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Abstract. The technique of k-anonymization allows the releasing of
databases that contain personal information while ensuring some de-
gree of individual privacy. Anonymization is usually performed by gen-
eralizing database entries. We formally study the concept of generaliza-
tion, and propose two information-theoretic measures for capturing the
amount of information that is lost during the anonymization process.
Those measures are more general and more accurate than those pro-
posed in [19] and [1]. We study the problem of achieving k-anonymity
with minimal loss of information. We prove that it is NP-hard and study
polynomial approximations for the optimal solution. Our first algorithm
gives an approximation guarantee of O(ln k) – an improvement over the
best-known O(k)-approximation of [1]. As the running time of the algo-
rithm is O(n2k), we also show how to adapt the algorithm of [1] in order
to obtain an O(k)-approximation algorithm that is polynomial in both
n and k.

1 Introduction

Consider a database that holds information on individuals in some popula-
tion U = {u1, . . . , un}. Each individual is described by a collection of r pub-
lic attributes (also known as quasi-identifiers), A1, . . . , Ar, and s private at-
tributes, Z1, . . . , Zs. Each of the attributes consists of several possible values:
Aj = {aj,ℓ : 1 ≤ ℓ ≤ mj}, 1 ≤ j ≤ r, and Zj = {zj,ℓ : 1 ≤ ℓ ≤ nj}, 1 ≤ j ≤ s.
For example, if Aj is gender then Aj = {M,F}, while if it is the age of the indi-
vidual, it is a bounded nonnegative natural number. The public database holds
all publicly available information on the individuals in U ; it takes the form,

D = {R1, . . . , Rn} , where Ri ∈ A1 × · · · ×Ar , 1 ≤ i ≤ n .

The corresponding private database holds the private information,

D′ = {S1, . . . , Sn} , where Si ∈ Z1 × · · · × Zs , 1 ≤ i ≤ n .

The complete database is the concatenation of those two databases, D∥D′ =
{R1∥S1, . . . , Rn∥Sn}. We refer hereinafter to the tuples Ri and Si, 1 ≤ i ≤ n, as
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(public or private) records. The j-th component of the record Ri (namely, the
(i, j)-th entry in the database D) will be denoted hereinafter by Ri(j).

Such databases may be of interest to the general public even though they hold
information on individuals. The goal is to reveal information in order to allow
data mining, while respecting the privacy of the individuals that are represented
in the database. Many approaches were suggested for playing this delicate game
that requires finding the right path between data hiding and data disclosure.
Such approaches include query auditing [10, 16, 17], output perturbation [6, 10,
11], secure multi-party computation [2, 13, 14, 18, 24], and data sanitization [3–5,
7, 12]. One of the recent approaches, proposed by Samarati and Sweeney [20–22]
is k-anonymization. The main idea in this approach is to suppress or generalize
some of the public data in the database so that each of the public records becomes
indistinguishable from at least k−1 additional records. Consequently, the private
data may be linked to sets of individuals of size no less than k, whence the privacy
of the individuals is protected to some extent.

The problem that we study here is the problem of k-anonymization with
minimal loss of information: Given a public database D, and acceptable gen-
eralization rules for each of its attributes, find its ”nearest” k-anonymization;
namely, find a k-anonymization of D that conceals a minimum amount of in-
formation. Meyerson and Williams [19] introduced this problem and studied it
under the assumption that database entries may be either left intact or totally
suppressed. In that setting, the goal is to achieve k-anonymity while minimizing
the number of suppressed entries. They showed that the problem is NP-hard
and devised two approximation algorithms for that problem: One that runs in
time O(n2k) and achieves an approximation ratio of O(k ln k); and another that
has a fully polynomial running time (namely, it depends polynomially on both
n and k) and guarantees an approximation ratio of O(k lnn). Aggarwal et al.
[1] extended the setting of suppressions-only by allowing more general rules for
generalizing database entries towards achieving k-anonymity. They proposed a
way of penalizing each such action of generalizing a database entry and showed
that the problem of achieving k-anonymity in that setting with minimal penalty
is NP-hard. They then devised an approximation algorithm for that problem
that guarantees an approximation ratio of O(k).

In this study we extend the framework of k-anonymization to include any
type of generalization operators and define two measures of loss of information
that are both more general and more accurate than the measure that was used
in [1] (the measure that was used in [19] is a special case of the one that was
used in [1]). We call these measures the entropy measure and the monotone en-
tropy measure. We show that the problem of k-anonymization with minimal loss
of data (measured by either of those measures) is NP-hard. We then proceed
to describe an approximation algorithm with an approximation guarantee of
O(ln k)—a significant improvement over the previous best result of O(k). The
algorithm applies to both of our measures, as well as the measures that were
used in [19] and [1]. We note that Meyerson and Williams [19] hypothesized that
k-anonymization cannot be approximated, in polynomial time, with an approxi-



k-Anonymization with Minimal Loss of Information 3

mation factor that is o(ln k). What enabled this significant improvement was our
novel approach to this approximation problem. The approximation algorithms
in both [19] and [1] were based on the so-called graph representation. In [1] it was
shown that using the graph representation it is impossible to achieve an approx-
imation ratio that is better than Θ(k). We were able to offer the significantly
better O(ln k) approximation ratio by breaking out of the graph representation
framework and using a hypergraph approach instead.

The paper is organized as follows: In Section 2 we give a precise definition
of what is generalization, and we describe and illustrate several natural types
of generalization. In Section 3 we define and discuss our two measures of loss of
information. In Section 4 we define the problem of k-anonymization with minimal
loss of information and state its NP-hardness with respect to both measures of
loss of information. In Section 5 we present an algorithm that approximates
optimal k-anonymity with approximation ratio of O(ln k), for the entropy and
monotone entropy measures. The running time of that algorithm is O(n2k). We
then proceed to describe how to adapt the approximation algorithm of [1] to
achieve an O(k)-approximation ratio with respect to our measures, in time that
is polynomial in both n and k.

Due to lack of space, all proofs are omitted from this version and may be
found in the full version of this paper.

2 Generalization

The basic technique for obtaining k-anonymization is by means of generalization.
By generalization we refer to the act of replacing the values that appear in the
database with subsets of values, so that entry Ri(j), 1 ≤ i ≤ n, 1 ≤ j ≤ r, which
is an element of Aj , is replaced by a subset of Aj that includes that element.

Definition 1. Let Aj, 1 ≤ j ≤ r, be finite sets and let Aj ⊆ P(Aj) be a
collection of subsets of Aj. A mapping g : A1×· · ·×Ar → A1×· · ·×Ar is called
a generalization if for every (b1, . . . , br) ∈ A1 × · · · × Ar and (B1, . . . , Br) =
g(b1, . . . , br), it holds that bj ∈ Bj, 1 ≤ j ≤ r.

We illustrate the concept of generalization by several examples of natural
generalization operators.

Generalization by suppression. Assume that Aj = Aj∪{Aj} for all 1 ≤ j ≤ r
and that g either leaves entries unchanged or replaces them by the entire set
of attribute values, i.e., g(b1, . . . , br) = (b1, . . . , br), where bj ∈ {bj , ∗}, and *
denotes an element outside

∪
1≤j≤r Aj . In that case we refer to g as generalization

by suppression.

Generalization by hierarchical clustering trees. Aggarwal et al. [1] consid-
ered a setting in which for every attribute Aj there is a corresponding balanced
tree, T (Aj), that describes a hierarchical clustering of Aj . Each node of T (Aj)
represents a subset of Aj , the root of the tree is the entire set Aj , the descendants
of each node represent a partition of the subset that corresponds to the ancestor
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node, and the leaves correspond to the singleton subsets. Given such a balanced
tree, they considered generalization operators that may replace an entry Ri(j)
with any of the ancestors of Ri(j) in T (Aj). Generalization by suppression is a
special case of generalization by clustering trees where all trees are of height 2.

Some of our results require that the collection of subsets Aj , 1 ≤ j ≤ r,
satisfy the following natural property.

Definition 2. Given an attribute A = {a1, . . . , am}, a corresponding collection
of subsets A is called proper if (i) it includes all singleton subsets {ai}, 1 ≤ i ≤
m, (ii) it includes the entire set A, and (iii) it is a laminar collection in the
sense that B1 ∩B2 ∈ {∅, B1, B2} for all B1, B2 ∈ A.

So far we spoke of generalizations of records. We now turn to speak of gen-
eralizations of an entire database.

Definition 3. Let D = {R1, . . . , Rn} be a database having public attributes
A1, . . . , Ar, let A1, . . . , Ar be corresponding collections of subsets, and let gi :
A1×· · ·×Ar → A1×· · ·×Ar be generalization operators. Denoting Ri := gi(Ri),
1 ≤ i ≤ n, the database g(D) := {R1, . . . , Rn} is called a generalization of D.

We conclude this section with the following definition of a partial order on
the set of generalized records:

Definition 4. Define a relation ⊑ on A1 × · · · ×Ar as follows: If R,R′ ∈ A1 ×
· · · ×Ar then R ⊑ R′ if and only if R(j) ⊆ R′(j) for all 1 ≤ j ≤ r.

3 Measures of Loss of Information

3.1 Previously Used Measures

The quality of a k-anonymization of a given database is typically measured by the
amount of information that is lost due to generalization. Meyerson and Williams
[19] concentrated on the case of generalization by suppression. Their measure of
loss of information was the number of generalized entries (namely, *s) in the
k-anonymized database. Aggarwal et al. [1] considered generalizations by hier-
archical clustering trees and proposed to penalize by r/ℓj each generalization of
an entry Ri(j) to a subset residing at the r-th level of the hierarchical clustering
tree T (Aj), the height of which is ℓj . The tree measure is a generalization of the
measure proposed by Meyerson and Williams.

We find the tree measure quite arbitrary. For example, if one attribute is
gender and another attribute is age, the loss of information by concealing the
gender is much less than that incurred by concealing the age. Also, the levels of
the trees T (Aj) need not be equally-spaced in terms of information loss.

3.2 The Entropy Measure

Following [9] and [23], we suggest to use the standard measure of information,
namely entropy, in order to assess more accurately the amount of information
that is lost by anonymization.
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The public database D = {R1, . . . , Rn} induces a probability distribution for
each of the public attributes. Let Xj , 1 ≤ j ≤ r, denote hereinafter the value of
the attribute Aj in a randomly selected record from D. Then

Pr(Xj = a) =
#{1 ≤ i ≤ n : Ri(j) = a}

n
.

Let Bj be a subset of Aj . Then the conditional entropy H(Xj |Bj) is defined as

H(Xj |Bj) = −
∑
b∈Bj

Pr(Xj = b|Xj ∈ Bj) log2 Pr(Xj = b|Xj ∈ Bj) .

Note that if Bj = Aj then H(Xj |Bj) = H(Xj) while in the other extreme case
where Bj consists of one element, we have zero uncertainty, H(Xj |Bj) = 0. This
allows us to define the following cost function of a generalization operator:

Definition 5. Let D = {R1, . . . , Rn} be a database having public attributes
A1, . . . , Ar, and let Xj be the random variable that equals the value of the j-
th attribute Aj, 1 ≤ j ≤ r, in a randomly selected record from D. Then if
g(D) = {R1, . . . , Rn} is a generalization of D,

Πe(D, g(D)) =

n∑
i=1

r∑
j=1

H(Xj |Ri(j)) (1)

is the entropy measure of the loss of information caused by generalizing D into
g(D).

The Non-monotonicity of the Entropy Measure A natural property that
one might expect from any measure of loss of information is monotonicity:

Definition 6. Let D = {R1, . . . , Rn} be a database and let Π be any measure of
loss of information. Then Π is called monotone if Π(D, g(D)) ≤ Π(D, g′(D))
for any two D-generalizations, g(D) and g′(D), where g(D)i ⊑ g′(D)i for all
1 ≤ i ≤ n.

The tree measure is clearly monotone. The entropy measure Πe, on the other
hand, is not always monotone. The non-monotonicity of the entropy measure
may always be rectified, in the sense that for any collection of subsets of a given
attribute, A, it is always possible to find a partial collection, Â ⊆ A, so that
the entropy measure is monotone on Â. Due to lack of space, we postpone the
discussion of the non-monotonicity of the entropy measure to the full version of
this paper. There we exemplify it, discuss it, and show how to rectify it.

3.3 The Monotone Entropy Measure

Here we introduce themonotone entropy measure, a simple variant of the entropy
measure that respects monotonicity.
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Definition 7. Let D = {R1, . . . , Rn} be a database having public attributes
A1, . . . , Ar, and let Xj be the random variable that equals the value of the j-
th attribute Aj, 1 ≤ j ≤ r, in a randomly selected record from D. Then if
g(D) = {R1, . . . , Rn} is a generalization of D,

Πme(D, g(D)) =
n∑

i=1

r∑
j=1

Pr(Ri(j)) ·H(Xj |Ri(j)) (2)

is the monotone entropy measure of the loss of information caused by generalizing
D into g(D).

Comparing (2) to (1), we see that each of the conditional entropies is multi-
plied by the corresponding probability. The monotone entropy measure coincides
with the entropy measure when considering generalization by suppressions only.
However, when the collections of subsets Aj include also intermediate subsets,
the entropy that is associated with such a subset is multiplied by the probability
of the subset. Since this multiplier increases as the subset includes more ele-
ments, the monotone entropy measure penalizes generalizations more than the
entropy measure does.

Lemma 1. The monotone entropy measure is monotone.

4 k-Anonymization with Minimal Loss of Data

We are now ready to define the concepts of k-anonymization and the correspond-
ing problem of k-anonymization with minimal loss of information.

Definition 8. A k-anonymization of a database D = {R1, . . . , Rn} is a gen-
eralization g(D) = {R1, . . . , Rn} where for all 1 ≤ i ≤ n there exist indices
1 ≤ i1 < i2 < · · · < ik−1 ≤ n, all of which are different from i, such that
Ri = Ri1 = · · · = Rik−1

.

k-anonymization: Let D = {R1, . . . , Rn} be a database having public at-
tributes Aj , 1 ≤ j ≤ r. Given collections of attribute values, Aj ⊆ P(Aj),
1 ≤ j ≤ r, and a measure of information loss Π, find a k-anonymization
g(D) = {R1, . . . , Rn}, where Ri ∈ A1 × · · · × Ar, 1 ≤ i ≤ n, that minimizes
Π(D, g(D)).

The following theorem is an adaptation of [19, Theorem 3.1].

Theorem 1. The problem of k-anonymization with generalization by sup-
pression, where the measure of loss of information is the entropy measure (1),
Π = Πe, or the monotone entropy measure (2), Π = Πme, is NP-hard for
k ≥ 3, if |Aj | ≥ k + 1 for all 1 ≤ j ≤ r.
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5 Approximating Optimal k-Anonymity

In this section we describe two approximation algorithms for the problem of
k-anonymization with minimal loss of information. We assume here that all col-
lections of subsets are proper. The first algorithm, described in Sections 5.1-5.3,
achieves an approximation ratio of O(ln k)—a significant improvement with re-
spect to the best known O(k)-approximation algorithm [1]. As that algorithm
runs in time O(n2k), we show in Section 5.4 that the O(k)-approximation al-
gorithm of [1] that runs in time O(kn2) may be used also for approximating
optimal k-anonymity when using the entropy and monotone entropy measures.
The question of the existence of a fully polynomial approximation algorithm
with an o(k)-approximation ratio remains open.

5.1 The Generalization Cost of Subsets

Any k-anonymization of D defines a clustering (namely, a partition) of D where
each cluster consists of all records that were replaced by the same generalized
record. In order to lose a minimal amount of information, all records in the same
cluster are replaced with the minimal generalized record that generalizes all of
them. To that end we define the closure of a set of records.3

Definition 9. Let A1, . . . , Ar be attributes with corresponding collections of sub-
sets A1, . . . Ar that are all proper. Then given M ⊆ A1 × · · · ×Ar, its closure is
defined as

M = min
⊑

{
C ∈ A1 × · · · ×Ar : R ⊑ C for all R ∈ M

}
.

Definition 10. Let D = {R1, . . . , Rn} be a database with attributes A1, . . . , Ar,
having proper collections of subsets A1, . . . Ar. Let Xj be the value of the attribute
Aj in a randomly selected record from D. Then given a subset of records, M ⊆ D,
its generalization cost by the entropy measure is,

d(M) = de(M) =
r∑

j=1

H(Xj |M j) , (3)

while its generalization cost by the monotone entropy measure is,

d(M) = dme(M) =

r∑
j=1

Pr(M j) ·H(Xj |M j) . (4)

The generalization cost of M is therefore the amount of information that we lose
for each record R ∈ M if we replace it by the minimal generalized record M .

We noted earlier that the entropy measure is not necessarily monotone. How-
ever, as explained in the full version, this problem rarely occurs. In addition, as

3 In our discussion, a set actually means a multiset; namely, it may include repeated
elements.
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we show there, we may always avoid it by narrowing down the collections Aj ,
1 ≤ j ≤ r, until the entropy measure becomes monotone with respect to them.
For the sake of simplicity, we assume monotonicity hereinafter. Namely,

M ⊆ M ′ ⊆ A1 × · · · ×Ar implies that d(M) ≤ d(M ′) . (5)

If we use the generalization cost by the monotone entropy measure, d(M) =
dme(M), then (5) always holds.

The notion of the generalization cost of a set of records is related to the
notion of the diameter of such a set, as defined in [19]. The diameter of a set of
records M ⊆ A1 × · · · ×Ar was defined as

diam(M) = max
R,R′∈M

δ(R,R′), δ(R,R′) := |{1 ≤ j ≤ r : R(j) ̸= R′(j)}| . (6)

In other words, if the two records R and R′ were to be generalized by means of
suppression, dist(R,R′) equals the minimal number of attributes that would be
suppressed in each of the two records in order to make them identical.

Our notions of generalization cost, (3) and (4), and the notion of the diameter,
(6), are functions that associate a size to a given set of records. Our notions,
though, of generalization cost, improve that of the diameter as follows:

1. The generalization costs, (3) and (4), generalize the definition of the diam-
eter, (6), in the sense that they apply to any type of generalization (the
definition of the diameter is restricted to generalization by suppression).

2. The notions of the generalization cost use the more accurate entropy and
monotone entropy measures (the definition of the diameter only counts the
number of suppressed entries).

3. Most importantly, while the size of a set of records that is defined in (6) is a
diameter (namely, it is based on pairwise distances), the size that is defined
in (3) and (4) is a volume. All three notions offer measures for the amount of
information that is lost if the entire set of records, M , is to be anonymized
in the same way. But while the diameter does this only by looking at pairs
of records in M , the generalization costs do this by looking simultaneously
at all records in M and computing the information loss that their closure
entails. This simple difference turns out to be very important, as we show
below.

Before moving on, we state the following basic lemma that plays a significant
role in our analysis.

Lemma 2. Assume that all collections of subsets, Aj, 1 ≤ j ≤ r, are proper.
Then the generalization costs d(·), (3) and (4), are sub-additive in the sense that
for all S, T ⊆ A1 × · · · ×Ar,

S ∩ T ̸= ∅ implies that d(S ∪ T ) ≤ d(S) + d(T ) . (7)
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5.2 Covers, Clusterings, k-Anonymizations and their Generalization
Cost

As noted earlier, any k-anonymization of D defines a clustering of D. Without
loss of generality, we may assume that all clusters are of sizes between k and
2k−1; indeed, owing to monotonicity, any cluster of size greater than 2k may be
split into clusters of sizes in the range [k, 2k− 1] without increasing the amount
of information loss due to k-anonymization. Let:

1. G be the family of all k-anonymizations of D, where the corresponding clus-
ters are of sizes in the range [k, 2k − 1].

2. Γ be the family of all covers of D by subsets of sizes in the range [k, 2k− 1].
3. Γ 0 ⊂ Γ be the family of all covers in Γ that are clusterings (or partitions);

namely, all covers in Γ consisting of non-intersecting subsets.

There is a natural one-to-one correspondence between G and Γ 0.
Hereinafter, Π denotes either the entropy measure of loss of information,

Π = Πe, or the monotone entropy measure of loss of information, Π = Πme.
The corresponding generalization cost is then denoted by d(·) (namely, d(·) = de
if Π = Πe and d(·) = dme if Π = Πme).

Given a cover γ ∈ Γ , we define its generalization cost as d(γ) =
∑

S∈γ d(S).

Theorem 2. Let γ̂ be a cover that achieves minimal generalization cost d(·)
in Γ . Let g ∈ G be a k-anonymization and let γ0 ∈ Γ 0 be its corresponding
clustering. Then

Π(D, g(D)) ≤ 2d(γ0)

d(γ̂)
·OPT (D), (8)

where
OPT (D) := min

g∈G
Π(D, g(D)). (9)

5.3 Approximating Optimal k-Anonymization

Our approximation algorithm follows the algorithm of [19]. It has two phases,
as described hereinafter.

Phase 1: Producing a cover. Let γ̂ be a cover that minimizes d(·) in Γ . In the
first phase of the algorithm we execute the greedy algorithm for approximating
the weighted set cover problem [15].

1. Set C to be the collection of all subsets of D with cardinality in the range
[k, 2k − 1].

2. Set γ = ∅ and E = ∅.
3. While E ̸= D do:

– For each S ∈ C compute the ratio r(S) = d(S)/|S ∩ (D \ E)|.
– Choose S that minimizes r(S).
– E = E ∪ S, γ = γ ∪ {S}, C = C \ {S}.

4. Output γ.

Since the greedy algorithm for the weighted set cover problem has logarith-
mic approximation guarantee (see, e.g., [8]), the result of that phase is a cover
γ ∈ Γ for which d(γ) ≤ (1 + ln 2k)d(γ̂).
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Phase 2: Translating the cover into a k-anonymization. In the second phase we
translate the cover γ ∈ Γ to a clustering γ0 ∈ Γ 0 and then to its corresponding
k-anonymization g ∈ G. The translation procedure works as follows:

1. Input: γ = {S1, . . . , St}, a cover of D = {R1, . . . , Rn}.
2. Set γ0 = γ.
3. Repeat until the cover γ0 has no intersecting subsets:

– Let Sj , Sℓ ∈ γ0 be such that Sj ∩Sℓ ̸= ∅ and let R be a record in D that
belongs to Sj ∩ Sℓ.

– If |Sj | > k set Sj = Sj \ {R}.
– Else, if |Sℓ| > k set Sℓ = Sℓ \ {R}.
– Else (namely, if |Sj | = |Sℓ| = k) remove Sℓ from γ0 and set Sj = Sj ∪Sℓ.

4. Output the following k-anonymization: For i = 1, . . . , n, look for Sj ∈ γ0

such that Ri ∈ Sj and then set g(D)i = Sj .

Theorem 3. The k-anonymization g that is produced by the above described
algorithm satisfies

Π(D, g(D)) ≤ 2(1 + ln 2k) ·OPT (D) , (10)

where OPT (D) is the cost of an optimal k-anonymization, (9).

The corresponding result in [19] is Theorem 4.1 there, according to which
the approximation algorithm achieves an approximation factor of 3k · (1+ln 2k).
Aggarwal et al. proposed an improved approximation algorithm that achieves
an O(k) approximation factor [1, Theorem 5]. The approximation algorithms
in both [19] and [1] were based on the so-called graph representation. In that
approach, the records of D are viewed as nodes of a complete graph, where the
weight of each edge (Ri, Rj) is the generalization cost of the set {Ri, Rj}. Both
algorithms work with such a graph representation and find the approximate k-
anonymization based only on the information that is encoded in that graph.
Such an approach is limited since it uses only the distances between pairs of
nodes. In [1] it was shown that using the graph representation it is impossible
to achieve an approximation ratio that is better than Θ(k).

We were able to offer the significantly better O(ln k) approximation ratio by
breaking out of the graph representation framework. As explained in Section 5.1,
our cost function d(·) is defined for sets of records, rather than pairs of records.
Hence, it represents volume rather than a diameter. This upgrade from the graph
representation to a hypergraph representation enabled the improvement from a
linear approximation ratio to a logarithmic one.

It should be noted that our improved approximation algorithm works also
with the tree measure, if we modify the definition of the generalization cost,
Definition 10, to be consistent with that measure. Such a modified generalization
cost is clearly monotone, (5), and sub-additive, (7), whence all of our claims hold
also for that cost. The algorithm described in this section runs in time O(n2k).
The exponential dependence of the running time on k is due to the fact that we
examine all subsets of records of D with cardinalities between k and 2k − 1.
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5.4 A Fully Polynomial Approximating Algorithm

Here we describe briefly (due to space limitations) the algorithm of Aggarwal et
al. [1], and concentrate on the necessary modifications that are required in order
to make it work for our entropy measure.

The algorithm starts by considering the graph representation G = (V,E) of
the databaseD. This is a complete weighted graph, where V = D = {R1, . . . , Rn},
and the edge ei,j = {Ri, Rj} ∈ E has weight w(ei,j) = d({Ri, Rj}), where d(·)
is the generalization cost by the entropy measure, (3). Let F = {T1, . . . , Ts} be
a spanning forest of G. If all trees in that forest are of size at least k then that
forest induces a k-anonymization of D, denoted gF (namely, all records in the
tree Tℓ are replaced by the closure of that tree, Tℓ). The charge of each node with
respect to gF is defined as c(Ri, gF ) = d(Tj(i)), where d(·) is the generalization
cost by the measure Π (that could be either the entropy measure, Πe, or the
monotone entropy measure, Πme). The generalization cost of gF is then

Π(D, gF (D)) =
n∑

i=1

c(Ri, gF ) . (11)

Theorem 4. Let OPT = OPT (D) be the cost of an optimal k-anonymization
of D with respect to the measure of loss of information, Π, and let L be an
integer such that L ≥ k. Let F = {T1, . . . , Ts} be a spanning forest of G whose
total weight is at most OPT and in which each of the trees is of size in the range
[k, L]. Then the corresponding k-anonymization, gF , is an L-approximation for
the optimal k-anonymization, i.e.,

Π(D, gF (D)) ≤ L ·OPT .

The algorithm then proceeds in two stages:

Stage 1: Create a spanning forest F = {T1, . . . , Ts} whose total weight is at
most OPT (the cost of an optimal k-anonymization) and in which all trees
are of size at least k.

Stage 2: Compute a decomposition of this forest such that each component
has size in the range [k, L] for L = max{2k − 1, 3k − 5}.

Both stages are described in detail in [1]. In view of Theorem 4, this algorithm
achieves an approximation ratio of O(k). Its analysis, to a large extent, is in-
dependent of the underlying measure of loss of information that determines the
weight of the edges. Furthermore, it is a fully polynomial algorithm whose run-
ning time is O(kn2).

Acknowledgements. The authors thank Jacob Goldberger who proposed the
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