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Abstract. Weighted threshold secret sharing was introduced by Shamir
in his seminal work on secret sharing. In such settings, there is a set
of users where each user is assigned a positive weight. A dealer wishes
to distribute a secret among those users so that a subset of users may
reconstruct the secret if and only if the sum of weights of its users exceeds
a certain threshold. A secret sharing scheme is ideal if the size of the
domain of shares of each user is the same as the size of the domain
of possible secrets (this is the smallest possible size for the domain of
shares). The family of subsets authorized to reconstruct the secret in a
secret sharing scheme is called an access structure. An access structure
is ideal if there exists an ideal secret sharing scheme that realizes it.
It is known that some weighted threshold access structures are not ideal,
while other nontrivial weighted threshold access structures do have an
ideal scheme that realizes them. In this work we characterize all weighted
threshold access structures that are ideal. We show that a weighted
threshold access structure is ideal if and only if it is a hierarchical thresh-
old access structure (as introduced by Simmons), or a tripartite access
structure (these structures, that we introduce here, generalize the con-
cept of bipartite access structures due to Padró and Sáez), or a composi-
tion of two ideal weighted threshold access structures that are defined on
smaller sets of users. We further show that in all those cases the weighted
threshold access structure may be realized by a linear ideal secret shar-
ing scheme. The proof of our characterization relies heavily on the strong
connection between ideal secret sharing schemes and matroids, as proved
by Brickell and Davenport.

1 Introduction

A threshold secret sharing scheme enables a dealer to distribute a secret among
a set of users, by giving each user a piece of information called a share, such that
only large sets of users will be able to reconstruct the secret from the shares that
they got, while smaller sets gain no information on the secret. Threshold secret
sharing schemes were introduced and efficiently implemented, independently,
by Blakley [6] and Shamir [26]. Efficient threshold secret sharing schemes were
used in many cryptographic applications, e.g., Byzantine agreement [24], secure
multiparty computations [4, 11], and threshold cryptography [13].

In this paper we deal with weighted threshold secret sharing schemes. In these
schemes, considered already by Shamir [26], the users are not of the same status.



That is, each user is assigned a positive weight and a set can reconstruct the
secret if the sum of weights assigned to its users exceeds a certain threshold. As a
motivation, consider sharing a secret among the shareholders of some company,
each holding a different amount of shares. Such settings are closely related to
the concept of weighted threshold functions, which play an important role in
complexity theory and learning theory.

Ito, Saito, and Nishizeki [14] generalized the notion of secret sharing such
that there is an arbitrary monotone collection of authorized sets, called the
access structure. The requirements are that only sets in the access structure are
allowed to reconstruct the secret, while sets that are not in the access structure
should gain no information on the secret. A simple argument shows that in
every secret sharing scheme, the domain of possible shares for each user is at
least as large as the domain of possible secrets (see [17]). Shamir’s threshold
secret sharing scheme is ideal in the sense that the domain of shares of each user
coincides with the domain of possible secrets. Ideal secret sharing schemes are the
most space-efficient schemes. Some access structures do not have any ideal secret
sharing schemes that realizes them [5]. Namely, some access structures demand
share domains that are larger than the domain of secrets. Access structures that
may be realized by an ideal secret sharing scheme are called ideal. Ideal secret
sharing schemes and ideal access structures have been studied in, e.g., [1, 7,
8, 15, 18, 19, 21, 23, 25, 30, 33]. Ideal access structures are known to have certain
combinatorial properties. In particular, there is a strong relation between ideal
access structures and matroids [8].

While threshold access structures are ideal, weighted threshold access struc-
tures are not necessarily so. For example, the access structure on four users with
weights 1, 1, 1, and 2, and a threshold of 3, has no ideal secret sharing scheme
(see Example 1 for a proof). Namely, in any perfect secret sharing scheme that
realizes this access structure, the share domain of at least one user is larger than
the domain of secrets. On the other hand, there exist ideal weighted threshold
access structures, other than the trivial threshold ones. For example, consider
the access structure on nine users, where the weights are 16, 16, 17, 18, 19, 24
,24 ,24, and 24 and the threshold is 92. Even though this access structure seems
more complicated than the above access structure, it has an ideal secret shar-
ing scheme (see the full version of this paper [2]). Another example of an ideal
weighted threshold access structure is the one having weights 1, 1, 1, 1, 1, 3, 3,
and 3 and threshold 6 (see Example 2).

We give a combinatorial characterization of ideal weighted threshold access
structures. We show that a weighted threshold access structure is ideal if and only
if it is a hierarchical threshold access structure (as introduced by Simmons [27]),
or a tripartite access structure (these structures, that we introduce here, gener-
alize the bipartite access structures of Padró and Sáez [23]), or a composition of
two ideal weighted threshold access structures that are defined on smaller sets
of users. We further show that in all those cases the weighted threshold access
structure may be realized by a linear ideal secret sharing scheme. The present
study generalizes the work of Morillo, Padró, Sáez, and Villar [21] who charac-
terized the ideal weighted threshold access structures in which all the minimal



authorized sets have at most two users. The proof of our characterization re-
lies heavily on the strong connection between ideal secret sharing schemes and
matroids, as presented in [8]. We utilize results regarding the structure of ma-
troids to understand and characterize the structure of ideal weighted threshold
access structures. An important tool in our analysis is composition of ideal access
structures, previously studied in, e.g., [1, 5, 9, 12, 20, 32].

Efficiency of Secret Sharing Schemes. Secret sharing schemes for general access
structures were defined by Ito, Saito, and Nishizeki in [14]. More efficient schemes
were presented in, e.g., [5, 7, 16, 29]. We refer the reader to [28, 31] for surveys
on secret sharing. However, for most access structures the known secret sharing
schemes are highly inefficient, that is, the size of the shares is exponential in
n, the number of users. It is not known if better schemes exist. For weighted
threshold access structures the situation is better. In a recent work [3], secret
sharing schemes were constructed for arbitrary weighted threshold access struc-
tures in which the shares are of size O(nlog n). Furthermore, under reasonable
computational assumptions, a secret sharing scheme with computational secu-
rity was constructed in [3] for every weighted threshold access structure with a
polynomial share size.

Organization. We begin in Section 2 by supplying the necessary definitions.
Then, in Section 3, we state our characterization theorem and outline its proof.
We proceed to describe in Section 4 the connection between matroids and ideal
secret sharing, and then prove, in Section 5, several properties of matroids that
are associated with weighted-threshold access structures. Thereafter, we discuss
the connection between ideal weighted threshold access structures and two fam-
ilies of access structures: hierarchical threshold access structures in Section 6,
and tripartite access structures in Section 7. Finally, in Section 8 we complete
the proof of the characterization theorem by proving that if an ideal weighted
threshold access structure is not hierarchical nor tripartite then it is a compo-
sition of two access structures on smaller sets of users. For lack of space, some
proofs are omitted. All proofs may be found in the full version of the paper [2].

2 Definitions and Notations

Definition 1 (Access Structure). Let U = {u1, . . . , un} be a set of users. A
collection Γ ⊆ 2U is monotone if B ∈ Γ and B ⊆ C imply that C ∈ Γ . An access
structure is a monotone collection Γ ⊆ 2U of non-empty subsets of U . Sets in
Γ are called authorized, and sets not in Γ are called unauthorized. A set B is
called a minterm of Γ if B ∈ Γ , and for every C ( B, the set C is unauthorized.
A user u is called self-sufficient if {u} ∈ Γ . A user is called redundant if there
is no minterm that contains it. An access structure is called connected if it has
no redundant users.

Definition 2 (Secret-Sharing Scheme). Let S be a finite set of secrets, where
|S| ≥ 2. An n-user secret-sharing scheme Π with domain of secrets S is a



randomized mapping from S to a set of n-tuples
∏n

i=1 Si, where Si is called the
share-domain of ui. A dealer shares a secret s ∈ S among the n users of some
set U according to Π by first sampling a vector of shares Π(s) = (s1, . . . , sn) ∈∏n

i=1 Si, and then privately communicating each share si to the user ui. We say
that Π realizes an access structure Γ ⊆ 2U if the following requirements hold:

Correctness. The secret s can be reconstructed by any authorized set of users.
That is, for any set B ∈ Γ (where B = {ui1 , . . . , ui|B|}), there exists a recon-
struction function ReconB : Si1 × . . . × Si|B| → S such that for every s ∈ S
and for every possible value of ΠB(s), the restriction of Π(s) to its B-entries,
ReconB(ΠB(s)) = s.

Privacy. Every unauthorized set can learn nothing about the secret (in the
information theoretic sense) from their shares. Formally, for any set C 6∈ Γ , for
every two secrets a, b ∈ S, and for every possible |C|-tuple of shares 〈si〉ui∈C ,

Pr[ ΠC(a) = 〈si〉ui∈C ] = Pr[ ΠC(b) = 〈si〉ui∈C ].

In every secret-sharing scheme, the size of the domain of shares of each user
is at least the size of the domain of the secrets [17], namely |Si| ≥ |S| for all
i ∈ [n]. This motivates the next definition.

Definition 3 (Ideal Access Structure). A secret-sharing scheme with do-
main of secrets S is ideal if the domain of shares of each user is S. An access
structure Γ is ideal if for some finite domain of secrets S there exists an ideal
secret sharing scheme realizing it.

Most previously known secret sharing schemes are linear. The concept of
linear secret sharing schemes was introduced by Brickell [7] in the ideal setting
and was latter generalized to non-ideal schemes. Linear schemes are equivalent
to monotone span programs [16]. In an ideal linear secret sharing scheme, the
secret is an element of a finite field, and each share is a linear combination of
the secret and some additional random field elements.

In this paper we concentrate on special access structures, so-called weighted
threshold access structures, that were already introduced in [26].

Definition 4 (Weighted Threshold Access Structure – WTAS). Let w :
U → N be a weight function on U and T ∈ N be a threshold. Define w(A) :=∑

u∈A w(u) and Γ = {A ⊆ U : w(A) ≥ T}. Then Γ is called a weighted thresh-
old access structure (WTAS) on U .

Terminology and notations. Throughout this paper we assume that the users
are ordered in a nondecreasing order according to their weights, i.e., w(u1) ≤
w(u2) ≤ · · · ≤ w(un). Let A = {uij}1≤j≤k be an ordered subset of U , where
1 ≤ i1 < · · · < ik ≤ n. In order to avoid two-levelled indices, we will denote
the users in such a subset with the corresponding lower-case letter, namely,
A = {aj}1≤j≤k. We denote the first (lightest) and last (heaviest) users of A by



Amin = a1 and Amax = ak respectively. For an arbitrary ordered subset A we let
As,t = {aj}s≤j≤t denote a run-subset. If s > t then As,t = ∅. Two types of runs
that we shall meet frequently are prefixes and suffixes. A prefix of a subset A is a
run-subset of the form A1,`, while a suffix takes the form A`,k, 1 ≤ ` ≤ k. A suffix
A`,k is a proper suffix of A1,k if ` > 1. We conclude this section by introducing
the precedence relation ≺. When applied to users, ui ≺ uj indicates that i < j
(and, in particular, w(ui) ≤ w(uj)). This relation induces a lexicographic order
on subsets of U in the natural way.

3 Characterizing Ideal WTASs

The main result of this paper is a combinatorial characterization of ideal WTASs.
We define in Definitions 5–7 the building blocks that play an essential role in this
characterization. Using these definitions, we state Theorem 1, our main result,
that characterizes ideal WTASs. We also outline the proof of that theorem, where
the full proof is given in the subsequent sections.

3.1 Building Blocks

Definition 5 (Hierarchical Threshold Access Structure – HTAS). Let
m be an integer, U =

⋃m
i=1 Li be a partition of the set of users into a hierarchy

of m disjoint levels, and {ki}1≤i≤m be a sequence of decreasing thresholds, k1 >
k2 > · · · > km. These hierarchy and sequence of thresholds induce a hierarchical
threshold access structure (HTAS) on U :

ΓH =
{
A ⊆ U : There exists i ∈ [m] such that

∣∣A ∩ ∪m
j=iLj

∣∣ ≥ ki

}
.

That is, a set A ⊆ U is in ΓH if and only if it contains at least ki users from
the ith level and above, for some i ∈ [m]. The family of HTASs was introduced
by Simmons in [27] and further studied by Brickell who proved their ideality [7].
An explicit ideal scheme for these access structures was constructed in [33].

Remark 1. Without loss of generality, we assume that

|Li| > ki − ki+1 for every i ∈ [m− 1], and |Lm| ≥ km.

Indeed, if |Li| ≤ ki−ki+1 for some i ∈ [m−1], then the ith threshold condition in
the HTAS definition implies the (i+1)th threshold condition and, consequently,
the ith condition is redundant.

Definition 6 (Tripartite Access Structure – TPAS). Let U be a set of n
users, such that U = A ∪B ∪ C, where A, B, and C are disjoint, and A and C
are nonempty. Let m, d, t be positive integers such that m > t. Then the following
is a tripartite access structure (TPAS) on U :

∆1 = {X ⊆ U : (|X| ≥ m and |X ∩ (B ∪ C)| ≥ m− d) or |X ∩ C| ≥ t} ,



Namely, a set X is in ∆1 if either it has at least m users, (m − d) of which
are from B ∪ C, or it has at least t users from C. If |B| ≤ d + t −m, then the
following is also a tripartite access structure:

∆2 = {X ⊆ U : (|X| ≥ m and |X ∩ C| ≥ m− d) or |X ∩ (B ∪ C)| ≥ t} .

That is, X ∈ ∆2 if either it has at least m users, (m− d) of which are from C,
or it has at least t users from B ∪ C.

TPASs, introduced herein, generalize the concept of bipartite access structure
that was presented in [23]. We show that TPASs are ideal by constructing a linear
ideal secret sharing scheme that realizes them. Our scheme is a generalization of
a scheme from [23] for bipartite access structures.

Definition 7 (Composition of Access Structures). Let U1 and U2 be dis-
joint sets of users and let Γ1 and Γ2 be access structures over U1 and U2 respec-
tively. Let u1 ∈ U1, and set U = U1 ∪U2\ {u1}. Then the composition of Γ1 and
Γ2 via u1 is

Γ = {X ⊆ U : X ∩ U1 ∈ Γ1 or (X ∩ U2 ∈ Γ2 and (X ∩ U1) ∪ {u1} ∈ Γ1)} .

3.2 The Characterization

Recall that the set U is viewed as a sequence which is ordered in a monotonic
non-decreasing order according to the weights. Let M be the lexicographically
minimal minterm of Γ (that is, M ∈ Γ is a minterm and M ≺ M ′ for all other
minterms M ′ ∈ Γ ). It turns out that the form of M plays a significant role in
the characterization of Γ .

If M is a prefix of U , namely M = U1,k for some k ∈ [n], then, as we prove
in Section 6.1, the access structure is a HTAS of at most three levels. If M is
a lacunary prefix, in the sense that M = U1,k \ {u`} for 1 ≤ ` < k ≤ n, then,
as we discuss in Section 7, the access structure is a TPAS. Otherwise, if M is
neither a prefix nor a lacunary prefix, the access structure is a composition of
two weighted threshold access structures over smaller sets. More specifically, we
identify a prefix U1,k, where 1 < k < n, that could be replaced by a single
substitute user u, and then show that Γ is a composition of a WTAS on U1,k

and another WTAS on Uk+1,n ∪ {u}. Since Γ is ideal, so are the two smaller
WTASs, as implied by Lemma 13. Hence, this result, which we prove in Section 8,
completes the characterization of ideal WTASs in a recursive manner. Our main
result in this paper is as follows.

Theorem 1 (Characterization Theorem). Let U be a set of users, w be a
weight function, T be a threshold, and Γ be the corresponding WTAS. Then Γ
is ideal if and only if one of the following three conditions holds:
– The access structure Γ is a HTAS.
– The access structure Γ is a TPAS.
– The access structure Γ is a composition of Γ1 and Γ2, where Γ1 and Γ2 are

ideal WTASs defined over sets of users smaller than U .

In particular, if Γ is an ideal WTAS then there exists a linear ideal secret sharing
scheme that realizes it.



4 Matroids and Ideal Secret Sharing Schemes

Ideal secret sharing schemes and matroids are strongly related [8]. If an access
structure is ideal, there is a matroid that reflects its structure. On the other
hand, every matroid that is representable over some finite field is the reflection
of some ideal access structure. In this section we review some basic results from
the theory of matroids and describe their relation to ideal secret sharing schemes.
For more background on matroid theory the reader is referred to [22].

Matroids are a combinatorial structure that generalizes both linear spaces
and the set of circuits in an undirected graph. They are a useful tool in several
fields of theoretical computer science, e.g., optimization algorithms. A matroid
M = 〈V, I〉 is a finite set V and a collection I of subsets of V that satisfy the
following three axioms: (I1) ∅ ∈ I. (I2) If X ∈ I and Y ⊆ X then Y ∈ I. (I3)
If X and Y are members of I with |X| = |Y | + 1 then there exists an element
x ∈ X\Y such that Y ∪ {x} ∈ I. The elements of V are called the points of
the matroid and the sets in I are called the independent sets of the matroid. A
dependent set of the matroid is any subset of V that is not independent. The
minimal dependent sets are called circuits. A matroid is said to be connected if
for any two points there exists a circuit that contains both of them.

We now discuss the relations between ideal secret sharing schemes and ma-
troids. Let Γ be an access structure over a set of users U = {u1, . . . , un}. If Γ is
ideal, then, by the results of [8, 19], there exists a matroid M corresponding to
Γ . The points ofM are the users in U together with an additional point, denoted
u0, that could be thought of as representing the dealer. We denote hereinafter by
C0 = {X ∪ {u0} : X is a minterm of Γ} the set of all Γ -minterms, supplemented
by u0.

Theorem 2 ([8, 19]). Let Γ be a connected ideal access structure. Then there
exists a connected matroid M such that C0 is exactly the set of circuits of M
containing u0.

The next result implies the uniqueness of the matroid M that corresponds
to a given connected ideal access structure, as discussed in Theorem 2, and it
provides means to identify all the circuits of that matroid.

Lemma 1 ([22, Theorem 4.3.2]). Let e be an element of a connected ma-
troid M and let Ce be the set of circuits of M that contain e. Then all of the
circuits of M that do not contain e are the minimal sets of the form (C1 ∪
C2)\

⋂ {C3 : C3 ∈ Ce, C3 ⊆ C1 ∪ C2} where C1 and C2 are distinct circuits in
Ce.

The unique matroid whose existence and uniqueness are guaranteed by Theo-
rem 2 and Lemma 1 is referred to as the matroid corresponding to Γ . The next
definition will enable us to explicitly define the matroid corresponding to Γ using
the authorized sets in Γ .

Definition 8 (Critical User). Let M1 and M2 be distinct minterms of Γ . A
user x ∈ M1∪M2 is critical for M1∪M2 if the set M1∪M2\ {x} is unauthorized.



In addition, we define

D(M1,M2) = (M1 ∪M2)\ {x ∈ M1 ∪M2 : x is critical for M1 ∪M2} .

Corollary 1. Let M1 and M2 be two distinct minterms of Γ . Then D(M1,M2)
is a dependent set of M.

Note that D(M1,M2) is a dependent set of M, but is not necessarily a circuit
of M.

Lemma 2 ([22, Lemma 1.1.3]). Let C1 and C2 be two distinct circuits in a
matroid and e ∈ C1 ∩ C2. Then there exists a circuit C3 ⊆ (C1 ∪ C2)\ {e}.

Finally, the next lemma is applicable when adding an element to an inde-
pendent set results in a dependent set.

Lemma 3. Let I be an independent set in a matroid M and let e be an element
of M such that I ∪{e} is dependent. Then M has a unique circuit contained in
I ∪ {e} and that circuit contains e.

Example 1. This example shows how to use the above statements in order to
demonstrate that a given access structure is not ideal. Consider the WTAS
Γ on the set U = {u1, u2, u3, u4} with weights w(u1) = w(u2) = w(u3) =
1 and w(u4) = 2 and threshold T = 3. The minterms of Γ are {u1, u2, u3},
{u1, u4}, {u2, u4}, and {u3, u4}. It follows from Benaloh and Leichter [5] that
this access structure is not ideal.3 Assume that it is ideal and consider the
minterms M1 = {u1, u4} and M2 = {u2, u4}. The set {u1, u2} is unauthorized
and thus u4 is critical for M1∪M2. On the other hand, the users u1 and u2 are not
critical for M1 ∪M2. Therefore, by Corollary 1, the set D(M1,M2) = {u1, u2}
is a dependent set of M, the matroid corresponding to Γ . However, the set
{u1, u2, u3} is a minterm of Γ and, consequently, it is independent in M. Since
{u1, u2} ⊂ {u1, u2, u3}, we arrive at the absurd conclusion that a dependent set
is contained in an independent set.

Definition 9 (Restriction). Let Y,X ⊆ U be two disjoint subsets of users.
The restriction of Γ that is induced by Y on X is defined as the following access
structure: ΓY,X = {Z ⊆ X : Z ∪ Y ∈ Γ} .

In other words, ΓY,X consists of all subsets of X that complete Y to an
authorized set in Γ . Since ΓY,X is defined over a smaller set of users, restrictions
can be helpful in recursively characterizing the structure of Γ . The following
known result assures us that if Γ is ideal, ΓY,X is ideal as well.

Lemma 4. Let Γ be an access structure over a set of users U . Let Y, X ⊆ U be
sets such that Y /∈ Γ and X ∩ Y = ∅. If Γ is ideal, then ΓY,X is ideal. Further-
more, if Y is independent in the matroid corresponding to Γ and if a set I ⊆ X
is independent in the matroid corresponding to ΓY,X , then I is independent in
the matroid corresponding to Γ .
3 In [10] it was shown that if the domain of secrets is S, the size of the domain of

shares of at least one user in that access structure must be at least |S|1.5. That result
improved upon previous bounds that were derived in [9].



Lemma 5. Let X,Y ∈ U such that X ∩ Y = ∅. If Γ is a WTAS, then ΓY,X is
a WTAS.

5 WTASs and Matroids

In this section we prove several properties of matroids that are associated with
ideal WTASs. These properties will serve us later in characterizing ideal WTASs.
Let Γ be an ideal WTAS on U = {u1, . . . , un} corresponding to a weight function
w : U → N and a threshold T . Let M be the matroid corresponding to Γ .

Lemma 6. If X = {x1, . . . , xk} ∈ Γ , it contains a suffix minterm, namely,
there exists i ∈ [k] such that Xi,k = {xi, . . . , xk} is a minterm.

Lemma 7. Let M be a minterm of Γ . Let y ∈ U\M be a user such that
w(Mmin) ≤ w(y). Then M ∪ {y} is a dependent set of M.

Proof. Let X = (M\ {Mmin}) ∪ {y} be the set that is obtained by replacing
the minimal user in M with y. Since w(X) ≥ w(M), the set X is authorized
and, thus, it contains a minterm M ′. Moreover, M 6= M ′ since Mmin ∈ M \M ′.
Therefore, by Corollary 1, the set M ∪M ′ = M ∪ {y} is dependent in M. ut

We show in the next lemma that whenever two minterms have the same
minimal member they must be of the same size.

Lemma 8. Let X and Y be minterms of the access structure Γ such that Xmin =
Ymin. Then |X| = |Y |.

Proof. As X and Y are minterms, they are independent sets of the matroid M.
Assume, w.l.o.g., that |X| < |Y |. Then, by Axiom (I3) of the matroid definition,
there exists y ∈ Y \X such that the set X ∪ {y} is independent. However, as
Xmin = Ymin is a user with the minimal weight in both X and Y , we have
that w(Xmin) ≤ w(y). Consequently, in view of Lemma 7, the set X ∪ {y} is
dependent. This contradiction implies that |X| = |Y |. ut

It turns out that the lexicographic order on the minterms of Γ , with respect
to the relation ≺, is strongly related to dependence in M. This is demonstrated
through the following definition and lemmas.

Definition 10 (Canonical Complement). Let P be a prefix of some minterm
of Γ . Let Y ⊆ U be the lexicographically minimal set such that: (1) Pmax ≺ Ymin,
and (2) The set P ∪Y is a minterm of Γ . Then the set Y is called the canonical
complement of P .

The following lemma shows that replacing the canonical complement by a
user that precedes the first user of the canonical complement results in a depen-
dent set.



Lemma 9. Let P be a prefix of some minterm of Γ . Let Y = {y1, . . . , yt} be the
canonical complement of P , and b be a user such Pmax ≺ b ≺ y1. Then P ∪{b} is
dependent. Furthermore, the set P ∪ {b} includes a unique circuit that contains
b.

Proof. If P = ∅, then, since Γ is connected, there exists a minterm that starts
with u1, whence y1 = u1. Therefore, it cannot be that b ≺ y1 and thus the claim
is trivially true. Otherwise, if P 6= ∅, denote by M1 the minterm M1 = P ∪ Y .
Let X2 = (M1\ {Pmax})∪{b} be the set resulting from replacing Pmax with b in
M1. Since w(Pmax) ≤ w(b), the set X2 is authorized (though not necessarily a
minterm). Let M2 be the suffix minterm contained in X2 (such a minterm exists
in view of Lemma 6). It must be that b ∈ M2, since otherwise M2 ⊆ Y , where
Y is a proper subset of a minterm and thus is unauthorized.

Let A = M1 ∪M2 = P ∪ {b} ∪ Y . We proceed to show that every user in Y
is critical for A. This will show that D(M1,M2) ⊆ (M1 ∪M2) \ Y = P ∪ {b}.
By Corollary 1, the set D(M1,M2) is dependent, thus, this will imply that also
P ∪ {b} is dependent. We also observe that it suffices to show that Ymin = y1 is
critical for A; this will imply that also all other members of Y , having weight
that is no smaller than w(y1), are also critical for A.

In view of the above, we show that y1 is critical for A. Suppose this is not
the case, namely, the set A\ {y1} is authorized. Since A\ {y1} results from M1

by replacing y1 by b where w(b) ≤ w(y1), and since M1 is a minterm, it must
be that A\ {y1} is also a minterm. But this is a contradiction to the choice of y1

as the first user in the canonical complement of P . Hence, all the elements of Y
are critical for A, and, consequently, P ∪ {b} is dependent. Since P is part of a
minterm, it must be that P is independent. Thus, by Lemma 3, the set P ∪ {b}
must contain a unique circuit that contains b. ut

The next lemma is a generalization of Lemma 9. Its proof, as well as the other
missing proofs in this paper, can be found in the full version of this paper [2].

Lemma 10. Let P be a prefix of some minterm of Γ . Let Y = {y1, . . . , yt} be the
canonical complement of P , and B = {b1, . . . , bj} be a set such that Pmax ≺ Bmin

and bj ≺ yj. Then, the set P ∪B is dependent.

6 WTASs and HTASs

In this section we discuss the family of hierarchical threshold access structures
(HTASs), from Definition 5, and their relation to WTASs. We show that if an
ideal WTAS Γ has a minterm in the form of a prefix of U , then Γ is an HTAS.

When discussing a HTAS over some set U = {u1, . . . , un}, we shall assume
that the users in U are ordered according to their position in the hierarchy, from
the lowest level to the highest. Namely, that

Li = U`i,`i+1−1 = {u`i , . . . , u`i+1−1} ∀i ∈ [m] (1)

for some sequence `1 = 1 < `2 < · · · < `m < `m+1 = n + 1. Given a nonempty
subset A ⊆ U , if Amin ∈ Li, then A is said to be of level i and it is denoted



by L(A) = i. Since any HTAS ΓH is ideal [7, 33], Theorem 2 implies that there
exists a matroid M that is associated with it.

Lemma 11. Let ΓH and M be an HTAS and its associated matroid. Then
U1,k1+1 is a circuit of M.

Let U be a set of users and let Γ be a monotone access structure over U that
is both a WTAS and a HTAS. Namely, on one hand, there exist a weight function
w : U → N and a threshold T ∈ N such that Γ is the corresponding WTAS,
and, on the other hand, there exists a hierarchy in U , where U =

⋃m
i=1 Li, and

thresholds k1 > k2 > · · · > km such that Γ is also the corresponding HTAS.

Lemma 12. Let Γ be both a WTAS and an HTAS. Then the HTAS-parameters
of Γ satisfy one of the following conditions: (1) m = 1. (2) m = 2 and k1 =
k2 +1. (3) m = 2 and |L1| = k1−k2 +1. (4) m ∈ {2, 3}, the level Lm is trivial,
and the restriction of ΓH to the first m− 1 levels is of the form that is described
in cases (1)-(3).

By constructing the appropriate weight function and threshold in each case,
it can be shown that any HTAS with parameters as described in Lemma 12 is
also a WTAS.

6.1 Ideal WTASs with a Prefix Minterm are HTASs

In this section we make the first step towards proving Theorem 1. Let Γ be
an ideal WTAS over a set U of n users, corresponding to a weight function
w : U → N and a threshold T . Assume that U possesses a prefix minterm U1,k

for some k ∈ [n] (namely, there exists k ∈ [n] such that the k users of smallest
weights form a minterm). We claim that Γ is an HTAS. We first describe the
partition of U into levels and determine the corresponding thresholds. Denoting
the resulting HTAS by ΓH , we proceed to prove that Γ = ΓH .

The decomposition of U to levels will respect the order of users according to
their weights. Namely, each level will be a run of U and our goal is to determine
the transition points between one level and the subsequent one. Since U1,k is a
minterm, U1,i is authorized for every i ∈ {k, . . . , n}. By Lemma 6, for every such
i there exists a run-minterm ending at ui. Let us denote the length of that run-
minterm by µi. By the non-decreasing monotonicity of the weights, we infer that
the sequence of lengths µ = (µi)k≤i≤n is monotonically non-increasing. Denote
by m the number of distinct values assumed by the sequence µ, and let us denote
those values by k1 > · · · > km. Then the HTAS ΓH is defined as follows: m is
the number of levels and ki is the ith threshold. As for the levels, we denote by
`i, where i ∈ [m], the index of the first user in the first run-minterm of length ki

(e.g., `1 = 1 since U1,k is the first run-minterm of length k = k1 and its first user
is u1); then the ith level in the hierarchy is Li = U`i,`i+1−1, where `m+1 = n+1.

We denote by Usi,ti the right-most run-minterm whose length is ki, where
i ∈ [m], and consider the set Ai = Usi+1,`i+1−1. As Usi,ti is the last minterm that
contains ki users and U`i+1,ti+1 is the first minterm that contains ki+1 users, the



set Ai consists of the last ki− ki+1 users in Li (where km+1 = 1). An important
observation is that given i ∈ [m] and uh ∈ Ai, there is no run-minterm of the
WTAS Γ that starts with uh; indeed, if Uh,j was a run-minterm then it would
be a proper subset of the minterm Usi,ti

if j ≤ ti, or a proper superset of the
minterm U`i+1,ti+1 if j ≥ ti + 1. An illustration of the construction of the levels
of the HTAS appears in Fig. 1. Next, we prove that the WTAS Γ coincides with
the HTAS ΓH described above.

6 65 5 6 6 6 30 306 6 305 5

L2 L3

A2

L1

s2

s1 t1
`2

t2
`3

`1

A1

Fig. 1. A WTAS that is also an HTAS. The example is of a WTAS with 14 users of
weights 5, 5, 5, 5, 6, 6, 6, 6, 6, 6, 6, 30, 30, 30 and threshold T = 30. The vertical dashed
lines indicate the three levels in the corresponding HTAS (the third one being a trivial
one) and the horizontal lines indicate all of the run-minterms in that access structure.

Theorem 3. Let Γ be an ideal WTAS over U that has a prefix minterm. Then
Γ is an HTAS.

Proof. Let ΓH be the HTAS as described above. We will prove that Γ = ΓH ,
thus showing that Γ is an HTAS. We start with proving that ΓH ⊆ Γ . Let
X ∈ ΓH . Then for some i ∈ [m] the set X has at least ki users from

⋃m
j=i Lj .

Letting Bi = U`i,`i+ki−1 denote the set of the first ki users from
⋃m

j=i Lj , the
non-decreasing monotonicity of the weights implies that w(X) ≥ w(Bi). By the
construction of levels in ΓH , the set Bi is a minterm of Γ , whence w(Bi) ≥ T .
Therefore, w(X) ≥ T and, consequently, X ∈ Γ .

Conversely, assume that X /∈ ΓH . Then X has at most ki − 1 users from⋃m
j=i Lj , for every i ∈ [m]. Consider the set A =

⋃m
i=1 Ai. By the definition of

A, it has exactly ki− 1 users from
⋃m

j=i Lj , for every i ∈ [m]. Moreover, A is the
set with the maximal weight among the sets that are unauthorized in the HTAS
and thus w(X) ≤ w(A). Therefore, it suffices to show that A /∈ Γ in order to
conclude that X /∈ Γ and, thus, complete the proof.

To this end, assume that A ∈ Γ . Then A contains some minterm M ∈ Γ .
Assume that M is of level i, L(M) = i, namely, i is the lowest level for which
M ∩Li 6= ∅. Then M ∩Ai is a prefix of M . In order to arrive at a contradiction,



we proceed to show that there can be no minterm that has a prefix which is a
non-empty subset of Ai.

Assume, by contradiction, that there are such minterms, and let M ′ be the
lexicographically minimal minterm of that sort. Let uh = M ′

min and let j be
the maximal index such that M ′ = Uh,j ∪ Z for some Z ⊂ U . Since uh ∈ Ai

and we observed earlier that no run-minterm starts in Ai, we conclude that
Z 6= ∅ (and uj+1 ≺ Zmin because of the maximality of j). We claim that j < ti.
Indeed, if j ≥ ti, then M ′ is a proper superset of M̂ = U`i+1,ti ∪ {Zmin}. Since
w(M̂) ≥ w(U`i+1,ti+1) ≥ T , we get a contradiction since a minterm M ′ cannot
be a proper superset of an authorized set M̂ .

Next, define Q = M ′ ∪ {uj+1} \ {uj}. The set Q is authorized and, by
Lemma 6, it contains a suffix minterm M ′′ that must contain uj+1, for otherwise
it would be a proper subset of M ′. Therefore, M ′ ∪ M ′′ = M ′ ∪ {uj+1} =
Uh,j ∪ {uj+1} ∪ Z. We claim that all members of Z are critical for this union.
Assume, by contradiction, that M∗ = M ′ ∪ {uj+1} \ {z} is authorized, for some
z ∈ Z. Since w(uj+1) ≤ w(z) and M ′ was a minterm, also M∗ is a minterm. But
M∗ is a minterm that starts within Ai and M∗ ≺ M ′, thus contradicting our
choice of M ′. Hence, by Corollary 1, the set Uh,j+1 is dependent in M. However,
since si < h and j + 1 ≤ ti, this dependent set is properly contained in the
minterm Usi,ti , leading to a contradiction. Hence, A /∈ Γ . ut

7 Ideal WTASs and TPASs

In the previous section we dealt with the case where the lexicographically min-
imal minterm of Γ is a prefix of U . Here, we handle the case where the lexico-
graphically minimal minterm of Γ is a lacunary prefix, namely, it takes the form
M = U1,d∪Ud+2,k for some 1 ≤ d ≤ k−2 and k ≤ n. We assume that there is at
least one minterm starting with the user u2, and that there are no self-sufficient
users. If this is not the case, then Γ is a simple composition of access structures
as shown in Lemma 14. We show that under these conditions, Γ is a tripartite
access structure, as defined in Definition 6. The idea of the proof is as follows:
first we show that U2,k must be a minterm of Γ . Thus, the restriction of Γ to
U2,n has a prefix minterm, and consequently, by Theorem 3, it is an HTAS. This
fact enables us to deduce that Γ is a TPAS.

Theorem 4. Let Γ be an ideal WTAS with M = U1,d ∪Ud+2,k being its lexico-
graphical minimal minterm for some 1 ≤ d ≤ k − 2 and k ≤ n. If there exists
a minterm in Γ that has u2 as its minimal member and Γ has no self-sufficient
users, then Γ is a TPAS.

8 A Recursive Characterization of Ideal WTASs by
Means of Composition

8.1 WTASs and Composition of Access Structures

We begin with the following lemma that asserts that a composition of two access
structures is ideal if and only if those two access structures are ideal.



Lemma 13. Let U1 and U2 be disjoint sets. Let u1 ∈ U1, and define U = U1 ∪
U2\ {u1}. Suppose Γ1 and Γ2 are access structures over U1 and U2 respectively
such that u1 is not redundant in Γ1 and Γ2 6= ∅. Furthermore, let Γ be the
composition of Γ1 and Γ2 via u1. Then Γ is ideal if and only if both Γ1 and
Γ2 are ideal. Moreover, if both Γ1 and Γ2 have an ideal linear secret sharing
schemes, then Γ has an ideal linear secret sharing scheme.

The recursive characterization of ideal WTASs will be obtained by distin-
guishing between two types of users. Specifically, we shall identify a subset of
so-called strong users that takes the form of a suffix, S = Uk,n, where k ≥ 3,
and then the complement subset will be thought of as the subset of weak users,
W = U1,k−1. A subset of strong users will be called S-cooperative if it is unau-
thorized, but it may become authorized if we add to it some weak users.

Definition 11 (Cooperative Set). Given Y ⊆ S, if Y /∈ Γ but W ∪ Y ∈ Γ ,
then Y is called an S-cooperative set.

By Lemma 5, the access structure ΓY,W , the restriction of Γ induced by Y
on W , is a WTAS for any partition U = W ∪S and Y ⊆ S. We proceed to define
a condition on the set S, such that if it is satisfied for some suffix S = Uk,n,
where k ≥ 3, the access structure Γ is a composition of two ideal WTASs that
are defined on sets smaller than U .

Definition 12 (Strong Set). If for any two S-cooperative sets Y1, Y2 ⊆ S, the
corresponding restrictions of Γ to W coincide, i.e. ΓY1,W = ΓY2,W , the set S is
called a strong set of users.

If S is a strong set of users, there exists an access structure on W , denoted
ΓW , such that ΓW = ΓY,W for all cooperative subsets Y ⊂ S. In that case, every
minterm M ∈ Γ is either contained in S or M ∩W ∈ ΓW . The following theorem
shows that if S is a strong set of users, Γ is a composition of two ideal WTASs.

Theorem 5. Let Γ be an ideal WTAS over U . Suppose S = Uk,n, for some
k ≥ 3, is a strong set of users. Then Γ is a composition of two ideal WTASs,
where each access structure is defined on a set smaller than U .

Simple compositions. We identify two simple cases where an ideal WTAS is a
composition of two ideal WTASs defined on sets smaller than U . If Γ has no
minterm that starts with u2 then every minterm that contains u1 must contain
also u2 (otherwise, we could have replaced u1 by u2 in order to get a minterm
that starts with u2). Hence, for every U3,n-cooperative set, Y ⊆ U3,n, the access
structure that Y induces on U1,2 is the same, ΓY,U1,2 = {U1,2}. Therefore, U3,n

is a strong set of users in this case. Hence, by Theorem 5, the access structure
Γ is a composition of two ideal WTASs that are defined on sets smaller than U .
If un is a self-sufficient user, it can be shown easily that Γ is a composition of
two ideal access structures, defined over smaller sets of users. To conclude, we
get the following lemma:

Lemma 14. Let Γ be an ideal WTAS over U . If Γ has self-sufficient users, or
u2 starts no minterm of Γ , then Γ is a composition of two ideal WTASs that
are defined on sets smaller than U .



8.2 Identifying Composition Structures

In this section we show that if Γ is an ideal WTAS, but it is not one of the access
structures that were characterized in Sections 6.1 and 7, then it is a composition
of two ideal WTASs as described in Section 8.1. In view of Lemma 14, we assume
hereinafter that u2 is the minimal user in some minterm of Γ .

Let M1 be the lexicographically minimal minterm in Γ . Let ur be the max-
imal user in M1. Then since Γ is neither an HTAS nor a TPAS, there must be
at least two users in U1,r−1 that are not in M1. Let u` be the minimal user in
M1 such that at least two users in U1,`−1 are missing from M1, and let ud be the
maximal user in M1 such that U1,d ⊂ M1. We denote the users in M1∩Ud+1,`−1,
if there are any, by Y = {y1, . . . , yt}. Note that if Y is not empty then Y is a
run of U , and y1 = ud+2. Next, if Y 6= ∅ we denote the set of users of U\M1

between yt and u` (excluding those two users) by X = {x1, . . . , xs}. Otherwise,
we denote the set Ud+2,`−1 as X = {x1, . . . , xs}. Finally, we denote the users of
M1 ∩ U`,n by Z = {z1, . . . , zm}. Note that the sets X and Z are never empty,
and that z1 = u`. The above notations are depicted in Fig. 2.

u1 ud . . .. . .u3u2 ud+1 zm . . .. . . xsy1. . . x1yt . . .

Y X Zu` ur
un

M1

z1

SW

U1,d

z2

Fig. 2. Notations for the composition.

We claim that either U`,n or Ud+2,n is a strong set of users. We start by parti-
tioning U into W = U1,`−1 and S = U`,n. We show that if all the S-cooperative
sets are of the same size, then ΓY1,W = ΓY2,W for every two cooperative sets
Y1, Y2 ⊆ S, namely, S is a set of strong users. If, however, that condition does
not hold, we shall show that Ud+2,n is a strong set.

Lemma 15. Every minterm of the access structure Γ that intersects W contains
at least m users from S.

Proof. Assume towards contradiction that M is a minterm that intersects W
such that |M ∩ S| < m. The minterm M1 is an independent set of size d+ t+m,
and thus, by Axiom (I3), every independent set of M that is smaller than
d + t + m can be expanded to an independent set of size d + t + m. Therefore,
if |M | < d + t + m, the minterm M can be expanded to an independent set I
of size d + t + m; otherwise, we set I = M . By Lemma 7, this expansion can
only be done by adding to M users that precede Mmin. As M intersects W , the
users in I\M are all from W . Hence, |I ∩ S| = |M ∩ S| ≤ m − 1. Therefore,
|I ∩W | = |I| − |I ∩ S| ≥ d + t + m− (m− 1) = d + t + 1. Next, we view M1 as



the canonical complement of the empty set (see Definition 10). Its (d + t + 1)th
element is z1. By Lemma 10 for P = ∅, Y = M1, and j = d + t + 1, any
d + t + 1 members of W form a dependent set. Hence I, which was assumed to
be independent, contains a dependent set, a contradiction. ut

When all S-cooperative sets are of the same size. Here we show that if all S-
cooperative sets are of the same size, namely |Z| = m, the set S is a strong set.
We accomplish this by showing that all the S-cooperative sets of size m induce
the same access structure on W , which is the access structure induced by the
S-cooperative set Z.

Lemma 16. Let V ⊆ S be an S-cooperative set. Then w(V ) ≥ w(Z).

Proof. Assume towards contradiction that w(V ) < w(Z) and consider the set
W ∪Z. Since Z is S-cooperative, the set W ∪Z is authorized. Thus, by Lemma 6,
it must contain a suffix minterm of the form B ∪ Z, where B is a suffix of W .
There are two possible cases: either B ∪ V is authorized, or not.

If B∪V is authorized, then, since w(V ) < w(Z), the set B∪V is a minterm.
Hence, as B ∪ V and B ∪Z are two minterms that have the same minimal user,
Bmin, Lemma 8 implies that |V | = |Z| = m. The set B∪V is independent in M.
If |B ∪ V | < d + t + m, Axiom (I3) implies that B ∪ V can be expanded to an
independent set I of size d+ t+m; if |B ∪ V | ≥ d+ t+m, we set I = B ∪V . By
Lemma 7, all users in I\(B∪V ) must be from W . Hence, I includes at least d+t
users from W . On the other hand, since |V | = |Z| = m and w(V ) < w(Z), there
must be an index j such that vj ≺ zj . Since M1 is the canonical complement
of the empty set ∅, we get from Lemma 10, applied to P = ∅, Y = M1 and
B = I1,d+t+j , that the latter set is dependent. This is impossible since I is
independent. Therefore, B ∪ V cannot be authorized.

If B ∪ V is unauthorized, we let Q be the canonical complement of B. Using
Lemma 8, Lemma 15, and Lemma 10, we get that B ∪ V is dependent. On the
other hand, since V is S-cooperative and B is a suffix of W , the set B ∪ V may
be expanded to an authorized superset by adding to it users that precede Bmin,
one by one, until the first time that we get an authorized set. This construction,
where in each stage we add a new user that is smaller than all current users in
the set, guarantees that we end up with a minterm. But a minterm of Γ cannot
contain a dependent set. Therefore, this case is not possible either. We conclude
that w(V ) ≥ w(Z). ut

Lemma 17. Let V be an S-cooperative set of size m. Then ΓV,W = ΓZ,W .

Proof. By Lemma 16, w(V ) ≥ w(Z). If w(V ) = w(Z), the claim is trivial, since
Γ is a WTAS. Therefore, we assume that w(V ) > w(Z). We first show that
U1,d ∪ Y ∪ V is a minterm of Γ . Since M1 = U1,d ∪ Y ∪ Z is authorized, the
set U1,d ∪ Y ∪ V is authorized as well. Assume it is not a minterm. Then, by
Lemma 6 it contains a suffix minterm of the form B ∪ V , where B is a suffix of
U2,d ∪Y . Let Q be the canonical complement of B. Using Lemma 8, Lemma 15,
and Lemma 10, we get that the set B ∪ Z is dependent. However, this set is



contained in U1,d ∪ Y ∪ Z, which is a minterm. This contradiction implies that
U1,d ∪ Y ∪ V is a minterm of Γ . Consequently, since U1,d ∪ Y ∪ Z is a minterm
and U2,d ∪Y ∪V is unauthorized (being a proper subset of a minterm), we infer
that w(Z) + w(u1) > w(V ).

We are now ready to prove that ΓZ,W = ΓV,W . Since we deal with the case
where w(Z) < w(V ), the inclusion ΓZ,W ⊆ ΓV,W is obvious. For the opposite
inclusion, it is sufficient to concentrate on minterms of ΓV,W . Let M be a minterm
of ΓV,W . Thus, M ∪ V ∈ Γ , and since M ∪ V \Mmin /∈ Γ , the set M ∪ V is a
minterm in Γ . There are two possible cases: If u1 ∈ M , the minterm M ∪V must
be of the same size as M1 by Lemma 8. Since |M1| = d+ t+m and |V | = m, we
get that |M | = d+t. As M1 = U1,d∪Y ∪Z is the minimal minterm in Γ in terms
of the precedence order ≺, the weight of U1,d∪Y is minimal among all sets of size
d + t that are contained in a minterm. This implies that w(M) ≥ w(U1,d ∪ Y ).
This, in turn, implies that M ∪ Z ∈ Γ and thus M ∈ ΓZ,W .

The second case is when u1 /∈ M . Assume, towards contradiction, that M ∪
Z /∈ Γ . Let Q be the canonical complement of M . Using Lemma 8, Lemma 15,
and Lemma 10, we get that the set M∪Z is dependent. However, since M∪V ∈ Γ
and w(Z) + w(u1) > w(V ), we get that {u1} ∪M ∪ Z ∈ Γ . Moreover, it must
be a minterm since any proper subset of {u1} ∪ M ∪ Z is of weight that does
not exceed that of the unauthorized set M ∪Z. Hence, the dependent set M ∪Z
is contained in a minterm. This contradiction implies that M ∪Z is authorized,
and thus M ∈ ΓZ,W . ut
Corollary 2. If there are no S-cooperative sets of size larger than m, then S is
a strong set.

Example 2. Consider the set U = {u1, . . . , u8}, and let Γ be a WTAS where the
weights are 1, 1, 1, 1, 1, 3 ,3 , 3 and the threshold is 6. The lexicographically
minimal minterm is {u1, u2, u3, u6}, and so there is no prefix minterm and no
lacunary minterm. In this example W = U1,5 and S = U6,8 and the access
structure is a composition of a 3-out-of-5 threshold access structure on the week
side W and a 2-out-of-4 threshold access structure on S ∪ {u′}, where u′ is an
additional dummy user.

When large S-cooperative sets exist. The conclusion from Corollary 2 is that
whenever all S-cooperative sets for S = U`,n are of the same size (i.e., |Z| = m),
the set S is a strong set and, hence, by Theorem 5, the access structure Γ is
a composition of ideal WTASs that are defined over two smaller sets. Here, we
continue to deal with the case where there are S-cooperative sets of size larger
than m. In that case we identify another strong set. Specifically, we show that
Ud+2,n is a strong set of users. The analysis of the structure of Γ when large
S-cooperative sets exist is technically involved, and is omitted due to lack of
space. It appears in the full version of the paper [2].

The following lemma summarizes the results in this case.

Lemma 18. Suppose there is an S-cooperative set of size larger than m, and
there is a minterm of Γ that starts with u2. Then Ud+2,n is a strong set of users.



8.3 Proof of Theorem 1 – The Characterization Theorem

Let Γ be an ideal WTAS defined on a set of users U and let M1 be its lexico-
graphically minimal minterm. If either Γ has self-sufficient users or u2 starts no
minterm of Γ , then, by Lemma 14, the access structure Γ is a composition of
two ideal WTASs on smaller sets of users.

If M1 is a prefix then, by Theorem 3, the access structure Γ is an HTAS. If
M1 is a lacunary prefix, namely, M1 = U1,d ∪Ud+2,k for some 1 ≤ d ≤ k− 2 and
k ≤ n, then, by Theorem 4, the access structure Γ is a TPAS. Otherwise, by
Corollary 2 and Lemma 18, there exists within U a subset of strong users, and,
by Theorem 5, the access structure Γ is a composition of two ideal WTASs that
are defined on sets smaller than U .

As for the other direction, HTASs are ideal and may be realized by linear
secret sharing schemes, as shown in [7, 33]. TPASs are also ideal and may be
realized by linear secret sharing schemes, as shown in the full version of this
paper [2]. Finally, given two ideal access structures, we showed in Lemma 13
how to construct an ideal secret sharing scheme for their composition. Hence,
the composition is also ideal. Furthermore, by Lemma 13, if the secret sharing
schemes for the two basic access structures are linear, so is the resulting scheme
for the composition of the two access structures. This completes the proof of the
characterization theorem. ut
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