is the cost that agent Ak’s
assignment adds (see Eq. (1)), and (iii) B is the current
upper bound. We recall that as a result of executing Proto-
col 3 in line 29, CPA.cost is split between A1 and Ak that
hold two modular additive shares in it, denoted s2 and sk
respectively. The value of xk is known only to Ak while B
is known only to A1.

4.2.1 The basic protocol
Protocol 4 solves the above described computational prob-

lem. In Step 1, Ak adds xk to his share sk in CPA.cost. As
a consequence, s2 and sk (which are held by A1 and Ak re-
spectively) are two modular shares in the augmented sum

x :=
∑k

i=2 xi that equals the cost of the CPA due to the as-
signments a1, . . . , ak to X1, . . . , Xk. If we view those shares
as integers from [0, S − 1], then either s2 + sk = x (Case
1) or s2 + sk = S + x (Case 2). Next, Ak sends to A1 the
value sk + r, where r is selected uniformly at random from
[0, S − C − 1] (Steps 2-3). A1 then computes the difference
y = s2 + sk + r − B (Step 4). (The purpose of adding the
random mask r is to prevent A1 from inferring the difference
x−B.)

Our goal now is to check whether δ := x−B is negative or
not. In Case 1 y = δ+r while in Case 2 y = δ+r+S. Since
x,B ∈ [0, C] then δ ∈ [−C,C]. Hence, in Case 1 y − r ≤ C
while in Case 2 we have y− r ≥ S −C (where S −C � C).
Therefore, in order to check in which of the two cases we
are, Ak and A1 perform a secure protocol to check whether
y ≥ S − C + r (Step 5). Since y is known only to A1 while
S − C + r is known only to Ak, this is an instance of the
millionaires’ problem, which can be solved securely by Yao’s
garbled circuit protocol [28]. If that inequality does not hold
then we are in Case 1 and y = δ + r. If, however, it does
hold, then we are in Case 2 and y = δ+ r+ S. In the latter
case, Ak sets r ← r + S. Hence, at the completion of Step
5, we have y = δ + r. It is important to note that only Ak

needs to learn the answer to the inequality verification; A1

learns no information about whether y ≥ S − C + r or not.
Next, the two agents check whether y ≥ r or not. This

is again an instance of the millionaires’ problem, since y
is known only to A1 and r is known only to Ak. Since
x− B = δ = y − r then y ≥ r if and only if x ≥ B. Hence,
Ak may learn from the inequality verification whether x ≥ B
or not (Step 6).

Protocol 4 - Comparing a shared sum against an unknown
bound
1: Ak sets sk ← sk + xk mod S.
2: Ak generates uniformly at random an integer r ∈ [0, S − C − 1].
3: Ak sends sk + r to A1.
4: A1 computes y = s2 + sk + r − B.
5: Ak and A1 check securely whether y ≥ S − C + r. If so, Ak

updates r ← r + S.
6: Ak and A1 check securely whether y ≥ r. Ak infers that x ≥ B

if and only if y ≥ r.

4.2.2 Privacy analysis
Protocol 4 is “almost” perfectly secure in the following

sense.

Theorem 3. At the end of Protocol 4 agent A1 may learn
either a lower bound on x, in probability at most C/(S−C),
or an upper bound, in probability at most C/(S − C), or
nothing at all, in probability at least (S − 3C)/(S − C). As
for agent Ak, he may learn either a lower bound on x, in
probability x/S, or an upper bound, in probability (C−x)/S,
or nothing at all, in probability (S − C)/S.

Proof. A1 learns the value y+B = s2 + sk + r (Step 4).
If y+B < S he infers that it is Case 1 and therefore y+B =
x+r; otherwise he infers that it is Case 2, whence y+B−S =
x+r. In any case, he learns the value x+r := z. As x = z−r
and 0 ≤ r ≤ S−C−1, it follows that z−(S−C−1) ≤ x ≤ z.
Since it is known upfront that 0 ≤ x ≤ C, the upper bound z
reveals new information on x only when z < C. For every i ∈
{0, 1, . . . , C − 1}, the probability Pr(z = i) =

∑i
j=0 Pr(x =

j) ·Pr(r = i−j). Since r distributes uniformly on [0, S−C−
1], it follows that Pr(z = i) = 1

S−C

∑i
j=0 Pr(x = j) ≤ 1

S−C
.

Hence, Pr(z < C) =
∑C−1

i=0 Pr(z = i) ≤ C
S−C

. Therefore,
A1 may learn a non-trivial upper bound on x in probability
no greater than C/(S − C). Similarly, we can show that he
may learn a non-trivial lower bound in probability no greater
than C/(S−C). The last two probability inequalities imply
that in probability at least (S− 3C)/(S−C), the value of z
does not allow A1 to exclude any possible value of x in the
range [0, C]. In addition, the value of z does not induce an
a-posteriori belief probability distribution on x that differs
from the belief probability distribution that A1 had prior to
seeing z, owing to the uniform random manner in which the
masking value r is chosen. Next, we turn to discuss Ak.
Ak learns in Step 5 of Protocol 4 whether Case 1 holds

(s2 + sk = x) or Case 2 does (s2 + sk = S + x). In Case
1, 0 ≤ s2, sk ≤ x. We note that sk distributes uniformly at
random over ZS : Indeed, that is the case prior to Step 1,
since then sk is the sum of random ZS-shares (see Step 3
in Protocol 3); hence, even after adding to it xk it remains
uniformly distributed over ZS . Consequently, since the case
s2 + sk < S occurs if and only if sk ∈ {0, 1, . . . , x}, its
probability is (x + 1)/S. In that case, Ak may infer that
x ≥ sk. That lower bound is non-trivial only when sk >
0. Hence, Ak learns a (non-trivial) lower bound on x in
probability x/S. In Case 2, on the other hand, both s2 and
sk are strictly greater than x (since if, say, s1 ≤ x, then
sk = x − s1 ≤ x). Hence, in that case x ≤ sk − 1. Only
when sk ≤ C, that upper bound is non-trivial. Therefore,
Ak learns a (non-trivial) upper bound on x if and only if
x < sk ≤ C, namely, in probability (C − x)/S. However,
when sk > C, Ak can learn nothing on x. To summarize,
Ak learns nothing on x when sk = 0 or when sk > C. Since
sk distributes uniformly in ZS , Ak learns no information at
all in probability (S − C)/S.

Theorem 3 implies that the only potential leakages of in-
formation are to only two agents. Those potential leakages
of information are only with respect to x =

∑k
i=2 xi (but not

with respect to xi), and only in the form of a lower or an
upper bound. Moreover, the probability of those potential
leakages to occur can be made negligible since C is a given
integer and S can be chosen arbitrarily large.

It is worth noting that even though A1 plays a pivotal
role in this protocol, since he keeps the upper bound B, he



does not know any of the assignments to the variables that
are controlled by the other agents. Namely, even though A1

may learn (in negligible probability) lower bounds on the
CPA’s cost x, he does not know what are the assignments
to X2, . . . , Xk that determine that x.

As for Ak, beyond the negligible probability that he learns
a lower or an upper bound on x, he also learns whether
x < B or x ≥ B, without actually knowing the value of
B. x is the cost of the current CPA and it equals x =∑

1≤i<j≤k−1 Ci,j(ai, aj) +
∑k−1

i=1 Ci,k(ai, ak) := C1 + C2.

Since Ak knows a1, . . . , ak (the current assignments to X1,
. . . , Xk), he knows C2. He wishes to extract additional in-
formation about C1. If Ak learns that x < B he infers that
C1 < B − C2, while if he learns that x ≥ B he infers that
C1 ≥ B − C2. Since the value of B is not known to Ak, the
above inferences are meaningless. If at the end of P-SyncBB
the final value of B is still not published, then those infer-
ences that were collected by Ak throughout the execution
of P-SyncBB remain harmless. However, assume that A1

shares with his peers the final value of B that was found,
say B0. Ak knows that all intermediate values of B were
greater than or equal to B0. Therefore, while inequalities of
type C1 < B −C2 cannot yield any further information, in-
equalities of type C1 ≥ B−C2 will imply that C1 ≥ B0−C2.

Due to the above potential leakage of information on costs
of CPAs (only in cases where the cost B of the optimal
solution has to be published), we may decide that in P-
SyncBB the agents perform pruning only for k ≥ k0 for some
setting of k0. Namely, agents A1, . . . , Ak0−1 skip lines 31-34
and therefore do not invoke Protocol 4. As a consequence,
only agents Ak with k ≥ k0 may infer lower bounds on sums
of the form

∑
1≤i<j≤k−1 Ci,j(ai, aj). Higher values of k0

increase privacy (since then the above sum involves more
constraints) but obviously reduces efficiency.

4.2.3 Solving the millionaires’ problem
Let A and B be two agents; A holds a private integer a

and B holds a private integer b. They wish to test whether
b ≥ a without learning any information on the difference
b − a. Both agents know that a, b can take values in some
interval [L,U ], and, furthermore, that b ≥ a if and only if
b − a ∈ [0,K] for some known and small constant K. This
setting is the case in Steps 5 and 6 of Protocol 4, where the
two agents are Ak and A1, respectively. The reader may
verify that in both cases we can take [L,U ] = [−C, 2S − 1];
moreover, in Step 5 we can take K = 2C while in Step 6 we
can take K = C.

Agents A and B may resolve this millionaire’s problem
by applying Yao’s garbled circuit protocol [28]. However,
as that protocol invokes costly sub-protocols for oblivious
transfer [4], we suggest here a simpler solution that relies
on a non-trusted third party, T . In Protocol 4 that third
party can be A2. (Recall that, as discussed in Section 4.2.2,
Protocol 4 is invoked only for k ≥ k0.) That third party
too must not learn the difference b − a. Protocol 5 offers a
possible solution. In that protocol, p is a random prime that
satisfies p > U − L+ 1, and h is a secure hash function.

The idea is to represent the integers a and b by elements
in a multiplicative group. To that end, the agents select
upfront a multiplicative group Z∗

p where p is a prime greater
than U −L+ 1. Then, A and B select a random and secret
generator g of that group (Step 1). As g is a generator of
Z∗

p, it is guaranteed that the mapping i 7→ gi mod p is a

Protocol 5 - Secure inequality verification using a non-
trusted third party

Input: A has an integer a and B has an integer b so that a, b ∈ [L,U ]
and b ≥ a if and only if b− a ≤ K, where L,U,K are known integer
bounds.
Output: The third party T learns whether b ≥ a, but he should not
learn the value of b− a.

1: A and B select a random generator g of Z∗
p.

2: A sends to T the values p and ga mod p.
3: B selects a random integer 0 ≤ s ≤ p − 1 and computes the set

W = {gs+i : 0 ≤ i ≤ K}.
4: B sends to T the value gs+b mod p, and the randomly permuted

set h(W ) := {h(w) : w ∈ W}.
5: T computes u:=gs+b−a mod p and checks if h(u) ∈ h(W ).
6: If h(u) ∈ h(W ), T outputs to A the answer true (i.e., b ≥ a

holds); else, he outputs to A the answer false.

one-to-one function from the integer interval [L,U ] to Z∗
p,

since any p − 1 consecutive powers of g must be distinct,
and p− 1 ≥ U −L+ 1. Then, A and B send to T the values
which are described in Steps 2-4. By our assumptions on a
and b, it follows that b ≥ a if and only if s+b−a ∈ [s, s+K].
Hence, b ≥ a if and only if u, as computed by T in Step 5,
is in the set W that B computes in Step 3. However, as T
receives only h(W ) (and not W ), the check that he performs
in Step 5 is whether h(u) is found in h(W ). If it is, then
T infers that b ≥ a; otherwise, the final conclusion is that
b < a. (Note that T informs only A and not B about his
finding, since that is the requirement in Protocol 4.)

Theorem 4. Let ε be a bound on the probability of two
randomly selected elements from Z∗

p to form a collusion for
h. Then Protocol 5 is a false-biased Monte Carlo algorithm
with error probability which is no larger than (K + 1)ε.

In modern hash functions (e.g., SHA-3 or RIPEMD-320),
the collusion probability is negligible. Moreover, it is pos-
sible to make sure that those potential errors of negligi-
ble probability might result only in performing unnecessary
work, as they might lead to a decision not to prune a search
path, but not in missing the optimal solution.

Theorem 5. Consider Protocol 4 where: (1) in Step 6
the two agents verify the inequality r ≥ y+ 1, which holds if
and only if x < B; and (2) in both Steps 5 and 6 the inequal-
ity verification is carried out by invoking Protocol 5. Then
such a protocol is guaranteed to find the optimal solution.

Proof. Since r ≥ y+1 holds if and only if y ≥ r does not
hold, then r ≥ y+ 1 holds if and only if x < B. In addition,
it is easy to check that the two sides of the inequality, b := r
and a := y + 1, are confined to the interval [L,U ] = [−C +
1, 2S], and if b ≥ a then b− a ∈ [0,K := C − 1].

Assume that Protocol 5 issues a wrong true answer to
the inequality verification in Step 5 of Protocol 4. That can
occur only in Case 1 (y = δ+r) and the result would be that
r will be replaced by r+S, unnecessarily. But then, in Step
6, r would be clearly greater than y. That inequality will be
verified and, as a result, the agents will infer that x < B.
Consequently, the CPA will be considered as one that could
be extended to an optimal solution and, therefore, it will not
be discarded. The potential damage of such an erroneous
answer of Protocol 5 is only excessive work.

Next, if Protocol 5 issues a wrong true answer to the in-
equality verification in Step 6 of Protocol 4, then the players
will wrongly infer that x < B. Here too, the potential dam-
age is only that of performing unnecessary work (by not



Table 1: Communication costs of Protocol 2
Rounds # messages # bits
Step 2 (n− 1)(n− 2) (n− 1)(n− 2)`S
Step 4 n− 1 (n− 1)`S
2 (n− 1)2 (n− 1)2`S

Table 2: Communication costs of Protocol 3
Rounds # messages # bits
Step 1 (k − 2)(k − 3) (k − 2)(k − 3)`S
Step 2 k − 3 (k − 3)`S
Step 4 1 `S
3 k2 − 4k + 4 (k2 − 4k + 4)`S

discarding a CPA that cannot be extended to an optimal
solution). The conclusion is that the combined protocol will
never miss the true optimal solution.

Next, we attend to the security of the protocol. First,
we note that the protocol would have been secure against
a computationally bounded agent T even if no hashing had
been used, since T does not know the generator g nor the
random mask s. However, in view of Theorem 6, we chose
to strengthen the protocol by using a secure hash function.

Theorem 6. If h = id then a computationally unbounded
T will be able to find the value of b− a.

As for s, it was introduced in order to prevent T from
identifying the case b − a = 0. Indeed, if we had selected
s = 0, then whenever b − a = 0 we would have got u =
1; such a case could have been identified by T since then
h(u) = h(1), regardless of the generator g that was selected.

Theorem 7. Protocol 5 is secure against computationally
bounded agents.

The proofs of Theorems 4, 6, and 7 are omitted due to
page limitation.

5. EVALUATION

5.1 Communication and computation costs
In this section we describe the communication and com-

putation costs of the secure protocols that we presented in
Section 4. Tables 1, 2 and 3 summarize the communication
costs of Protocol 2 (when executed with k = n), Protocol
3 (as a function of k), and Protocol 4. Each row in those
tables corresponds to one round (or batch of rounds) in the
related protocol, and the last row shows the total number of
communication rounds, messages, and transmitted bits for
that protocol. Here, `S := dlogSe is the number of bits for
representing integers in [0, S − 1], C is the upper bound on
the cost of full assignments, and `p := dlog pe is the number
of bits to represent numbers modulo p (recall that Protocol
4 executes Protocol 5 in which the arithmetic is over Z∗

p).
Due to lack of space we omit detailed explanations of these
communication costs.

As for runtime, Protocols 2, 3, and 4 perform only ran-
dom number generation and additions, which are low cost
operations. The main computational toll is in Steps 5 and
6 of Protocol 4 in which Protocol 5 is invoked. The lat-
ter protocol executes the costly operations of modular ex-
ponentiations, multiplications, inversions, and hash evalua-
tions. Denoting the runtimes of executing a single opera-
tion of those types by Ce, Cm, Ci, and Ch respectively, the
runtime of Protocol 4 can be verified to be dominated by
8Ce + (3C + 2)Cm + 2Ci + (3C + 4)Ch.

Table 3: Communication costs of Protocol 4
Rounds # messages # bits
Step 3 1 `S + 1
Step 5 (3) 5 5`p + (2C + 1)`h + 1
Step 6 (3) 5 5`p + (C + 1)`h + 1
7 11 10`p + (3C + 2)`h + `S + 3
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5.2 Experiments
We evaluated the performance of P-SyncBB by compar-

ing its runtime and network load to two other algorithms:
the regular (non-privacy-preserving) SyncBB, and a näıve
privacy-preserving exhaustive-search algorithm that we call
P-Ex. P-Ex is similar to P-SyncBB except that it does not
do pruning. This is achieved by skipping lines 28-34; other
than that P-Ex coincides with P-SyncBB, including the us-
age of Protocol 2 for privacy preservation. The algorithms
were implemented in the AgentZero1 simulator.

In the experiments we used randomly generated DCOPs
with n = 8 agents, |D1| = · · · = |Dn| = 8, maximal con-
straint cost c = 10, and varying constraint density 0.1 ≤
p1 ≤ 0.9. The runtime of DCOP algorithms is commonly
measured by logical operations, such as non-concurrent
constraint checks [33]. As P-SyncBB includes arithmetic
operations that are not constraint checks, we report non-
concurrent runtime. As the algorithms are basically sequen-
tial, the non-concurrency of the measure only takes effect
during the run of the secure protocols.

Figures 1 and 2 present the mean results (in logarithmic
scale) of runtime and network load. While the overhead of
the secure protocols is significant, its effect remains almost
the same when the problems become denser. The main prob-
lem of P-SyncBB is the high computation overhead of Pro-
tocol 5 that is invoked for pruning. Nevertheless, the graphs
show that even performing highly expensive pruning is still
worthwhile, when considering the alternative, P-Ex.

6. CONCLUSION
We presented here P-SyncBB, a privacy-preserving ver-

sion of the SyncBB algorithm for solving DCOPs while re-
specting constraint privacy. P-SyncBB preserves the private
constraint information by computing the costs of CPAs and
comparing them to the current upper bound, using secure
multiparty protocols. To this end, we devised Protocol 5,
that solves the millionaires’ problem securely without re-
sorting to costly oblivious transfer sub-protocols, and then

1http://code.google.com/p/azapi-test



used that protocol in Protocol 4, that compares the cost of
a CPA, which is shared between two agents, to the upper
bound which is held by only one of them.

One research direction that we plan to pursue is improving
the computational cost of Protocol 5. Other research direc-
tions include the extension of this work to other search-based
algorithms for DCOP solving, such as AFB [6] or NCBB [2],
and to other privacy types. Finally, we plan to compare our
approach to the one that was recently presented in [16].
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