
Dynamic Traitor Tracing

Amos Fiat1,2 and Tamir Tassa2

1 Department of Computer Science, School of Mathematical Sciences, Tel Aviv
University, Tel Aviv, Israel

2 Algorithmic Research Ltd., 10 Nevatim St., Petah Tikva, Israel

Abstract. Traitor tracing schemes were introduced so as to combat the
typical piracy scenario whereby pirate decoders (or access control smart-
cards) are manufactured and sold by pirates to illegal subscribers. Those
traitor tracing schemes, however, are ineffective for the currently less
common scenario where a pirate publishes the periodical access control
keys on the Internet or, alternatively, simply rebroadcasts the content via
an independent pirate network. This new piracy scenario may become
especially attractive (to pirates) in the context of broadband multicast
over the Internet. In this paper we consider the consequences of this
type of piracy and offer countermeasures. We introduce the concept of
dynamic traitor tracing which is a practical and efficient tool to combat
this type of piracy. We also consider the static watermarking problem,
presented by Boneh and Shaw, and derive bounds on the performance
parameters of the “natural majority algorithm”.

Keywords. Broadcast, encryption, traitor tracing, watermarking, imprinting,
pay TV, on-line algorithms.

1 Introduction

The subject of this paper is protecting ownership rights of intellectual property.
The best example is that of pay TV systems where subscribers may access specific
channels or programs by purchasing their viewing rights. In such systems, the
content is distributed via terrestrial, cable or satellite broadcast and, hence, a
conditional access system must be utilized in order to guarantee that only paying
subscribers can access the content for which they have paid. But even though
pay TV systems are the most outstanding realization of our model, there are
others as well: conditional access systems are also used to protect pay services
on The Web.

In this paper we address the issue of protecting ownership rights against
piracy whereby unauthorized users get access to the content. Pirates make a
business of breaking the security safeguards of the conditional access system
and sell devices that allow unauthorized users to view the content illegally. To
prevent such unauthorized access, cryptography is often used: the conditional
access system makes use of secret keys in order to allow only legitimate users
access to the content.

The use of tamper-resistant devices for conditional access systems is the
norm, so as to prevent access to the underlying keys. However, recent advances
in attacks on tamper resistant devices, most notably differential power analysis
and timing attacks [6], have compromised unqualified reliance on tamper resis-
tance. Thus, a more realistic model must assume that piracy will occur and,
therefore, countermeasures should be taken once piracy has been observed. Such
countermeasures should be capable of the following:

– Trace the source of piracy.
– Disconnect it and its dependent unauthorized users from further transmittal

of information.
– Harming no legitimate users.
– Supply legal evidence of the pirate identity.

The traitor tracing schemes of Chor et al [2] adopt the following model:
pirate decoders that allow access to the content may be manufactured but such
decoders, if captured, must inherently contain identifying information that will
allow the broadcaster to cut them off from future broadcasts. Additionally, the
source of piracy can be detected and legal means can be taken.

To do so, Chor et al introduce a new form of cryptography that uses one
encryption key and multiple distinct decryption keys, with the property that
one cannot compute a new decryption key from a given set of keys. The traitor
tracing schemes of [2, 8, 10] approximate such a scheme. Two cost measures are
to be considered when implementing such schemes: storage requirements at the
user end and the necessary increase of bandwidth.

The Achilles’ heel of such traitor tracing schemes is their underlying as-
sumption that pirates provide unauthorized subscribers with decoders capable
of decoding the original broadcast. Such schemes would be ineffective if the pi-
rate were simply to rebroadcast the original content using a pirate broadcast
system.

This paper deals with the latter scenario: Even if the pirate rebroadcasts the
original content to pirate users, countermeasures can be activated in order to
trace and disconnect the so-called traitors, i.e., the real subscribers controlled
by the pirate.

To accomplish this, watermarking methods are implemented, allowing the
broadcaster to generate different versions of the original content, with no notice-
able degradation in the content quality. The schemes which we introduce and
discuss here, use the watermarks found in the pirate copy to trace its support-
ing traitors. A fundamental assumption in this context is that it is possible to
generate tamper-resistant watermarks that a pirate could not remove. Cox et al
[3] have introduced methods to create such secure and robust watermarks.

Watermarking schemes were introduced and discussed by Boneh and Shaw in
[1]. In their study they assumed that the content is watermarked once, prior to
its broadcast. The schemes of [1] were designed to trace the source of piracy once
a pirate copy of the content is captured. The traitor tracing schemes of [2] are

similar in that sense: each decoder is personalized by a unique allocation of de-
cryption keys, once, before it is sold to a subscriber. Only when a pirate decoder
is captured, the traitor tracing schemes are activated in order to trace a legal
decoder used in building the pirate unit. Both the watermarking schemes of [1]
and the traitor tracing schemes of [2] are probabilistic. Namely, the evidence they
provide against the suspected traitor is accompanied by a small error probability
(that can be made as small as desired). It should be noted that even though the
watermarking codes of [1] and the traitor tracing key assignment tools of [2]
have, seemingly, an entirely different motivation, traitor tracing schemes can be
translated into watermarking codes as described in [1].

Like [1, 2], we make use of marking codes but, unlike [1, 2], our codes are gen-
erated on the fly. In our model, we use the feedback from the pirate distribution
network in order to lock onto the traitors much more efficiently. We refer to this
latter model as the dynamic model while the former one [1, 2] is referred to as
the static model. The dynamic model is very natural and has great practical
applications in the context of protecting intellectual rights in broadcast systems.
The static model, on the other hand, is suitable for electronic data distribution
systems.

To understand the fundamental contribution of the dynamic model, we con-
sider the following scenarios:

1. Dynamic schemes decide about the number of active traitors on the fly,
based on the feedback from the pirate network, and adapt their behavior
accordingly. That is impossible in the static model, where an a priori bound
on the number of traitors is required (the lack of such a bound renders any
static method completely unreliable).

2. Even if an a priori bound is known, but false incriminations of innocent users
are strictly prohibited, there is an exponential performance improvement of
dynamic methods over static ones. This exponential gap implies that static
schemes are simply impossible in such settings.

3. If an a priori bound is known, and one allows a constant probability, ε > 0,
of false incrimination, static schemes pay an additional log(1/ε) factor in
performance that is not required by dynamic methods.

1.1 Organization of the Paper

The paper is organized as follows: in §2 we formalize the model, introduce the
basic terminology and discuss relevant implementation issues. Then, in §2.3, we
prove a fundamental result that connects the size of the marking alphabet to the
number of active traitors. A byproduct of our analysis is that the probabilistic
nature of the codes in [1] is inherent, i.e., no code of that nature can avoid
making errors.

§3 is devoted to the dynamic setting. Three deterministic algorithms are
presented and compared: two of them have optimal spacial efficiency while the
other one excels in temporal efficiency.

In §4 we discuss the static setting and study a scheme proposed in [2]. Using
a more careful analysis, we are able to obtain performance estimates which are
much better than those obtained in [2]. We note that this scheme, with our im-
proved estimates, may be combined with the codes and distribution mechanism
of [1] in order to yield schemes with optimal spacial efficiency.

Finally, in §5, we list several interesting open problems that our study raises.

1.2 Related Work

The concepts of frameproof codes and secure codes were defined in [1]. Additional
explicit constructions of frameproof codes were given in [9].

There are a variety of slightly different definitions of frameproof and secure
codes. Generally, a frameproof code is an assignment of codewords to users so
that no coalition whose size is no more than some preset limit p can “frame” an
innocent user. A coalition of size p can compute new codewords from the set of
codewords assigned to its members. The rules by which new codewords can be
computed vary slightly from paper to paper. The different rules refer specifically
to what is permissible when combining two or more codewords to create another.
For example, given two codewords x and y that differ in their ith coordinate,
xi 6= yi, one can generate a new codeword z for which either

1. zi ∈ {xi, yi} (as in the CFN-model [2], which coincides with ours), or,
2. zi is either an arbitrary element of the underlying alphabet or something

entirely unrecognizable (as in the BS-model [1, 9]).

Rather than talk in terms of codewords, let us translate these two models to
the watermarking terminology:

– Given two variants of a movie segment, v1 and v2, if the only possible choice
for the pirate is to transmit either v1 or v2, then we are in the CFN-model.

– Given two variants of a movie segment, v1 and v2 (v1 6= v2), if the pirate
can produce any variant out of all possible variants, or something entirely
unrecognizable, then we are in the BS-model [1, 9].

We justify our choice of model below, but first a few words to avoid confusion.
We use the term “the CFN-model” somewhat misleadingly because [2] does not
deal with the watermarking problem at all. Rather, [2] deals with the assignment
of keys to decoders so as to recognize the source of a pirated decoder. One of
the properties of cryptographic keys is that given two different symmetric keys,
it (usually) makes little sense to try to combine them in some way and obtain a
meaningful third key. Thus, if the pirate has to choose between using key k1 or
key k2, he can choose either one of them, or none of them, but would not find it
useful to use, say, k1⊕k2. In the translation between the traitor tracing schemes
of [2] and watermarking schemes, the different keys are analogous to different
variants of a segment, whence the term “the CFN-model” in the context of
watermarking.

Given some variants of a movie segment, it would seem most unfeasible to
compute a new valid variant. The reason for that is that in any reasonable

watermarking scheme the pirate would not have the information essential to
generate such a variant. It may be possible, however, to remove all watermarking
information while paying the price of quality degradation. But even if that is
possible, it would be difficult to do so, and the pirate would not necessarily know
whether he was successful or not. This is why we find the CFN-model a more
realistic model in this context. It should be noted that in our dynamic schemes,
if we cannot recognize the variant that is currently transmitted by the pirate, we
simply ignore the corresponding segment and wait for the next one. Even if the
pirate is successful in removing the watermarking with probability q (the value
of which is dictated by the technical difficulties, as well as by the need to have
a rebroadcast with a reasonable quality), it implies a 1/(1 − q) constant factor
in convergence time.

Finally, from a practical perspective on the immediate future, we can justify
our model for much the same reasons as in [2] (see §2.2).

In the static model, a related paper by Stinson and Wei [9] constructs frame-
proof schemes as well as traceablity schemes. In this context, traceability schemes
coincide with simple majority deterministic tracing algorithms that are not al-
lowed to make any error. In [9, Theorem 5.5] they give a bound that connects
all the parameters of the problem: the number of users, the size of the coalition
of traitors, the size of the marking alphabet and the length of the codewords.
That bound may be translated into a lower bound on the length of codewords
which is proportional to the number of traitors times the log of the number of
users. We conjecture in this paper that the true lower bound is much higher and
is in fact exponential in the number of users.

Other related work about traitor tracing may be found in [4, 7, 8].

2 The Model

In our model, content consists of multiple segments, e.g., a segment could be
one minute worth of video. It is possible to generate multiple variants of each
segment. Those variants must meet with the following two requirements:

– Similarity. Fundamentally, all variants carry the same information to the
extent that humans cannot distinguish between them easily.

– Robustness. Given any set of variants, v1, . . . , vk, it is impossible to gener-
ate another variant that cannot be traced back to one of the original variants,
vi, 1 ≤ i ≤ k.

Clearly, those requirements place an upper bound on the number of variants
that can be generated from a single content segment (the reader is referred to [3]
where methods to generate such watermarks are introduced). Content for which
some or all of the segments have been assigned variants is called a watermarked
content or a version.

In general, the watermarking problem is to generate multiple versions of
watermarked content so that, given a black market copy of that content, the
watermarks embedded in that copy would lead to the identification of its source.

A watermarking scheme for tracing traitors consists of two essential parts:

1. Watermark distribution: An algorithm that assigns each subscriber a
watermarked copy of the content.

2. Tracing and incrimination: An algorithm that, given an illegal copy of
the content, uses the watermarks embedded in it in order to trace back at
least one of the traitors that participated in producing that copy.

A watermarking scheme is called deterministic if it traces and incriminates
all traitors and no one else but the traitors. On the other hand, schemes in which
there is a small chance of false incrimination are referred to as probabilistic.

The two key performance parameters in this context are r, the number of
different variants used per segment and m, the number of content segments. One
way to view our model of watermarking is that it is an embedding of a codeword
in the content, where r is simply the size of the marking alphabet and m is the
length of the codeword.

The following terminology is used throughout the rest of the paper:

1. The center is the source of the content and its watermarked copies.
2. The users, or subscribers, denoted by U = {u1, . . . , un}, are recipients of

the content.
3. Some of the users may collude in order to distribute illegal copies of the

content to pirate subscribers. We refer to such users as traitors and to their
coalition as the pirate and denote them by T = {t1, . . . , tp}, T ⊂ U .

4. The marking alphabet that is used to generate codewords is denoted by
Σ = {σ1, . . . , σr}.

5. For a given segment 1 ≤ j ≤ m and a mark σk, 1 ≤ k ≤ r, Sj
k ⊂ U denotes

the subset of subscribers that got variant σk of segment j.

We consider in this paper two settings: a dynamic setting and a static one.
The dynamic setting assumes on-line feedback from the pirate subscribers

to the center. Such a scenario is feasible in cases like TV broadcast, where the
pirate rebroadcasts the content, say, on the Internet. The center can therefore
see the current pirate broadcast and adapt its watermark distribution in the
next segments in order to trace the traitors efficiently.

In such a scenario, the number of variants that are transmitted simultane-
ously, r, is proportional to the bandwidth requirements, while m, the number
of segments or search steps, is proportional to the time required to trace the
traitors (the convergence time).

In the static setting there is a one time marking of the content per user.
Only when a black market copy is found, the tracing and incrimination algorithm
is activated. This model is suitable for, e.g., DVD movie protection. Obviously,
performance in such a rigid setting with no on-line feedback is less efficient than
that in the dynamic setting. This setting is also somewhat less useful than the
dynamic setting because there are fewer effective countermeasures: legal action

post-factum is the only recourse (as opposed to the dynamic setting that allows
immediate disconnection of the traitors).

As in the dynamic setting, r and m are relevant performance measures, but
they have a slightly different significance. Here, r determines the relative extra
expense required for watermarking, while m is limited by the maximal number
of segments that can fit into the given content.

2.1 Control Overhead

A key issue is to control what users get what variant of every segment. The
simplest way to do so is as follows:

1. Every user has a unique symmetric key in common with the center.
2. Prior to every segment transmission, the center distributes keys to users,

using individually encrypted transmissions: If user i is to get variant ` of
segment j, then the center sends an individually encrypted transmission to
user i containing key Kj

` , where all such keys are generated at random.
3. The center now transmits multiple variants of the jth segment, where variant

` is encrypted under key Kj
` .

The broadcast overhead for implementing such a scheme is composed of two
components:

1. Before each segment, the center needs to transmit individual (short) mes-
sages to every user that contain the relevant keys.

2. The center needs to broadcast multiple variants of every segment; this is a
high overhead component because it multiplies the total bandwidth by the
number of different variants.

There are a number of mechanisms that allow us to reduce this overhead.
First, rather than using individually encrypted messages we can use broadcast
encryption schemes [5]. At first glance it seems that this creates a problem be-
cause broadcast encryption schemes require an a priori knowledge of the number
of traitors, whereas we claim that we do not need to know this. However, we
never kill off a suspect user unless we know for sure that he is a traitor. Hence,
we can start with an estimate on the number of traitors, and if this estimate
turns out to be wrong, we can simply restart with a higher initial estimate for
the broadcast encryption component.

Next, we do not necessarily have to change keys between segments for all
users. In fact, we only need to change keys in case that a set of users is split
up into two or more subsets, or if we perform a union between sets of users.
Thus, even if one uses the naive approach (individual transmissions to every
user) it turns out that our 2p+1 algorithm, §3.3, only requires O(np) individual
transmissions for all segments.

However, the more expensive overhead is in the simultaneous transmission
of multiple variants of a segment. Here, one can make use of the nature of the
problem to reduce bandwidth overhead. Even if, say, 90% of the movie were

transmitted entirely in the clear (and not watermarked), while only the remain-
ing 10% were to be watermarked and protected, this would create problems for
the pirate. A pirate copy that misses 10% of the movie is not very valuable. This
means that we can transmit multiple variants for only a (relatively) small part
of the movie, hence reducing the bandwidth overhead considerably.

2.2 Short-Term Practical Considerations

In the immediate future, it seems rather unlikely that the actual MPEG-II trans-
mission will be rebroadcast over the Internet (due to lack of bandwidth). Thus,
it may be that the setting described in this paper is not required in the immedi-
ate future. Hence, we briefly describe how to adapt our schemes for conditional
access schemes used today.

All conditional access schemes today use rapidly changing symmetric keys
to encrypt the content. These symmetric keys, known as “control words”, are
replaced (say, every 5 seconds) through the use of so-called “Entitlement Control
Messages” (ECMs). An underlying hidden assumption in common to all these
schemes is that the control words will not be retransmitted by the pirate to his
subscribers.

This assumption is true if the bandwidth available to the pirate for retrans-
mission is lower than that required to retransmit the control words. Thus, the
center must set the control word change rate to reflect the bounds on the pirate
transmission capabilities.

Nonetheless, the problem with this setting is that the pirate could still trans-
mit the secret(s) used to obtain the control words from the ECMs.

Now, we can simply make use of dynamic traitor tracing schemes, where
rather than watermarking multiple variants of the content, we encrypt the con-
trol words under several different keys (analogous to variants).

In this setting the control overhead is much lower (multiple ECM streams)
and our model that disallows computation of a third variant from two existing
variants is obviously justified.

2.3 Deterministic Lower Bound

Before discussing the dynamic and static settings separately, we state the fol-
lowing fundamental theorem which applies in both settings:

Theorem 1. If the pirate controls p traitors then:
(a) There exists a deterministic watermarking scheme with |Σ| = p + 1.
(b) No watermarking scheme that uses an alphabet of size |Σ| ≤ p can be deter-
ministic.

In other words, a watermarking scheme must use an alphabet of size p + 1
at the least in order to trace and incriminate all traitors and no one but the
traitors.

In the static setting, this requires to have an a priori bound on the number of
traitors. However, as we shall see later, any deterministic scheme in this setting
is bound to be impractical anyway and, therefore, only probabilistic schemes are
considered.

In the dynamic setting, the scheme can learn on the fly what is the number of
traitors and adapt its alphabet size accordingly; hence, no a priori information
as to the number of traitors is required.

Proof. Here we prove part (b) of the theorem. As for the proof of part (a), see
§3.2 and §3.4 where such schemes are described. Given some innocent subscriber
of the system, u ∈ U \T , we define T0 := T = {t1, . . . , tp} and Ti = T ∪{u}\{ti}
for all 1 ≤ i ≤ p. In addition, let us denote T ∗ = T ∪ {u}. Now, assume that
the pirate T adopts the following strategy: in segment j it rebroadcasts one
of the variants σk for which |Sj

k ∩ T ∗| ≥ 2. The existence of such a variant is
guaranteed by the pigeon hole principle, since |Σ| < |T ∗|. Clearly, the chosen
subset Sj

k intersects Ti for all 0 ≤ i ≤ p. Hence, it is impossible to distinguish
between the real coalition of traitors, T0, and the camouflage sets Ti, 1 ≤ i ≤ p.
Therefore, the scheme could never point out the p true traitors out of the p + 1
subscribers in T ∗.

We would like to point out that Theorem 1 is a generalization of [1, Theorem
4.2] which was restricted to the case p = 2. In addition, we proved this lower
bound on the alphabet size under the more general assumption of robustness of
the watermarks (whereas the proof of [1, Theorem 4.2] relied on the ability of
the traitors to destroy marks).

3 The Dynamic Setting

3.1 Preliminaries

In the dynamic scenario, the pirate T broadcasts at every time segment j, j ≥ 1,
one of the variants owned by the traitors controlled by him, ti, 1 ≤ i ≤ p. Let us
denote that variant by sj and denote by Bj the pirate transmission up to time j,
Bj = (s1, . . . , sj) ∈ Σj (those are available, say, by registering as a pirate user).

The goal of the watermarking scheme is to disconnect all subscribers in T ,
thus rendering the pirate inoperative. Additionally, it would be bad to disconnect
innocent subscribers u ∈ U \T . Hence, only deterministic schemes are considered
in this case.

Formally, a dynamic watermarking scheme is a function f : U × Σ∗ 7→ Σ ∪
{σ0}. For all j ≥ 1, f induces a partition of U into the disjoint sets Sj

k = {u ∈
U : f(u, Bj−1) = σk}, 0 ≤ k ≤ r. This is interpreted as follows:

1. At time j ≥ 1, users u ∈ Sj
k, k ≥ 1, get variant σk of content segment j.

2. At time j ≥ 1, users u ∈ Sj
0 are disconnected, i.e., get no variant of content

segment j. We assume that Sj
0 ⊂ Sj+1

0 for all j ≥ 1, i.e., disconnection is
permanent.

In the following subsections we describe several deterministic schemes and
study their performance in terms of r – the number of variants that they require
in each segment, and m – the number of steps required to trace and disconnect
all traitors. Those schemes do not require any a priori knowledge of p; instead,
each of those schemes keeps track of a lower bound on the number of traitors.
That value is initially set to zero and only when piracy is detected the scheme
increases it to one. That lower bound is increased only when the findings of the
scheme up to that point imply that this is valid. That lower bound is denoted
by t in the first two schemes §3.2-3.3. In the third scheme §3.4, another related
parameter appears and t has there a slightly different interpretation.

3.2 First Scheme: r = p + 1, impractical convergence time

The following straightforward scheme makes use of (no more than) p+1 variants
in each segment. Therefore, it has an optimal spacial efficiency. However, its
temporal efficiency is very bad as its convergence time is exponential in n.

1. Set t = 0.
2. Repeat forever:

(a) For all selections of t users out of U , {w1, . . . , wt} ⊂ U , produce t + 1
distinct variants of the current segment and transmit the ith variant to
wi, 1 ≤ i ≤ t, and the (t+1)th variant to all other users, until the pirate
transmits a recognized variant.

(b) If the pirate ever transmits variant i for some i ≤ t, disconnect the single
user wi and decrement t by one. Otherwise, increment t by one.

Clearly, this algorithm will trace and disconnect all traitors, ti, 1 ≤ i ≤ p,
because when t reaches the value of p, one of the selections will be that in which
wi = ti, 1 ≤ i ≤ p; when that selection is made, either piracy stops or one of
the traitors will incriminate himself. The convergence time for this algorithm,
though, may be as large as

(
n
p

)
+ 2 ·∑p−1

t=0

(
n
t

)
, hence it is impractical.

3.3 Second Scheme: r = 2p + 1, efficient convergence

Next, we present an algorithm that requires 2p + 1 keys but removes all traitors
within O(p log n) steps. We note that any binary decision tree for determining
all p traitors within a user group of size n has a depth of p log n, as implied from
the information theoretic bound.

Throughout this algorithm, the set of subscribers, U , is partitioned into 2t+1
subsets, U = ∪S∈P S, where P = {L1, R1, . . . , Lt, Rt, I} , and each of those sets
receives a unique variant. Hence, there are never more than 2t + 1 simultaneous
variants; since t – the lower bound on the number of traitors – never exceeds
p – the true number of traitors, the upper bound on the size of the alphabet,
|Σ| ≤ 2p + 1, is respected.

An invariant of the algorithm is that the union Li ∪Ri contains at least one
traitor for all 1 ≤ i ≤ t. I is the complementary subset of users that is not known
to include a traitor.

1. Set t = 0, I = U , P = {I}.
2. Repeat forever:

(a) Transmit a different variant for every non-empty set of users S ∈ P .
(b) If the pirate transmits a variant v of the current segment then:

– If v is associated with I, increment t by one, split I into two equal
sized subsets, Lt and Rt, add those sets to P and set I = ∅.

– If v is associated with one of the sets Li, 1 ≤ i ≤ t, do as follows:
i. Add the elements in Ri to the set I.
ii. If Li is a singleton set, disconnect the single traitor in Li from

the user set U , decrement t by one, remove Ri and Li from P
and renumber the remaining Ri and Li sets in P .

iii. Otherwise (Li is not a singleton set), split Li into two equal sized
sets, giving new sets Li and Ri.

– If v is associated with one of the sets Ri, 1 ≤ i ≤ t, do as above
while switching the roles of Ri and Li.

Theorem 2. The watermarking scheme which the above algorithm implements,
traces all p traitors within m = p log n + p time steps, while using no more than
r = 2p + 1 simultaneous variants.

Proof. It is clear that at any given stage, the union Li ∪Ri, 1 ≤ i ≤ t, contains
at least one traitor (this is an invariant of the algorithm). Hence, the number of
{Li, Ri} pairs, t, cannot exceed the total number of traitors, p. Since the scheme
uses at each stage no more than 2t + 1 variants, the upper bound of 2p + 1
simultaneous variants is respected.

As for the convergence time, consider a sequence of tracing steps through
which a traitor is isolated in successively smaller subsets, Li or Ri. Clearly, each
single traitor will be isolated within log n steps. Hence, all traitors will be isolated
within p log n steps. Once all traitors are isolated, the pirate’s broadcast must
incriminate them all after additional p steps.

3.4 Third Scheme: r = p + 1, improved convergence time

Here, we present another algorithm that uses an optimal alphabet of size p+1. Its
convergence time is bounded by O(3pp log n) which is a dramatic improvement
over

(
n
p

) ≈ np of the scheme in §3.2, though still non-polynomial in p. Our new
algorithm is very similar to the previous one, §3.3, in the sense that the partitions
that it uses are of the same form, U = ∪S∈P S, P = {L1, R1, . . . , Lt, Rt, I} ,
and it has the same invariants: the union Li ∪ Ri contains at least one traitor
for all 1 ≤ i ≤ t, while I is not known to include any traitor.

The difference between the two algorithms (which is manifested most no-
tably in their running time) stems from the fact that we may not have sufficient
variants for all the 2t+1 sets in P (due to the tighter restriction on the simulta-
neous number of variants). Hence, if in the previous algorithm we had only one
dynamic parameter, t, that indicated both the number of {Li, Ri} pairs and the
current lower bound on the number of traitors, in this algorithm there are two
dynamic parameters:

1. k, the current lower bound on the number of traitors (i.e., how many traitors
are known to exist at this stage of the search), and

2. t, the number of pairs of subsets, {Li, Ri}, in the partition P of U . Each of
those pairs is known to include at least one traitor.

Clearly, k ≥ t; later, we shall see that k ≤ 2t. Hence, the knowledge that the
tracing scheme holds in each step may be summarized as follows:

|T | ≥ k and |(Li ∪Ri) ∩ T | ≥ 1 1 ≤ i ≤ t .

In the 2p + 1 algorithm, having the luxury of assigning a unique variant to
each set S ∈ P , we were guaranteed to make a progress in every step, where
a progress means the splitting of one of the sets in P towards closing on the
traitor(s) in that set. Here, however, we cannot do so since we are limited to use
no more than r = k+1 different variants in each step. Hence, instead of achieving
a progress in each step, the algorithm that we present below is guaranteed to
achieve a progress within a finite number of steps.

1. Set t = 0, k = 0, I = U , P = {I}.
2. Repeat forever:

(a) For every selection of {S1, . . . , Sk} ⊂ P where Si ∈ {Li, Ri}, 1 ≤ i ≤ t,
and Si, t + 1 ≤ i ≤ k are any other k − t sets from P , produce k + 1
variants, σi, 1 ≤ i ≤ k + 1. Transmit σi to Si for all 1 ≤ i ≤ k, while all
remaining users get variant σk+1.

(b) Assume that the pirate transmits at some step a variant σi that corre-
sponds to a single set in P (when k < 2t those are the variants σi where
1 ≤ i ≤ k; when k = 2t, on the other hand, all variants correspond to
a single set, since then also σk+1 is transmitted to just one set). In that
case:
i. If σi corresponds to an Li set, then that set must contain a traitor.

In that case we add the corresponding complementary set, Ri, to I
and split Li into two equal sized sets giving a new {Li, Ri} pair. In
this case neither t nor k changes but eventually, when the size of the
incriminated set is one, we may disconnect the traitor in that set.
When this happens, we restart the loop after decrementing k and t
by one.

ii. If σi corresponds to an Ri set, we act similarly.
iii. If σi corresponds to I, it allows us to increment t by one (and k as

well, if k was equal to t), split I into a new {Lt, Rt} pair, set I = ∅
and restart the loop.

(c) If k < 2t and the pirate always transmits σk+1, then after completing
the entire loop we may increment k by one and then restart the loop.

Given k and t, the basic loop consists of 22t−k+1
(

t
k−t−1

)
+22t−k

(
t

k−t

)
rounds.

Since, in the worst case, we may need to repeat the loop from k = t to k = 2t
until we split a set, we are guaranteed to make a progress in the form of splitting
a set within no more than 2 · 3t − 1 steps (which equals the sum over k of the

above terms). This is always bounded by 2 ·3p. Hence, convergence is guaranteed
within no more than (2 ·3pp log n+p) steps. This bound is not tight, but, on the
other hand, it is clear that any upper bound on the convergence time cannot be
less than O(2pp log n) rounds. Hence, this algorithm is exponential in p.

Note that this algorithm actually combines the two previous ones. It uses
the same search tree as the 2p + 1 algorithm of §3.3. However, when a gap is
created between k and t, the previous p + 1 algorithm of §3.2 is implemented
in order to trace the additional k − t subsets of P that contain a traitor. We
could, of-course, avoid the inefficient algorithm of §3.2 and, instead, implement
again the algorithm of §3.3 in a recursive manner. However, that would make the
algorithm quite intricate, while not improving its convergence time substantially.

4 The Static Setting

4.1 Preliminaries

In this scenario, the content is marked once, by dividing it into m segments and
marking each segment using the marking alphabet Σ, |Σ| = r. Each user is given
a unique watermarked copy (version) of the content that is randomly chosen out
of the rm possible versions. The following notations and assumptions are used
throughout this section:

– C(u) is the copy, or version, that user u ∈ U got. Namely, C is a one-
to-one random function from U to Σm, which is assumed to be uniformly
distributed.

– C(T) is the closure of {C(t1), ..., C(tp)}; i.e., all vectors C ∈ Σm for which
Cj ∈ {C(t)j : t ∈ T} for all j = 1, ..., m. In other words, C(T) consists of
all versions that can be produced by T from the p versions of its members.

– C∗ stands for the copy that T produced and distributed in the black market.
– For any x, y ∈ Σm, M(x, y) = 1

m · |{j : xj = yj , 1 ≤ j ≤ m}| denotes their
matching score.

We consider the natural majority algorithm: given a black market copy, C∗,
the tracer incriminates and punishes that user u who has a maximal matching
score, M(C(u), C∗). This is the same algorithm that was suggested and studied
in [2]. We carry out here a more careful analysis that enables us to improve the
performance estimates that were obtained in [2].

Note that this scheme is the static analogue to the dynamic schemes described
in the previous section, because all we care about are exact “matches” and the
information on the matches is taken in each segment separately (as opposed to,
e.g., the Boneh-Shaw scheme [1] where the matching information is considered
in the context of groups of segments).

The best strategy for the pirate against the majority algorithm is to select
that codeword C∗ ∈ C(T) that minimizes maxt∈T M(C(t), C∗). However, finding
the exact solution for this problem seems to be a difficult task. A random choice
of C∗ seems like a more practical solution for the pirate. We will assume that

C∗ is uniformly distributed amongst all vectors in C(T), i.e., for each segment
j, one of the available variants, {C(t)j : t ∈ T}, is chosen uniformly at random
(without repetitions).

Summary of results. Hereinafter we assume that U , T and Σ are given
(where n > p ≥ 1 and r ≥ 2), as well as a small parameter ε > 0. We set the
probability space to be that which consists of all possible tracer’s allocations of
codewords, C(·), and pirate’s selections of C∗ ∈ C(T) with uniform distributions.
The question which arises is as follows: Can we find a lower bound M such that
the above described scheme, when using m > M segments, would incriminate a
true traitor in probability of at least 1− ε? In Theorem 3 we provide a positive
answer to this question.

Next, we provide a simple algorithm to compute a lower bound M1 such
that the scheme would perform as desired for all m ≥ M1. This lower bound is
significantly better than the lower bound obtained in [2].

We also study the asymptotic behavior of the lower bound for m in the two
regimes r ≥ p + 1 and r < p + 1. We note that also here, like in the dynamic
setting, the value r = p + 1 is a special value that plays a significant role.

Deterministic methods vs. probabilistic ones. In the dynamic setting
we concentrated on deterministic algorithms. In the static setting, however, not
having the freedom of deciding on the allocation of variants in the next segment
based on the findings in the previous segments, we restrict our discussion to
probabilistic algorithms. This is because we have been unable to find a static
deterministic algorithm that is more efficient than the exponential scheme in
§3.2. One obvious open problem is proving that subexponential deterministic
static schemes are impossible, or the converse.

Note that by relaxing the deterministic incrimination demand to a proba-
bilistic one, we are able to break the barrier of r = p + 1 and achieve such a
relaxed incrimination even with the minimal size of marking alphabet, r = 2,
though, as shown later, with a very high price in m.

4.2 Lower Bounds

Under the assumptions and definitions given in §4.1, the following holds:

Lemma 1. There exists a constant b > 1, depending solely on p and r, such
that for any t ∈ T , M(C(t), C∗) −→

m→∞
b
r a.e.

Proof. For every u ∈ U , let x(u)j , 1 ≤ j ≤ m, be the following indicator random
variables:

x(u)j =
{

1 if C(u)j = C∗j
0 otherwise . (1)

We also define ξr
p to be the random variable that counts the number of different

letters in a word of length p over an alphabet of size r and we let

αp,r(k) = Pr[ξr
p = k] . (2)

With this, we get that for every t ∈ T ,

E[x(t)j] = Pr[x(t)j = 1] = (3)
r∑

k=1

Pr
[
C(t)j = C∗j

∣∣∣ |{C(t)j : t ∈ T}| = k
]
· αp,r(k) =

r∑

k=1

αp,r(k)
k

. (4)

Since αp,r(k) > 0 for all 1 ≤ k ≤ r, it follows that

E[x(t)j] =
b

r
(5)

for some b > 1 that depends solely on p and r. Finally, since x(t)j are independent
and have the same distribution, and M(C(t), C∗) = 1

m ·
∑m

j=1 x(t)j , then, by The
Strong Law of Large Numbers, it converges to its expected value a.e.

Theorem 3. There exists m sufficiently large for which

Pr

[
M(C(u), C∗) < max

t∈T
M(C(t), C∗) ∀u ∈ U \ T

]
> 1− ε. (6)

Proof. In view of Lemma 1, we may approximate the maximal score of the
traitors by

µ :=
b

r
. (7)

Hence, we aim at showing that, for sufficiently large m,

Pr [M(C(u), C∗) < µ ∀u ∈ U \ T] > 1− ε . (8)

Fixing u ∈ U \ T and denoting a = Pr [M(C(u), C∗) ≥ µ] , inequality (8) is
equivalent to (1− a)n−p > 1− ε , and this inequality holds if

a <
ε

n
. (9)

Hence, we aim at finding m for which (9) holds. To this end, we observe that

a = Pr

 1

m

m∑

j=1

x(u)j ≥ µ

 (10)

where x(u)j were defined in (1). Since x(u)j ∼ B(1
r), 1 ≤ j ≤ m, and are

independent, we may apply the normal approximation and conclude that

X :=
r ·∑m

j=1 x(u)j −m√
m(r − 1)

∼ N(0, 1) (11)

for sufficiently large m. Hence, in view of (7), (10) and (11), the inequality in
(9) takes the form Pr

[
X ≥ b−1√

r−1

√
m

]
< ε

n , and that holds if

m > M1 :=
r − 1

(b− 1)2
·
(
erfc−1(

ε

n
)
)2

where erfc(x) =
1√
2π

∫ ∞

x

e−t2/2dt .

(12)

The proof of Theorem 3 is constructive, in the sense that it provides an
expression for the lower bound M1. That lower bound involves the constant b
which may not be computed explicitly. However, by (4) and (5),

b = r ·
r∑

k=1

αp,r(k)
k

, (13)

and that may be easily evaluated using the following self-explanatory formulae
for computing αp,r(k), (2):

α1,r(k) =
{

1 if k = 1
0 if k 6= 1 ; αp,r(0) = 0 ; (14)

αp+1,r(k) =
k

r
· αp,r(k) +

(
1− k − 1

r

)
· αp,r(k − 1) , (15)

where p, r ≥ 1 and 1 ≤ k ≤ r.

The case r ≥ p + 1. It is always safe to say that maxt∈T M(C(t), C∗) ≥ 1
p .

Hence, in this case we may take in (7) b = r
p instead of (13). Substituting this

explicit value for b in (12), we arrive at the following lower bound for m:

m > M2 :=
(r − 1)p2

(r − p)2
·
(
erfc−1(

ε

n
)
)2

. (16)

Clearly, the lower bound in (16), M2, is worse than that in (12), M1. Let us
consider the asymptotic behavior of M2 for large values of p and see how it
compares to that of M1. It turns out that the answer to these questions depends
on the relation between r and p:

• If r = γ · p where γ = Const > 1, then, by (16),

M2 =
γ · p− 1
(γ − 1)2

·
(
erfc−1(

ε

n
)
)2

∼ Const · p ·
(
erfc−1(

ε

n
)
)2

.

The lower bound that was obtained in [2] under the assumption r = 4p was
MCFN = 4

3p log2

(
n
ε

)
. Comparing the three bounds in the case r = 4p, we find

that M1 < M2 < MCFN while M2
M1

≈ 1.377 and MCFN
M1

≈ 3.629 . Therefore, in
practice, M1 should be used.

• If r = p + γ where γ =Const, then, by (16),

M2 =
(p + γ − 1) · p2

γ2
·
(
erfc−1(

ε

n
)
)2

∼ Const · p3 ·
(
erfc−1(

ε

n
)
)2

.

However, as numerical computations indicate, M2 becomes meaningless in this
case and M1 should be evaluated in order to get a reasonable estimate for the
required lower bound on m.

The case r ≤ p. The majority scheme works also when r ≤ p, even with the
minimal r, i.e., r = 2. However, the lower bound M1 increases dramatically
and the scheme becomes impractical; for example, when r = 2, M1 = 4p−1 ·(
erfc−1(ε

n)
)2

. The reason for that is that the smaller r is, the better are the
chances that the traitors would have in each segment a full or almost full set of
variants. In other words, the smaller r is, the closer C(T) is to Σm and then the
traitors could produce almost any version. For instance, if p > r ln r then, by the
coupon collector problem, there are good chances that in a given segment j, the
traitors have the complete set of variants, {C(t)j : t ∈ T} = Σ . However, those
segments in which the pirate lacks some variants, enable the scheme to relate
a given black market copy, C∗, to T , provided that there are enough of those
segments, i.e., provided that m is sufficiently large. Hence, in applications where
the size of of the watermarking alphabet is strictly restricted, more effective
methods should be applied.

5 Open Problems

It is important to understand the underlying performance considerations which
one needs to consider: bandwidth, storage and computation time. Some of the
published results on various broadcast problems are seemingly irrelevant because
they do not deal with the performance characteristics of the solution. One im-
portant task is to give a unified analysis of the various solutions proposed in the
literature.

As for the present study, the open problems that it raises are as follows:

1. Devising a probabilistic algorithm in the dynamic model. There are two
settings to consider in this context: (a) known allocation of codewords (the
pirate knows the codewords of all users and not just of those he controls),
and (b) oblivious allocation of codewords.

2. Finding a deterministic dynamic algorithm based on a minimal alphabet,
r = p + 1, with a convergence time that is polynomial in p.

3. Proving or disproving that any deterministic static scheme is exponential (in
the number of segments m).

Acknowledgments

The authors gratefully acknowledge interesting and valuable conversations with
Omer Berkman, Jacob Goldberger and Benny Pinkas.

References

1. D. Boneh and J. Shaw, Collusion-Secure Fingerprinting for Digital Data, IEEE
Transactions on Information Theory, vol. 44, no. 5 (1998), pp. 1897–1905 (see also
Proc. Crypto 95, Springer LNCS 963, 1995, pp. 452-465).

2. B. Chor, A. Fiat, and M. Naor, Tracing Traitors, Proc. Crypto 94, Springer LNCS
839 (1994), pp. 257–270.

3. I.J. Cox, J. Kilian, T. Leighton and T. Shamoon, A Secure, Robust Watermark for
Multimedia, Information Hiding, Springer LNCS 174 (1996), pp. 185–226.

4. C. Dwork, J. Lotspiech and M. Naor, Digital signets: Self-Enforcing Protection of
Digital Information, 28th Symposium on the Theory of Computation (1996), pp. 489-
498.

5. A. Fiat and M. Naor, Broadcast Encryption, Proc. Crypto 93, Springer LNCS 773
(1993), pp. 480–491.

6. Paul Kocher, Cryptography Research, http://www.cryptography.com/dpa/index.html
7. M. Naor and B. Pinkas, Threshold Traitor Tracing, Proc. Crypto 98, Springer LNCS

1462 (1998), pp. 502-517.
8. B. Pfitzmann, Trials of Traced Traitors, Information Hiding, Springer LNCS 1174

(1996), pp. 49–64.
9. D. R. Stinson and R. Wei, Combinatorial Properties and Constructions of Trace-

ability Schemes and Frameproof Codes, SIAM Journal on Discrete Mathematics, vol.
11, no. 1 (1998), pp. 41-53.

10. J. Schwenk, J. Ueberberg, Tracing Traitors using Finite Geometries, manuscript.

