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Abstract

We introduce a new model of k-type anonymity, called k-concealment, as an alternative to the
well-known model of k-anonymity. This new model achieves similar privacy goals as k-anonymity:
While in k-anonymity one generalizes the table records so that each one of them becomes equal to at
least k−1 other records, when projected on the subset of quasi-identifiers, k-concealment proposes
to generalize the table records so that each one of them becomes computationally-indistinguishable
from at least k − 1 others. As the new model extends that of k-anonymity, it offers higher utility.
To motivate the new model and to lay the ground for its introduction, we first present three other
models, called (1, k)-, (k, 1)- and (k, k)-anonymity which also extend k-anonymity. We characterize
the interrelation between the four models and propose algorithms for anonymizing data according
to them. Since k-anonymity, on its own, is insecure, as it may allow adversaries to learn the sensitive
information of some individuals, it must be enhanced by a security measure such as p-sensitivity or
`-diversity. We show how also k-concealment can be enhanced by such measures. We demonstrate
the usefulness of our models and algorithms through extensive experiments.

1 Introduction

A vast amount of information is collected on a regular basis about individuals by various orga-
nizations. In today’s global network of organizational connections, there is a growing demand to
disseminate and share this information due to various academic, commercial and other benefits. As
the records of data frequently include sensitive information that could violate the privacy of the cor-
responding individuals, it is necessary to preprocess the data prior to its publication in order to limit
the disclosure of sensitive data. Such preprocessing operations usually involve data distortion. The
challenge is then to preprocess the data so that some privacy measure is met, on one hand, while the
utility of the data is preserved, on the other hand.

Privacy Preserving Data Publishing (PPDP) is an evolving research field that is targeted at de-
veloping techniques to enable publishing data so that privacy is preserved while data distortion is
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minimized [16]. It is closely related to Privacy Preserving Data Mining (PPDM) [4, 43]. The latter
term is usually reserved to settings in which the data mining tasks are known when designing the
corresponding privacy-preserving algorithms; PPDP, on the other hand, usually refers to settings in
which the purposes of the data release are unknown and it is needed to anonymize the data using
general purpose utility measures that are not targeted at specific data mining goals.

PPDP assumes that the candidate table to be published includes four types of attributes [9]:
identifiers — attributes that uniquely identify an individual (e.g. S.S.N.); quasi-identifiers —
attributes like occupation, age, or gender, that do not offer unique identification but their
combination might yield unique identification; non-identifiers — non-sensitive attributes that are
not quasi-identifiers, in the sense that an adversary is unlikely to get hold of them; and private
attributes —- personal attributes of sensitive nature, such as health condition. A usual practice
in PPDP is to remove the identifiers and to generalize the quasi-identifiers in order to limit the
disclosure of private data.

One of the most well-studied models of PPDP is k-anonymization [2, 6, 28, 33, 38, 39]. In that
model, the quasi-identifiers of the table records are generalized until each record becomes identical
to at least k − 1 other records, when projected on the subset of the quasi-identifiers. A general
purpose cost function is used to measure the amount of information lost by modifying the data.
Clearly, by reducing the amount of information lost in the process of k-anonymizing a table, we
increase the utility of the released table for the purposes of data mining. Hence, the objective is
to modify the table entries so that the table becomes k-anonymized and the information-loss is
minimized.

1.1 Motivation

In this study we assume that the adversary knows the public data of all individuals in the popu-
lation, and that he knows the exact subset of the population that is represented in the table. Such
an adversary may extract from a publicly accessible database the subset of records which relate to
the individuals that appear in the released anonymized table. The former table includes the quasi-
identifiers of all records, as well as identifying information. The latter table includes the generalized
quasi-identifiers as well as sensitive information. The adversarial task is to find the correct mapping
between the records of the two tables. k-Anonymity ensures that each record in the first table can
be linked to no less than k records in the anonymized table. To achieve that, it requires that the
anonymized table will consist of clusters of size at least k, where all records in the same cluster
have the same generalized quasi-identifiers. Consequently, it is impossible to distinguish between
the records of a given cluster in the information-theoretic sense, whence, the adversary cannot tell
which of the k (or more) records is the one for which he is looking.

We argue that the k-anonymity condition is unnecessarily rigid and leads to excessive general-
ization of the quasi-identifiers, and, consequently, to unnecessary information losses. We propose
here an alternative model of k-concealment. It extends the model of k-anonymity in the sense that
every table that is k-anonymized satisfies also k-concealment, but the converse does not necessarily
hold. In k-concealment we replace the information-theoretic hiding with computational indistin-
guishability. Namely, there are no more clusters of identical records; instead, every record can
be matched with at least k generalized records and even the potent adversary that was described
above would not be able to distinguish between them assuming that he is polynomially-bounded
(i.e., he may perform only polynomial-time computations). Hence, from a practical point of view,
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k-concealment is as secure as k-anonymity, just as much as modern ciphers are accepted as secure
alternatives to information-theoretic perfectly secure ciphers. The advantage that is offered by this
new model is enhanced utility: k-Concealment may be achieved with less generalization than that
which is required by k-anonymity.

Example. Consider the basic table in Table 1(a), having quasi-identifiers age and zipcode
and the sensitive attribute disease. Table 1(b) is a corresponding 2-anonymization. It consists
of two clusters of records that have the same generalized quasi-identifiers — the first three records
and the last two. It is impossible to distinguish between the records in the same cluster, because
they are identical. Table 1(c), on the other hand, is a 2-concealment of Table 1(a). An adversary
who knows the quasi-identifiers of all records in Table 1(a) cannot link any such record with less
than two generalized records in Table 1(c). For example, based on the two quasi-identifiers age
and zipcode, the adversary cannot tell whether Alice’s record in Table 1(c) is the first or the third
one. Those two records are not identical; thus, in theory, the adversary may be able to deduce that
one of those records is more likely to be Alice’s than the other. We claim, and explain later on,
that it is computationally hard to do so. Hence, for polynomially-bounded adversaries, these two
candidate records are equally likely to be Alice’s generalized record. Finally, as can be seen, Table
1(c) involves less data distortion than Table 1(b) (the entries in Table 1(c) that are more specific are
marked).

name age zipcode disease
Alice 30 10055 Measles
Bob 21 10055 Flu

Carol 21 10023 Angina
David 55 10165 Flu
Eve 47 10224 Diabetes

(a) The original table

age zipcode disease
21-30 100** Measles
21-30 100** Flu
21-30 100** Angina
47-55 10*** Flu
47-55 10*** Diabetes

age zipcode disease
21-30 10055 Measles

21 100** Flu
21-30 100** Angina
47-55 10*** Flu
47-55 10*** Diabetes

(b) 2-Anonymization (c) 2-Concealment

Table 1. A table and corresponding anonymizations

1.2 Is k-anonymity still relevant?

Several studies have pointed out weaknesses of the k-anonymity model and suggested more se-
cure measures such as `-diversity [32], t-closeness [30], or p-sensitivity [42]. The main weakness
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of k-anonymity is that it does not guarantee sufficient diversity in the private attribute in each equiv-
alence class of indistinguishable records. Namely, even though it guarantees that every record in
the anonymized table is indistinguishable from at least k − 1 others, it is possible that all of those
records, that agree in their generalized quasi-identifiers, are also equal in their private value. There-
fore, an adversary who is capable of locating his target individual in that block of records, will be
able to infer the private value of that individual. Machanavajjhala et al. [32] proposed the security
measure of `-diversity. They suggested that the private attribute in each block will have at least `
“well represented” values. They offered two interpretations of that measure. In one interpretation,
the entropy of the values in that attribute in every block should be at least log `, for some predeter-
mined value of the parameter `. The other interpretation is that of recursive (c, `)-diversity (see [32]
for its definition). According to a simpler interpretation of `-diversity [47, 48], a block is `-diverse
if the relative frequency of each of the private values within each block is at most 1/`.

It is important to understand that those notions do not and can not replace k-anonymity. They
offer essential enhancements to k-anonymity in the sense that one must require them in addition
to k-anonymity. In accord with this, Truta et al. [42] proposed algorithms that generate tables
that are both k-anonymous and p-sensitive, and Wong et al. [47] considered the conjunction of
k-anonymity with the last interpretation of `-diversity (they call this conjunction of conditions
(1/`, k)-anonymity).

In order to clarify that point, let us consider the measure of `-diversity. The diversity of a table
is bounded from above by the number of possible private values (equality holds if and only if the
distribution of the private values is uniform). The diversity of any anonymization of the table is
bounded from above by the the diversity of the entire table (equality holds if and only if the distri-
bution in each block equals the global distribution). Therefore, if the table has a private attribute
with a small number of possible values, all of its anonymizations will respect `-diversity with ` that
does not exceed this number. For example, in the case of a binary private attribute, one can aim at
achieving `-diverse anonymizations with ` ≤ 2 only. In such a case, if one imposes only `-diversity,
the blocks of indistinguishable records could be of size 2. Such small blocks do not provide enough
privacy for the individuals in them, because if an adversary may be able to learn the private value
of one of those individuals, he may infer that of the other one as well. If, on the other hand, we
demand that such `-diverse anonymizations are also k-anonymous, for a suitable selection of k, then
the adversary would have to find out the private values of at least k/2 individuals before he would
be able to infer the private value of his target individual. Hence, k-anonymity is still a vital notion
that serves as a basis to `-diversity.

Another reason why `-diversity cannot stand alone and must be accompanied by k-anonymity is
that it is defined only through the distribution of the sensitive values in each block; as a consequence,
it is vulnerable to minimality attacks [46]. A useful tool in combating such attacks is to apply k-
anonymization with an information loss measure that considers only the quasi-identifiers (and not
the sensitive attributes), and only then transfer the k-anonymized table into one that also respects
`-diversity (for a more detailed explanation, see [46]).

1.3 Outline and contributions

In this paper we offer the following contributions:
• We introduce new models of k-type anonymizations (namely, (k, 1)-, (1, k)-, and (k, k)-

anonymity and k-concealment) that lead to anonymized tables with higher utility. We charac-
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terize the relations among the new anonymity models and the original model of k-anonymity.
• We show that the model of k-concealment offers a comparable level of security to that of
k-anonymity.
• We describe algorithms to achieve (k, k)-anonymity and k-concealment.
• We show how k-concealment may be enhanced using p-sensitivity or `-diversity.
• We demonstrate the usefulness of our definitions and our proposed algorithms through exper-

imental evaluation on real and synthetic datasets.
The rest of the paper is organized as follows. In Section 2 we discuss related work. In Section 3

we formally define the basic concepts, and in Section 4 we introduce the new models of k-type
anonymity and discuss their interrelations. Section 5 is devoted to discussing the security of those
models and showing that k-concealment is essentially as secure as k-anonymity. In Section 6 we
propose algorithms for (k, k)-anonymization and k-concealment. Since we assume that the adver-
sary knows the anonymization algorithms, it is necessary to randomize them; this is done in Section
7. In Section 8 we discuss enhancements of our algorithms so that they issue k-concealed tables that
respect also p-sensitivity or `-diversity. In Section 9 we describe the experiments that we executed
for testing the performance of those algorithms. Finally, we conclude our discussion in Section 10.

A preliminary version of this work [19] included the definitions of the new models and the al-
gorithms to achieve (k, k)-anonymity. The current work extends [19] by proposing new algorithms
for k-concealment and providing a thorough security analysis of that notion, under stronger ad-
versarial assumptions. In addition, we propose here a randomized version of our algorithm as a
countermeasure against minimality attacks. We discuss enhancements of our models to support
also p-sensitivity and `-diversity. Finally, our experimentation here significantly extends that which
we reported in [19].

2 Related work

The objective of protecting the privacy of individuals represented in databases was formulated
by Dalenius [12] in 1977. Since then, many approaches have been suggested for finding the right
balance between data hiding and data disclosure. Such approaches include query auditing [27],
output perturbation [7], secure multi-party computation [3], and data sanitization [4, 13].

One such approach, originally proposed by Samarati and Sweeney [37, 38, 39], is k-anonymization.
Meyerson and Williams [33] introduced the problem of transforming a database table using sup-
pressions so that the k-anonymity property is satisfied and the amount of information-loss due to
the suppression operations is minimized. They showed that this problem is NP-hard and they de-
vised two approximation algorithms: one with a runtime of O(n2k) and an approximation ratio of
O(k log k), and another with a fully polynomial runtime and an approximation ratio of O(k log n).
Aggarwal et al. [2] extended the setting of suppressions-only by allowing more general rules for
generalizing data entries and they devised a polynomial O(k)-approximation algorithm.

The information-loss function proposed by Aggarwal et al. [2] is defined as a tree measure and
it is a generalization of the function considered by Meyerson and Williams [33]. In [20], three
entropy-based functions were suggested for measuring the information-loss. Those measures are
more general than the tree measure, as they apply to any type of generalization, and they capture
more accurately the information-loss due to anonymization. An O(log k)-approximation algorithm
was presented in [20] for the problem of optimal k-anonymity with respect to two of the entropy-
based measures, as well as for the tree measure. More efficient O(log k)-approximation algorithms
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were described in [35], for the case of suppressions only, and in [24], for the general case.
Other information-loss measures were used in previous studies. The LM measure [22, 34] (which

we define later on in Section 4.1) is a more precise version of the tree measure of [2]. The CM
measure [22] and the DM measure [6] were also used as cost metric measures. Our notions of
k-type anonymity are independent of the underlying cost measure. In our experiments, we use the
basic entropy measure of [20], as a representative of the three entropy-based measures that were
presented there, and the LM measure, which seems to be the most accurate measure from among
the above mentioned measures.

Aggrawal et al. [1] proposed to anonymize data by first clustering the data records and then
publish cluster centers and radii. Our new anonymity notions are independent of the underlying
clustering method and, consequently, they may be applied also with these clustering techniques.

In a similar line to our present work, the works of Kifer and Gehrke [26] and Xiao and Tao [48]
aim at improving the utility of the anonymized data. Kifer and Gehrke [26] suggested publishing
many marginals of the data instead of a single k-anonymous `-diverse table, in order to obtain better
utility while respecting similar privacy properties. Xiao and Tao [48] proposed publishing the table
with all non-sensitive attributes unaltered, while the sensitive attribute in each record is replaced by
a label of an `-diverse group of sensitive attribute values. In addition, they publish the distribution
of the sensitive attribute values within each such group.

3 Preliminaries

Consider a database that holds information on individuals in some population U = {u1, . . . , un}.
Each individual is described by a collection of r public attributes (also known as quasi-identifiers),
A1, . . . , Ar, and a private attribute, Ar+1. Each of the attributes consists of several possible values:

Aj = {aj,` : 1 ≤ ` ≤ mj}, 1 ≤ j ≤ r + 1 .

For example, if Aj is the attribute gender then Aj = {M,F}, while if Aj is the attribute age, then
it is a bounded natural number. (Note that we use Aj to denote the attribute as well as the domain
in which it take values.)

Hereinafter, D denotes the projection of the database on the set of r public attributes and the
records of D are denoted Ri, 1 ≤ i ≤ n; namely, Ri ∈ A1 × · · · × Ar. We denote the jth
component of the record Ri by Ri(j). Also, for any set A we let P(A) denote its power set.

Definition 3.1. Let Aj , 1 ≤ j ≤ r, be finite sets and let Aj ⊆ P(Aj) be a collection of subsets
of Aj . A record R ∈ A1 × · · · × Ar is a generalization of the record R ∈ A1 × · · · × Ar (or,
alternatively, it is consistent with R) if R(j) ∈ R(j) for all 1 ≤ j ≤ r.

If D = {R1, . . . , Rn} is a table of records in A1 × · · · × Ar, then g(D) = {R1, . . . , Rn} is a
generalization of D if for all 1 ≤ i ≤ n, Ri is a generalization of Ri.1

As an example, consider a database D with two quasi-identifiers, age (A1) and zipcode (A2).
Then the generalized record R = ({30, . . . , 39}, {98000, . . . , 98099}) is a generalization of the
record R = (34, 98003).

We shall assume that the collection of subsets Aj , 1 ≤ j ≤ r, that may generalize the values of
the attribute Aj are proper, in the following sense.

1Hereinafter D and g(D) are multisets, in the sense that they may include differently-indexed records that are equal.
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Definition 3.2. Given an attribute A = {a1, . . . , am}, a corresponding collection of subsets A is
called proper if it includes all singleton subsets {ai}, 1 ≤ i ≤ m, it also includes the entire set A,
and it is laminar in the sense that B1 ∩B2 ∈ {∅, B1, B2} for all B1, B2 ∈ A.

The first part of Definition 3.2 implies that with such collections of subsets, we may leave each
value of that attribute unaltered (no generalization), or replace it by the entire set of values for that
attribute (total generalization, or suppression). The second part of the definition that restricts the
subset collection A to be laminar implies that A forms a hierarchy (see [20, Lemma 3.3].)

As a final note, we distinguish between three main models of generalization:

• In (single-dimensional) global recoding, e.g. [6, 22, 28, 47], each collection of subsets Aj is
a partition of the set Aj (in the sense that Aj includes disjoint sets whose union equals Aj).
In such cases, every entry in the jth column of the database is mapped to the unique subset in
Aj that contains it. As a consequence, every single value a ∈ Aj is always generalized in the
same manner.

• In local recoding, e.g. [19, 20, 33, 35, 47], the collection of subsets Aj covers the set Aj but
it is not a partition (namely, the subsets in the collection may intersect). In such cases, each
entry in the table’s jth column is generalized independently to one of the subsets in Aj which
includes it. Hence, if the age 34, for example, appears in the table in several records, it may
be left unchanged in some, or generalized to 30 - 39, or totally suppressed in other records.

• The third model is an intermediate one and it is called multi-dimensional global recoding,
e.g. [29]. In that model, like in local recoding, the collection of subsets Aj is a cover of
the set Aj (namely, each value of Aj may be contained in more than one subset in Aj).
However, it is a global recoding in the sense that there exists a global mapping function
g : A1 × · · · ×Ar → A1 × · · · ×Ar such that Ri = g(Ri) for all 1 ≤ i ≤ n.

4 Alternative models of k-type anonymity

We begin this section by reviewing the notion of k-anonymity as it is used in the recent litera-
ture [2, 6, 20, 28, 33]. We then introduce the new notions of k-type anonymity and discuss them and
their interrelations. All of those notions are relaxations of k-anonymity, whence they allow greater
utility.

4.1 Overview of k-anonymization

A k-anonymization of a database D = {R1, . . . , Rn} is a generalization g(D) = {R1, . . . , Rn}
where for all 1 ≤ i ≤ n, there exist indices 1 ≤ i1 < i2 < · · · < ik−1 ≤ n, all of which are
different from i, such that Ri = Ri1 = · · · = Rik−1

. The objective in this context is to generalize
a given database until it becomes k-anonymized, while incurring a minimal loss of information.
Let Π(D, g(D)) denote the amount of information that is lost by replacing a database D with a
corresponding generalization g(D). The measure of loss of information Π took several forms in
previous studies; the reader is referred to [19] for an overview of some of the commonly used
measures. Most of those measures are additive in the sense that they associate an information loss
with each generalized record and then the overall information loss in g(D) is the sum of information
losses of all generalized records in g(D). Given a generalized record R ∈ A1 × · · · × Ar, we let
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c(R) = cΠ(R) denote the cost by which R is penalized according to the chosen measure Π of
information loss.

For the sake of illustration, we recall here the definition of the commonly used Loss Metric (LM)
measure [22, 34]. If R is a generalized record in A1 × · · · × Ar, then the LM measure associates
with it the following cost,

c(R) =
1

r
·

r∑
j=1

|R(j)| − 1

|Aj | − 1
. (1)

Namely, it is an average cost over all r attributes, where the cost in the jth attribute ranges between
0 (no generalization at all) to 1 (total suppression). If g(D) = {R1, . . . , Rn} is a generalization of
D = {R1, . . . , Rn}, then the overall generalization cost by LM is

Π(D, g(D)) :=
1

n
·

n∑
i=1

c(Ri) . (2)

As mentioned earlier, we use in our experiments the LM measure as well as the basic entropy
measure (EM) of [20]; the reader is referred to [20] for a definition of the latter measure.

Definition 4.1. Let S ⊂ A1 × · · · × Ar be a set of records. Its closure is the minimal generalized
record in A1× · · · ×Ar that is consistent with all records in S. The generalization cost of S is then
defined as d(S) = c(S).

4.2 k-type anonymizations

We now proceed to introduce our novel notions of k-type anonymity. Those notions rely on the
concept of consistency, that was defined in Definition 3.1.

Definition 4.2. Let D = {R1, . . . , Rn} be a table and g(D) = {R1, . . . , Rn} be a corresponding
generalization. Then
• g(D) is called a (1, k)-anonymization of D if each record in D is consistent with at least k

records in g(D).
• g(D) is called a (k, 1)-anonymization of D if each record in g(D) is consistent with at least
k records in D.
• g(D) is called a (k, k)-anonymization of D if it is both a (1, k)- and a (k, 1)-anonymization

of D.
Correspondingly, we define Ak

D, A(1,k)
D , A(k,1)

D , and A(k,k)
D to be the collections of all k-, (1, k)-,

(k, 1)- and (k, k)-anonymizations of the database D, respectively.

In order to understand the motivation behind those definitions, we look at things from the per-
spective of the adversary. A typical adversarial attack aims at revealing sensitive information on
a specific target individual. In such an attack, the adversary knows a record R ∈ D and he tries
to locate the corresponding generalized record R ∈ g(D). Alternatively, the adversary could be
interested in re-identifying any entity in the released data, for instance to find possible victims
to blackmail. Such an attack works in the opposite direction: Focusing on a generalized record
R ∈ g(D), the adversary tries to infer its correct preimage R ∈ D. (This kind of attack was at the
basis of the well-known August 2006 AOL crisis, see [5].) The notion of (1, k)-anonymity aims
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A(1,k)
D

Ak
D

A(k,k)
D

A(k,1)
D

Ck
D

Figure 1. Interrelations between the five classes of k-type anonymizations.

at protecting against the first attack; the notion of (k, 1)-anonymity aims at protecting against the
second one; (k, k)-anonymity considers both attacks.

The notion of (k, 1)-anonymity was already defined in [45] under the name k-ambiguity. A
similar security notion appeared in [39]: an anonymized table adheres to the k-map protection
model if every record in it is consistent with at least k entities in the underlying population (and not
just in the original table, as in k-ambiguity and its equivalent (k, 1)-anonymity).

Proposition 4.3. For a given table D, let the collections Ak
D, A(1,k)

D , A(k,1)
D , and A(k,k)

D be as in
Definition 4.2. Then the relation between these collections is as depicted in Figure 1; i.e.,

Ak
D $ A(k,k)

D $ A(1,k)
D ,A(k,1)

D , (3)

and
A(1,k)

D \ A(k,1)
D 6= ∅, A(k,1)

D \ A(1,k)
D 6= ∅. (4)

(The proof of the propositions in this section are given in Appendix A.)
Our anonymity definitions can also be understood via graph terminology, as follows:2 Let D =

{R1, . . . , Rn} be a table and g(D) = {R1, . . . , Rn} be a corresponding generalization. This pair
of tables defines a bipartite graph VD,g(D) on the set of nodes D ∪ g(D) where an edge connects

Ri ∈ D with Rj ∈ g(D) if and only if the two records are consistent. With this formulation, A(1,k)
D

(respectively,A(k,1)
D , orA(k,k)

D ) is the collection of all generalizations g(D) for which every node in
D (respectively g(D), or D ∪ g(D)) in the graph VD,g(D) has degree at least k. This formulation in
terms of the underlying bipartite graph, gives rise to our final and main notion:

Definition 4.4. Let D and g(D) be a table and its generalization, and let VD,g(D) be the corre-
sponding bipartite graph. A record R ∈ g(D) is called a match of R ∈ D if (R,R) is an edge in
VD,g(D) and there exists a perfect matching in VD,g(D) that includes that edge. If all records R ∈ D
have at least k matches in g(D), then g(D) is called a k-concealment of D.

Namely, k-concealment is a stronger version of (1, k)-anonymity: While (1, k)-anonymity re-
quired each record (or node) R ∈ D to have at least k adjacent edges in VD,g(D), k-concealment
demands that each record R ∈ D will have at least k adjacent matches. We could define simi-
lar stronger versions of (k, 1)-anonymity and (k, k)-anonymity. Herein we choose to focus on k-
concealment as the stronger version of (1, k)-anonymity since the adversarial attack that motivates
(1, k)-anonymity is the more interesting one (see the discussion after Definition 4.2). In addition,

2All graph terminology that we use herein is defined and discussed in any basic textbook on graph theory, e.g. [8].
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the algorithms that we present in this paper for the notion of k-concealment can be easily modified
so that they apply to the concealment versions of (k, 1)-anonymity and (k, k)-anonymity.

The relation between the new anonymization class, denoted CkD, and the previous ones is given
in the following proposition.

Proposition 4.5. Let CkD denote the collection of all k-concealments ofD. Then the relation between
the five classes of anonymizations – Ak

D, A(1,k)
D , A(k,1)

D , A(k,k)
D and CkD, is as depicted in Figure 1.

We would like to note that our definitions of the alternative models of k-type anonymity are
relevant only in the case of local recoding. It is easy to see that in case of either single- or multi-
dimensional global recoding all those models coincide with the standard k-anonymity (namely, all
domains in Figure 1 collapse into one domain).

5 The security of the new k-type notions

In Section 5.1 we discuss the security of the three basic notions of (1, k)-, (k, 1)- and (k, k)-
anonymity. We explain why they do not provide comparable privacy to that offered by k-anonymity.
This discussion provides the motivation for the central notion which we introduce in this study —
k-concealment. Then, in Section 5.2 we discuss the security of that notion. We show there that
k-concealment offers comparable security as k-anonymity (but with lower information losses).

5.1 The insecurity of (1, k)-, (k, 1)- and (k, k)-anonymity

Here we discuss the security of the three basic notions of (1, k)-, (k, 1)- and (k, k)-anonymity.
We show that they do not provide the same level of security as k-anonymity. The purpose of this
discussion is to motivate the definition of k-concealment, which, as we show later on, provides a
comparable level of security as k-anonymity (with higher utility, as shown by experimentation).

Consider a database D and a corresponding (k, 1)-anonymization g(D). Each record in g(D) is
consistent with at least k records in D. However, it is possible that some records R ∈ D are consis-
tent with only one record in g(D), as illustrated in Figure 2. (It describes a (2, 1)-anonymization but
the first record in D is consistent only with one record in g(D).). If the adversary happens to target
an individual whose quasi-identifier record in D has only one generalized record in the released
table that is consistent with it, then that adversary may infer, with certainty, what is the generalized
record that corresponds to his target individual and, consequently, find the corresponding private
attribute of that record.

D g(D)

Figure 2. An example of a breach of security in (k, 1)-anonymity

Next, let g(D) be a (1, k)-anonymization of D. It is true that every record in D is consistent with
at least k records in g(D), whence such anonymizations seem to satisfy our privacy goal. However,
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the following example shows where this notion fails. Assume that D = {R1, . . . , Rn} and that R∗

is a generalized record that is consistent with all records inD (e.g., all entries inR∗ are suppressed).
Consider the following generalization: g(D) = {R1, . . . , Rn}, whereRi = Ri for all 1 ≤ i ≤ n−k
and Ri = R

∗ for all n − k + 1 ≤ i ≤ n (the corresponding bipartite graph for n = 5 and k = 2

is shown in Figure 3). It is easy to see that g(D) ∈ A(1,k)
D . Moreover, since most of the records in

g(D) were not generalized at all, the information-loss Π(D, g(D)) is very small, for any measure
Π. However, such a generalization is completely unacceptable: The private information of most of
the individuals represented in D is completely revealed.

D g(D)

Figure 3. An example of a breach of security in (1, k)-anonymity

The notion of (k, k)-anonymity combines the two previous notions and it seems that it does not
suffer from the above mentioned shortcomings of those two notions. However, since we assumed
that the adversary knows the exact subset of the population that is represented in the table, and that
he knows the public data of all of them, he may construct the original public table D. Since the
anonymized table g(D) is published, he may construct the bipartite graph VD,g(D), where an edge
connects a record Ri ∈ D to a generalized record Rj ∈ g(D) if and only if the latter generalizes
the former. The (k, k)-anonymity guarantees that every node in that graph has a degree of at least
k. However, while this lower bound on the degree may be sufficient in case the adversary knows
only part ofD, it is insufficient under our strong adversarial assumption. Since the adversary knows
the entire graph, he may test each edge in the graph and check whether it may be completed into
a perfect matching in the graph. If it cannot, then it does not represent a possible link between an
original record and a generalized one. By testing the edges of the graph and removing edges that
are not matches, in the sense of Definition 4.4, the adversary may end up with nodes in D that have
less than k matches, whence he may obtain more linkage information than what we were expecting.

This discussion motivates our definition of k-concealment, which, as we proceed to show next,
is secure against the potent adversary that we consider. However, before moving on to discuss the
security of k-concealment, we would like to point out that from practical point of view, assuming
that the adversary knows the exact subset of the population that is represented in the table is a very
strong one. In fact, the data holder can simply eliminate at random a small subset of records in
order to make it impossible for such an adversary to construct the graph VD,g(D) and apply the
above described attack on (k, k)-anonymous tables. Hence, we believe that in practice the model of
(k, k)-anonymity offers a comparable security to that offered by k-anonymity. Having said that, we
proceed to discuss the security of our main model — k-concealment.
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5.2 Security of k-concealment

In k-concealment, everyRi ∈ D has at least k matches in g(D). Hence, just like in k-anonymity,
even the strongest adversary, as we described earlier, who targets a particular record Ri ∈ D, can
not narrow down the number of suspect generalized records in g(D) to less than k.

However, while in k-anonymity the k suspect records in g(D) are identical, whence each of them
is equally likely to be the real generalization of Ri, the same is not true for k-concealment. Assume
that the adversary, who can construct VD,g(D), wishes to “attack” a given record in D, say R1. Let
{Ri1 , . . . , Rit} be the set of matches of R1 in g(D). The adversary may count, for each 1 ≤ j ≤ t,
the number of perfect matchings in VD,g(D) that include the edge (R1, Rij ). Denoting those counts
by mj , he may deduce that the probability that Rij is the true match of R1 is pj :=

mj

M , where
M =

∑t
j=1mj is the total number of perfect matchings in VD,g(D). As the probabilities p1, . . . , pt

are not necessarily equal, that adversary may gain an advantage which could have not been gained
in the k-anonymity model.

However, that attack is infeasible since counting the number of perfect matchings in a bipartite
graph is equivalent to computing the permanent of a {0, 1}-matrix3. That problem has a rich history
in the study of computational complexity. All known algorithms for computing the permanent
over the integers, or over any finite field of odd characteristic, are exponential. The best known
algorithm runs in time O(n22n) [36]. In 1979, Valiant proved that the problem is in #P-complete
[44]. A decade later, Toda [41] demonstrated the surprising power of #P; Toda’s theorem, combined
with Valiant’s result, implies that the permanent is hard for the entire polynomial-time hierarchy.

The permanent is hard not only in the worst case, but also in the average case. Lipton [31] has
shown that the permanent has the random self-reducibility property. The important consequence
of that property is that the permanent is hard also on the average. The line of research initiated by
Lipton, that connects the worst case and average case complexities of the permanent was pursued
in several studies [14, 17, 18]. The best result in that direction is due to Cai et al. [10]: They
proved that if there exists a polynomial time algorithm (even a probabilistic one) that computes the
permanent of a matrix of order n for any inverse polynomial fraction of all matrices of order n, then
there is a probabilistic polynomial time algorithm that computes the permanent for every matrix.

Because of its computational difficulty, there has been much research on polynomial time ap-
proximation algorithms for the permanent. The best currently available approximation is a fully
polynomial randomized approximation scheme [23] that provides an arbitrarily close approxima-
tion. However, the runtime of that algorithm is Õ(n10), thus it is infeasible even for very modest
databases with n in the thousands.

To summarize, even an adversary who can construct the entire graph VD,g(D) cannot locate his
target individual within less than k suspect records in the anonymized table. Furthermore, he cannot
even distinguish between those suspect records, since, in order to do that, he must solve at least k
#P-complete problems, or at least use approximation algorithms which currently are also infeasible.
Given all of the above, we conclude that k-concealment is essentially as secure as k-anonymity.

3The permanent of a square matrix A = (ai,j)1≤i,j≤n is defined as perm(A)=
∑
σ∈Sn

∏n
i=1 ai,σ(i) where Sn is the

group of all permutations of {1, 2, . . . , n}.
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6 Algorithms

Algorithms for k-anonymization may be separated to approximation algorithms and heuristic
algorithms. Approximation algorithms issue, for a given table D, a k-anonymization g(D) with
an approximation ratio guarantee ρ; namely, if go(D) is an optimal k-anonymization of D then it
is guaranteed that Π(D, g(D)) ≤ ρ · Π(D, go(D)). The forest algorithm, by Aggarwal et al. [2],
offers an approximation ratio guarantee of 3k − 3 with respect to a tree measure of information
loss. (A better approximation algorithm with an approximation ratio of O(log k) was presented in
[35] but it is limited to generalization by suppression only.) In practice, however, better results may
be obtained by heuristic algorithms. The two algorithms that appear to be the best ones are the
agglomerative algorithm [19] and the sequential algorithm [21]. As demonstrated in [21], the two
algorithms offer very similar results in terms of utility.

In this section we describe algorithms for (k, k)–anonymization and k-concealment, and compare
their performance to that of the above mentioned algorithms for k-anonymity. In Section 6.1, we
describe an algorithm for (k, k)-anonymization, and in Section 6.2 we describe an algorithm for
transforming a (k, k)-anonymized table to one that satisfies (in addition to (k, k)-anonymity) also
the k-concealment property.

6.1 (k, k)-Anonymization

In this section we describe algorithms for (k, k)-anonymizing a given database D. First, we
present in Section 6.1.1 algorithms for (k, 1)-anonymization. Then, in Section 6.1.2, we describe
an algorithm for transforming a (k, 1)-anonymization into a (k, k)-anonymization.

6.1.1 Algorithms for (k, 1)-anonymization

Given a database D = {R1, . . . , Rn}, Algorithm 1 finds an optimal (k, 1)-anonymization of D.
It does so by finding for each record Ri, 1 ≤ i ≤ n, the best subset of k − 1 additional records
such that the generalization cost (see Definition 4.1) of those records, together with Ri, would be
minimal. Once that subset is found, Ri is set to be the corresponding generalized record.

Algorithm 1 Optimal algorithm for (k, 1)-anonymization
Input: Table D, integer k.
Output: Table g(D) that satisfies (k, 1)-anonymity.

1: for all 1 ≤ i ≤ n do
2: For all

(
n−1
k−1

)
selections of k − 1 records, Ri1 , . . . , Rik−1

, out of D \ {Ri}, compute the
generalization cost d({Ri, Ri1 , . . . , Rik−1

}).
3: Let {Ri1 , . . . , Rik−1

} be a selection that resulted in a minimal generalization cost in the
previous step.

4: Define Ri to be the closure of {Ri, Ri1 , . . . , Rik−1
}.

5: end for

Proposition 6.1. Algorithm 1 produces a table g(D) that is an optimal (k, 1)-anonymization of D.
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The proof of proposition 6.1 is straightforward: the generalization g(D) is a (k, 1)-anonymization
of D because each record in it is a closure of k records in D. Its cost is optimal because when com-
posing each generalized record Ri, the exhaustive search is performed on the whole database D
(and not only on a subset of not yet chosen records). This can be done because the iterations of the
algorithm are independent of each other.

The runtime of Algorithm 1 is O(n ·
(
n−1
k−1

)
) = O(nk). Even though polynomial in the large

parameter n, it is impractical because of the exponential dependence on k. Algorithm 2, which
we describe below, constructs the generalized records by greedily selecting at each stage the next
closest record. Its runtime is O(kn2) and it offers an approximation ratio guarantee of k − 1 (see
Appendix B).

Algorithm 2 (k, 1)-Anonymization by expansion
Input: Table D, integer k.
Output: Table g(D) that satisfies (k, 1)-anonymity.

1: for all 1 ≤ i ≤ n do
2: Set Si = {Ri}
3: while |Si| < k do
4: Find the record Rj /∈ Si that minimizes dist(Si, Rj) = d(Si ∪ {Rj})− d(Si).
5: Set Si = Si ∪ {Rj}.
6: end while
7: Define Ri to be the closure of Si.
8: end for

6.1.2 From (k, 1)- to (k, k)-anonymization

Let D = {R1, . . . , Rn} be a database and g(D) = {R1, . . . , Rn} be any generalization of D.
Such a generalization may not satisfy (1, k)-anonymity since there could be records Ri ∈ D that
are consistent with less than k generalized records in g(D). Algorithm 3 find such records in D
and then it further generalizes the records of g(D) until it becomes a (1, k)-anonymization of D.
Specifically, if a given record Ri is consistent with only ` < k records in g(D), the algorithm
searches for additional k − ` generalized records in g(D) that could be further generalized in order
to become consistent with Ri with minimal cost. To simplify notations, for any Ri ∈ D and
Rj ∈ g(D) we let Ri +Rj denote the minimal generalized record that generalizes both Ri and Rj .

By applying this algorithm to a generalization that is already (k, 1)-anonymized, we end up with
a generalized table g(D) that respects (k, k)-anonymity.

The runtime of Algorithm 3 is O(n2): The outer loop consists of n steps; then for each record
we need to check with how many of the n generalized records in g(D) it is consistent, and if that
number is less than k, we have to find the k − ` best ones (O(kn) operations) and replace up to
k generalized records. Hence, the overall runtime is O(kn2). Consequently, so is the runtime of
the coupling of that algorithm with the (k, 1)-anonymizer, Algorithm 2 (such a coupling is a (k, k)-
anonymizer).
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Algorithm 3 (1, k)-Anonymizer

Input: Table D = {R1, . . . , Rn}, generalized table g(D) = {R1, . . . , Rn}, integer k.
Output: Table g′(D) that generalizes g(D) and satisfies (1, k)-anonymity.

1: for all 1 ≤ i ≤ n do
2: Let ` be the number of records Rj that are consistent with Ri.
3: if ` < k then
4: Scan all records Rj that are not consistent with Ri and find the k − ` ones that minimize

c(Ri +Rj)− c(Rj).
5: Replace each of those k − ` records, Rj , with Ri +Rj .
6: end if
7: end for

6.2 An algorithm for k-concealment

Next, we describe Algorithm 5 that transforms a (k, k)-anonymization g(D) of a given database
D into a k-concealed table. In order to understand the main idea behind the algorithm, we begin by
characterizing the set of all matches in the graph (see Definition 4.4).

6.2.1 Finding all matches in a bipartite graph

Let G = (U, V,E) be a bipartite graph where U = {u1, . . . , un}, V = {v1, . . . , vn} and E ⊆
U × V . Assume also that G has at least one perfect matching; for the sake of convenience we
assume that the perfect matching is {(u1, v1), . . . , (un, vn)}. In the spirit of Definition 4.4, an edge
in E is called a match if it may be extended to a perfect matching in G. In Proposition 6.3 below
we characterize the set of all matches in G.

Definition 6.2. A set of ` ≥ 1 edges in the graph G is called a bicycle (with respect to the assumed
perfect matching) if there exist ` indices, 1 ≤ i1, . . . , i` ≤ n, such that the ` edges are

(ui1 , vi2), (ui2 , vi3), . . . , (ui`−1
, vi`), (ui` , vi1) . (5)

It is important to note that a bicycle is not a cycle. For example, each of the edges (ui, vi), 1 ≤
i ≤ n, is a bicycle of length ` = 1, which is obviously not a cycle. Each bicycle of length ` > 1
corresponds to a cycle of length 2`; indeed, if we augment the bicycle in (5) with the ` “horizontal”
edges (uij , vij ), 1 ≤ j ≤ `, we get a cycle. The converse, however, is not true. Consider for
example the bipartite graph in Figure 4. The four non-horizontal edges are a cycle of length 4 that
does not correspond to any bicycle; indeed, the only bicycles in that graph are the four bicycles of
length 1 each (since the graph has only one perfect matching).

Proposition 6.3. LetG = (U, V,E) be a bipartite graph whereU = {u1, . . . , un}, V = {v1, . . . , vn}
and E ⊆ U × V , and assume that {(u1, v1), . . . , (un, vn)} ⊂ E. Then an edge e ∈ E is a match if
and only if it is a part of some bicycle.

Proof. Let us assume first that e = (ui1 , vi2) is part of a bicycle, say

(ui1 , vi2), (ui2 , vi3), . . . , (ui`−1
, vi`), (ui` , vi1) .
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Figure 4. A bipartite graph with no nontrivial bicycles

If we augment this bicycle with the n − ` edges (ui, vi) for all i /∈ {i1, . . . , i`} we get a per-
fect matching. The proof in the other direction is immediate since any perfect matching may be
expressed as a disjoint union of bicycles.

Let G = (U, V,E) be the bipartite graph that corresponds to some anonymization g(D) of D;
namely, U = {R1, . . . , Rn} consists of all original records and V = {R1, . . . , Rn} consists of
all generalized records. Since Ri is a generalization of Ri there is an edge that connects ui = Ri

to vi = Ri for all 1 ≤ i ≤ n, and all of those edges are matches. We aim now to find all other
edges of E that are matches. To that end we proceed as follows. First, we define the directed graph
H = (U,F ) that is induced by the bipartite graphG = (U, V,E). In the directed graphH = (U,F )
the set of nodes is U = {u1, . . . , un} and (ui, uj) ∈ F if and only if i 6= j and (ui, vj) ∈ E. It
is easy to see that, in view of Proposition 6.3, an edge (ui, vj) ∈ E is a match in G if and only if
i = j or the edge (ui, uj) ∈ F is part of a cycle in H . Hence, the problem of finding all matches in
G reduces to the problem of finding all edges in the directed graph H that are part of a cycle. This
may be achieved as follows: First, one has to find all strongly connected components of H; namely,
all maximal strongly connected subgraphs of H (a directed graph is strongly connected if there is
a path from each node in the graph to every other node). If each strongly connected component is
contracted to a single node, the resulting graph is a directed acyclic graph. Consequently, a given
edge in H is a part of cycle if and only if it connects two nodes in the same strongly connected
component.

Algorithm 4 Finding all matches in a bipartite graph G = (U, V,E).
Input: A bipartite graphG = (U, V,E) where U = {u1, . . . , un}, V = {v1, . . . , vn}, E ⊆ U×V ,

and for all 1 ≤ i ≤ n, (ui, vi) ∈ E.
Output: Marking all edges in E by either YES or NO to indicate whether they are matches in G.

1: Construct the directed graph H = (U,F ) that corresponds to G.
2: Find all strongly connected components of H .
3: For all edges (ui, uj) ∈ F , if ui and uj belong to the same strongly connected component in
H , mark the edge (ui, vj) ∈ E as YES, otherwise mark it as NO.

4: Mark all edges (ui, vi) ∈ E, 1 ≤ i ≤ n, as YES.

There are several efficient algorithms for finding the strongly connected components of a given
directed graph. Tarjan’s algorithm [40] and Cheriyan-Mehlhorn-Gabow algorithm [11] are both
equally efficient with a linear runtime. We may apply one of those algorithms, and then identify
all edges (ui, uj) ∈ F that are part of a cycle in H: (ui, uj) is a part of a cycle if and only if ui
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and uj belong to the same strongly connected component. Finally, we use those findings to mark
all matches in the original bipartite graph G. Algorithm 4 does all of the above. Its runtime is
O(|U |+ |E|).

6.2.2 The algorithm

The algorithm works as follows: For each Ri ∈ D, it computes the subset P of its set of neighbors
Q, consisting of all matches of Ri. Since g(D) is a (k, k)-anonymization of D, then |Q| ≥ k, but
|P | could be less than k. In order to achieve k-concealment, we increase |P | so that it becomes at
least k. To that end, if |P | < k, we select the non-match neighbor Rjh of Ri that minimizes the
quantity dh = c(Rjh + Ri) − c(Ri). Then, we further generalize the record Ri to be consistent
also with Rjh . The discussion in Section 6.2.1 implies that this update of Ri “upgrades” Rjh from a
mere neighbor of Ri to a match of Ri (since now the edge (Ri, Rjh) becomes a part of a bicycle of
length 2). This upgrade of the edge (Ri, Rjh) into being a match may have a similar effect on other
edges as well. Hence, we recompute the set of matches and repeat the procedure until |P | becomes
at least k. Once this is accomplished, we move on to deal with the next node Ri+1.

Algorithm 5 From (k, k)-anonymity to k-concealment

Input: Table D = {R1, . . . , Rn}, and a generalized table g(D) = {R1, . . . , Rn} that satisfies
(k, k)-anonymity, integer k.
(It is assumed that for all 1 ≤ i ≤ n, Ri is a generalization of Ri.)

Output: A further generalization of g(D) that is k-concealed (as well as (k, k)-anonymized).
1: Find all matches in the graph VD,g(D) (Algorithm 4).
2: for all 1 ≤ i ≤ n do
3: Set Q = {Rj1 , . . . , Rjq} to be the set of q ≥ k neighbors of Ri.
4: Extract P – the subset of Q consisting of all matches of Ri.
5: If |P | ≥ k, skip to next i. Otherwise, proceed with steps 6-10.
6: For all 1 ≤ h ≤ q such that Rjh ∈ Q \ P , compute dh = c(Rjh +Ri)− c(Ri).
7: Select the index 1 ≤ h ≤ q where Rjh ∈ Q \ P , for which dh is minimal.
8: Set Ri = Rjh +Ri.
9: Recompute the set of all matches in the graph VD,g(D).

10: Return to Step 3.
11: end for

Algorithm 5 invokes Algorithm 4 once at the beginning, before it starts the main loop. Then,
after each addition of a new edge (Step 8), it needs to recompute the matches in the graph (Step 9),
since the addition of a new edge might upgrade more than one edge into being a match. In order
to do that efficiently, we keep the partition of the directed graph H = (U,F ) to strongly connected
components by keeping H ′ = (U ′, F ′) — the directed graph in which U ′ = {C1, . . . , Cm} is the
set of strongly connected components inH , and F ′ has an edge fromCa toCb if F has an edge from
a node in Ca to a node in Cb. Now, the operation in Step 8 in Algorithm 5 is equivalent to adding the
edge (ujh , ui) to H . Since those two nodes belong to two distinct strongly connected components
in H , say ujh ∈ C1 and ui ∈ C2, the operation in Step 8 results also in adding a new edge (C1, C2)
to H ′. Hence, what we need to do is to apply Tarjan’s algorithm on the smaller graph H ′ and find
the strongly connected components in it at this stage. The new strongly connected components in
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H ′ tell us how to update the separation of H into strongly connected components and which edges
in H upgrade into being matches.

In order to avoid unnecessary formalism, we prefer to illustrate the above ideas by an example.
Assume that H has 5 strongly connected components and we added in Step 8 an edge (ujh , ui),
where ujh ∈ C1 and ui ∈ C2. Then we add the edge (C1, C2) toH ′ and then run Tarjan’s algorithm
on H ′. Assume that we find out that the strongly connected components in H ′, in wake of this
edge addition, are {C1, C2, C3}, {C4}, {C5}. Then we conclude that H now has only 3 strongly
connected components — C1 ∪ C2 ∪ C3, C4, C5. Moreover, all edges in H that connect a node
from Ci to a node in Cj , where 1 ≤ i 6= j ≤ 3, will now be matches.

We note that the least that could happen in wake of the operation in Step 8 is the unification
of C1 and C2 (where ujh ∈ C1 and ui ∈ C2). Indeed, since H already has the edge in the
opposite direction, (ui, ujh), (namely,H ′ has the edge (C2, C1)), then the new edge (C1, C2) makes
{C1, C2} strongly connected inH ′. But, since it is possible that the addition of that single edge will
create a larger strongly connected component we have to apply Tarjan’s algorithm on H ′.

The runtime of Algorithm 5 is analyzed as follows. Finding all matches in Step 1 by invoking
Algorithm 4 takes O(kn) time. Then, we start a loop over all n nodes, and for each node we
perform at most k upgrades of an edge to a match. By keeping an array that holds for each node
the connected component to which it belongs, we can decide in O(1) whether an edge in the graph
is a match. Steps 3–8 require O(k) time and Step 9 requires O(nk) time. The overall runtime of
Algorithm 5 is therefore O(kn2).

7 Randomizing the algorithms

A basic assumption in cryptography is Kerckhoffs’ principle [25]. It states that the security of
a cryptographic algorithm must not rely on the assumed secrecy of the algorithm, but only on the
random selections (namely, the key) that the algorithm uses. Hence, when designing a cryptographic
algorithm it must be assumed that the algorithm is known to the adversary.

As we assumed that the adversary knowsD as well as g(D), and that he knows also the anonymiza-
tion algorithms, he may construct the graph VD,g(D). Therefore, he knows for each original record
Ri what is the value of its generalization Ri. Hence, given an original record Ri, the adversary
would know that its generalization is one of the generalized records in g(D) that equal Ri. The
number of those suspect records may be, in the worst case, one.

Two previous studies have also identified this risk in the context of anonymizing tables [46, 49].
Our approach here is closer to the one in [46]. The problem that they identified is when the data
owner attempts to `-diversify a table with minimal loss of information. They showed that since the
partition of the table records into equivalence classes of records is guided by the need to respect
`-diversity (a condition which depends only on the sensitive attribute) and also by the goal to avoid
unnecessary generalizations, it is possible sometimes to infer the sensitive values of some of the
records. They identified that even though k-anonymity on its own does not provide a sufficient
level of privacy, since it does not consider the sensitive values when making decisions on how to
partition the table records, it is exactly that feature that makes it a useful component in thwarting
such minimality attacks. Their proposed algorithm MASK (Minimality Attack Safe K-anonymity)
has two phases. First, it k-anonymizes the table. Then, they execute further generalizations in order
to make sure that all equivalence classes satisfy `-diversity. The second stage uses random decisions
as part of the blinding effect.
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Our algorithm works also in two phases: A first phase, that achieves k-concealment and does not
consider the sensitive value, followed by the second phase that achieves `-diversity or p-sensitivity
in addition to k-concealment (the second phase is described in the next section). We introduce
randomization in both phases. Herein we describe the randomization of the k-concealment phase.
k-Concealment is achieved in three steps. First, we find a (k, 1)-anonymization of D, using

Algorithm 2. Then we transform the (k, 1)-anonymization into a (k, k)-anonymization (Algorithm
3) and then to a k-concealment (Algorithm 5). We introduce randomization in all three steps.

In the first step, we consider a randomized version (Algorithm 6) of Algorithm 2. That version
produces, for each 1 ≤ i ≤ n, two different generalized records, R̃0 and R̃1, each of which is
consistent with Ri and at least k − 1 other records in D. Then, we select at random one of those
two generalized records and define the ith record in g(D) as that generalized record. The first
generalized record, R̃0, is the one that Algorithm 2 would produce (Step 4). In order to find a
second generalized record, we look at the q closest neighbors of Ri (where q > k − 1) and then
randomly select k−1 out of them in order to define the second generalized record R̃1, see Step 5. If
R̃0 6= R̃1, we define Ri to be one of them with equal probabilities (Step 7). If R̃0 = R̃1, we repeat
our random selection until a different generalized record is obtained. (We may limit the number of
trials, and then, if all trials failed, we can select R̃1 to be any random generalization of R̃0.) Since
an independent selection is made for each record, the overall number of generalizations g(D) that
could be the output of this phase is at least 2n. (In fact, since R̃1 is random in itself, as there are(

q
k−1

)
ways to define it, the number of possibilities that needs to be checked by the adversary is

even larger.) Hence, the adversary would need to simulate the next two steps in the k-concealment
process (Algorithms 3 and 5) on at least 2n graphs g(D) that could be the output of the first step.

Algorithm 6 Randomized (k, 1)-anonymization
Input: Table D, integer k, and integer q > k − 1.
Output: Table g(D) that satisfies (k, 1)-anonymity.

1: For all 1 ≤ i < j ≤ n compute di,j = dj,i = d({Ri, Rj}).
2: for all 1 ≤ i ≤ n do
3: Find q indices Jq := {j1, . . . , jq} that minimize di,j in {1, . . . , n} \ {i}. (We order those

indices so that di,j1 ≤ · · · ≤ di,jq .)
4: Define R̃0 to be the generalization of Ri as computed by Algorithm 2.
5: Randomly select k − 1 indices out of Jq, and then define R̃1 to be the closure of the subset

of records consisting of the corresponding k − 1 records and Ri.
6: Repeat Step 5 until R̃1 6= R̃0.
7: Select a random bit b ∈ {0, 1} and set Ri = R̃b.
8: end for

Further randomization may be introduced in the next two steps of achieving k-concealment. To
do that, we select a random ordering of the records in the main loop of Algorithm 3 and an indepen-
dent random ordering of the records in the main loop of Algorithm 5. In each of those algorithms we
scan all records R1, . . . , Rn in the table and check whether they satisfy some anonymity condition
((1, k)-anonymity in Algorithm 3 and k-concealment in Algorithm 5), and if they do not, we mend
the problem by performing appropriate generalizations. The order in which the records are visited
has an effect on the final output since generalizations that are done in one step of the loop may
have an effect on the need to perform generalizations in later steps. By performing the main loop
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in each of those algorithms in a random and independent order, we introduce a significant factor of
randomness ((n!)2), which multiplies the previous randomness factor of 2n.

8 Enhancing k-concealment by diversity measures

As discussed in Section 1.2, k-anonymized tables must respect also an additional privacy measure
such as `-diversity or p-sensitivity. Here, we describe how our algorithms may be enhanced towards
that end.

Let D = {R1, . . . , Rn} denote the original table and g(D) = {R1, . . . , Rn} be the generalized
table that respects k-concealment. The latter table is released together with the private data; namely,
each generalized record, Ri, is coupled with the corresponding private attribute si, 1 ≤ i ≤ n.
Assume that Ri has t matches in g(D); let us denote them Rij , where 1 ≤ j ≤ t. Then the
adversary may deduce that the private value of Ri is one of the private values in the multi-set
Si = {si1 , . . . , sit}. The goal is to have all multi-sets Si, 1 ≤ i ≤ n, satisfy some diversity
condition. The two conditions that we shall discuss here are:

• p-sensitivity: Si must contain at least p different values.

• `-diversity: The most frequent value in Si must have a frequency of no more than t/`.

This goal may be achieved by further generalization. Namely, we look for a generalization g′(D) =

{R′1, . . . , R
′
n} of D, where R′i either equals Ri or generalizes it, 1 ≤ i ≤ n, that respects p-

sensitivity or `-diversity in the sense described above. Clearly, as g′(D) generalizes g(D) and g(D)
is a k-concealment of D, so is g′(D). We look for such g′(D) with as low as possible further
generalization cost.

The idea is to check those multi-sets to see whether some of them fail to satisfy the required
diversity condition. Assume that Si is not sufficiently diverse. Then we select, in a greedy manner,
a minimal number of generalized records in g(D) that are not matches ofRi, and then turn them into
matches of Ri, by further generalizations. As a result, the corresponding sensitive values of those
new matches will be added to Si. By properly selecting the new matches, those added sensitive
values will turn Si into a sufficiently diverse multi-set.

Recall that in order to turn a generalized record Rj into a match of Ri we can create a bi-cycle
of length 2 between them. Namely, we can replace Ri with Rj + Ri (i.e., further generalize Ri

until it becomes consistent also with Rj) and replace Rj with Ri + Rj . In order to extend the set
of matches of Ri greedily, we can always select a generalized record Rj that would get us closer to
our goal (namely, the corresponding sensitive value sj will enrich Si towards the required diversity)
and for which the required generalization cost is minimal.

It remains only to describe how to select a minimal subset of non-matches of Ri that should be
matched with Ri.

8.1 Achieving p-sensitivity

If Si contains only p′ < p different values, we greedily pick non-match generalized records Rj

that have different private values that do not appear in Si, and turn them into matches of Ri, until
Si becomes p-sensitive. We add those new matches one at a time. After adding one edge in order
to create a new match for Ri, we recompute the set of matches in the graph (an operation which

20



is very simple, as explained in Section 6.2.2 regarding Step 9 in Algorithm 5); this is done since
it is possible that the addition of just one edge will add more than one match to Ri. Algorithm 7
implements that procedure. (We include in the input to that algorithm the complete set of all matches
in the corresponding bipartite graph since Algorithm 5 computes and updates that set during its
execution, and therefore it can transfer it as an input to Algorithm 7.)

Algorithm 7 Enhancing k-concealment by p-sensitivity
Input: • Tables D, g(D), where g(D) is a k-concealment of D;
• The set of all matches in the bipartite graph VD,g(D);
• An integer p.

Output: Table g(D) that satisfies both k-concealment and p-sensitivity.
1: for all 1 ≤ i ≤ n do
2: Let Mi := {Ri1 , . . . , Rit} be the set of matches of Ri and Si := {si1 , . . . , sit} be their

sensitive values.
3: Compute the number p′ of different values in Si.
4: while p′ < p do
5: Find a record Rj /∈Mi for which sj /∈ Si, that minimizes [c(Ri +Rj)− c(Rj)] + [c(Rj +

Ri)− c(Ri)].
6: Rj = Ri +Rj .
7: Ri = Rj +Ri .
8: Update the set of matches in the graph.
9: Recompute Mi, Si and p′.

10: end while
11: end for

8.2 Achieving `-diversity

Algorithm 7 may be modified in order to achieve `-diversity instead of p-sensitivity; we concen-
trate on the interpretation of diversity as the inverse of the maximal frequency in Si. To that end, we
shall compute in Step 3 of the algorithm the diversity `′ of Si and compare it to the required minimal
diversity `. While `′ < ` we shall select a generalized record Rj for which sj is different from the
most frequent value in Si and whose turning into a match of Ri entails the minimal generalization
cost. The loop will continue until Si becomes `-diverse.

9 Experimental results

In this section we discuss the experiments that we performed in order to evaluate the new anonymity
model of k-concealment and our proposed algorithms. We tested the algorithms on both artificial
and real data.

Artificial data. The artificial database consisted of n = 5000 records over a set of six attributes
A1, . . . , A6. Each of those six attributes consisted of a finite number of values that were selected
according to the following probability distributions:

A1 : {0.7, 0.3}
A2 : {0.3, 0.3, 0.2, 0.2}
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A3 : {0.25, 0.25, 0.4, 0.1}
A4 : {6× 0.07, 10× 0.04, 9× 0.02}
A5 : {10× 0.1}
A6 : {0.05, 0.05, 0.5, 0.3, 0.1}

For example, attribute A1 has two possible values, the first of them with probability 0.7 and the
second with probability 0.3. Attribute A4, on the other hand, contains 6 values with probability
0.07, 10 values with probability 0.04, and 9 values with probability 0.02.

For each of the above attributes, A = {a1, . . . , am}, the collection of permissible generalized
subsets, A, is described below. As all of those collections include all singleton subsets, {ai}, 1 ≤
i ≤ m, as well as the entire set A, we list below only the non-trivial subsets in A.
A1 : None (other than{a1}, {a2} and {a1, a2})
A2 : {a1, a2}, {a3, a4}
A3 : {a1, a2}, {a3, a4}
A4 : {a1, . . . , a6}, {a7, . . . , a12}, {a13, . . . , a18},

{a19, . . . , a25}, {a1, . . . , a12}, {a13, . . . , a25}
A5 : {a1, a2}, {a3, a4}, {a6, a7}, {a8, a9},
{a1, a2, a3, a4, a5}, {a6, a7, a8, a9, a10}

A6 : {a1, a2}, {a4, a5}, {a3, a4, a5}
Note, for example, that A6 defines an unbalanced tree of height 3. The distance of a4 and a5

from the root {a1, a2, a3, a4, a5} is 3, while the distance of a1, a2 and a3 from the root is 2.

Real-life data. We used three real-life datasets, ADULT, CONTRACEPTIVE METHOD CHOICE

(or CMC), and NURSERY from the UCI Machine Learning [15].
ADULT: This dataset was extracted from the US Census Bureau Data Extraction System. It con-
tains demographic information of a small sample of the US population (n = 45, 222) with 14
public attributes such as age, education-level, marital-status, occupation, and
native-country. The private information is an indication whether that individual earns more
or less than 50 thousand dollars annually. (That dataset is commonly used in studies of anonymity,
e.g. [6, 28, 35].) The collection of permissible generalized subsets in each of the attributes was
selected by grouping together values that are semantically close.
CMC: This dataset is a subset of the 1987 National Indonesia Contraceptive Prevalence Survey.
Its purpose is to help predicting the contraceptive method choice (no use, long-term methods, or
short-term methods) of a woman, based on her demographic and socio-economic characteristics.
This dataset has 1500 records and 9 public attributes.
NURSERY: This dataset was derived from a hierarchical decision model that was originally devel-
oped to rank applications for nursery schools. The NURSERY dataset contains 12960 records after
deleting those with missing values. It has 8 public attributes.

The algorithms were implemented in Java and ran on Pentiumr 4, CPU 3.00 GHz, 960MB of
RAM.

In our first set of experiments we examined the information losses as achieved by k-anonymity
algorithms and our k-concealment algorithm. The two k-anonymity algorithms that we used were
the agglomerative algorithm [19] and the forest algorithm of Aggarwal et al. [2]. The algorithms
were tested for each combination of the entropy measure (EM), [20], and the Loss Metric measure
(LM) (see Eqs. (1)+(2)) with the four datasets as described above, for k ranging from k = 10 to
k = 100. The results are given in Figures 5—8.
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Figure 5. Information losses in the artificial dataset — LM (left) and EM (right)

Figure 6. Information losses in ADULT dataset — LM (left) and EM (right)

Figure 7. Information losses in CMC dataset — LM (left) and EM (right)
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Figure 8. Information losses in NURSERY dataset — LM (left) and EM (right)

As expected, k-concealment offers smaller information losses than k-anonymity, in all datasets
and for the two information loss measures that were tested.

Next, we tested the randomized version of our k-concealment algorithm (where Algorithm 6 is
used in the first step of producing a (k, 1)-anonymization) in order to assess the degradation in
the utility of the anonymized tables that are produced by that algorithm. We used the parameter
q = 2(k−1) in Algorithm 6. Figure 9 shows the information losses in the agglomerative algorithm,
the basic k-concealment algorithm and the randomized one, on the ADULT dataset. The randomized
algorithm, which makes on purpose randomal non-optimal decisions, yields information losses that
are larger than those of the basic k-concealment algorithm, as expected, but are still better than those
of the agglomerative algorithm.

Figure 9. Testing the effect of randomization on the information losses — ADULT

dataset; LM (left) and EM (right)

In our last set of experiments we tested the version of the k-concealment algorithm that is de-
signed to achieve `-diversity, as described in Section 8. We used it in the ADULT dataset, with
` = 1.1, and in the NURSERY dataset, with ` = 2. (The maximal possible diversities for the ADULT

and NURSERY datasets are 1.333 and 3, respectively.) For the sake of comparison, we tested also
a modification of the agglomerative algorithm that respects `-diversity (see details in Appendix C).
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Figure 10. Information losses in the diversified algorithms — ADULT (left) and NURSERY

(right)

The LM information losses in both experiments are shown in Figure 10. As can be seen, the advan-
tage of k-concealment in terms of the information loss in the resulting anonymization is preserved
also when considering `-diversity as an additional constraint.

10 Conclusions

In this paper we proposed the model of k-concealment as an alternative to k-anonymity. We
showed that k-concealment offers essentially the same level of security as k-anonymity: While
k-anonymity ensures that every record in the released table is identical to at least k − 1 others, k-
concealment guarantees that every record is computationally indistinguishable from at least k − 1
others. The advantage that is offered by k-concealment is that it allows reducing the information
loss that is caused by generalizing the database entries. Hence, k-concealed tables offer more utility
than k-anonymized tables, as demonstrated by our experiments, while providing a comparable level
of security. Since k-anonymity on its own is not sufficiently secure and should be enhanced by
additional measures of security that depend on the private attribute, such as `-diversity, so does k-
concealment. We described algorithms for achieving k-concealment and then described how to turn
the k-concealed tables into ones that respect also p-sensitivity or `-diversity.
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Appendix

A Proving the interrelations between the classes of k-type anonymizations

Proof of Proposition 4.3. As all the inclusions in (3) are straightforward, it remains only to ex-
emplify the inequalities in (3) and (4). Consider the following table D (having one attribute and
k + 1 records) alongside with four generalizations of it, taken from Ak

D, A(1,k)
D , A(k,1)

D , and A(k,k)
D ,

respectively. (Here, [k + 1] stands for the set {1, 2, . . . , k, k + 1}.)

D gk(D) g(1,k)(D) g(k,1)(D) g(k,k)(D)

1 [k + 1] {1} [k + 1] \ {k + 1} [k + 1] \ {1}
2 [k + 1] [k + 1] [k + 1] \ {1} [k + 1] \ {2}
...

...
...

...
...

k [k + 1] [k + 1] [k + 1] \ {1} [k + 1] \ {k}
k + 1 [k + 1] [k + 1] \ {1} [k + 1] \ {1} [k + 1] \ {k + 1}

• The first generalization is obviously inAk
D since all of the k+1 generalized records are equal.

• The second generalization is inA(1,k)
D ; indeed, the first record in D is consistent with the first

k generalized records, while each of the remaining records in D is consistent with the last k
generalized records. However, that generalization is not in A(k,1)

D since the first generalized
record is consistent only with the first record in D.

• The third generalization is in A(k,1)
D since each generalized record is consistent with exactly

k records in D. However, that generalization is not in A(1,k)
D since the first record in D is

consistent only with the first generalized record.

• The last generalization is in A(k,k)
D , as can be easily seen. However, it is not in Ak

D.

2

Proof of Proposition 4.5. As it is clear that CkD is a subset ofA(1,k)
D and a superset ofAk

D, it remains
only to prove that all six regions in Figure 1 are nonempty. One of those regions is Ak

D, which is
clearly nonempty, and another is A(k,1)

D \ A(1,k)
D that was shown to be nonempty in Proposition 4.3

(see (4) there). The remaining four regions are:

• Ω1 = A(1,k)
D \ A(k,1)

D \ CkD;

• Ω2 = A(k,k)
D ∩ CkD \ Ak

D;

• Ω3 = CkD \ A
(k,1)
D ;

• Ω4 = A(k,k)
D \ CkD.
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As in the proof of Proposition 4.3, we give specific anonymizations in each of those regions.
Consider the generalization g(1,k)(D) from the proof of Proposition 4.3. As shown there, it is in

A(1,k)
D \ A(k,1)

D . We claim that it is in fact in Ω1. To prove this claim, we need to show that it is not
in CkD. Indeed, the first record in D, denoted R1, has only one match, which is the first generalized
record in g(1,k)(D). Since the latter generalized record is consistent only with R1, then the edge
that connects those two records in the corresponding bipartite graph must be present in any perfect
matching. That implies that all the other generalized records with which R1 is consistent are not
matches. Hence, R1 has only one match and, consequently, g(1,k)(D) /∈ CkD.

Consider next the generalization g(k,k)(D) from the proof of Proposition 4.3. As shown there, it

is inA(k,k)
D \Ak

D. In order to prove that it is in Ω2, we need to show that it is in CkD. To that end, we
demonstrate k perfect matchings in the corresponding bipartite graph, such that any given record in
D is matched by those perfect matchings to k different records in g(k,k)(D). Denoting the records
in D by Ri and those in g(k,k)(D) by Ri, 0 ≤ i ≤ k, the matching

(Ri, R(i+`) mod(k+1)) , 0 ≤ i ≤ k

is a perfect matching for every value of 1 ≤ ` ≤ k.
Next, we exemplify the non-emptiness of Ω3. Consider the following table D together with a

corresponding generalization, g(D).

D g(D)

R1 = 1 R1 = {1, 2, . . . , k − 1}
R2 = 2 R2 = {1, 2, . . . , k, k + 1}

...
...

Rk = k Rk = {1, 2, . . . , k, k + 1}
Rk+1 = k + 1 Rk+1 = {1, 2, . . . , k, k + 1}

g(D) is not in A(k,1)
D since R1 is consistent with k − 1 records. On the other hand, g(D) ∈ CkD as

we proceed to show:

• R1 has k + 1 matches:

– R1 is a match, as can be seen through the natural perfect matching, {(Ri, Ri), 1 ≤ i ≤
k + 1}.

– Rj , 2 ≤ j ≤ k − 1, is a match; the perfect matching is {(R1, Rj), (Rj , R1)} ∪
{(Ri, Ri)}i 6=1,j .

– Rj , k ≤ j ≤ k+1, is a match; the perfect matching is {(R1, Rj), (Rj , R2), (R2, R1)}∪
{(Ri, Ri)}i 6=1,2,j .

• Rj , 2 ≤ j ≤ k − 1, has k + 1 matches:

– R1 is a match; the perfect matching is {(R1, Rj), (Rj , R1)} ∪ {(Ri, Ri)}i 6=1,j .

– Rh, 2 ≤ h ≤ k + 1, is a match; the perfect matching is {(Rj , Rh), (Rh, Rj)} ∪
{(Ri, Ri)}i 6=j,h.

• Rj , k ≤ j ≤ k + 1, has k matches:
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– Rh, 2 ≤ h ≤ k + 1, is a match; the perfect matching is {(Rj , Rh), (Rh, Rj)} ∪
{(Ri, Ri)}i 6=j,h.

Finally, we turn to exemplify the non-emptiness of Ω4. Consider the following table D alongside
with a corresponding generalization, g(D).

D g(D)

R1 = a1 R1 = {a1, b1, . . . , bk−1}
R2 = a2 R2 = {a1, . . . , ak+1}
...

...
Rk = ak Rk = {a1, . . . , ak+1}
Rk+1 = ak+1 Rk+1 = {a2, . . . , ak+1}
Rk+2 = b1 Rk+2 = {b1, . . . , bk}
...

...
R2k+1 = bk R2k+1 = {b1, . . . , bk}

It may be easily verified that g(D) is a (k, k)-anonymization ofD. However, it is not k-concealed
since the first record in D, R1, has only one match and that is the first record in g(D), R1. Indeed,
even though Ri, 2 ≤ i ≤ k, are all consistent with R1, none of them is a match. Assume, on the
contrary, that we try to extend one of the edges (R1, Ri), 2 ≤ i ≤ k, into a perfect matching. That
is impossible since each of the k records R2, . . . , Rk+1 is consistent only with the k generalized
records R2, . . . , Rk+1. But as Ri is already matched with R1, that does not leave enough matches
for R2, . . . , Rk+1.
2

B The approximation guarantee of Algorithm 2

We define here two natural properties of the information loss measure Π — monotonicity and
sub-additivity, and then proceed to prove that if the information loss measure satisfies those two
properties, Algorithm 2 issues a (k, 1)-anonymization that approximates the optimal one.

Definition B.1. Let D be a database, let g(D) be a generalization of D, and g′(D) be a general-
ization of g(D). Then a measure of loss of information, Π, is called monotone if Π(D, g(D)) ≤
Π(D, g′(D)).

Definition B.2. If for all subsets of records S, T ⊂ A1×· · ·×Ar that have a non-empty intersection
the following inequality holds,

d(S ∪ T ) ≤ d(S) + d(T ) ,

the measure Π is called sub-additive.

Proposition B.3. Algorithm 2 produces a table g(D) = {R1, . . . , Rn} that is a (k, 1)-anonymization
of D. Let Π be a measure of loss of information that respects monotonicity and sub-additivity. Then
Algorithm 2 approximates optimal (k, 1)-anonymity to within a factor of k − 1, with respect to the
cost measure Π.
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Proof. Each generalized record in g(D) is consistent with at least k records in D, say, Ri, Ri1 , . . . ,
Rik−1

, where the last k−1 records are those that were selected in Step 4 in the algorithm. Therefore,
g(D) is a (k, 1)-anonymization of D.

Let g′(D) = {R′1, . . . , R
′
n} be an optimal (k, 1)-anonymization of D. Since it is a (k, 1)-

anonymization of D, we infer that R′i is consistent with, say, Ri, Ri′1
, . . . , Ri′k−1

. Without loss
of generality, we may assume that the records Ri′1

, . . . , Ri′k−1
are ordered in such a way that for

every 1 ≤ ` ≤ k − 1, Ri′`
/∈ {Ri1 , Ri2 , . . . , Ri`−1

}. We claim that under that assumption, the
following inequality holds:

d({Ri, Ri1 , . . . , Ri`}) ≤ d({Ri, Ri1 , . . . , Ri`−1
}) + d({Ri, Ri′`

}) , 1 ≤ ` ≤ k − 1 . (6)

Indeed,Ri` was selected in the `th application of Step 4 in the algorithm, after the recordsRi1 , . . . , Ri`−1

have been already determined, as a record that minimized d({Ri, Ri1 , . . . , Ri`}). Since, by our as-
sumption, Ri′`

is not one of the first ` − 1 records that were already selected at this stage, we infer
that

d({Ri, Ri1 , . . . , Ri`−1
, Ri`}) ≤ d({Ri, Ri1 , . . . , Ri`−1

, Ri′`
}) . (7)

By sub-additivity,

d({Ri, Ri1 , . . . , Ri`−1
, Ri′`
}) ≤ d({Ri, Ri1 , . . . , Ri`−1

}) + d({Ri, Ri′`
}) . (8)

Inequality (6) now follows from (7) and (8).
Applying inequality (6) repeatedly for ` = k−1 down to ` = 1 we infer that d({Ri, Ri1 , . . . , Rik−1

}) ≤∑k−1
`=1 d({Ri, Ri′`

}). Monotonicity implies that d({Ri, Ri1 , . . . , Rik−1
}) ≤ (k−1)·d({Ri, Ri′1

, . . . , Ri′k−1
}).

Since the left hand side in the last inequality equals c(R) while the right hand side is bounded from
above by (k − 1) · c(R′i), we conclude that c(Ri) ≤ (k − 1) · c(R′i). Hence, the information-loss
function Π(D, g(D)) may be bounded as follows:

Π(D, g(D)) =
1

n
·

n∑
i=1

c(Ri) ≤ (k − 1) · 1

n

n∑
i=1

c(R
′
i) = (k − 1) ·Π(D, g′(D)) .

We would like to stress that the approximation ratio guarantee in Proposition B.3 is mainly of
theoretical value because of two reasons. First, the proven approximation ratio, which is of the same
order of magnitude as the approximation factor of the forest algorithm due to Aggarwal et al. in
the context of k-anonymity [2], is quite large. The experimental results with both algorithms (see
Section 9) provide a much better indication of the algorithms’ performance in practice. The second
reason is that Algorithm 2 must be coupled with the algorithms of the next steps (Algorithms 3 and
5) which are heuristical algorithms.

C Modifying k-anonymizations to meet the `-diversity constraint

As noted in [32], any algorithm for k-anonymization may be enhanced so that it issues k-
anonymized tables that are also `-diverse. The idea is simple: The diversity of the union of two
clusters of records is a convex combination of the diversities of the two clusters (this is true for all
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acceptable definitions of diversity). Hence, if there are clusters of records that violate `-diversity,
one can start unifying them until `-diversity is met. Such a procedure, as explained in [32], will
always stop successfully if the target diversity parameter ` is a legitimate one (namely, if the global
diversity in D is at least `). Therefore, in order to convert an algorithm that is designed to achieve
only k-anonymity into one that achieves k-anonymity and `-diversity, it is needed to post-process
the output clustering by unifying clusters that violate `-diversity until all clusters are `-diverse.
(Namely, as explained in Section 8, until in each cluster of records, the most frequent sensitive
value appears in relative frequency which is no larger than 1/`.)

Before describing the algorithm, we introduce the following notations:

Definition C.1. LetC = {Ri1 , . . . , Ri|C|} be a cluster of records inD and letC ′ := {si1 , . . . , si|C|}
be the private values of those records. Let f be the number of occurrences of the most frequent value
in C ′. Then the diversity of C is div(C) := |C|/f . Let γ = {C1, . . . , Cb} be a clustering of the
records of the table D. Then its diversity is div(γ) := min1≤i≤b div(Ci).

Algorithm 8, that is described below, is a post-processing procedure that may be applied on top
of any algorithm of k-anonymization. Its input is any clustering of the records of the table D, and
a target diversity parameter ` ≥ 1. Its output is a coarser clustering in which all clusters are `-
diverse. (By a coarser clustering we mean that it is derived from the input clustering only by means
of unifying clusters.) When Algorithm 8 is applied on clusterings issued by a k-anonymization
algorithm, namely, clusterings in which all clusters are of size at least k, it will output a clustering
in which all clusters are of size at least k, and, in addition, are `-diverse.

First, the algorithm computes the diversities of all clusters in the input clustering γ. It selects the
cluster Cm with minimal diversity. If that cluster is already `-diverse, the clustering is ripe to be
output. Otherwise, we look for the best cluster with which Cm can be unified. Once such a cluster
is found, we unify it with Cm and then repeat the procedure until all clusters are `-diverse.

The algorithm uses a cost function in order to decide about the most profitable unification. On
one hand, unifying the least diverse cluster with another cluster brings us closer to meeting the `-
diversity requirement. On the other hand, unifying clusters increases the information loss. It is our
goal to achieve a maximal gain towards meeting the `-diversity requirement, but at the same time
we wish to favor unifications that will incur smaller additions to the information loss. Hence, we
define the cost function as a weighted average between an information cost and a diversity cost.

Let γ = {C1, . . . , Ct} be a clustering of the records in the table D. For any two clusters in γ, say
Ci, Cj , we let γCi,Cj denote the clustering that would be obtained from γ if Ci and Cj were unified
(i.e., γCi,Cj = (γ \ {Ci, Cj}) ∪ {Ci ∪ Cj}). Let costI(Ci, Cj) denote the loss of information in
case we decide to unify Ci and Cj ; it equals the information loss of γCi,Cj minus the information
loss of γ. The diversity cost, costD(Ci, Cj), is defined as the remaining gap between the diversity
of the unified cluster Ci ∪ Cj and the target level `:

costD(Ci, Cj) = max {`− div(Ci ∪ Cj) , 0} . (9)

Our goal is to minimize costI(Ci, Cj) as well as costD(Ci, Cj). To that end, we define the weighted
cost function

cost(Ci, Cj) = w · costI(Ci, Cj) + (1− w) · costD(Ci, Cj) , (10)

where w is a weight between 0 and 1 that can be tuned experimentally. In our experiments we used
w = 0.15, a value that was found to yield best results.
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Algorithm 8 A post-processing algorithm to achieve `-diverse anonymizations
Input: A clustering γ = {C1, . . . , Ct} of the records in a table D; a target diversity parameter
` ≥ 1.
Output: A coarser clustering that respects `-diversity.

1: Compute div(Ci) for all Ci ∈ γ.
2: Let Cm be the cluster with minimal diversity in γ.
3: if div(Cm) ≥ ` then
4: Output γ and stop.
5: end if
6: Compute cost(Ci, Cm) for all Ci ∈ γ \ {Cm}.
7: Find the cluster Ci ∈ γ \ {Cm} for which cost(Ci, Cm) is minimal.
8: Remove Ci and Cm from γ and add to γ the cluster Ci ∪ Cm.
9: Go to Step 2.
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