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Abstract

We consider the problem of computing efficient anonymizations of partitioned databases. Given
a database that is partitioned between several sites, either horizontally or vertically, we devise
secure distributed algorithms that allow the different sites to obtain a k-anonymized and ℓ-diverse
view of the union of their databases, without disclosing sensitive information. Our algorithms are
based on the sequential algorithm [20] that offers anonymizations with utility that is significantly
better than other anonymization algorithms, and in particular those that were implemented so far
in the distributed setting. Our algorithms can apply to different generalization techniques and
utility measures and to any number of sites. While previous distributed algorithms depend on costly
cryptographic primitives, the cryptographic assumptions of our solution are surprisingly minimal.
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1 Introduction

Recent advances in information technology enable more organizations to collect, store, and use
various types of information on individuals. Such large repositories of data carry valuable infor-
mation that may be extracted using data mining tools. In such settings, protecting the privacy of
the individuals whose private data appear in those repositories is of paramount importance. Al-
though identifying attributes such as names and ID numbers are always removed before releasing
the table for data mining purposes, sensitive information might still leak due to linking attacks; such
attacks may join the public attributes, a.k.a quasi-identifiers, of the published table with a publicly
accessible table like the voters registry, and thus disclose private information of specific individuals.
Privacy-preserving data mining [5] has been proposed as a paradigm of exercising data mining while
protecting the privacy of individuals. One of the most well-studied models of privacy preserving
data mining is k-anonymization [39, 40]. The usual practice in k-anonymization is to generalize or
suppress the values of the public attributes, so that each of the released records becomes indistin-
guishable from at least k − 1 other records, when projected on the subset of public attributes, thus
hiding its relationship with the values of the sensitive attribute. As a consequence, each individual
may be linked to sets of records of size at least k in the released anonymized table, whence privacy
is protected to some extent.

k-Anonymity on its own is not sufficiently secure since the distribution of the sensitive data within
a given block of indistinguishable records may reveal information on the sensitive data of a given
target individual. Hence, k-anonymity must be enforced in conjunction with other measures, such as
ℓ-diversity [32, 45, 46], t-closeness [31], or p-sensitivity [43], that limit the amount of information
that is leaked by the distribution of the sensitive data in each block of indistinguishable records. All
of those notions offer essential enhancements to k-anonymity in the sense that one must require them
in addition to k-anonymity. In accord with this, Truta et al. [43] propose algorithms that generate
tables that are both k-anonymous and p-sensitive, and Wong et al. [44] consider the conjunction of
k-anonymity with ℓ-diversity (they call this conjunction of conditions (1/ℓ, k)-anonymity). In this
study we discuss algorithms for achieving k-anonymity together with ℓ-diversity.

Given a measure of information loss that associates a penalty to each operation of generalizing
a table entry, the k-anonymity problem seeks a k-anonymized view of a given table with minimal
loss of information (namely, maximal utility). That problem was shown to be NP-hard [3, 33] and
several approximation algorithms [3, 19, 26, 33, 38] and heuristics, e.g. [17, 18, 20, 22, 30, 42],
were proposed for obtaining k-anonymizations with high utility.

In some settings, the data is split between several data holders. For example (the case of hori-
zontal partitioning), several hospitals may wish to combine their databases of patients in order to
conduct a medical research on their unified population of patients. However, as each hospital is
committed to the privacy of its own patients, it is impossible to simply unify the databases and
then apply on the unified database an anonymization algorithm. As another example (the case of
vertical partitioning), the data may be split into different sites according to its type. For instance,
one site may hold the medical information of an individual, another site may hold his credit history,
and a third site may hold relevant demographic information. In either of those cases, it is needed
to devise a protocol that would allow each hospital to perform anonymization of its own database,
without revealing its original content to the collaborating hospitals, so that the union (or join) of all
anonymized tables will respect the required privacy measure.

In this paper we discuss the problem of computing high-utility anonymizations of distributed
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databases. In an ideal setting, in which there is a trusted third party, each site could surrender to
that third party his part of the database and trust the third party to compute an anonymization of the
unified database. Without such a trusted third party, the goal is to devise distributed protocols, for
the horizontal and vertical settings, that allow the data holders to simulate the operation of a trusted
third party and obtain a k-anonymized and ℓ-diverse view of the union of their databases, without
disclosing unnecessary information to any of the other parties, or to any eavesdropping adversary.

1.1 About the relevance of clustering-based anonymity models

In recent years, other measures of privacy were proposed as more secure alternatives to the above
mentioned clustering-based models, the most prominent of which is differential privacy [12]. How-
ever, albeit theoretically more secure, differential privacy and similar theoretical notions (such as
(ε, δ)-indistinguishability [37]) are still far from obsoleting the clustering-based approaches, due to
several problems. First, it is much harder to achieve privacy according to those notions in practice
for non-trivial queries. Second, as opposed to the clustering-based approaches, such perturbation-
based methods need to know the query in advance in order to calibrate the level of noise to the
global sensitivity of the query and the targeted differential privacy parameter ε [13]. Third, the
theoretical study of those notions did not address, so far, the practically essential question of how
to set the privacy parameter ε in order to provide a satisfactory level of privacy in a given practical
setting. Moreover, in some disciplines, such as biostatistics or biomedical research, it is imperative
to work on sanitized data whose correlation with the original data is known [15]; this is the case
with clustering-based anonymization models, in which data is generalized according to accepted
generalization rules; this is not the case with perturbation models in which the correlation between
the original and perturbed data is probabilistic. Because of those reasons, clustering-based privacy
models are still perceived by practitioners as sufficient for mitigating risk in the real world while
maximizing utility, and real life applications still utilize them for sanitizing data (see [14, 15]).

Another reinforcement to the relevance of clustering-based anonymity models was proposed re-
cently by Cormode in [10]. He examined the effects of the deFinetti attack [27] on clustering-based
methods of anonymization. He then designed a similar inference-based attack on differentially pri-
vate releases of the same databases and found that the susceptibility of those two classes of privacy
notions to such attacks is quite similar. His conclusion was that “rejecting all such (clustering-based)
anonymizations because the deFinetti attack exists is erroneous: by the same logic, we should also
abandon differential privacy”. His final conclusion, with which we concur, is that depending on
the perceived threats, and the consequences of a successful attack, it may be appropriate to use
deidentification, clustering-based methods, differential privacy, or to withhold release entirely.

1.2 Related work

The problem that we wish to solve is a problem of Secure Multiparty Computation (SMC here-
inafter). In the most general setting of SMC, there are m interacting players, P1, . . . , Pm, each one
holding a private input xi, 1 ≤ i ≤ m, and they wish to compute the value of a publicly known
function f on their inputs, i.e. s := f(x1, . . . , xn), so that none of the players learns about the
inputs of the other players more than what is implied by the final output and his own input. In our
case, the private inputs are the private databases, and the required output is a k-anonymization of
the joint database.
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Generic solutions of the general problem were presented in [7, 21, 48]. Such solutions require to
reformulate the problem as a problem of evaluating a boolean circuit. Since such generic solutions
are practical only when the size of the input in bits is small and the description of the function as a
boolean circuit is compact, our problem of computing an anonymized view of a distributed database
calls for other types of protocols.

This problem was the topic of several studies in the past few years. Zhong et al. [50] devise a
secure distributed implementation of the approximation algorithm from [33] for horizontally parti-
tioned databases. The approximation algorithm in [33], as well as its distributed implementation in
[50], assumes that only suppressions are allowed and their solution requires homomorphic encryp-
tion, group exponentiations, and secret sharing.

Jurczyk and Xiong [24] present a distributed implementation of the Mondrian algorithn [30]
for the case of horizontally-partitioned databases. Their solution invokes an SMC protocol for
computing the kth ranked element in the union of sets that are held by the different players [4],
using cryptographic primitives such as oblivious transfer and pseudorandom functions.

In [23], Jiang and Clifton deal with databases that are vertically-partitioned between two sites. In
their method, each player begins by k-anonymizing his partial database, with respect to the subset
of quasi-identifiers that he holds. Such anonymizations result in a clustering of the records in each
of the two databases into clusters of size at least k. The idea is then to check whether the join of the
two anonymized databases is k-anonymous on the unified set of quasi-identifiers. To that end, the
two players engage in a secure set intersection protocol for computing the size of the intersection of
two private sets. Clusters whose intersection is of size less than k are further generalized until all
cluster intersection sizes are either zero or above k. Their protocol for the secure computation of set
intersection uses homomorphic encryptions.

Mohammed et al. [34] deal also with vertically-partitioned databases. They implement a top-
down specialization algorithm, which is essentially the Mondrian algorithm [30]. Their protocol
starts with all database entries fully suppressed. Then, in each step, each player examines the quasi-
identifiers that he has in order to find the best one to specialize, where each candidate specialization
operation is ranked by a score function that balances between the projected information gain and
anonymity loss. In order to find the most profitable specialization operation, a secure maximum
protocol [48] is invoked between every two players. The authors discuss extensions of their protocol
to support additional privacy measures such as ℓ-diversity.

In a slightly different line of work, Nergiz et al. [35] describe a method to save on SMC protocols
in privacy-preserving algorithms such as distributed k-annonymizations. The main idea is to use a
Look-Ahead mechanism. At each step of the computation they estimate the utility that may be
gained by invoking an SMC protocol at that stage in order to decide whether it is worth-while to
invest the computational effort that is entailed by such a protocol. They implement it to horizontally-
partitioned databases in which each player has a k-anonymization of his database, and the players
wish to compute together a better k-anonymization of the entire database. which is better than the
one which may be obtained by simply unifying the separate k-anonymizations.

1.3 Our contributions

We devise secure distributed protocols for obtaining k-anonymized and ℓ-diverse views of shared
databases, which are based on the sequential anonymization algorithm that was recently introduced
in [20]. Our approach offers the following advantages:
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• Generality. Our approach applies to both horizontal and vertical partitionings, whereas the
approaches in [23, 24, 34, 50] are restricted to only one of those settings. Our approach applies to
any number of data sites, where the entailed communication cost depends linearly on the number of
sites. The sequential algorithm, on which our protocols are based, may be applied with any utility
measure and it applies to any generalization technique (unlike [50] which works with generalization
by suppression only, or [24, 34] that work only with global recoding generalizations). Our protocols
support additional privacy measures such as ℓ-diversity and ℓ-site diversity.

• Simplicity. While previous solutions invoke costly cryptographic primitives such as homomor-
phic encryptions, oblivious transfers, and group exponentiations, the only cryptographic primitives
that we need are an SMC protocol for computing sums, and a secure hash function.

• Efficiency. Our protocols are practical and efficient. We analyze the communication complex-
ity of our protocols and then conduct experiments that illustrate the dependence of the communica-
tion costs on different parameters in several datasets, both in the horizontal and vertical settings.

• Privacy. We analyze the privacy of our distributed protocols and show that, even though they
are not perfectly secure in the cryptographic sense, they leak very little and benign information.
Such a compromise is widely acceptable (see e.g. [24, 25, 50]) when the information leakage is
deemed innocuous and the gain in utility, efficiency, and practicality is significant.

• Utility. Perhaps the most important advantage offered by our protocols is the utility of the
resulting anonymizations. The sequential algorithm is currently one of the leading k-anonymization
algorithms in terms of the utility of its output. In particular, it offers anonymizations with signif-
icantly smaller information losses than those offered by the algorithms on which the distributed
solutions in [23, 24, 34, 50] are based.

Other contributions of this study are two novel generic SMC protocols. The first one is a simple
SMC protocol for the computation of the AND (or the OR) of private bits held by the different
players. That protocol gives rise to a simple protocol for secure computation of set intersections and
unions. The second SMC protocol computes the least common ancestor of private nodes in a tree.
To the best of our knowledge, that problem was not studied before, and it may be of interest in other
applications as well.

1.4 Organization of the paper

In Section 2 we provide the necessary terminology and background; in Section 2.4 we describe
the sequential algorithm [20] which serves as the basis for our distributed protocols. In Section 3
we describe the SMC protocols that are at the basis of our distributed anonymization protocols. The
distributed k-anonymization protocols are given in Sections 4 and 5, in the horizontal and vertical
settings, respectively. In Section 6 we describe the necessary modifications that are required in order
to ensure that the output k-anonymizations respect also ℓ-diversity and ℓ-site diversity. (A precise
definition of those notions appear in Section 6.) The complexity and privacy of the distributed
protocols are analyzed in Sections 7 and 8. We present an experimental evaluation in Section 9. We
conclude in Section 10.

2 Preliminaries

In Sections 2.1 and 2.2 we provide the necessary terminology and background about anonymiza-
tion. In Section 2.3 we discuss the relation between clusterings and anonymizations, as the al-
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gorithm that we use here for anonymization is basically a clustering algorithm. In Section 2.4 we
describe the sequential clustering algorithm, which is the basis for our distributed protocols. Finally,
we describe the distributed setting in Section 2.5.

2.1 Anonymization by generalization

Consider a database that holds information on individuals in some population. Each record in
the database has several attributes, and we distinguish between identifiers, quasi-identifiers, and
sensitive attributes. Identifiers are attributes that uniquely identify the individual, e.g. name or id.
Quasi-identifiers are attributes, such as age or zipcode, that appear also in publicly-accessible
databases and may be used in order to identify a person. The sensitive attributes are those that carry
private information like a medical diagnosis or the salary of the person. k-Anonymity is
a model that was proposed in order to prevent the disclosure of sensitive attributes for the purpose
of protecting the privacy of individuals that are represented in the database.

When discussing k-anonymizations, the identifiers are suppressed. Hence, assuming that there
are d quasi-identifiers and, for the sake of simplicity, one sensitive attribute, we view the database
records as elements in A1 × · · · × Ad × Ad+1, where Aj is the set of possible values for the jth
attribute; say, if the jth attribute is gender then Aj = {M,F}.

Hereinafter, D denotes the projection of the database on the set of d quasi-identifiers and the
records of D are denoted Ri, 1 ≤ i ≤ n; namely, Ri ∈ A1 × · · · × Ad. We denote the jth
component of the record Ri by Ri(j). Also, for any set A we let P(A) denote its power set. Next,
we define the notion of generalization.

Definition 2.1. Let Aj , 1 ≤ j ≤ d, be finite sets and let Aj ⊆ P(Aj) be a collection of subsets
of Aj . A mapping g : A1 × · · · × Ad → A1 × · · · × Ad is called a generalization if for every
(b1, . . . , bd) ∈ A1 × · · · ×Ad and (B1, . . . , Bd) = g(b1, . . . , bd), it holds that bj ∈ Bj , 1 ≤ j ≤ d.

As an example, consider a database D with two attributes, age (A1) and zipcode (A2). A valid
generalization of the record Ri = (34, 98003) can be

g(34, 98023) = ({30, . . . , 39}, {98000, . . . , 98099}) .

We assume here that each of the collections Aj is a generalization hierarchy tree for Aj , 1 ≤
j ≤ d. Such a tree has |Aj | leaves – one for each singleton subset of Aj ; the root corresponds to
the whole set; and the subset of each node is the union of the subsets that correspond to the direct
descendants of that node.

Definition 2.1 refers to generalizations of single records. We now define generalizations of an
entire database.

Definition 2.2. Let D = {R1, . . . , Rn} be a database having public attributes A1, . . . , Ad, let
A1, . . . , Ad be corresponding collections of subsets, and let gi : A1×· · ·×Ad → A1×· · ·×Ad be
corresponding generalization operators. Let Ri := gi(Ri) be the generalization of the record Ri,
1 ≤ i ≤ n. Then D = {R1, . . . , Rn} is a generalization of D. If every generalized record in D has
at least k − 1 other generalized records that equal to it, D is called a k-anonymization of D.

As a final note, we distinguish between three main models of generalization:
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• In (single-dimensional) global recoding, e.g. [6, 22, 29, 45], each collection of subsets Aj is
a clustering of the set Aj (in the sense that Aj includes disjoint sets whose union equals Aj).
In such cases, every entry in the jth column of the database is mapped to the unique subset in
Aj that contains it. As a consequence, every single value a ∈ Aj is always generalized in the
same manner.

• In local recoding, e.g. [18, 19, 33, 38, 42, 45], the collection of subsets Aj covers the set Aj

but it is not a clustering (namely, the subsets in the collection may intersect). In such cases,
each entry in the table’s jth column is generalized independently to one of the subsets in Aj

which includes it. Hence, if the age 34, for example, appears in the table in several records,
it may be left unchanged in some, or generalized to 30 - 39, or totally suppressed in other
records.

• The third model is an intermediate one and it is called multi-dimensional global recoding,
e.g. [30]. In that model, like in local recoding, the collection of subsets Aj is a cover of
the set Aj (namely, each value of Aj may be contained in more than one subset in Aj).
However, it is a global recoding in the sense that there exists a global mapping function
g : A1 × · · · ×Ad → A1 × · · · ×Ad such that Ri = g(Ri) for all 1 ≤ i ≤ n.

In this paper we concentrate on local recoding which is the model that allows anonymization with
the smallest losses of information.

2.2 Measures of information loss and the problem of k-anonymization

Many measures were suggested in the literature for the amount of information that is lost in
the process of generalizing table entries towards anonymizing the table. Examples include the tree
measure [3], the LM measure [22, 36], the CM and DM measures [22], and entropy-based measures
such as the EM (the entropy measure), the non-uniform entropy measure [19] and the PMI (Private
Mutual Information) measure [20].

Given a database D over the set of attributes A1, . . . , Ad, hierarchical generalization trees A1, . . . , Ad,
and a measure of information loss F (·), the problem of k-anonymization is to find a corresponding
generalization D of D which is k-anonymous and minimizes F (D). That problem is NP-hard, e.g.
[3], and therefore either approximation algorithms or heuristic algorithms are invoked in order to
find k-anonymizations with small information losses.

The algorithms that we present herein are independent of the choice of the underlying measure
of information loss. In the experiment section, we tested our algorithms using the LM and EM mea-
sures, which we proceed to describe. Both measures associate a penalty F (·) with each of the nodes
in each of the d taxonomies; then, the information loss that is associated with the generalized record
R = (R(1), . . . , R(d)) is the average penalty of the nodes, i.e., F (R) = 1

d

∑d
j=1 F (R(j)); finally,

the information loss in the entire generalized table, D = {R1, . . . , Rn}, is F (D) = 1
n

∑n
i=1 F (Ri).

The LM measure is defined as follows: Let B ∈ Aj be a subset of Aj from the hierarchical
generalization tree. Then

F (B) :=
|B| − 1

|Aj | − 1
. (1)
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Therefore, the overall LM cost associated with the generalization D = {R1, . . . , Rn} is

FLM (D) =
1

nd

n∑
i=1

d∑
j=1

|Ri(j)| − 1

|Aj | − 1
. (2)

The definition of the EM measure is a bit more involved. The public database D = {R1, . . . , Rn}
induces a probability distribution for each of the public attributes. Let Xj , 1 ≤ j ≤ d, denote the
value of the attribute Aj in a randomly selected record from D. Then

Pr(Xj = a) =
#{1 ≤ i ≤ n : Ri(j) = a}

n
.

Let B be a subset of Aj . Then F (B) is defined as the corresponding conditional entropy,

F (B) := H(Xj |B) = −
∑
b∈B

Pr(Xj = b|Xj ∈ B) log2 Pr(Xj = b|Xj ∈ B) , (3)

where

Pr(Xj = b|Xj ∈ B) =
#{1 ≤ i ≤ n : Ri(j) = b}
#{1 ≤ i ≤ n : Ri(j) ∈ B}

, b ∈ B. (4)

Therefore, the overall EM cost associated with the generalization D = {R1, . . . , Rn} is

FEM (D) =
1

nd

n∑
i=1

d∑
j=1

H(Xj |Ri(j)) . (5)

2.3 Clusterings and anonymizations

Each k-anonymization defines a clustering of the data records into clusters of size at least k.
Specifically, every k-anonymization induces an equivalence relation on D where Ri ∼ Rj iff Ri =
Rj ; then, the induced clustering is the corresponding set of equivalence classes.

Similarly, any clustering of the records of D defines a corresponding anonymization. Assume
that C = {C1, . . . , Ct} is a clustering of the records in D to t disjoint clusters of size at least k.
Then each record will be replaced by the closure of the cluster to which it belongs:

Definition 2.3. Given a cluster of records C = {Ri1 , . . . , Ric} over A1×· · ·×Ad, and a collection
of hierarchical generalization trees, Aj , 1 ≤ j ≤ d, the closure of C is the minimal record in
A1 × · · · ×Ad that generalizes all records in C.

The cost of C is defined as the information loss that is associated with its closure, F (C), as de-
fined in Section 2.2. The information loss of the anonymization D that corresponds to the clustering
C = {C1, . . . , Ct} is then F (D) = 1

n

∑t
i=1 |Ci| · F (Ci).

2.4 The sequential algorithm

In [24] it is argued that top-down algorithms are more suitable for distributed computation than
bottom-up ones since the intermediate views that are revealed during a bottom-up algorithm may
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disclose sensitive information. For that reason, the agglomerative algorithm [18, 36] and the k-
member algorithm [9] are not suitable for the distributed setting. Since in their preliminary stages
it is necessary to compute distances between pairs of records held by two players, and some of
those distances may be small or even zero, one player may learn information about a record held by
another player.

The sequential algorithm [20] works neither top-down, nor bottom-up; it works “sideways”. In
that algorithm, one starts with an initial random clustering of the records. Such a clustering induces
an anonymization of the database, as explained in Section 2.3. The algorithm then attempts to im-
prove the quality of the clustering (namely, the quality of the induced anonymization) by examining
the current location of each record and moving it to the cluster in which it fits best. It does so repeat-
edly until it reaches a stage in which it can find no single-record moves that reduce the information
loss in the induced anonymization. At that point, if there exist clusters of size smaller than k, it
applies on them the agglomerative algorithm until all clusters are of the required minimum size. As
this algorithm performs a local search procedure, it will find a local minimum that depends on the
starting point of the search (namely, the initial clustering). Hence, it can be repeated several times
and then output the best local minimum that it found.

The sequential algorithm, as we show in Section 9, produces anonymizations with utility that
is significantly greater than that of anonymizations produced by the Mondrian [30] algorithm, that
was implemented in the distributed setting in [24]. The utility gap with respect to the Mondrian
algorithm stems from the fact that the sequential algorithm achieves anonymizations by means of
local recoding, an anonymization model which is broader than the global multidimensional recoding
that is implemented by the Mondrian algorithm. In addition to that, the sequential algorithm does
not need to assume an order on each of its attributes, unlike the Mondrian algorithm.

In fact, as shown in [20], the sequential algorithm is currently one of the leading k-anonymization
algorithms in terms of the utility of its output. It was compared in [20] against the Mondrian algo-
rithm, an improved version of the Hilbert-curve algorithm [17], the agglomerative algorithm and the
k-member algorithm. The information losses in the outputs of the sequential and the agglomerative
algorithms were very close (but the runtime of the sequential algorithm is much better), and they are
slightly smaller than the information loss of the output of the k-member algorithm. However, the
agglomerative and the k-member algorithms are not suitable for the distributed setting, as discussed
above. The next best algorithm which is not bottom-up is the improved Hilbert-curve algorithm.
As shown in [20] and as we show again here in Section 9, the sequential algorithm is significantly
better, in terms of the information losses that it yields, than the improved Hilbert-curve algorithm.

(We note that there exist a number of other algorithms, e.g. [1, 2, 11], that use techniques other
than generalization to achieve k-anonymity. To the best of our knowledge, those algorithms were
not implemented in the distributed setting.)

2.5 The distributed setting

In the case of horizontal partitioning, the database D = {R1, . . . , Rn} is distributed among m
sites, or players. Player i holds a table with ni of the records, say Di = {Ri

1, . . . , R
i
ni
}, 1 ≤ i ≤ m,

where n =
∑m

i=1 ni and D =
∪m

i=1D
i. The goal is to design a distributed algorithm so that

each player computes a generalization of his table, Di, such that the union of all those tables,
D =

∪m
i=1D

i, satisfies k-anonymity.
In the case of vertical partitioning, the set of attributes A = {A1, . . . , Ad} is partitioned into m
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disjoint sets, A1, . . . ,Am, and Player i holds the partial database Di = {Ri
1, . . . , R

i
n}, where Ri

j

is the projection of Rj onto the subset of quasi-identifiers Ai. The goal is to design a distributed
algorithm so that each player computes a generalization of his table, Di, such that the join of all
those tables, D = D

1|| · · · ||Dm, satisfies k-anonymity.

3 SMC protocols

Here we describe secure multi-party protocols that will be used by our distributed anonymization
algorithms in the subsequent sections. The sum protocol (Section 3.1) will be used to compute sizes
of clusters of records that are distributed among the various players in the horizontal setting, or their
generalization costs in the vertical setting. The And protocol (Section 3.2) will be used to compute
closures of clusters in the horizontal setting. While the sum protocol is part of the folklore for many
years now and was used in previous studies (e.g. [25]), the And protocol is a novel one.

3.1 Computing the sum of private integers

The first and most basic secure multi-party protocol that we will need is a protocol to compute
sums of private integers. Algorithm 1 implements such a computation. N is any sufficiently large
integer that is agreed among the players in advance.

Algorithm 1 Secure computation of the sum
Input: Player i, 1 ≤ i ≤ m, has an input integer ai ∈ N.
Output: a =

∑m
i=1 ai.

1: Player 1 sets a = 0.
2: for i = 1, . . . ,m do
3: Player i generates a random element ri ∈ ZN and sends to Player i + 1 (or Player 1 when

i = m) the value a = a+ ai + ri, where all operations are made in ZN .
4: end for
5: for i = 1, . . . ,m do
6: Player i sends to Player i+ 1 (or Player 1 when i = m) the value a = a− ri.
7: end for
8: The value of a at this stage is a =

∑m
i=1 ai.

The above algorithm can be easily extended to compute sums of vectors. So, whenever it is
needed to compute several sums which are independent of each other, it is preferable to invoke
Algorithm 1 once for adding vectors, than invoking it several times for adding scalars, in order to
reduce the communication cost. The communication complexity of Algorithm 1, for adding inputs
of any size, is 2m.

Our protocols are based on two basic protocols — the sum protocol that was described above,
and the AND protocol, that we present in Section 3.2 below. For both of these protocols we present
a version that is secure against collusions.

3.2 Simplified SMC protocols for computing the AND

We suggest here a novel SMC protocol for computing the AND of the private bits held by the
players, b =

∏m
i=1 bi. (The case m = 2 is usually referred to as the Match-Making problem.) Our
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protocol is much simpler than the generic solutions suggested in [7, 8, 21]. (We would like to stress
that those generic solutions are practical, and especially the one that was recently introduced in [8],
called FairplayMP, which is based on the solution in [7] and improves it. However, the solutions that
we present herein are much simpler to understand and program, and they employ less cryptographic
primitives.)

Our protocol, given in Algorithm 2, is presented for computing And of single bits; the extension
to binary vectors is straightforward. It is based on the fact that the And of all bits equals 1 iff
their sum equals m. Hence, the players execute the secure sum protocol up to one step before its
completion (Steps 1-8). Then, in Steps 9-10, the last two players check whether the sum equals m
or not. To do that, they need to securely compare two values (u and v), without disclosing them. To
that end they may invoke a secure oblivious string comparison algorithm (e.g. [16]). We note that if
m > 2 the two values may be compared more easily as follows: Players m− 1 and m will send to
Player 1 the values h(r + u) and h(r + v), where r is a large random number that the two players
choose jointly, and h is a secure hash function, in the sense that h(r+u) and h(r+ v) do not reveal
information on u − v. Then, Player 1 will output b = 1 if the two hashed values equal, and b = 0
otherwise.

Algorithm 2 Secure computation of the AND
Input: Player i, 1 ≤ i ≤ m, has an input bit bi ∈ {0, 1}.
Output: b =

∏m
i=1 bi.

1: Player 1 sets a = 0.
2: for i = 1, . . . ,m do
3: Player i generates a random element ri ∈ Zm+1 and sends to Player i+ 1 (or Player 1 when

i = m) the value a = a+ bi + ri, where all operations are made in Zm+1.
4: end for
5: for i = 1, . . . ,m− 2 do
6: Player i sends to Player i+ 1 the value a = a− ri.
7: end for
8: Player m− 1 computes u := a− rm−1 =

∑m
i=1 bi + rm.

9: Players m computes v = m+ rm.
10: Players m− 1 and m output b = 1 if u = v, and b = 0 otherwise.

Before moving on, we observe that the above described solution may be easily modified in order
to compute other Boolean functions. The first function is OR: It is easy to see that if we set v = rm
in Step 9, and modify Step 10 to output b = 0 if u = v and b = 1 if u ̸= v, the protocol will
compute the OR of the input bits. The second function is the following threshold function,

Tt(b1, . . . , bm) =

{
1

∑m
i=1 bi ≥ t

0 otherwise
,

where 0 < t ≤ m. To that end, Players m − 1 and m agree on a secure hash function and a large
random integer r. Then, in case m > 2, Player m sends to Player 1 in Step 10 a random permutation
of the set of values H = {h(r + i + rm) : t ≤ i ≤ m}, while Player m − 1 sends to Player 1 the
value h(u+ r). Player 1 then checks whether the value that he received from Player m− 1 appears
in the set H received from Player m; if it does, he outputs b = 1; otherwise he outputs b = 0.
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4 A distributed sequential algorithm for horizontally partitioned databases

Here we describe a protocol that implements the sequential algorithm in a distributed manner for
horizontally partitioned databases. In the next section we shall describe a protocol for vertically
partitioned databases.

Before the protocol starts, the players need to compute the information loss F (·) that is associated
with each node in each of the hierarchical generalization trees Ai, 1 ≤ i ≤ d (see Section 2.2). In
the case of the LM measure, (2), those values are given by (1) and they can be computed publicly.
In the case of the EM measure, (5), those values are given by (3)+(4). Their computation requires
the players to compute for each attribute, Aj , 1 ≤ j ≤ d, its distribution in the unified database D.
To that end, Player i, 1 ≤ i ≤ m, constructs a vector (f1, f2, . . . , f|Aj |) where fs is the number of
records in Di with the sth value in Aj . Then, using Algorithm 1, they add those vectors from all
players. Dividing the result by n gives the probability distribution of Aj in D.

The distributed sequential clustering protocol in the horizontal partitioning setting is given in
Algorithm 3. Some of the operations in it require an SMC protocol (those operations are denoted
by the comment “SMC protocol”). All other operations can be carried out solely by one of the
participating players.

The algorithm uses two parameters that control the size of the clusters: k0, for the size of the
initial clusters, and k1, for the upper limit on cluster size. As the distributed version simulates the
non-distributed version, we used in our experiments values that were found in [20] to yield good
performance — k0 = 0.5k and k1 = 1.5k.

The algorithm starts (Step 1) by computing the total number of records in the unified database,
using Algorithm 1. (We assume that also ni need to remain private; if those numbers are not
sensitive, then n can be computed in a public manner.) After n was computed, the players create
a random clustering of the records of the unified database D into t clusters, where the size of each
cluster is roughly k0 (Step 2). To that end, each player privately generates a random labeling of
his own records by labels from {1, . . . , t := ⌊n/k0⌋}, where the number of records in Di with any
given label is either ⌊ni/t⌋ or ⌈ni/t⌉. The cluster Cs, 1 ≤ s ≤ t, is the union of all records from all
m tables that have the label s.

Then, in Step 3, Player 1 starts SMC protocols to compute the sizes and closures of all clusters.
Computing the size of a given cluster may be carried out by invoking Algorithm 1. The protocol for
computing the closure of a cluster is described in Section 4.2. Once the closures were computed,
the corresponding generalization costs of the clusters may be computed publicly, since the players
have computed earlier the generalization cost F (·) of all nodes in A1, . . . , Ad.

The core of the algorithm is the main loop (Steps 4-20) on all players, and for Player i on all of
the records in his table Di. The idea is to greedily improve the allocation of each of the records
in D to the currently best cluster for it, until we reach an iteration during which all records in D
were found to be in the best place for them. To that end, the current player examines each of his
records and checks whether a better cluster may be found for that record, in the sense that if we
re-allocate that record, the overall generalization cost of the clustering would reduce. At this stage,
we get rid of clusters that are singletons (Steps 12-14). After completing the whole loop, we look
for clusters that are too large (namely, of size greater than k1), and randomly split each such cluster
to two equally-sized clusters (Steps 21-24). If at least one record moved during the last loop, the
main loop is iterated. Otherwise, the protocol starts the final stage, Steps 26-30.

In the final clustering stage we take care of clusters that are smaller than k, by applying on them
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Algorithm 3 Sequential clustering for k-anonymization in horizontally-partitioned databases
Input: m tables Di = {Ri

1, . . . , R
i
ni
}, integer k.

Output: A k-anonymized table, D = {R1, . . . , Rn} of
∪m

i=1D
i, where n =

∑m
i=1 ni.

1: Compute n =
∑m

i=1 ni. {SMC protocol}
2: Choose a random partition of the data records into t := ⌊n/k0⌋ clusters, C1, . . . , Ct.
3: Player 1 computes the size, closure, and generalization cost of all clusters, |Cs|, Cs, and F (Cs),

1 ≤ s ≤ t. {SMC protocol}
4: for i = 1, . . . ,m do
5: for j = 1, . . . , ni do
6: Let Cs be the cluster to which record Ri

j currently belongs. Compute the closure and
generalization cost of C ′

s := Cs \ {Ri
j}. {SMC protocol}

7: for r = 1, . . . , t, r ̸= s do
8: Compute the closure and generalization cost of C ′

r := Cr
∪
{Ri

j}.
9: Compute the change in the overall information loss if Ri

j would move from Cs to Cr:

∆(i,j):s→r :=
(
|C ′

s| · F (C
′
s) + |C ′

r| · F (C
′
r)
)
−

(
|Cs| · F (Cs) + |Cr| · F (Cr)

)
.

10: end for
11: Let Cr0 be the cluster for which ∆(i,j):s→r is minimal.
12: if |Cs| = 1 then
13: Move Ri

j from Cs to Cr0 and update the size, closure and generalization cost of Cr0 .
14: Remove Cs from the list of clusters.
15: else
16: If ∆(i,j):s→r0 < 0, move Ri

j from Cs to Cr0 and update the size, closure and general-
ization costs of both Cs and Cr0 .

17: end if
18: end for
19: Transfer to the next player the updated sizes and closures of all clusters.
20: end for
21: for each Cs of size |Cs| > k1 do
22: Player 1 creates a new cluster and sends a message to all players to move a random half of

the records in Cs to the new cluster.
23: Player 1 computes the size, closure, and generalization cost of Cs and the new cluster. {SMC

protocol}
24: end for
25: If at least one record was moved during the last loop (Steps 4-20), go to Step 4.
26: while the number of clusters of size smaller than k is greater than 1 do
27: Compute the distance between every pair of small clusters,

dist(Cs, Cr) :=
(
|Cs ∪ Cr| · F (Cs ∪ Cr)

)
−
(
|Cs| · F (Cs) + |Cr| · F (Cr)

)
. (6)

28: Unify the two closest small clusters.
29: end while
30: If there exists a single cluster of size less than k, unify it with the cluster to which it is closest.
31: Compute the k-anonymization that corresponds to the final clustering. {SMC protocol}
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the agglomerative algorithm. That algorithm greedily unifies each time the two closest clusters,
until the size of all clusters is at least k. In this context, the distance between clusters Cs and Cr,
given in Eq. (6), is the amount of information that we would lose if we unify them. If clusters Cs

and Cr were found to be the closest ones, all that is needed to do is to relabel all records in Cr as
records in Cs, remove cluster Cr, and store the closure and the generalization cost of the new Cs.

The last stage is to translate the final clustering to the corresponding k-anonymization (Step
31). This is the first stage where the sensitive values are incorporated. Assume that the clusters in
the final clustering are C1, . . . , Ct. For each such cluster, it is necessary to create |Ci| generalized
records that equal the corresponding closure Ci. In addition, it is necessary to add the corresponding
sensitive values of those |Ci| records. The players cannot reveal the sensitive values of the records
that they have in that cluster since then other players would learn about sensitive values in records
of other players. In order to perform that computation in a secure manner, the players agree upfront
on an ordering of all possible values of the sensitive attribute. Assuming that there are q possible
values, each player computes a vector of counts, (f i

1, . . . , f
i
q), where f i

j is the number of his records
having the jth sensitive value in cluster Ci. By adding up those vectors, using Algorithm 1, the
players can find out the number of records in Ci, from all players, that have the jth sensitive value
for each 1 ≤ j ≤ q. With that information, they can construct the block of identical generalized
records that corresponds to cluster Ci.

4.1 Distributed and centralized implementations of sequential clustering

The implementation of the sequential clustering anonymization algorithm in the distributed set-
ting is essentially the same as its implementation in the centralized setting. The sequential clustering
anonymization algorithm and its distributed versions that we describe herein are randomized. For a
given input (a database D and an anonymity parameter k) there could be several outputs, depending
on the random choices made during the execution of the algorithm. Our claim is that the set of pos-
sible anonymizations of the unified database that the collaborating players may get at the conclusion
of the distributed protocol (in both the horizontal and vertical settings) is independent of the number
of players and the manner in which the database is split among the players. Hence, the distributed
protocols simulate the centralized one. We proceed to state that claim formally and prove it.

By applying Algorithm 3 on a database D that is partitioned between m players, we obtain a
sequence of clusterings of D’s records, σ = (C1, . . . , Cp), where C1 is the initial random clustering
and Cp is the final one. That sequence depends on the random selections made by the players in
Steps 2 and 22 (or on random breaking of ties in stages when there are more than one optimal
action). Let P = ⟨D1, . . . , Dm⟩ be a partitioning of D among m players and let ΣP(D, k) denote
the set of all possible sequences σ that may be realized during an implementation of Algorithm 3
on inputs D and k, when D is partitioned between m players according to P . Then:

Theorem 4.1. The set ΣP(D, k) is independent of P .

Namely, each sequence of clusterings that can be realized during a P-distributed implementation
of Algorithm 3 on given inputs, is a possible sequence also in a centralized implementation (m = 1
and P = ⟨D⟩), and vice-versa.

Proof. Let σ = (C1, . . . , Cp) be a sequence of clusterings in a P-distributed implementation of
Algorithm 3. We prove by induction that every prefix of length i in σ can be realized in any
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other distribution setting, P ′, with any number of players, m′. When i = 1, any initial random
clustering C1 can clearly be realized in any distribution setting. If Ci+1 is obtained from Ci without
randomization, then Ci+1 will follow Ci in any distribution setting since it is implied by the basic
operation of the sequential algorithm. If Ci+1 is obtained from Ci by randomization (e.g., Ci+1

results from applying Step 22 on Ci), then it can be obtained from Ci in any distribution setting, since
the same random choices are possible in any distribution setting. Since the termination condition is
independent of P , the sequence σ can be realized in any distribution setting.

(Theorem 4.1 and its proof hold also in the vertical partitioning setting.)

4.2 Computing the closure of a cluster

The main SMC protocol in Algorithm 3 is the one needed for computing the closure of a dis-
tributed cluster. That computation is needed in the beginning of the algorithm (Step 3), each time
we examine the potential utility gain by removing a record from a cluster (Step 6), and whenever a
large cluster is split (Step 23). (There are also closure computations in Steps 8 and 27, but those do
not require an SMC protocol. In Step 8, the current player knows the closure of Cr and, therefore,
he may compute on his own what would be the closure of Cr ∪ {Ri

j}. In Step 27, all players know
the closures of Cs and Cr and, therefore, the closure of Cs ∪ Cr is simply the minimal record that
generalizes those two closures.)

Let Cs denote the sth cluster and let Cs = (X(1), . . . , X(d)) ∈ A1 × · · · × Ad be its closure.
In order to compute Cs, each player starts by computing the local closure of the records in his table
that belong to the sth cluster ; let us denote the ith local closure by C

i
s = (Xi(1), . . . , Xi(d)) ∈

A1 × · · · × Ad, 1 ≤ i ≤ m. The goal is then to compute the minimal generalized record that
generalizes all of those m generalized records.

The computation can be done in each dimension separately. Given a taxonomy, say Aj , the ith
player has a node in that taxonomy, Xi(j), and the goal is to securely compute the least common
ancestor of all the nodes Xi(j), 1 ≤ i ≤ m. (If Player i does not have at the moment s-labeled
records, he sets Xi(j) = ∅ and then every node in Aj may be viewed as an ancestor of Xi(j)).

Below, we describe a simple SMC protocol that enables such a computation. Given such a
basic protocol, the players may run it for each of the d attributes and thus construct the closure
(X(1), . . . , X(d)). (The latter computation may be parallelized in order to reduce the communica-
tion overhead.) Once the entire closure, Cs, is computed, it is possible to compute publicly the
corresponding cost F (Cs).

We now turn to describe the SMC protocol to compute the minimal ancestor in a taxonomy A
of nodes X1, . . . , Xm ∈ A that are held by the m players. One of the players is designated as the
pivot of the computation. He then performs a DFS scanning of the taxonomy tree A in search of
the minimal node that is an ancestor of all m nodes X1, . . . , Xm. Once the search hits a node that
is not a common ancestor of all input nodes, it goes up to the father node and then tries to go down
another branch. The output will be the first node which is a common ancestor that has no direct
descendant with the same property.

The basic check in the above described DFS is to decide whether a given public node in the
taxonomy, say X ∈ A, is a common ancestor of Xi for all 1 ≤ i ≤ m, where Xi is known only
to the ith player. To that end, the players need to compute

∏m
i=1 δ(X,Xi), where δ(X,Xi) = 1

if X is an ancestor of Xi, and δ(X,Xi) = 0 otherwise. Hence, we are looking at one of the most
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basic problems of SMC – computing the AND of m private bits. That computation may be carried
out using Algorithm 2 that was presented in Section 3.2.

We would like to point out that in Step 6 we may compute the closure more efficiently than
in the initial computation in Step 3. Assume that Ri

j belongs to Cs, that the closure of Cs is

Cs = (X(1), . . . , X(d)), and the local closure of the current Player i is Ci
s = (Xi(1), . . . , Xi(d)).

Then Player i executes a loop over all attributes a, 1 ≤ a ≤ d, and checks whether the removal of
Ri

j from Cs has an effect on Xi(a). If not, then X(a) will not change either; if, however, Xi(a)

changes in wake of a possible removal of Ri
j from Cs, Player i has to start an SMC protocol to

compute the new X(a). At this stage, though, he may start the DFS search of the ath taxonomy Aa

in the current node X(a), rather than in the root.

5 A distributed sequential algorithm for vertically-partitioned databases

The vertical setting is somewhat simpler than the horizontal one, since all records are shared by all
players. Hence, the allocation of records to clusters is public, and a single player may act as a pivot
throughout the entire protocol. Another significant implication of the fact that all records are shared
by all players, is that given a clustering of the records, each player may compute the projections of
the closures of all clusters onto the subset of attributes that he governs, without interaction with other
players. Those local closures need not be shared with the rest of the players. The only interaction
between players is needed when they wish to compute the change in the overall information loss
in wake of changes in the clustering. In such cases, each player computes separately the change in
the generalization cost of each such contemplated action (be it a record transition or a unification
of two small clusters) in his attributes, and then the players invoke Algorithm 1 in order to compute
the sum of those changes.

Algorithm 4 implements the distributed sequential algorithm for vertically-partitioned databases.
The steps in the algorithm that call for an SMC protocol are marked by the comment “SMC pro-
tocol”. All other operations can be carried out solely by one of the participating players. During
the algorithm, one of the players is designated the pivot, who acts as the master that coordinates the
operation of the algorithm, whereas all other players act as slaves.

At the beginning, the pivot selects a random partitioning of the database records into t clusters,
where the size of each cluster is k0 or k0 + 1. (As before, k0 is a free parameter that depends on
k; we selected k0 = k/2.) Since the data is vertically-partitioned, the number of records and the
cluster sizes are known to all and, hence, there is no need to perform cluster size computation as in
the case of horizontal partitioning. After the pivot informs all players of the initial clustering that he
selected, all players compute the local closure and generalization cost of their clusters.

In the main loop of the algorithm (Steps 3-17) the players try to greedily improve the allocation
of each of the records in D to a cluster, until they reach an iteration during which all records in
D were found to be in the best cluster for them. Here, all players need to collaborate in order to
compute the change in the overall generalization cost if a records moves from its current cluster to
another cluster (Steps 6-7).

After the sequential phase ends, the algorithm executes agglomerative clustering on the remaining
small clusters (Steps 23-29). The distance between each pair of those clusters is computed as the
overall change in the generalization cost in case those two clusters were to be unified. As before,
each player computes the difference in the local generalization cost if such a union would take
place, and then the pivot adds up those differences in an SMC manner in order to find out the
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Algorithm 4 Sequential clustering for k-anonymization in vertically-partitioned databases
Input: A set A of attributes {A1, . . . , Ad} partitioned into m subsets A1, . . . ,Am of lengths

d1, . . . , dm; m tables Di = {Ri
1, . . . , R

i
n}, where Ri

j contains attributes from Ai; integer k.
Output: A k-anonymization of D = D1|| · · · ||Dm = {R1, . . . , Rn}.

1: Pivot randomly partitions the data records into t := ⌊n/k0⌋ equal-sized clusters, C1, . . . , Ct.
2: All players compute the local closure and generalization cost of each of the clusters in their

local database.
3: for i = 1, . . . , n do
4: Let Cs be the cluster to which record Ri currently belongs.
5: for r = 1, . . . , t, r ̸= s do
6: Pivot sends a message to all players to compute the change in the local generalization cost

if Ri would move from Cs to Cr.
7: Pivot computes the total change in the generalization cost if Ri would move from Cs to

Cr (we denote that value by ∆(i,j):s→r). {SMC protocol}
8: end for
9: Let Cr0 be the cluster for which ∆(i,j):s→r is minimal.

10: if |Cs| = 1 then
11: Pivot moves Ri

j from Cs to Cr0 .
12: Pivot sends a message to all players to update the local closure and generalization cost of

Cr0 .
13: else
14: If ∆(i,j):s→r0 < 0, move Ri from Cs to Cr0 .
15: Pivot sends a message to all players to update the local closure and generalization costs of

both Cs and Cr0 .
16: end if
17: end for
18: for each Cs of size |Cs| > k1 do
19: Pivot creates a new cluster and moves a random half of the records in Cs to the new cluster.
20: All players compute the local closure and generalization cost of Cs and of the new cluster.
21: end for
22: If at least one record was moved during the last loop (Steps 3-17), go to Step 3.
23: while the number of clusters of size smaller than k is greater than 1 do
24: For every pair of small clusters, Cs and Cr, the Pivot instructs all players to compute the

change in the local generalization cost if those clusters were to be unified.
25: Pivot computes the total change in the generalization cost if Cs and Cr were to be unified.

{SMC protocol}
26: Pivot identifies the two small clusters whose unification results in the smallest change in the

overall generalization cost.
27: Pivot unifies those two clusters; namely, if those are Cs and Cr, he relabels all records in Cr

as records in Cs, removes cluster Cr, and then notifies all players of the new clustering and
instructs them to compute the local closure and generalization cost of the new Cs.

28: end while
29: If there exists a single cluster of size less than k, unify it with the cluster to which it is closest.

{SMC protocol}
30: Output the resulting anonymization.
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overall difference and, consequently, pick the pair whose union results in the smallest addition
to the generalization cost. Once the final clustering has been reached, the players compute the
corresponding k-anonymization (Step 30). As opposed to the horizontal setting, here there is no
need in an SMC protocol, since the player that maintains the sensitive attribute may compute on his
own the list of sensitive values in each block of identical records.

We would like to stress the difference of our approach compared to that of [23]. In their approach,
each site computes independently a k-anonymization of his part of the database; but then, in order
to validate the k-anonymity of the join of those parts, a secure computation of the intersection of
clusters is needed. This costly protocol is avoided by us, since the clustering is being orchestrated
by the pivot player.

6 Ensuring diversity

The notion of ℓ-diversity was introduced in [32] as an enhancement to k-anonymity. In that
model, each cluster of size at least k of indistinguishable records must have at least ℓ “well-
represented” distinct values in the sensitive attribute. One of the ways in which ℓ-diversity is usually
enforced is by demanding that the frequency of each of the private values within each cluster of in-
distinguishable records does not exceed 1/ℓ [45, 46].

The related notion of ℓ-site diversity was introduced in [24]. While ℓ-diversity aims at protecting
the privacy of the data subjects, ℓ-site diversity aims at protecting the privacy of the data providers,
in the case of horizontal partitioning. In order to illustrate that notion, assume that one of the quasi-
identifiers may be used in order to identify the site that provided the data record. For example, if the
different sites are hospitals and only one of those hospitals is from the northwest, then a record of
a patient from Seattle, WA, can be immediately connected to that hospital. The requirement is then
that the generalized values that appear in such quasi-identifiers may not be linked to sets of sites of
size less than ℓ.

Our algorithms may be modified in order to support both of those security requirements, in addi-
tion to k-anonymity, as we proceed to describe.

6.1 Supporting ℓ-diversity

Sequential clustering may be modified so that it issues k-anonymizations that are also ℓ-diverse,
as described in [20]. Let ℓ be the input parameter that indicates the required level of diversity of the
final anonymization. A necessary condition is that ℓ would be no larger than ℓmax — the diversity
of the sensitive value in the entire table. But as explained and illustrated in [20], if one chooses ℓ
to be too close to ℓmax, it is possible that the only clustering that is ℓ-diverse is the trivial clustering
(where all of the table is one cluster). Hence, in order to allow meaningful clusterings, the input
target diversity parameter ℓ should not be too close to ℓmax.

The first step is choosing an initial clustering of the database records such that the distribution
of the sensitive attribute in each cluster is close to the distribution in the entire table. By doing so,
the minimal diversity of the initial clusters would be close to ℓmax. Let q be the number of possible
values of the sensitive attribute. Hereinafter we refer to records for which the sensitive value is
the jth possible sensitive value as j-records, 1 ≤ j ≤ q. Let fj be the number of j-records in D.
Hence, ℓmax = n

max1≤j≤q fj
. The goal is to create t initial clusters C1, . . . , Ct for which the count

of j-records in each cluster is either ⌊fjt ⌋ or ⌈fjt ⌉. Such an initial clustering will have a diversity
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ℓ′ which is close to ℓmax (the diversity of that clustering might be smaller than ℓmax as a result
of rounding the non-integral values fj

t ). If the achieved initial diversity ℓ′ is greater than or equal
to the input target diversity ℓ, then the initial clustering is ℓ-diverse and we may proceed with the
sequential clustering. Otherwise, the input parameter ℓ is too high and needs to be reset to ℓ′.

The goal now is to maintain the ℓ-diversity of the initial clustering. Therefore, during its opera-
tion, the algorithm examines each contemplated change of clustering and performs it only if it does
not lead to a violation of the ℓ-diversity condition. By doing so, we guarantee that all intermediate
clusterings are also ℓ-diverse, and, consequently, so is the final output. There are three types of
changes of clusterings that the algorithm performs:

1. Transitions of records from one cluster to another.

2. Splitting of large clusters.

3. Unification of small clusters.

As for record transitions, the modified algorithm performs such an action only if it does not
violate ℓ-diversity in neither the originating cluster, nor in the destiny cluster. Specifically, we
consider the option of moving a record from a cluster Ci only if such a removal would not decrease
the diversity of Ci to below ℓ; if it would, we move on to the next record. Otherwise, we look for a
better cluster for that record only among those clusters that can receive that record without violating
ℓ-diversity.

Splitting a large cluster to two clusters is done in similarity to the initial splitting of the entire
database; i.e., instead of splitting all of D to t equal sized clusters, we split a given large cluster to
t = 2 equal sized smaller clusters.

As for the unification of small clusters, it needs no checking since the union of two ℓ-diverse
clusters is also ℓ-diverse.

Next, we discuss the implementation of those modifications in the two distributed settings. The
case of vertical partitioning is simple since the site that holds the sensitive attribute may perform
all the above described checks without interacting with other players. The case of horizontal par-
titioning, on the other hand, requires the players to interact in order to check compliance with the
diversity requirement. We proceed to describe the necessary modifications to the protocol in order
to perform the initial splitting of the entire database to t clusters, the splitting of a large cluster to
two smaller clusters, and moving a record from one cluster to another.

6.1.1 Splitting the database in a manner that maximizes the minimal diversity

Recall that fj denotes the number of j-records in D, and we wish to find an initial clustering to t
clusters, C = {C1, . . . , Ct}, where the value of t is given, so that the number of j-records in each
cluster is either ⌊fjt ⌋ or ⌈fjt ⌉, 1 ≤ j ≤ q. To that end, each player splits his records to t clusters so
that the sensitive values in those records are spread evenly. Namely, if that player has gj j-records,
he will make sure that the number of j-records that he has in each of the t clusters is either ⌊gjt ⌋ or
⌈gjt ⌉. However, such a strategy does not guarantee that the global goal of uniform distribution of
each of the sensitive values is achieved.

As an example, assume that there are m = 2 players, and that they wish to split the records in
the unified database to t = 2 clusters with an even distribution of the sensitive values. Assume next
that the first player has 11 j-records and the other one has 9 j-records, for some j. The first player
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splits his 11 j-records to 5 in one cluster and 6 in the other, while the second player splits his 9
j-records to 4 and 5. If both players elected to place the smaller number of j-records in the same
cluster, say C1, then C1 will have 9 j-records while C2 will have 11 j-records, as opposed to the
desired partition of 10 j-records in each of the two clusters.

In order to rectify this, the players proceed as follows. After each player splits his records to
clusters, the players invoke Algorithm 1 to compute the counts of each of the q sensitive values in
each of the t clusters. At the end of Algorithm 1, it is Player 1 who recovers first those counts. Let
fs
j , 1 ≤ j ≤ q, 1 ≤ s ≤ t, denote those counts. The goal is to have

max
1≤s≤t

f s
j − min

1≤s≤t
f s
j ≤ 1 , 1 ≤ j ≤ q ; (7)

namely, that for each of the q sensitive values, its counts in all t clusters are as even as possible.
Player 1 checks condition (7). If he finds out that it is violated for some of the sensitive values, he
will try to rectify this, or at least improve the situation towards meeting that condition. Instead of
formalizing this simple process, we illustrate it by example: Assume that there are t = 4 clusters
and that the count vector of the jth sensitive value is

(f1
j = 5, f2

j = 10, f3
j = 7, f4

j = 9) .

The target distribution for such a value would be any permutation of the count vector (7, 8, 8, 8).
Player 1 will attempt to approach this target distribution as much as possible by moving some of his
own j-records between clusters. After doing so with all the sensitive values, he will transfer to the
next player those count vectors so that he will continue to “flatten” the sensitive value distribution
among clusters by moving his own records from one cluster to another. By doing so, it is guaranteed
that the target “flat” distribution will be achieved eventually. Only then, the players may continue
to Step 3 in Algorithm 3 in order to compute the closure of the clusters and proceed with the usual
operation of the algorithm.

6.1.2 Splitting a large cluster

Splitting a large cluster to two clusters goes along the same lines as described above. Namely, given
a large cluster C in which the number of j-records equals gj , we split it to two equal sized clusters,
C1 and C2, in which the number of j-records is ⌊gj2 ⌋ and ⌈gj2 ⌉.

It is possible that even if we follow that plan, one of the smaller clusters will not be ℓ-diverse. In
such cases, cluster C is retained and not split. As an example, assume that a and b are two integers
such that a > b, and that the diversity parameter is ℓ = 2a+1

2b+1 . If |C| = 2a + 1 and the most
frequent sensitive value in C appears 2b+1 times, then the diversity of that cluster is exactly ℓ. But
it is impossible to split C non-trivially to C1 and C2 such that both will still be ℓ-diverse. The best
non-trivial split is to clusters of sizes a and a+ 1 where the most frequent sensitive value appears b
and b+ 1 times respectively. But then the larger cluster will not be ℓ-diverse. Hence, in such cases
we retain the large cluster and do not split it.

6.1.3 Moving a record from one cluster to another

Consider the stage where Player i is the pivot in the main loop. In Step 6 in Algorithm 3 he should
examine whether the removal of Ri

j from Cs would decrease the diversity of Cs to below the allowed
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threshold of ℓ. Player 1 can check that on his own, without interacting with other players, since he
has the counts f s

j , 1 ≤ j ≤ q, and he knows the sensitive value of Ri
j . If the diversity of Cs would

become less than ℓ, he would not move it. Then, in the loop over all other clusters, Steps 7-10, he
would look for an optimal cluster for Ri

j only among those clusters Cr for which Cr
∪{

Ri
j

}
has a

diversity of at least ℓ. Also that check may be performed solely by the pivot without interacting with
other players. When Player i finishes his loop over all of his records, Steps 5-18, he will transfer to
the next player (in Step 19) the new counts f s

j , 1 ≤ j ≤ q, 1 ≤ s ≤ t.

6.2 Supporting ℓ-site diversity

We outline here a modification to our solution in order to support ℓ-site diversity. Assume that
sites may be identified by b attributes, say A1, . . . , Ab. First (in a preliminary stage, before the
distributed protocol starts), the corresponding hierarchical generalization trees of those attributes
are pruned so that they do not include nodes that are supported by less than ℓ sites. Specifically, if
Xi is a leaf of Ai, the hierarchical generalization tree of Ai, that is supported by less than ℓ sites,
we remove Xi as well as its siblings from Ai, so that the father of Xi in Ai becomes a leaf. That
process is repeated until all leaves in Ai are ℓ-site diverse.

In case that b = 1 (namely, sites may be identified by only one quasi-identifier, say location)
that is it; no further precaution steps are needed. If, however, b > 1, it is not enough. Assume that
(X1, . . . , Xb) is a b-tuple of nodes in the Cartesian product of the corresponding pruned taxonomies
(A1, . . . , Ab); namely, Xi is a node in Ai that supports a set of sites Si of size |Si| ≥ ℓ, 1 ≤
i ≤ b. Even though each of those b nodes can be linked to no less than ℓ sites, it is possible that
|
∩

1≤i≤b Si| < ℓ, whence their combination can be linked to less than ℓ sites. Such combinations
can be identified upfront in the preliminary stage. Then, in the course of the distributed protocol, the
computation of the closure of a given cluster must not find out that its closure in the first b attributes
is (X1, . . . , Xb) since then the closure can be linked to less than ℓ sites. Therefore, as opposed to
the usual operation of the algorithm in which the computation of the closure in all attributes may
be performed in parallel, here it should be done in a sequential manner. First, the players should
compute the closure X1 in A1. Then, they will compute the closure in A2, but the search should
not go below a node in A2 that has a son whose conjunction with X1 is not ℓ-site diverse. Once the
closure in A2 is found, say X2, the next taxonomy A3 is searched, bearing in mind that only nodes
whose conjunction with both X1 and X2 is ℓ-site diverse are allowed. Clearly, the order in which
the taxonomies are searched may have an effect on the computed closure. Therefore, the players
must start with the attribute that is deemed as the most valuable one for the data mining purpose in
mind, and then move on to the second most valuable attribute and so forth.

Assume, for example, that sites may be identified by location and income. Table 1 shows
how the location of an individual or his annual income level can be linked to possible hospitals
in the Bay Area. All values in those tables are 2-site diverse. However, in order to respect 2-site
diversity, it is forbidden to reveal that all records in some cluster are of patients from Palo Alto with
an income level of 300K-400K, since such patients are most probably from hospital H7. Hence,
in such cases, we either generalize Palo Alto to its ancestor in the location taxonomy (say, The
Bay Area in this example), or we generalize 300K-400K to 100K-500K. If location is the more
important attribute, then we first compute the closure in that attribute. If the closure turns out to be
San Francisco, then we can compute the closure in the income attribute without any restrictions.
However, if the closure turns out to be Palo Alto, and when computing the closure in the income
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attribute we found out that 100K-500K is consistent with all records in the cluster, we will not
continue the computation of the closure down the income taxonomy since a more specified value
might lead to a violation of 2-site diversity.

location Hospitals
San Francisco H1,H2,H3

Oakland H3,H4,H5
Palo Alto H6,H7
San Jose H7,H8

income Hospitals
100K-200K H1,H2,H3,H4,H5,H6
200K-300K H2,H3,H6,H7
300K-400K H7,H8
400K-500K H7,H8

Table 1. Associating location and income of patients to hospitals

7 Complexity analysis

In this section we analyze the worst-case complexity of both algorithms – the horizontal and the
vertical. In both algorithms there are computations that are done locally, and computations that re-
quire the players to communicate. As the contribution of this paper is distributed protocols (that are
based on a centralized algorithm that was already studied in [20]), we focus on the communication
complexity. Communication complexity can be measured by either message complexity (i.e., the
number of messages that are transmitted between players, regardless of their actual length) or bit
complexity (the volume of the transmitted data). As discussed in Section 4, the algorithm in the
horizontal setting, Algorithm 3, uses two types of SMC protocols. One for the computation of sums
of private integers and one for the computation of And of private bits. On the other hand, in the
vertical setting it uses only the sum protocol. The message complexity of both of those protocols is
2m, due to their ring nature.

In order to reduce the communication overhead, we aggregate several computations that may be
executed in parallel. For example, if Player i, 1 ≤ i ≤ m, holds a sequence of numbers xi1, . . . , x

i
ℓ,

and we need to compute xj =
∑m

i=1 x
i
j for all 1 ≤ j ≤ ℓ, then instead of invoking the sum protocol

ℓ times for adding integers, we invoke it once for adding vectors of length ℓ, as that reduces the
message complexity from 2mℓ to 2m.

We proceed to discuss all invocations of SMC protocols by either of our two algorithms. For each
of those invocations we analyze its message complexity and the length of the transmitted message;
the corresponding bit complexity is the product of the message complexity and the message length.

7.1 The horizontal setting

When Algorithm 3 invokes the sum protocol (Algorithm 1), it does so in order to compute sums
of integers that do not exceed n. As the number of bits to represent integers is logarithmic, the
length of the messages in that protocol is O(log n). Therefore, each invocation of the sum protocol,
which we denote hereinafter by [S], has message complexity 2m and bit complexity O(m log n).

When Algorithm 3 invokes the And protocol (Algorithm 2), it does so in order to compute the
closure of a given cluster simultaneously in all d attributes. That means that in each invocation of
that protocol, which we denote hereinafter by [A], we compute the And of m vectors, where each
vector consists of d bits. To do that, we set the length of the modulus N in Algorithm 2 to ⌈logm⌉,
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so that the resulting integer vectors are of length d⌈logm⌉ bits. Hence, each invocation of the And
protocol has message complexity 2m and bit complexity O(md logm).

In what follows, we only count the number of invocations of either [S] or [A]. The resulting
message and bit complexities can be obtained by multiplying those numbers by the corresponding
complexities of those two basic protocols, as specified above.

• Step 1 invokes [S] for computing n.

• Step 3 invokes [S] for computing |Cs|, 1 ≤ s ≤ t. Since t = O(n/k), the corresponding
contribution is O(n/k)× [S].

• In Step 3 we compute also the closure of all clusters. For any given cluster, the number of
invocations of [A] is at most T = max1≤j≤d |Aj | — the size of the largest taxonomy. As the
number of clusters is t = O(n/k), the overall contribution to the complexity is O(nT/k) ×
[A].

• The execution of Step 6 requires no more than T invocations of the And protocol (but due to
the efficient implementation of that step which is discussed in Section 4.2, it will be usually
much less). Hence, as that step is visited nL times, where L is the number of iterations in the
sequential algorithm, its contribution to the overall complexity is O(nLT )× [A].

• Each invocation of Step 23 requires one invocation of the sum protocol and at most T in-
vocations of the And protocol, for each of the two clusters. Since there may be no more
than O(n/k) large clusters and this step may be executed in each iteration, it incurs a cost of
O(nL/k)× [S] and O(nLT/k)× [A].

Hence, the communication complexity of Algorithm 3 is bounded by O(nL/k)×[S]+O(nLT )×
[A]. Consequently, the message complexity is O(nLTm) and the bit complexity is O(nL log n/k)+
O(nLTd logm).

Next, we examine the communication cost that is incurred by modifying Algorithm 3 in order to
support ℓ-diversity. The added SMC invocations are in the initial splitting (as described in Section
6.1.1) and whenever a large cluster is split (see Section 6.1.2). Each such split requires one invoca-
tion the sum protocol in order to add qt numbers (q being the number of sensitive values and t is the
number of clusters). Hence, each time a cluster is split there are O(m) messages (2m messages in
the sum protocol and up to m additional messages in the procedure of “flattening” the distribution
of each of the sensitive values among all clusters). Since there are O(nL/k) large cluster splits
altogether, the added number of messages is O(nmL/k).

7.2 The vertical setting

Algorithm 4 invokes only the sum protocol to compute sums of generalization costs. General-
ization costs are typically fractional numbers, but once we decide on the required precision, we
can reduce those computations to adding integers of some given length. As the length of messages
in this case is independent of m, we follow the usual practice in the analysis of communication
complexity and focus on the message complexity.

Step 7 in Algorithm 4 occurs nL times, and in each time it triggers one [S], in order to compute
the change in the generalization cost for all clusters at the same time. The agglomerative phase
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requires to compute distances between the small clusters. In each step we may compute the distances
between all existing pairs of small clusters in one invocation of the sum protocol. As the number of
small clusters is at most n, and the number of small clusters reduces by at least one in each iteration,
the number of iterations in that phase is no more than n. Hence, the overall message complexity
of that phase is no more than n × [S]. Therefore, the contribution of Step 7 is the dominating one,
whence the overall message complexity is O(nLm).

We note that we do not have a theoretical bound on the number of iterations, L. It depends on n
and k, but, as explained in Section 4, it is independent of m. Our experiments indicate that L is a
small constant that does not exhibit a monotone dependence on neither n nor k; more details on the
experiments are given in Section 9.

8 Privacy analysis

In this section we discuss the privacy provided by our two distributed protocols. Namely, we are
interested in information that may be inferred by the interacting players from their view during the
execution of the distributed protocol. Like in all previous studies, we too assume that the players are
semi-honest, i.e., that they respect the protocol, but try to learn as much as they can from their own
view of the protocol about records that are held by other players.1 The data that needs to be protected
is not only the sensitive values but also the quasi-identifiers. For example, if the interacting players
are hospitals, then a hospital that treated Bob needs to protect not only Bob’s medical condition but
also the fact that Bob was hospitalized in it.

It is important to note that we do not discuss here privacy issues of the regular (i.e., non-
distributed) k-anonymity and ℓ-diversity models. Namely, we are not interested in possible privacy
problems due to the publication of the final output of the distributed protocol, since such problems
exist also in the non-distributed setting. (Recall that the final anonymization that is computed in
a distributed manner is also a possible output in a centralized execution of the anonymization al-
gorithm, see Section 4.1.) As we describe briefly in Section 1.1, all existing privacy models, like
k-anonymity, ℓ-diversity, or differential privacy, have their advantages and disadvantages and the
selection of the appropriate model for a given setting depends on the characteristics of that setting.
As stated above, it is the secure transformation of the anonymization algorithm from the centralized
setting to the distributed setting which interests us herein.

We proceed as follows: In Section 8.1 we discuss the security of our basic general purpose
protocols. The protocol in the horizontal setting is discussed in Section 8.2 and the vertical one is
discussed in Section 8.3.

8.1 The basic protocols

The distributed versions of the sequential clustering algorithms use two basic protocols. One for
computing the sum of private integers (Algorithm 1 in Section 3.1), and one for computing the least
common ancestor (LCA hereinafter) of nodes in a tree (Section 4.2). The LCA protocol invokes
Algorithm 2 for computing the AND of private bits.

All those protocols are secure in the sense that they reveal to each of the participating players
no more than what is implied by his private input and the final output. We proceed to prove those
claims.

1See [23] and [50] for a discussion and justification of that assumption.
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Proposition 8.1. Algorithm 1 is a secure protocol for computing the sum.

Proof. (The proof of this well-known claim, see [25], is included for the sake of completeness.) Let
ai ∈ N, 1 ≤ i ≤ m, be the inputs of the players and a =

∑m
i=1 ai be the output. Also, let N be an

integer larger than a. The view of Player j consists of the following values:

j−1∑
i=1

(ai + ri) , a+

m∑
i=j+1

ri , a .

For any sequence of inputs (a1, . . . , aj−1, aj+1, . . . , am) whose sum equals a − aj , there exist
N j−2 selections of r1, . . . , rj−1 and Nm−j−1 selections of rj+1, . . . , rm that are consistent with it
and with the given view. Since the shifts are selected uniformly and independently at random, each
such sequence is equally probable. Hence, Player j learns about the inputs of the other players no
more than what is implied by his own input and the final output.

Proposition 8.2. Algorithm 2 is a secure protocol for computing the and of private bits, provided
that the oblivious string comparison algorithm is secure.

Proof. Let bi ∈ N, 1 ≤ i ≤ m, be the input bits, a =
∑m

i=1 bi and b =
∏m

i=1 bi. First, we
concentrate on the main part of the algorithm, up to Step 10 (excluding). The view of Player j
where j < m consists of the following values:

j−1∑
i=1

(bi + ri) , a+

m∑
i=j+1

ri , b .

The view of Player j = m consists of the values:

m−1∑
i=1

(bi + ri) , b .

Let (b1, . . . , bj−1, bj+1, . . . , bm) be any sequence of input bits that is consistent with bj and b. There
exist N j−2 selections of r1, . . . , rj−1 and Nm−j−1 selections of rj+1, . . . , rm that are consistent
with that sequence and with the given view. Since the shifts are selected uniformly and indepen-
dently at random, each such sequence is equally probable. Hence, Player j learns about the inputs
of the other players no more than what is implied by his own input and the final output.

At the end of the protocol, players m−1 and m need to compare u and v (Step 10). We described
two options: Either using oblivious string comparison or masking and hashing and sending to Player
1 (in case m > 2). That part of the protocol is secure in case the oblivious string comparison
protocol is, or the hash function is.

Proposition 8.3. The LCA algorithm for computing the least common ancestor of private nodes in
a tree is secure.

Proof. Let T be a public tree and assume that each player has a private node in T . The output of
the protocol is the minimal node in T that is an ancestor of all input nodes. The protocol consists
of a sequence of invocations of Algorithm 2, where in each invocation, one of the nodes in the tree
is tested whether it is a common ancestor of all input nodes or not. In view of Proposition 8.2, we
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may assume that the view of each player consists only of the final outputs of all of those invocations
of Algorithm 2. But such a view immediately follows from the actual output; indeed, given that the
output is u, then the result of applying Algorithm 2 for u or any of its ancestors is 1, while for all
other nodes it is 0.

8.2 The horizontal setting

The only interaction between the players in the horizontal setting is for computing the size and
closure of clusters (as described in Section 4), and computing the distribution of the sensitive values
in each cluster (Section 6.1). During the protocol, the players may learn information on records
held by other players, which is not implied by their own input and the final output. Therefore, the
protocol is not perfectly secure in the cryptographic sense. Such a compromise is widely accept-
able since, as written in [25], “allowing innocuous information leakage allows an algorithm that is
sufficiently secure with much lower cost than a fully secure approach”. Indeed, many distributed
protocols accept innocuous information leakage (e.g. [24, 25, 50]) for gaining efficiency, utility and
practicality. We proceed to characterize herein the excessive information that is leaked, compare it
to information leakage in other protocols, and argue that such a leakage of information is benign
from practical point of view.

We separate our discussion to three types of information that the players may learn on the private
data of other players. Assume that the different players are hospitals and the partial database of
Hospital i, 1 ≤ i ≤ m, holds information on the patients in that hospital. One of the participating
hospitals may be interested to know whether a particular individual, Alice, was hospitalized in one
of the other hospitals. Using Alice’s publicly accessible quasi-identifier values, that hospital may
try to examine his view of the protocol in order to deduce the answer. More generally, the hospital
may wish to learn how many people from a given age range and location took part in the other
databases. In Section 8.2.1 we explain why such inferences are hard and sometimes even impossible
to extract from the protocol’s views. Alternatively, it is possible that one hospital knows that Alice
was hospitalized in another participating hospital, but it wishes to know her sensitive value. In
Section 8.2.2 we explain why it is impossible to extract such information beyond what is implied
by the final k-anonymized and ℓ-diversified anonymization. Finally, it is possible that hospitals will
aim at learning information on the number of patients in the other hospitals. In Section 8.2.3 we
explain how to hide also that information. (To the best of our knowledge, no other study dealt with
the question of hiding the size of the partial databases.)

8.2.1 Information on the quasi-identifiers of records of other players

In this section we discuss possible inferences that the players may make on the quasi-identifier
values of records of other players. In the first part of this section we show that any attempt to infer
information about the inclusion of a given quasi-identifier record, R = (R(1), . . . , R(d)), in the
unified database D is useless. Then, we proceed to characterize the significantly weaker type of
information leakage on the quasi-identifier values of records in D that does occur. We conclude this
section by comparing the information leakage on quasi-identifiers in our protocol to other protocols
in the horizontal setting.

Let σ := (C1, . . . , Cp) denote the sequence of clusterings of the database records as produced by
the distributed sequential clustering algorithm, where C1 is the initial clustering, Cp is the final one,
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and Cj , 2 ≤ j ≤ p − 1 are the intermediate ones. Then, in view of the security proofs in Section
8.1, the only information that is revealed to the players during the algorithm is the size and the
closure of the clusters in each clustering Cj , 1 ≤ j ≤ p. Stated differently, the players are exposed
to multiple anonymized views of D, since the size and the closure of the clusters in the clustering
Cj is equivalent to an anonymized view, Dj , of D, 1 ≤ j ≤ p. In that sequence of anonymized
views, only the final one, Dp, has the sensitive data; all preceding views include only generalized
quasi-identifier records without the sensitive data.

Let us begin by defining the hypergraph corresponding to the multiple anonymized view ⟨D1, . . . , Dp⟩.

Definition 8.4. Let D := ⟨D1, . . . , Dp⟩ be a sequence of anonymized views of some basic table
D = {R1, . . . , Rn}. Let Rj

i denote the ith generalized record in Dj , 1 ≤ i ≤ n, 1 ≤ j ≤ p. A set
of p generalized records, one from each view — {R1

i1 , . . . , R
p
ip}, is called a clique, if there exists at

least one record R ∈ A1 × · · · ×Ad which is generalized by each of those records. The hypergraph
GD that corresponds to the sequence of anonymized views D is the hypergraph with the set of nodes
{Rj

i : 1 ≤ i ≤ n, 1 ≤ j ≤ p}, and the set of hyperedges is the set of all cliques.

The hypergraph GD is p-uniform, namely, all hyperedges in it consist of exactly p nodes, one
from each anonymized view. An hyperedge connects the records R1

i1 , . . . , R
p
ip if they all generalize

some specific record R. Hence, those records are connected by an hyperedge if they could all be the
generalized view of the same original record in D.

Example 1. Consider the table D in Table 2 that has d = 3 quasi-identifier attributes, A1 = {a, b},
A2 = {x, y} and A3 = {1, 2}. Assume that during the distributed protocol, the players constructed
p = 3 anonymized views of D as shown in Table 2. The corresponding hypergraph GD is shown in
Figure 1. It has four hyperedges: The three hyperedges that correspond to the three real records in
D, and a fourth artifact hyperedge. The first hyperedge is {R1

1, R
2
1, R

3
1}, since all those generalized

records generalize the record R1 ∈ D. The sets {R1
2, R

2
2, R

3
2} and {R1

3, R
2
3, R

3
3} are two additional

hyperedges, corresponding to R2, R3 ∈ D. The fourth hyperedge is {R1
1, R

2
2, R

3
3}. All three records

in that hyperedge indeed generalize the same record — (a, x, 2). However, as opposed to the first
three hyperedges (which generalize a true record in D), that latter record is an artifact one that does
not appear in D. 2

D D1 D2 D3

R1 = (a, x, 1) R
1
1 = (a, x, ∗) R

2
1 = (∗, x, 1) R

3
1 = (a, ∗, 1)

R2 = (b, x, 2) R
1
2 = (b, x, ∗) R

2
2 = (∗, x, 2) R

3
2 = (b, ∗, 2)

R3 = (a, y, 2) R
1
3 = (a, y, ∗) R

2
3 = (∗, y, 2) R

3
3 = (a, ∗, 2)

Table 2. A table D and three anonymized views
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Figure 1. The hypergraph corresponding to the three anonymized views in Table 2

Each of the players may construct the hypergraph GD. Such a graph, as we explain below,
induces a collection of “possible worlds” regarding the content of the original table D.

Lemma 8.5. Let e = {R1
i1 , . . . , R

p
ip} be a hyperedge in GD. Define, for each quasi-identifier Ah,

1 ≤ h ≤ d, the subset Bh = ∩1≤j≤pR
j
ij (h). Then the Cartesian product Ωe := B1 × · · · × Bd

encompases the subset of all records in A1×· · ·×Ad that are generalized by each of the generalized
records in e.

Proof. It is clear that each record in Ωe is generalized by all records in e. Conversely, if R is some
record in A1×· · ·×Ad which is not in Ωe, there exists at least one index 1 ≤ h ≤ d such that R(h)

is not included in R
j
ij (h) for at least one 1 ≤ j ≤ p. Hence, R is not generalized by R

j
ij .

Definition 8.6. A collection of n hyperedges e1, . . . , en in GD is called a perfect matching if every
two of them are non-adjacent.

In other words, a perfect matching in GD is a collection of n hyperedges that covers all nodes in
the graph.

Proposition 8.7. Let D := ⟨D1, . . . , Dp⟩ be a sequence of anonymized views of some basic table
D = {R1, . . . , Rn}. For every Ri ∈ D there exists an hyperedge in GD that generalizes Ri, and
furthermore, it is part of some perfect matching in GD.

Proof. Assume, without loss of generality, that all records in Dj , 1 ≤ j ≤ p, are ordered like the
records in D; i.e., Rj

i is the generalized view of Ri in Dj , 1 ≤ i ≤ n, 1 ≤ j ≤ p. Then for all
1 ≤ i ≤ n, ei := {R1

i , . . . , R
p
i } is a clique, since all those records generalize Ri. That clique is part

of the perfect matching {e1, . . . , en}.

We shall refer to the p generalized records in D = ⟨D1, . . . , Dp⟩ that generalize the same original
record in D as a family. GD includes exactly n families, f1, . . . , fn, where fi is the family that
consists of all generalized records in D that generalize Ri ∈ D. The collection Πf := {f1, . . . , fn}
is a perfect matching in GD. The hypergraph GD may have many other perfect matchings. Any
such perfect matching, say Π = {e1, . . . , en}, could be the perfect matching Πf that consists of the
n families. Since the order of the records in each anonymized view is random, the players have no
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way to distinguish between the true perfect matching and artifact perfect matchings. Hence, each
such perfect matching induces a possible world for D.

Definition 8.8. Let Π = {e1, . . . , en} be a perfect matching in GD. Then the possible world induced
by Π is the set {Ωe1 , . . . ,Ωen}, where Ωei is the collection of all records that are generalized by ei
(as defined in Lemma 8.5).

Example 2. Consider the table D in Table 3 that has d = 2 quasi-identifier attributes — age and
gender. Assume that during the distributed protocol, the players constructed p = 2 anonymized
views of D as shown in Table 3. It may be easily verified that the corresponding hypergraph in this
case is the complete bipartite graph on D1 and D2, since any selection of two records, one from
D1 and the other from D2, has at least one record that is generalized by both. Hence, there exist in
this toy example 4! = 24 perfect matchings in the graph. Figure 2 shows two of them. The perfect
matching that is denoted by solid lines is Πf , namely, the true perfect matching that consists of all
families. (The family f2 of R2, for example, is the edge between R

1
2 and R

2
2.) The perfect matching

that is denote by dashed lines is an artifact perfect matching, denoted Π. The possible worlds that
are induced by them are given in Table 4. (For example, the second record in the possible world
for Π is Ωe2 = (10 − 15,male), since the second edge in Π is the edge e2 = {R1

2, R
2
1} and the

intersection of the two generalized records in that edge is indeed Ωe2 = (10 − 15,male).) Note
that those two possible worlds are written in a concise manner; each of them is in fact a collection
of many possible worlds, since each of the records in them is a generalized record. For example,
{(12,male), (14,male), (21, female), (22, female)} is one of the 324 = 6 × 6 × 3 × 3 possible
worlds induced by Π. 2

D D1 D2

R1 = (10,male) R
1
1 = (10− 15, ∗) R

2
1 = (10− 20,male)

R2 = (15, female) R
1
2 = (10− 15, ∗) R

2
2 = (15− 22, female)

R3 = (20,male) R
1
3 = (20− 22, ∗) R

2
3 = (10− 20,male)

R4 = (22, female) R
1
4 = (20− 22, ∗) R

2
4 = (15− 22, female)

Table 3. A table D and two anonymized views
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Figure 2. The (hyper)graph corresponding to the two anonymized views in Table 3

Ωe1 = (10− 15,male)
Ωe2 = (15, female)
Ωe3 = (20,male)
Ωe4 = (20− 22, female)

Ωe1 = (10− 15,male)
Ωe2 = (10− 15,male)
Ωe3 = (20− 22, female)
Ωe4 = (20− 22, female)

Table 4. The possible worlds corresponding to Πf (left) and Π (right)

Assume that one of the players wishes to tell whether a given quasi-identifier record, R =
(R(1), . . . , R(d)) appears in D. He will be able to infer with certainty that R ∈ D if and only
if all possible worlds include the record R. He will be able to deduce a probability for R to be in
D by computing the percentage of possible worlds that include R. However, the computation of
a single possible world (let alone all of them) requires finding a perfect matching in the p-uniform
hypergraph GD. Such a computation is known to be NP-hard (see e.g. [33]). Hence, any attempt to
infer information about the inclusion of a given quasi-identifier record, R = (R(1), . . . , R(d)), in
D would be hard in practice for large datasets. Similarly, any attempt to make similar inferences,
such as how many records in D belong to some sub-domain of A1 × · · · × Ad (representing, say,
some location and age range), would be infeasible.

Having said that, a significantly weaker type of information leakage on the quasi-identifier values
of records in D does occur. Let C be a cluster in one of the clusterings in σ := (C1, . . . , Cp) and let
Ci = C ∩Di be the set of records in Di that belong to that cluster. Denote by ci = |Ci| and Ci the
size and closure of Ci, and by c = |C| and C the global size and closure of C.

Proposition 8.9. The only information that the ith player learns in wake of computing the size and
closure of the cluster C is as follows:

1. The union
∪

i′ ̸=iD
i′ includes at least c− ci records that are consistent with the closure C.

2. For each 1 ≤ j ≤ d, C(j) is the LCA of Ci(j) and the values in the jth attribute of the said
c− ci records.
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Consider for example the case of m = 4 players and d = 2 attributes – age and location.
Assume that C1 includes c1 = 30 records, the closure of which equals C1 = ([20−30], LA), while
the global size of C is c = 100 and the global closure is C = ([20 − 30], CA). Then Player 1
may deduce that the union of all other databases, D2 ∪D3 ∪ D4, includes at least 70 records that
are consistent with C = ([20 − 30], CA). Player 1 may deduce no further information about the
age in those 70 records; as for their location, since the local closure (LA) is a proper subset
of the global closure (CA), Player 1 may deduce that those 70 records are spread in CA locations
that enforce the global closure to be CA. (For example, if Southern CA is a possible generalized
value, he may rule out the possibility that all of those 70 records are in Southern CA since then C(2)
would be Southern CA and not CA.) Finally, the view of Player 1 does not enable him to distinguish
between D2, D3, and D4.

Proof. From ci and c, Player i deduces that
∪

i′ ̸=iD
i′ has c− ci records in the cluster C. He cannot

deduce any further information regarding the number of records in C in any of the other sites since
that would contradict Proposition 8.1. From the correctness of the LCA algorithm, Player i deduces
that all those c− ci records are consistent with the computed closure C.

If j is an attribute index in which C(j) = Ci(j), Player i may infer no further information about
the value of the said c − ci records in that attribute, as implied by Proposition 8.3. Indeed, if we
replace the value of each of those records in the jth attribute with any of the values in the tree
underneath the node C(j), the output of the LCA algorithm in that attribute would remain the same.

If, on the other hand, C(j) ! Ci(j), then by the correctness of the LCA protocol, the jth
components in the said c − ci records must be such that the LCA of them together with Ci(j)
equals C(j). Proposition 8.3 implies that Player i cannot deduce any further information about
those records.

Proposition 8.9 characterizes the information that each player may learn about the quasi-identifier
part of the records in the other databases, in wake of computing the size and closure of a given cluster
C; we shall denote that piece of information by I(C). Then, if C = {C1, . . . , Ct} is a clustering
of all records, we let I(C) := {I(C1), . . . , I(Ct)} denote the information that is revealed to a given
player by the sizes and closures of all clusters in C. We shall refer to it hereinafter as the information
leakage of C.

Let us assume that the main loop in Algorithm 3 (Steps 4-20) was repeated L times. In the ℓth
repetition, at the beginning of the ith cycle of the main loop, Player i obtains from Player i − 1
the current clustering C and the corresponding cluster sizes and closures. Hence, he may compute
the corresponding information leakage I(C). Therefore, while an ideal solution would expose each
player only to the information leakage of the final clustering, Algorithm 3 exposes each player to
the information leakage of L clusterings. On one hand, this is more than what an ideal protocol
would leak. On the other hand, the excess information that is leaked is benign and it is exactly of
the same type as that which is leaked by the final output. Three things worth noting in that regard:

• As mentioned in Section 7, L is a small constant.

• The intermediate clusterings in the L repetitions of the main loop typically reveal less in-
formation than the final clustering does, since their utility (which is inversely related to the
information that cluster closures leak on the original records in those clusters) is smaller than
that of the final clustering.
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• The pieces of information that the protocol leaks are determined by the protocol and cannot
be selected by the players.

We conclude this section by comparing the above described information leakage to that in other
distributed protocols for the horizontal setting. The protocol in [24] discloses a different type of
information about the distribution of the quasi-identifiers in the non-final clusters, and, in addition,
it leaks information on the distribution of records among the various data holders, whereas our
protocol does not. In particular, it discloses for each of the non-final clusters of records the following
information: The range and median of values in each of the quasi-identifiers (it is assumed there that
each quasi-identifier is fully ordered); the entropy of the distribution of records among the different
data holders; and the number of data holders that own records in each such cluster.

As for the protocol in [50], it discloses the distance between specific pairs of records, a disclosure
that allows one site to learn information about records held by another site. That is a more severe
information leakage than the one described in Proposition 8.9: Even in the worst case in Proposition
8.9, when c = 2 and ci = 1, the ith player can only learn about the distance between the record
under his control in C and the other record in C (in similarity to the information leakage in [50]),
but he will not be able to infer who is the owner of that other record. In addition, such information
leakage on the distance between two records will occur only in events when c = 2 and ci = 1, in
contrast to the protocol in [50] that reveals the distances between all pairs of records.

8.2.2 Information on the sensitive attributes of records of other players

Next, we consider the information that is leaked by the enhancement of the algorithm to support
ℓ-diversity, as described in Section 6.1. In view of Proposition 8.1, the only information that is
disclosed in wake of each SMC protocol for computing the distribution of the sensitive attribute in
each cluster, is precisely that distribution and nothing further. As before, this is the same type of
information that the final k-anonymization reveals too, regarding the clusters in the final clustering
Cp. Therefore, in similarity to the above discussion, even though the protocol exposes the players
to the distribution of the sensitive attribute also in intermediate clusters, no new type of information
can be extracted from the protocol views.

It is possible to prevent any leakage of information regarding the distribution of the sensitive
values in intermediate clusters, at the cost of executing additional SMC protocols. Instead of com-
puting the actual distribution of the sensitive attribute in each cluster, the players may just verify
whether the maximal frequency in the cluster does not exceed the allowed upper limit of 1/ℓ. To do
that, the players still use Algorithm 1 in order to add up the frequency vectors from each player. But
instead of running Algorithm 1 until the end in order to recover the frequency vector (f1, . . . , fq),
they run it until one step before the end, when Player m − 1 gets (f1 + rm1 , . . . , fq + rmq ), where
rmj is the random noise added by Player m in the jth component. At this stage there are two vectors
that need to be compared: The vector (f1+rm1 , . . . , fq+rmq ), which is known only to Player m−1,
and the vector (1ℓ + rm1 , . . . , 1ℓ + rmq ), which only Player m knows. The two players need to verify
that the second vector dominates the first one, componentwise. This problem is called the vector
dominance problem, and it is closely related to the well-studied problem for securely comparing
two numbers (Yao’s millionaires’ problem [48]). Several SMC protocols for solving this problem
were proposed recently in [49].

As discussed in Section 8.2.1, each player is exposed to a sequence of anonymized views of D,
which we denoted there by D1, . . . , Dp. But since Di, for all 1 ≤ i ≤ p − 1, does not include the
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sensitive data, that sequence of anonymized views does not allow, say, Player 1, to learn sensitive
information of an individual that appears in, say, the partial database D2 of Player 2. Indeed, the
combination of all anonymized views D1, . . . , Dp−1 does not reveal anything beyond the projection
of D onto the quasi-identifiers. (In fact, as explained in Section 8.2.1, it does not reveal even
that information.) Hence, for the sake of the argument, we may replace all of those anonymized
views with the projection of D onto A1 × · · · × Ad. As implied by the definition of k-anonymity
and ℓ-diversity, even if Player 1 has that projection together with the final k-anonymized and ℓ-
diversified view, Dp, he would not be able to locate his target record within less than k generalized
records in Dp, and, in addition, those generalized records will be ℓ-diverse. Hence, the sequence
of intermediate anonymized views does not contribute anything towards inferring sensitive data of
target records beyond what the final anonymization reveals.

We note that the protocols in [23, 24, 50] do not have a similar information leakage since they do
not examine ℓ-diversity.

8.2.3 Information on the number of records in databases of other players

Another place where information may be leaked is in Step 6 of Algorithm 3. Whenever Player i
triggers an SMC protocol to examine the potential gain from removing a record Ri

j from its current
host cluster, Cs, all other players can know that Player i has (or at least had until that stage) a record
in cluster Cs. Hence, at the end of the loop in Steps 5-18, they can deduce his overall number of
records, ni. (Note that they cannot know how those records are split between the clusters since they
do not know what were the transitions that the site decided to perform.) However, Player i does not
trigger such an SMC protocol for all of his ni records. If the removal Ri

j from Cs does not change
the local closure of Cs, he would not start such an SMC since it is not necessary (as we explain in
Section 4.2); also, if the removal of Ri

j from Cs would decrease the diversity of Cs to below the
allowed threshold, he would skip to the next record. Therefore, the other sites may deduce only a
lower bound on ni.

If the leakage of such partial information (namely, a lower bound on ni) is deemed as damaging
to the data providers’ privacy, we propose a simple randomization of Algorithm 3 in which that
information is blurred. In each iteration, Player i will choose to examine αini of its records, where
αi is a random real number withdrawn from a private distribution which Player i selects. If αi < 1,
Player i will examine in that iteration only a fraction of its records. He will start his current series
of examinations from the record that comes right after the last record which he examined in the
previous iteration, and will proceed in a cyclic manner. If αi > 1, Player i will examine his
records in a cyclic manner where some records will be visited more than once. Note that after the
completion of a whole cycle, it is relevant to check again the current location of a given record,
since the reallocation of the other records might change the previous decision which was made
about the location of that record. By setting all selections of αi to equal 1, we recover the basic
non-randomized Algorithm 3.

In the original Algorithm 3, if no record was moved during a complete iteration over all sites
and all records, there is no point in performing another iteration, since all n records in D were
visited during the last iteration. However, in the above described randomized version of Algorithm
3, it is possible that during one iteration no record was moved, but then in the next iteration other
records will be examined and moved. Hence, the stopping criterion should be modified. A natural
modification would be as follows. Let hr be the overall number of records in D that were tested
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during iteration r; that number is publicly known. The algorithm will stop after iteration r if there
exists an integer p such that no record was moved during the last p iterations, and hr−p+1+· · ·+hr ≥
n.

8.3 The vertical setting

In Algorithm 4, each site keeps private the local closure and generalization cost. Hence, as
implied by Proposition 8.1, the only information that is leaked during the execution of the protocol
is the overall change in the generalization cost if a record moves from one cluster to another (Step
7), or two clusters are unified (Step 25 and Step 29). Since the secure sum protocol ends with one of
the players learning the sum and all other players learning nothing, our protocol reveals the overall
change in the generalization cost only to the pivot, while all other players learn nothing. We proceed
to examine what conclusions the pivot may derive from those values.

Assume that in Step 7, the pivot learned that if record Ri would move from cluster Cs to cluster
Cr, the generalization cost would change by ∆. Assume, further, that he knows all taxonomies of
all attributes (also those that are governed by other sites), and the amount of information loss that is
associated with each node in those taxonomies. Then he may perform a search over all quadruples
of generalized records, X,X ′, Y, Y ′ ∈ A1 × · · · × Ad, such that X generalizes X ′, Y ′ generalizes
Y , and (

|C ′
s| · F (X ′) + |C ′

r| · F (Y ′)
)
− (|Cs| · F (X) + |Cr| · F (Y )) = ∆ .

If there exists a single quadruple that satisfies those conditions, then X and Y are the closures of Cs

and Cr prior to the move, while X ′ and Y ′ are the closures after the move.
Having said that, such an attack is far from being a real breach of security for the following

reasons:

1. Usually, the value of ∆ will be consistent with many possible quadruples. The most common
information loss measure is the LM [22, 36]; it sometimes appears under different names or
variants, e.g., the normalized certainty penalty (NCP) [47], or the global certainty penalty
(GCP) [17]. Those measures associate an information loss penalty to a generalized value
according to the number of specific values that it generalizes, regardless of the actual values.
Thus, the above described attack is completely useless when using such measures, since the
value of ∆ cannot be used to distinguish between an age range of [10-15] and an age range
of [80-85].

2. Even information loss measures that might distinguish between generalized values of equal
sizes, always associate zero information loss to exact values. Hence, when the closure has
entries that are non-generalized values, such an attack might reveal that fact, but it cannot tell
what are the actual non-generalized values in those entries.

3. Even in cases where the pivot player is capable of recovering the closures X,X ′, Y, Y ′, he
may reveal very limited information on the quasi-identifiers which are controlled by other
players. At the very worst scenario, he may deduce a generalization of the quasi-identifiers
of some record. To illustrate that, assume that location is a quasi-identifier that is not
controlled by the pivot, and its generalization hierarchy has the exact zipcode as the specific
location, cities in the first generalization level, and states in the second generalization level. If
by moving a record R to a cluster C the closure of that cluster was changed from LA (city) to
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CA (state), the adversary may deduce that R is located in CA but not in LA. If in further steps
the adversary was so lucky to be able to deduce that R’s location is also not in other cities in
CA, he may be able eventually to infer the correct city of that record. However, as explained
in point 2 above, the pivot will never be able to infer the exact zipcode within that city.

4. The information which is disclosed relates only to the quasi-identifiers and not to the sensitive
values which are revealed only at the end.

5. Even when using information loss measures that do not depend just on the size of the general-
ized value, and even in cases where the value of ∆ identifies a unique quadruple of closures,
the attack is not cost effective, as the search space may be too large (even for modest values
of d and small taxonomies) for such a negligible and non-guaranteed gain of information.

We would like to add that it is possible to diminish the already negligible leakage of information
due to the above described attack by having each player add a small random noise to his input to
the sum protocol, in order to prevent the pivot from identifying the a-priori and a-posteriori pairs of
cluster closures. Such random noise might imply non-optimal decisions in the sequential clustering,
but by properly calibrating the added noise, the effects on the final output will be small and the attack
will become even less realistic.2

In comparison, the protocol of [23] offers perfect privacy, but it is a very restricted protocol (ver-
tical setting only, and two players only), which is highly inefficient (see Section 9.2) and was not
properly tested with respect to utility (see Sections 9.1). The protocol of [34] discloses no infor-
mation because they utilize a top-down anonymization algorithm in which the intermediate views
reveal less information than the final view. While a top-down approach offers privacy advantages,
it results in very poor utility results, as we discuss in the experimental section.

9 Experiments

We conducted two sets of experiments. In the first set of experiments we tested the performance
of the centralized version of sequential clustering [20] in order to illustrate its main features. In
the second set of experiments we simulated the distributed versions of that algorithm which were
proposed and analyzed in this study.

Our experiments were conducted on two datasets: The first one is ADULT from the UCI Machine
Learning Repository3. That dataset was extracted from the US Census Bureau Data Extraction
System. It holds demographic information of a small sample of US population with 14 quasi-
identifiers such as age, education level, marital status, occupation, and native
country and contains 45,222 records. The second dataset is CENSUS4. It has 100,000 records that
include 7 quasi-identifiers (age, gender, education level, marital status, race,
work class, country). We used generalizations taxonomies for the attributes in those datasets
of heights ranging from 2 to 4 (where a taxonomy of height 2 means generalization by suppression
only). All experiments were implemented in C, and ran on a 1.86 GHz Intel Core Duo processor
T2350 personal computer with 2 GB of RAM.

2We note that also the closely related simulated annealing clustering algorithm [28] makes on purpose random non-
optimal decisions in order to avoid the attraction of local minima.

3http://mlearn.ics.uci.edu/MLSummary.html
4http://www.ipums.org
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9.1 Information loss

In our first experiment, we tested the non-distributed version of the sequential algorithm in order
to demonstrate its superiority, in terms of information loss, against other algorithms, and especially
those that were implemented also in the distributed setting.

Figures 3 and 4 give the information losses of the sequential algorithm and two other algorithms
in terms of the LM and EM measures, as measured on the ADULT and CENSUS datasets, respec-
tively. The first algorithm is the Mondrian (on which the protocols of [24] and [34] are based); the
other one is the Hilbert-curve based anonymization algorithm of [17]5. As mentioned in Section 1.2,
also the approximation algorithm of [33] was implemented in the distributed setting [50]; however,
we do not include explicit comparison to that algorithm herein since the superiority of the sequential
algorithm over that algorithm follows from the set of experiments that were presented in [18] and
[20]. (Another reason why we exclude the algorithm of [33] from our experimental evaluation is
that it can handle only generalization by suppression.) Note that since our distributed algorithms, as
well as those of [24, 50], simulate the operation of the corresponding centralized algorithm on which
they are based (Section 4.1), the information losses shown in Figures 3 and 4 reflect the situation
also in the distributed setting.

Figure 3. Information Loss (Adult): LM (left) and EM

As for the impact of adding a restriction on the diversity of the final output, such experiments
were already conducted in [20]; see Section 8.3 there. (Again, since the distributed version of
the sequential algorithm simulates the non-distributed sequential algorithm, Section 4.1, adding a
diversity restriction in the distributed version has the same effect as doing so in the non-distributed
version.)

Hence, our distributed protocols are based on an anonymization algorithm that is significantly
superior, in terms of the utility of the output, to those on which the the distributed protocols of
[24, 34, 50] are based. The protocol of [23], unlike the other solutions (including ours), is not a spe-
cific protocol but a template of protocols. Each site may run on his database any k-anonymization
algorithm; the protocol in [23] only explains how to convert such two independent anonymiza-
tions into a k-anonymization of the join of the two databases. Jiang and Clifton implemented

5The version that we implement here is an improvement of the version in [17], where we rescale all attributes to fit
the same range. That was needed since the original algorithm does not perform well where the various attributes have
significantly different range sizes. More on that issue in [20].
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Figure 4. Information Loss (Census): LM (left) and EM

their protocol when both parties run the Datafly anonymization algorithm. The latter is a dated
algorithm by Sweeney from 1997 that has very poor utility performance as it is a global recoding
algorithm. (Its inventor wrote about it few years later [41, Section 4] that it “can over distort the
data.”) Moreover, their distributed protocol yields anonymizations with even smaller utility than the
centralized algorithm, see [23, Section 6.3]. (This is in contrast to our distributed protocols that
offer anonymizations with the same utility as the centralized algorithm.) In order to properly assess
the utility offered by the protocol template of [23], more advanced anonymization algorithms, like
the sequential clustering algorithm, need to serve as the basic algorithm that each of the parties uses.

9.2 Time performance

Here, we examine the time performance of our algorithms. The time performance depends on
the computational cost of the centralized algorithm (since the distributed versions simulate the cen-
tralized algorithm) and the added communication cost.

9.2.1 Computational cost

Figure 5 illustrates the high efficiency of the sequential algorithm; it shows the runtime of the
centralized algorithm (m = 1), in seconds, as a function of n and k. (The different values of n
indicate the sizes of the random partial databases of ADULT and CENSUS on which the algorithm
was applied.) Those runtimes are of the non-repetitive sequential algorithm. (The repetitive version,
that tries several random initial clusterings in order to find the best output, shows negligible variance
in the results in terms of information loss.) As for the dependence of the runtime on the dimension
d, it is clearly linear, since the cost of computing cluster closures or generalization costs depends
linearly on the number of attributes; this linear dependence on the dimension was already validated
experimentally in [20].

Next, we turn to measurements of the number of iterations, L. As said in Section 7, it depends
on n and k, but not on m. Our experiments indicate that L is a small constant that does not exhibit
a monotone dependence on neither n nor k. As can be seen in Figure 6, L always varied between 6
and 10 on various sizes of datasets and for various values of k.

We now turn to examine the computational cost of our algorithms as compared to that of the other
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Figure 5. Runtime (seconds): Adult (left) and Census datasets

Figure 6. Number of iterations: Adult (left) and Census

distributed k-anonymization protocols. The studies that dealt with horizontal partitionings [24, 50]
do not provide any experimental results regarding the time performance of their suggested protocols.
The experiments in [34] show that their protocol is very efficient, in terms of runtime, but the value
of such a fast running solution is questionable given the poor utility of its output anonymization. A
protocol that runs in few seconds or minutes offers no real advantage against a protocol that runs
for hours if the latter yields an output with much better utility.

Jiang and Clifton [23] only estimate the runtime of their suggested protocol based on the runtime
of its most costly operations, which are homomorphic encryptions (an operation that is based on
modular exponentiation with a 1024-bit modulus). The projected number of encryptions needed by
their protocol is bounded by O(n log q) where n is the database size and q is the size of the public
key domain. Their resulting runtime estimates, for a subset of the ADULT dataset (30,162 records
with 8 quasi-identifiers) are significantly larger than ours, ranging from approximately 10 days, for
k = 20, to 16 days, for k = 100. (Recall that the runtimes that we report in Figure 5 are for the full
ADULT dataset — 45,222 records with 14 quasi-identifiers.)

As noted in Section 1.3, our solution is significantly simpler than the previous solutions. While
those were based on homomorphic encryptions [23, 50] and oblivious transfers [24, 34] — cryp-
tographic primitives that depend on costly group exponentiations, our solution depends only on
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Figure 7. SMC calls on Adult: Horizontal (left) and Vertical (right)

modular addition and secure hash functions. To illustrate the difference between group exponentia-
tions and the latter operations, here are the average runtimes of those operations, as measured on an
Intel(R) Core(TM)2 Quad CPU 2.67 GHz personal computer with 8 GB of RAM:

• Modular addition — 0.762 µs (microseconds).

• SHA-1 on an input of 512 bits — 7.8 µs.

• Modular exponentiation with modulus of 1024 bits — 12251 µs.

The staggering differences in the runtimes of those basic operations illustrate the advantage of our
protocol as compared to the existing distributed k-anonymization protocols also in terms of compu-
tational costs.

9.2.2 Communication cost

Apart from the computational cost of the centralized algorithm, the runtime of the corresponding
distributed protocols is also affected by the cost of communication. The message and bit com-
plexities of the algorithms were analyzed in Section 7. We simulated our distributed protocols and
counted the number of SMC calls, namely, invocations of the sum and AND protocols. Figures 7
and 8 show the counts of SMC calls in each of the two settings, for different values of n and k. As
can be seen, the number of SMC calls depends linearly on n and decreases with respect to k.

Few comments are in order regarding our evaluation methodology:

1. As the focus of our paper was on algorithmic and privacy aspects, we were not interested in
testing the performance of an actual implementation on a network of computers. Instead, we
estimate the communication cost by counting the calls for the basic distributed operations.
Counting basic steps as a performance measure is an accepted practice. For example, in
distributed protocols where multiple agents solve a constraint satisfaction problem, a common
measure is the number of non-concurrent constraint checks, which provides an estimate to the
overall computation time [51].

2. We do not show the SMC counts for different values of m for the following reason: In the
vertical case, the number of SMC calls is completely independent of the number of sites, m.
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Figure 8. SMC calls on Census: Horizontal (left) and Vertical (right)

In the horizontal case, on the other hand, that number may depend on m and on skewness,
because of the efficient implementation of Step 6 that was discussed in the last paragraph
of Section 4.2. However, our tests on various values of m (we used m = 2, 5, 10, 20) and
various patterns of skewness showed that the dependence on these factors is extremely weak
and the different plots almost coincided.

3. We do not show the counts of SMC calls for the version of the algorithm that respects ℓ-
diversity since, as implied by complexity analysis (Section 7), the added number of messages
that are required for the sake of testing the diversity is significantly smaller than the number
of messages in the basic version of the algorithm.

We conclude this section by giving some rough estimate of the communication overhead that our
SMCs entail. The transmission of a single message is estimated by 1-2 ms (milliseconds) for LAN
environments and 30 ms for WAN environments. Since the basic SMC protocols, Algorithms 1 and
2, involve 2m messages, their execution time is estimated by 4m ms and 60m ms in LAN and WAN
environments, respectively. Hence, the corresponding estimated runtimes may be derived for each
experimental setting from the numbers in Figures 7 and 8.

For example, consider the CENSUS dataset with 100, 000 records. In producing a corresponding
anonymization with k = 50 in the horizontal setting, Algorithm 3 required roughly 270,000 SMC
calls (see Figure 8). If m = 5, it translates to 2,700,000 messages. In a LAN environment that
would take about 5400 seconds, while in WAN environments it would take about 81,000 seconds
(22.5 hours).

In order to compare the time performance of our vertical algorithm to that of the algorithm in [23],
we consider the ADULT dataset in the vertical partitioning scenario with m = 2 and k = 100. As can
be seen in Figure 7, Algorithm 4 required roughly 360,000 SMC calls in this case (when executed
on a subset of 40,000 records). When m = 2, that number translates to 1,440,000 messages. In a
LAN environment that would take 2880 seconds, and in a WAN environment about 43,200 seconds
(12 hours). The corresponding computational time is roughly 150 seconds (see Figure 5). There is
no estimate of the corresponding communication overhead in [23], but the computational overhead
alone is over 16 days, as was mentioned above.
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10 Conclusions

We begin this concluding discussion with a summary of the comparison between our solution
and those offered in [23, 24, 34, 50] with respect to several evaluation criteria:

GENERALITY. The following table compares the different studies with regard to the settings
which they considered, number of players, the generalization model, and privacy model. (KA, LD,
and LSD stand for k-anonymity, ℓ-diversity, and ℓ-site diversity, respectively.)

Study Setting #players Generalization model Privacy model
[23] vertical two global and local recoding KA
[24] horizontal any global recoding KA, LSD
[34] vertical any global recoding KA, LD
[50] horizontal any suppressions only KA
Ours horizontal and vertical any global and local recoding KA, LD, LSD

CRYPTOGRAPHIC ASSUMPTIONS. The solution in [23] relies upon homomorphic encryptions.
[24] uses a secure kth-ranked element protocol (depending on oblivious transfer and pseudoran-
dom functions). [34] assumes a secure maximum protocol (depending on oblivious transfer). The
protocol in [50] uses homomorphic encryptions, group exponentiations, and secret sharing. Our
solution requires a secure sum protocol and a secure hash function; both are much simpler and have
significantly smaller computational costs than the protocols upon which the previous studies rely.

PRIVACY. The protocols of [23, 34] offer perfect privacy. The protocols in [24, 50] and ours leak
some information. (See the full discussion in Section 8.)

EFFICIENCY. The studies [24, 50] contain no simulation or evaluation of time performance. The
protocol of [23] is inefficient. On the other hand, that of [34] is very efficient. Our protocols are
efficient, and are also highly scalable since the number of SMC calls in it depends linearly on the
database size. (See the full discussion in Section 9.2.)

UTILITY. The protocols of [24, 34, 50] offer low utility since they are based on global recoding
generalizations. The study [23] does not provide sufficient testing in order to assess properly its
utility. Our protocols offer very high utility since they are based on a leading state of the art local
recoding anonymization algorithm. (See the full discussion in Section 9.1.)

In conclusion, we presented a general approach to secure distributed computations of anonymized
views of shared databases. The generality of our approach is with regard to the type of partitioning,
the number of sites, the generalization model, and the privacy model. The presented algorithms
are highly efficient and simple, as they rely on very basic and few cryptographic primitives. Even
though we focused here on distributed versions of one particular algorithm (sequential clustering)
and one particular goal (anonymization), the ideas and techniques that were presented here are
suitable for any other algorithm that reorganizes clusters (like simulated annealing or k-means) and
could be applicable also for other distributed data mining problems.
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