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Abstract— In this paper we introduce new notions of k-type
anonymizations. Those notions achieve similar privacy goals
as those aimed by Sweenie and Samarati when proposing the
concept of k-anonymization: an adversary who knows the public
data of an individual cannot link that individual to less than
k records in the anonymized table. Every anonymized table
that satisfies k-anonymity complies also with the anonymity
constraints dictated by the new notions, but the converse is
not necessarily true. Thus, those new notions allow generalized
tables that may offer higher utility than k-anonymized tables,
while still preserving the required privacy constraints. We discuss
and compare the new anonymization concepts, which we call
(1, k)-, (k, k)- and global (1, k)-anonymizations, according to
several utility measures. We propose a collection of agglomerative
algorithms for the problem of finding such anonymizations with
high utility, and demonstrate the usefulness of our definitions
and our algorithms through extensive experimental evaluation
on real and synthetic datasets.

I. INTRODUCTION

As data mining algorithms are becoming ubiquitous and
as data are continuously collected and shared within orga-
nizations, privacy-preserving data mining [5], [20] has been
proposed as a paradigm of exercising data mining while
protecting the privacy of individuals.

One of the most well-studied methods of privacy-preserving
data mining is called k-anonymization [3], [6], [14], [16],
[19]. Consider an organization (e.g., a hospital) that holds
information on a set of individuals (e.g., hospitalized patients).
That information is kept in a database table where each record
holds the information of a single individual. The personal
information consists of several attributes, some of which are
private (e.g., illness) and some are public (e.g., name,
date of birth, zipcode) and can be found in public
databases such as the voter register. The organization, for the
purposes of data mining or other types of statistical research,
needs to publish the data, but at the same time it is committed
to protect the private information of the individuals. The
method of k-anonymization suggests to modify the values of
the public attributes of the data so that if the database table is
projected on the subset of the public attributes (a.k.a. quasi-
identifiers), each record of the table becomes identical with at
least k − 1 other records.

The values of the database table are modified via the
operations of generalization or suppression, and typically, a
cost function is used to measure the amount of information

lost by modifying the data. Clearly, by reducing the amount
of information lost in the process of k-anonymizing a table,
we increase the utility of the released table for the purposes of
data mining. Hence, the objective is to modify the table entries
so that the table becomes k-anonymized and the information
loss is minimized.

Our focus in this paper is to explore different notions of k-
type anonymizations that lead to anonymized data with higher
utility. To demonstrate the basic idea, consider first the case
where an adversary knows the public information of a single
individual. Then instead of obtaining a fully k-anonymized
table, we may generalize the table entries so that the public
data of every individual is consistent with the public data in at
least k records of the released table. We call such tables (1, k)-
anonymized. The notion of (1, k)-anonymity is a relaxation of
k-anonymity in the sense that every k-anonymized table is also
(1, k)-anonymized, but the converse is not necessarily true.
Thus, the optimal utility of any data that is (1, k)-anonymized
is at least as large as the optimal utility of the same data that
is k-anonymized.

Another notion that we introduce is that of (k, 1)-anonymity.
Any record in a (k, 1)-anonymized table is consistent with at
least k original records. Clearly, every k-anonymization is also
a (k, 1)-anonymization, and thus (k, 1)-anonymity may give
generalized tables with higher utility.

It turns out that (1, k)-anonymity and (k, 1)-anonymity are
too weak, as we demonstrate later. Hence, we proceed to
introduce the stronger notion of (k, k)-anonymity. A table is
(k, k)-anonymized if it is both (1, k)- and (k, 1)-anonymized.
Such tables seem to provide similar security to that of k-
anonymized tables, in the typical scenario where the adversary
has only full knowledge on some of the individuals. Since
(k, k)-anonymity is also a relaxation of k-anonymity, adopting
that notion as the security goal may be rewarded with higher
utility.

However, if the adversary knows the exact subset of the
population that is represented in the database, and she also
knows the public data of all of those individuals, (k, k)-
anonymity may offer lower security than k-anonymity. For
such scenarios we present the final notion of global (1, k)-
anonymity. Global (1, k)-anonymity offers the same security
as k-anonymity. Namely, even with complete knowledge of
all public data in the database it is not possible to link any



individual to less than k records of the anonymized table. As
global (1, k)-anonymity is also a relaxation of k-anonymity,
it too may result with tables that have better utility than k-
anonymized tables.

While (k, k)-anonymity may be achieved with a reasonable
computational cost, global (1, k)-anonymity entails a larger
computational toll. However, the adversarial model that poses
a threat on (k, k)-anonymity and justifies the notion of global
(1, k)-anonymity seems to be unrealistic in typical scenarios.
Hence, we believe that in practice (k, k)-anonymity may serve
as a good alternative to both global (1, k)-anonymity and k-
anonymity.

In this paper we are making the following contributions.
• We introduce new notions of k-type anonymizations that

lead to anonymized tables with higher utility. We char-
acterize the relations among the new anonymity notions
and the original notion of k-anonymity, and discuss the
underlying security assumptions.

• We propose a collection of agglomerative algorithms for
the problem of finding high-utility anonymizations that
are consistent with our new anonymity concepts.

• We demonstrate the usefulness of our definitions and
our proposed algorithms through extensive experimental
evaluation on real and synthetic datasets.

The rest of the paper is organized as follows. In Section II
we discuss related work. In Section III we formally define
the basic concepts, and in Section IV we introduce the
new anonymity notions. In Section V we propose algorithms
for anonymizing data according to the standard k-anonymity
notion, as well as according to the new notions. In Section VI
we describe our experiments, and finally we conclude in
Section VII.

II. RELATED WORK

The objective of protecting the privacy of individuals rep-
resented in databases has been formulated by Dalenius [8]
already in 1977. Since then, many approaches have been
suggested for finding the right path between data hiding and
data disclosure. Such approaches include query auditing [13],
output perturbation [7], secure multi-party computation [4],
and data sanitization [5], [9].

One of the recent approaches, proposed by Samarati
and Sweeney [18], [19], is k-anonymization. Meyerson and
Williams [16] introduced the problem of transforming a
database table using suppressions so that the k-anonymity
property is satisfied and the amount of information loss due
to the suppression operations is minimized. They showed that
this problem is NP-hard and they devised two approximation
algorithms: one with running time O(n2k) and approximation
ratio O(k ln k), and one with fully polynomial running time
and approximation ratio O(k ln n). Aggarwal et al. [2], [3]
extended the setting of suppressions-only by allowing more
general rules for generalizing data entries and they devised a
polynomial O(k)-approximation algorithm.

The information loss function proposed by Aggarwal et
al. [2], [3] is defined as a tree measure and it is a generalization

of the function considered by Meyerson and Williams [16].
In [10], three entropy-based functions are suggested for mea-
suring the information loss. Those measures are more general
than the tree measure, as they apply to any type of general-
ization, and they capture more accurately the information loss
due to anonymization. An O(ln k)-approximation algorithm is
presented in [10] for the problem of optimal k-anonymity with
respect to two of the entropy-based measures, as well as for
the tree measure. We review the basic entropy-based measure
in Section IV.

Other information loss measures were used in previous
studies. The LM measure [11], [17] is a more precise version
of the tree measure of Aggarwal et al. The CM measure [11]
and the DM measure [6] were also used as cost metric
measures. Our notions of k-type anonymity are independent of
the underlying cost measure. In our experiments, we use the
basic entropy measure of [10], as a representative of the three
entropy-based measures that were presented there, and the LM
measure, which seems to be the most accurate measure from
among the above mentioned measures.

Recently, Aggrawal et al. [1] proposed to anonymize data
by first clustering the data records and then publish cluster
centers and radii. Our new anonymity notions are independent
of the underlying clustering method and, consequently, they
may be applied also with these clustering techniques.

LeFevre et al. [14] suggested a k-anonymization algorithm
in the model of full-domain generalization, while Bayardo and
Agrawal [6] proposed an optimal algorithm in the model of
global recoding. Those algorithms are not directly comparable
to our present work since we consider the model of local
recoding, in order to optimize the utility of the anonymized
data. Consequently, in our experiments we compare our algo-
rithms to the algorithm of Aggarwal et al. [2], [3], since to the
best of our knowledge it is the leading practical algorithm for
k-anonymity in the local-recoding model. Our agglomerative
algorithm is similar in flavor to the bottom-up algorithm
presented by Xu et al. [22]. However, we also extend this
bottom-up algorithm by considering different utility measures
and exploring alternative merging strategies.

In a slightly different line of research, Machanavajjhala et
al. [15] proposed the concept of `-diversity, as a necessary
enhancement to k-anonymity. We believe that `-diversity fits
also in our framework, but we have left the investigation of
this topic for future research.

Similar to the spirit of our paper, but not directly compara-
ble, are the recent works of Kifer and Gehrke [12], and Xiao
and Tao [21]. Both works aim at improving the utility of the
anonymized data. Kifer and Gehrke [12] suggest publishing
many marginals of the data instead of a single k-anonymous
l-diverse table, in order to obtain better utility while respecting
similar privacy properties. Xiao and Tao [21] propose publish-
ing the table with all non-sensitive attributes unaltered, while
the sensitive attribute in each record is replaced by a label of
an `-diverse group of sensitive attribute values. In addition,
they publish the distribution of the sensitive attribute values
within each such group.



III. PRELIMINARIES

Consider a database that holds information on individuals
in some population U = {u1, . . . , un}. Each individual is
described by a collection of r public attributes (also known
as quasi-identifiers), A1, . . . , Ar, and s private attributes,
Z1, . . . , Zs. Each of the attributes consists of several possible
values: Aj = {aj,` : 1 ≤ ` ≤ mj}, 1 ≤ j ≤ r, and
Zj = {zj,` : 1 ≤ ` ≤ nj}, 1 ≤ j ≤ s. For example, if
Aj is the attribute gender then Aj = {M,F}, while if Aj

is the attribute age, then it is a bounded nonnegative natural
number.

The public database D holds all publicly available informa-
tion on the individuals in U :

D = {R1, . . . , Rn}, with Ri ∈ A1 × · · · ×Ar, 1 ≤ i ≤ n.
(1)

The corresponding private database D′ holds the private in-
formation,

D′ = {S1, . . . , Sn}, with Si ∈ Z1×· · ·×Zs, 1 ≤ i ≤ n. (2)

The complete database is the concatenation of those two
databases, D‖D′ = {R1‖S1, . . . , Rn‖Sn}. We refer here-
inafter to the tuples Ri and Si, 1 ≤ i ≤ n, as public and
private records, respectively. We denote the j-th component
of the record Ri by Ri(j). Also, for any set A we let P(A)
denote its power set.

Definition 3.1: Let Aj , 1 ≤ j ≤ r, be finite sets and let
Aj ⊆ P(Aj) be a collection of subsets of Aj . A mapping
g : A1 × · · · ×Ar → A1 × · · · ×Ar is called a generalization
if for every (b1, . . . , br) ∈ A1× · · ·×Ar and (B1, . . . , Br) =
g(b1, . . . , br), it holds that bj ∈ Bj , 1 ≤ j ≤ r.

As an example consider a database D with two attributes,
age (A1) and zipcode (A2). A valid generalization of a
record Ri = (34, 68423) ∈ D can be g((34, 68423)) =
({30, . . . , 39}, {68400, . . . , 68499}).

Definition 3.1 refers to generalizations of single records. We
now define generalizations of an entire database.

Definition 3.2: Let D = {R1, . . . , Rn} be a database with
public attributes A1, . . . , Ar, A1, . . . , Ar be corresponding
collections of subsets, and gi : A1×· · ·×Ar → A1×· · ·×Ar

be corresponding generalization operators. Let Ri := gi(Ri)
be the generalization of the record Ri, 1 ≤ i ≤ n. Then
g(D) = {R1, . . . , Rn} is a generalization of D.

It is important to note that Definition 3.2 refers to local
recoding, in the sense that a different mapping gi may be
applied to different records. This is in contrast with global
recoding where the same mapping g must be applied to all
records. Local recoding is more flexible, hence it offers higher
utility. For example, assume that one of the attributes in the
database is age, and that there exist several records with the
value 34 under that attribute. Then it is allowed to leave that
value unchanged in some of those records, replace it with the
range {30, . . . , 39} in some other records, and replace it with

a different range, say {20, . . . , 49}, or even totally suppress it
in other records.

Finally, we define consistency between records of the orig-
inal and the generalized database.

Definition 3.3: Let Ri ∈ D be an original record and Rj ∈
g(D) be a generalized record. We say that Rj generalizes Ri,
or, equivalently, that they are consistent, if Ri(h) ∈ Rj(h) for
all 1 ≤ h ≤ r.

IV. k-ANONYMIZATION REVISITED

We begin this section by reviewing the notion of k-
anonymity as it is used in the recent literature [3], [6], [10],
[14], [16]. We then introduce the new notions of k-type
anonymity and discuss them and their interrelations. All of
those notions are relaxations of k-anonymity, hence they allow
greater utility. The commonly used notion of k-anonymity [3],
[6], [14], [16] is defined as follows:

Definition 4.1 (k-anonymity): A k-anonymization of a
database D = {R1, . . . , Rn} is a generalization g(D) =
{R1, . . . , Rn} where for all 1 ≤ i ≤ n, there exist indices
1 ≤ i1 < i2 < · · · < ik−1 ≤ n, all of which are different
from i, such that Ri = Ri1 = · · · = Rik−1 .

The objective in this context is to generalize a given
database until it becomes k-anonymized, while incurring a
minimal loss of information. Let Π be a measure of the amount
of information that is lost by replacing a database D with a
corresponding generalization g(D). Then the problem of k-
anonymization is as follows.

Definition 4.2 (k-anonymization problem): Let
D = {R1, . . . , Rn} be a database with public attributes
Aj , 1 ≤ j ≤ r. Given collections of attribute values,
Aj ⊆ P(Aj), and a measure of information loss Π, find
a corresponding k-anonymization, g(D) = {R1, . . . , Rn},
where Ri ∈ A1 × · · · ×Ar, that minimizes Π(D, g(D)).

The measure of loss of information Π took several forms
in previous studies. Meyerson and Williams [16] considered
the case of generalization by suppression, and their measure
simply counted the number of suppressed entries. Aggarwal et
al. [2], [3] used a more general model, in which every single
value may be replaced by a node in a hierarchy tree, and the
corresponding cost is proportional to the level in the hierarchy
that was selected. In this paper, we consider a more general and
more accurate entropy-based measure of loss of information,
which was proposed and studied in [10]. We proceed to review
this measure.

The public database D = {R1, . . . , Rn} induces a prob-
ability distribution for each of the public attributes. Let Xj ,
1 ≤ j ≤ r, denote the value of the attribute Aj in a randomly
selected record from D. Then

Pr(Xj = a) =
#{1 ≤ i ≤ n : Ri(j) = a}

n
.



Let Bj be a subset of Aj . The conditional entropy H(Xj |Bj)
is defined as

H(Xj |Bj) = −
∑

b∈Bj

Pr(b|Bj) log2 Pr(b|Bj) ,

where

Pr(b|Bj) =
#{1 ≤ i ≤ n : Ri(j) = b}
#{1 ≤ i ≤ n : Ri(j) ∈ Bj} , b ∈ Bj .

The entropy-based information loss function for generalization
is now defined as follows.

Definition 4.3: Let D = {R1, . . . , Rn} be a database hav-
ing public attributes A1, . . . , Ar, and let Xj be the random
variable that equals the value of the j-th attribute Aj , 1 ≤
j ≤ r, in a randomly selected record from D. Then if
g(D) = {R1, . . . , Rn} is a generalization of D,

ΠE(D, g(D)) =
1
nr

·
n∑

i=1

r∑

j=1

H(Xj |Ri(j)) (3)

is the entropy measure of the loss of information caused by
generalizing D into g(D).

Another measure that we use in our experiments is the LM
measure [11], [17]. The cost per each table entry is a number
between 0 (no generalization at all) and 1 (total suppression)
that penalizes the generalization that was made in that entry,
and the overall cost is the average over the costs of all table
entries:

ΠLM(D, g(D)) =
1
nr

·
n∑

i=1

r∑

j=1

|Ri(j)| − 1
|Aj | − 1

(4)

We now proceed to introduce our novel notions of k-type
anonymity. Those notions rely on the concept of consistency,
that was defined in Definition 3.3.

Definition 4.4: Let D = {R1, . . . , Rn} be a table and
g(D) = {R1, . . . , Rn} be a corresponding generalization.
Then
• g(D) is a (1, k)-anonymization of D if each record in D

is consistent with at least k records in g(D).
• g(D) is a (k, 1)-anonymization of D if each record in

g(D) is consistent with at least k records in D.
• g(D) is a (k, k)-anonymization of D if it is both a (1, k)-

and a (k, 1)-anonymization of D.
Correspondingly, we define Ak

D, A(1,k)
D , A(k,1)

D , and A(k,k)
D to

be the collections of all of the k-, (1, k)-, (k, 1)- and (k, k)-
anonymizations of the database D, respectively.

We proceed to state and prove the interrelations between
these four notions of k-type anonymity.

Proposition 4.5: For a given table D, let the collections
Ak

D, A(1,k)
D , A(k,1)

D , and A(k,k)
D be as in Definition 4.4. Then

Ak
D $ A(k,k)

D $ A(1,k)
D ,A(k,1)

D , (5)

and
A(1,k)

D \ A(k,1)
D 6= ∅, A(k,1)

D \ A(1,k)
D 6= ∅. (6)

A(k,1)
D

Ak
D

A(1,k)
D A(k,k)

D

AG,(1,k)
D

Fig. 1. Interrelations between the five classes of k-type anonymizations.

(See Figure 1.)

Proof: As all the inclusions in (5) are straightforward, it
remains only to exemplify the inequalities in (5) and (6). We
demonstrate those inequalities for the case k = 2, but those
examples may be easily extended to any k.

D 2-anon (1,2)-anon (2,1)-anon (2,2)-anon
1, 3 {1,2}, {3,4} 1, 3 1, {3,4} 1, {3,4}
1, 4 {1,2}, {3,4} {1,2}, {3,4} {1,2}, 4 {1,2}, {3,4}
2, 4 {1,2}, {3,4} {1,2}, 4 {1,2}, 4 {1,2}, 4

The above table D (having two attributes and three records)
is shown along with four anonymizations, from A2

D, A(1,2)
D ,

A(2,1)
D , and A(2,2)

D , resp. The second generalization is in
A(1,2)

D but not in A(2,1)
D (and, hence, not in A(2,2)

D ). The third
generalization is in A(2,1)

D but not in A(1,2)
D (and, hence, not

in A(2,2)
D ). The last generalization is in A(2,2)

D but not in A2
D.

Our anonymity definitions can also be understood via graph
terminology, as follows: Let D = {R1, . . . , Rn} be a table
and g(D) = {R1, . . . , Rn} be a corresponding generalization.
This pair of tables defines a bipartite graph VD,g(D) on the set
of nodes D ∪ g(D) where an edge connects Ri ∈ D with
Rj ∈ g(D) if and only if the two records are consistent.
With this formulation, A(1,k)

D (respectively, A(k,1)
D , or A(k,k)

D )
is the collection of all generalizations g(D) for which every
node in D (respectively g(D), or D ∪ g(D)) in the graph
VD,g(D) has degree at least k. This formulation in terms of
the underlying bipartite graph, gives rise to yet another notion
of k-type anonymization.

Definition 4.6: Let D and g(D) be a table and its general-
ization, and let VD,g(D) be the corresponding bipartite graph.
A record R ∈ g(D) is called a match of R ∈ D if (R, R)
is an edge and it may be completed to a perfect matching in
VD,g(D). If all records R ∈ D have at least k matches in g(D),
then g(D) is called a global (1, k)-anonymization of D.

The relation between the new anonymization class and the
previous ones is given in the following Proposition.

Proposition 4.7: Let AG,(1,k)
D denote the collection of all

global (1, k)-anonymizations of D. Then the relation between
the five classes of anonymizations –Ak

D,A(1,k)
D ,A(k,1)

D ,A(k,k)
D

and AG,(1,k)
D , is as depicted in Figure 1.

A. Discussion
Here we discuss the security of these new notions of k-type

anonymity. To that end, we distinguish between two adver-
saries. The first one knows the public data of all individuals



in the population and the identity of some individuals in the
database. The second one knows, in addition to that, what is
the subset of the entire population that is represented in the
database.

We begin by considering the security of (k, 1)- and (1, k)-
anonymity. Both are insecure. Consider a database D and
a generalization g(D) of D that satisfies (k, 1)-anonymity.
Namely, each record in g(D) is consistent with at least k
records in D. However, it is possible that a record R ∈ D is
consistent with only one record in g(D) – as for example is
the case for the first record in the database of the proof of
Proposition 4.5. Thus, even the first adversary might be able
to reveal the private information of an individual, based on his
public information.

Next, consider a (1, k)-anonymization g(D) of D. It is true
that every record in D is consistent with at least k records in
g(D), hence such anonymizations seem to satisfy our privacy
goal. However, the following example shows where this notion
fails. Assume that D = {R1, . . . , Rn} and that R

∗
is a

generalized record that is consistent with all records in D
(e.g., all entries in R

∗
are suppressed). Consider the following

generalization g(D) = {R1, . . . , Rn}, where Ri = Ri for all
1 ≤ i ≤ n− k and Ri = R

∗
for all n− k + 1 ≤ i ≤ n. It is

easy to see that g(D) ∈ A(1,k)
D . Moreover, since most of the

records in g(D) were not generalized at all, the information
loss Π(D, g(D)) is very small, for any measure Π. However,
such a generalization is completely unacceptable: The private
information of most of the individuals represented in D is
completely revealed.

The notion of (k, k)-anonymity combines the two previous
notions and it seems that it does not suffer from the above
mentioned shortcomings of those two notions. The first adver-
sary may link the public data of an individual to no less than k
records in the generalized database. Hence, this notion seems
to provide the same level of security as that of k-anonymity.
As it entails possibly smaller losses of information than k-
anonymity, it seems like the method of choice in practical
settings.

However, that notion may fail to provide the sought-after
level of privacy under the second adversarial assumption. In
the full version of this paper we describe an attack that the
second adversary may exercise on a (k, k)-anonymized table
in order to link the public information of an individual to
less than k generalized records. The attack works as follows:
Assume that the adversary wishes to find the private data that
corresponds to a record Ri ∈ D. The second adversary, who
knows both D and g(D), may construct the graph VD,g(D).
In that graph, the node that corresponds to Ri is connected
to at least k nodes in g(D). The adversary may test each
of the neighbors of Ri to see which of them is a match. The
generalized record that corresponds to Ri must be one of those
matches. But the number of matches, as opposed to the number
of neighbors, may be smaller than k. This motivates our
definition of global (1, k)-anonymity, which is the most secure
notion from among the four novel notions of k-type anonymity
that we presented here. It is as secure as the original notion of

k-anonymity under the second adversarial assumption. Indeed,
even the second adversary may not link any individual to less
than k records in the generalized database, because there are
always at least k possible different matches for the record of
that individual, each of which is equally probable. In the next
section we show how to convert a (k, k)-anonymized database
into a global (1, k)-anonymized one.

In many scenarios, the second adversarial model seems
unrealistic. Consider, for example, the case of a hospital that
publishes a (k, k)-anonymized database of its patients. Even
if the adversary knows that a particular individual has been
treated in that hospital, and she knows the public information
of all individuals in the entire population, she still might not
know the exact subset of the population that has been treated in
the hospital. Furthermore, in the typical case where the pub-
lished database represents the unified population of patients
in several hospitals, such an adversarial model becomes even
less reasonable. Hence, it seems that in most scenarios (k, k)-
anonymity provides the same level of security as that aimed
by k-anonymity.

In the full version of this paper we discuss an even stronger
adversary – one that also has auxiliary knowledge such as
the private data of some of the individuals in the database.
Herein, we omit further discussion of that adversarial model.
To the best of our knowledge, none of the previous studies of
k-anonymity addresses the issue of adversarial assumptions.
In our opinion, as k-anonymity is a solution to a problem of
privacy, a discussion of adversarial assumptions is in order.

V. ALGORITHMS

In this section we describe various algorithms for k-,
(k, k)- and global (1, k)-anonymization, and compare their
performance. The best practical k-anonymization algorithm
with a provable approximation guarantee is the one due to
Aggarwal et al. [2], [3]. That algorithm, which we call herein
the forest algorithm, guarantees an approximation ratio of
3k−3. In practice, however, better results may be obtained by
heuristic algorithms. In Section V-A we describe such heuristic
algorithms that, as demonstrated later, outperform the forest
algorithm. Then, in Section V-B, we describe an algorithm
for (k, k)-anonymization, and in Section V-C we describe
an algorithm for transforming a (k, k)-anonymization into a
global (1, k)-anonymization.

A. k-Anonymization

In this section we describe heuristic algorithms for the k-
anonymization problem. In Section V-A.1 we present our main
algorithm, the agglomerative algorithm, and then describe
another variant of it, to which we refer as the modified agglom-
erative algorithm. Both algorithms depend upon a definition
of distance between subsets of records. In Section V-A.2 we
describe four choices of distance functions.

1) The basic agglomerative algorithm: Given a database
D = {R1, . . . , Rn} and an integer k > 1, we compute a
clustering of D, γ = {S1, . . . , Sm}, (namely, Si ⊂ D, Si ∩
Sj = ∅ and

⋃
1≤i≤m Si = D) such that |Si| ≥ k for all 1 ≤



i ≤ m. The algorithm assumes a distance function, dist(·, ·),
between subsets of D, i.e., dist: P(D)× P(D) → R.

Algorithm 1 Basic algorithm for k-anonymization
Input: Table D, integer k.
Output: Table g(D) that satisfies k-anonymity.

1: For each record Ri ∈ D create a singleton cluster Ŝi =
{Ri} and let γ̂ = {Ŝ1, . . . , Ŝn}

2: Initialize the output clustering γ to ∅.
3: while |γ̂| > 1 do
4: Find the “closest” two clusters in γ̂, namely, the two

clusters Ŝi, Ŝj ∈ γ̂ that minimize dist(Ŝi, Ŝj).
5: Set Ŝ = Ŝi ∪ Ŝj .
6: Remove Ŝi and Ŝj from γ̂.
7: If |Ŝ| < k add Ŝ to γ̂.
8: Else add Ŝ to γ.
9: end while

(At this stage, γ̂ has at most one cluster, Ŝ =
{Ri1 , . . . , Ri`

}, the size of which is ` < k)
10: For each record Rij , 1 ≤ j ≤ `, add that record to the

cluster S in γ that minimizes dist({Rij
}, S).

Our basic agglomerative algorithm, Algorithm 1, starts with
singleton clusters and then keeps unifying the two closest
clusters until they mature into clusters of size at least k.
As it may produce clusters of size greater than k, while
it is preferable to have clusters of size k or close to k in
order to reduce the clustering anonymization cost, we propose
an improved version of the above described algorithm—the
modified agglomerative algorithm. Algorithm 2 describes how
to replace line 8 of Algorithm 1 in order to achieve that
goal. Essentially, before moving a “ripe” cluster Ŝ to the final
clustering γ, we shrink it to a sub-cluster of size k.

Algorithm 2 Modification of line 8 of Algorithm 1

Input: Ŝ = {R̂1, . . . , R̂`} where ` > k.
1: while Ŝ has size greater than k do
2: For all 1 ≤ i ≤ `, compute di = dist(Ŝ, Ŝ \ {R̂i}).
3: Find the record R̂i that maximizes di.
4: Remove R̂i from Ŝ and add the corresponding singleton

cluster {R̂i} to γ̂.
5: end while
6: Place the shrunk cluster Ŝ (of size k) in γ.

Finally, the clustering of D that is produced by either
of the above agglomerative algorithms is translated into a
corresponding generalization g(D) as follows: Every record
Ri ∈ D is replaced by the closure of the cluster to which Ri

belongs, where a closure of a subset of records is the minimal
generalized record that is consistent with all of them. Since
all of the clusters are of size at least k, every generalized
record in g(D) is indistinguishable from at least k − 1 other
generalized records. The running time of the agglomerative
algorithm is O(n2).

2) The distance function: A key ingredient in the agglomer-
ative algorithms is the definition of distance between clusters.
It is natural to define the distance so that it best fits the cost
function of the k-anonymization. We used in our experiments
two measures – the entropy measure, (3), and the LM measure,
(4). Both take the form Π(D, g(D)) = 1

n

∑n
i=1 c(Ri), where

c(Ri) is the corresponding generalization cost of the gener-
alized record Ri. (I.e., c(Ri) = 1

r

∑r
j=1 H(Xj |Ri(j)) in the

case of the entropy measure, and c(Ri) = 1
r

∑r
j=1

|Ri(j)|−1
|Aj |−1

in the case of the LM measure.) Since all records in a given
cluster are replaced by the same generalized record, we have

Π(D, g(D)) =
∑

S∈γ

|S| · d(S) , where d(S) = c(S) . (7)

We use hereinafter the above definition of the function d(·) as
the generalization cost of any subset of records. Given such
a subset S, its generalization cost d(S) is the generalization
cost c(·) of its closure S.

We briefly describe below four choices of distance functions
that can be used in the basic agglomerative algorithm. A
detailed discussion of those distance functions is postponed
for the full version of the paper.
Distance function 1. Our first definition of distance between
two clusters A and B is:

dist(A,B) = |A∪B| ·d(A∪B)−|A| ·d(A)−|B| ·d(B). (8)

A property of this distance function is that it usually favors
the unification of smaller clusters, thus resulting in a balanced
growth of cluster sizes.
Distance function 2. The second function we use is

dist(A,B) = d(A ∪B)− d(A)− d(B). (9)

This function may attain negative values, hence, it is not a
genuine distance function. However, it still serves our goal
as the measure for the price that we pay in terms of loss
of information when choosing to unify the clusters A and B.
Using function (9) gives rise to unbalanced cluster sizes during
the merging process. Namely, a typical behavior is that one
cluster grows and evolves to its full size and only then another
small cluster starts to evolve to its full size.
Distance function 3. The experimental comparison between
the two previous distance functions indicated that an unbal-
anced formation of clusters is preferable to a balanced one.
Using the distance definition

dist(A,B) =
d(A ∪B)− d(A)− d(B)

log (|A ∪B|) , (10)

takes that idea one step further. The division by log (|A ∪B|)
gives priority to adding a record to a larger cluster. Our
experiments show that it performs slightly better than the
function (9).
Distance function 4. The final variant of a distance function
that we use is

dist(A,B) =
d(A ∪B)

d(A) + d(B) + ε
. (11)



Given two subsets, A and B, this function returns the factor
by which the generalization cost of the union A∪B increases
the sum of the generalization costs of A and B. The additive
constant in the denominator is needed for the cases where both
A and B are singletons and hence have a zero generalization
cost. In our experiments we used ε = 0.1.

We conclude this section by noting that, recently, Nergiz
and Clifton [17] devised also an agglomerative clustering
algorithm that is similar to our basic algorithm. The distance
function that they used is dist(A,B) = d(A∪B)−d(B), which
is an asymmetric version of our second distance function, (9).

B. (k, k)-Anonymization

In this section we describe algorithms for (k, k)-
anonymizing a given database D. First, we present in Sec-
tion V-B.1 algorithms for (k, 1)-anonymization. Then, in Sec-
tion V-B.2, we describe an algorithm for transforming a (k, 1)-
anonymization into a (k, k)-anonymization.

1) Algorithms for (k, 1)-anonymization: Given D =
{R1, . . . , Rn}, we may find its optimal (k, 1)-anonymization
as follows. For each record Ri ∈ D, we look for the subset of
k−1 records {Ri1 , . . . , Rik−1} ⊂ D\{Ri} that minimizes the
generalization cost d({Ri, Ri1 , . . . , Rik−1}), and then define
Ri to be the closure of {Ri, Ri1 , . . . , Rik−1}. As the run time
of that algorithm is impractical, O(n · (n−1

k−1

)
) = O(nk), we

proceed to describe two approximation algorithms for that
problem.

The first one, Algorithm 3, joins each record with the k−1
nearest records.

Algorithm 3 (k, 1)-anonymization by nearest neighbors
Input: Table D, integer k.
Output: Table g(D) that satisfies (k, 1)-anonymity.

1: For all 1 ≤ i < j ≤ n compute di,j = dj,i = d({Ri, Rj}).
2: for all 1 ≤ i ≤ n do
3: Find k − 1 indices {i1, . . . , ik−1} ⊂ {1, . . . , n} \ {i}

that minimize di,j .
4: Define Ri to be the closure of {Ri, Ri1 , . . . , Rik−1}.
5: end for

Proposition 5.1: Algorithm 3 produces a table g(D) =
{R1, . . . , Rn} that is a (k, 1)-anonymization of D and it
approximates optimal (k, 1)-anonymization to within a factor
of k − 1.

While Algorithm 3 offers a guaranteed approximation fac-
tor, our second algorithm, Algorithm 4, which constructs the
clusters by greedily selecting at each stage the next closest
record, performed much better in our experiments. The run-
time of both algorithms is O(kn2).

2) From (k, 1)- to (k, k)-anonymization: Let D =
{R1, . . . , Rn} be a database and g(D) = {R1, . . . , Rn} be
any generalization of D. Algorithm 5 further generalizes the
records of g(D) until it becomes a (1, k)-anonymization of D.
By applying this algorithm to a generalization that is already a

Algorithm 4 (k, 1)-anonymization by expansion
Input: Table D, integer k.
Output: Table g(D) that satisfies (k, 1)-anonymity.

1: for all 1 ≤ i ≤ n do
2: Set Si = {Ri}
3: while |Si| < k do
4: Find the record Rj /∈ Si that minimizes

dist(Si, Rj) = d(Si ∪ {Rj})− d(Si).
5: Set Si = Si ∪ {Rj}.
6: end while
7: Define Ri to be the closure of Si.
8: end for

(k, 1)-anonymization, we get a (k, k)-anonymization. (For any
Ri ∈ D and Rj ∈ g(D) we let Ri + Rj denote the minimal
generalized record that generalizes both Ri and Rj .)

Algorithm 5 (1, k)-anonymizer
Input: Table D = {R1, . . . , Rn}, generalized table g(D) =

{R1, . . . , Rn}, integer k.
Output: Table g′(D) that generalizes g(D) and satisfies

(1, k)-anonymity.
1: for all 1 ≤ i ≤ n do
2: Let ` be the number of records Rj that are consistent

with Ri.
3: if ` < k then
4: Scan all records Rj that are not consistent with Ri

and find the k− ` ones that minimize c(Ri + Rj)−
c(Rj).

5: Replace each of those k−` records, Rj , with Ri+Rj .
6: end if
7: end for

The runtime of Algorithm 5 is O(kn2). Consequently, so
is the runtime of the coupling of that algorithm with either of
the (k, 1)-anonymizers, Algorithm 3 or Algorithm 4 (such a
coupling is a (k, k)-anonymizer).

C. Global (1, k)-Anonymization

Next, we describe Algorithm 6 that transforms a (k, k)-
anonymization g(D) of D into a global (1, k)-anonymization.
The algorithm works as follows: For each Ri ∈ D, it computes
the subset P of its set of neighbors Q, consisting of all matches
of Ri. Since g(D) is a (k, k)-anonymization of D, then |Q| ≥
k, but |P | could be less than k. In order to achieve global
(1, k)-anonymity, we increase |P | so that it becomes at least
k. To that end, if |P | < k, we select the non-match neighbor
Rjh

of Ri that minimizes the quantity dh = c(Rjh
+ Ri) −

c(Ri). Then, we further general the record Ri to be consistent
also with Rjh

. The reader may verify that this update of Ri

“upgrades” Rjh
from a neighbor of Ri to a match of Ri. We

then keep repeating this procedure until |P | becomes at least k.
(It is interesting to note that in almost all of our experiments,
one such step was sufficient to increase |P | to become at least
k, even if the initial deficiency was greater than 1.)



Algorithm 6 (k, k)- to global (1, k)-anonymization
Input: Table D = {R1, . . . , Rn}, generalized table g(D) =

{R1, . . . , Rn} that satisfies (k, k)-anonymity, integer k.
(It is assumed that for all 1 ≤ i ≤ n, Ri is a generalization
of Ri.)

Output: Table g(D) that satisfies global (1, k)-anonymity
1: for all 1 ≤ i ≤ n do
2: Set Q = {Rj1 , . . . , Rjq

} to be the set of q ≥ k
neighbors of Ri.

3: Compute P – the subset of Q consisting of all matches
of Ri.

4: If |P | ≥ k, skip to next i.
5: For all 1 ≤ h ≤ q such that Rjh

∈ Q \ P , compute
dh = c(Rjh

+ Ri)− c(Ri).
6: Select the index 1 ≤ h ≤ q where Rjh

∈ Q \ P , for
which dh is minimal.

7: Set Ri = Rjh
+ Ri.

8: Return to Step 3.
9: end for

Algorithm 6 needs to determine for every edge of the
original graph, (Ri, Rj), whether it may be completed to a
perfect matching in the graph. One way of doing so is by
removing the nodes Ri and Rj from the graph, and checking
whether the remaining graph has a perfect matching. This may
be done by invoking the Hopcroft-Karp algorithm, the run time
of which is O(

√
nm), where n is the number of nodes in the

graph and m is the number of edges. Since, in the worst case,
we need to apply that procedure for every edge, the overall
running time of Algorithm 6 is O(

√
nm2).

In all of the graphs VD,g(D) that corresponded to our (k, k)-
anonymizations of both real and artificial data, the degree of
each original record was between k and 2k. Therefore, m ≤
2nk, and, consequently, the running time of Algorithm 6 for
our bipartite graphs is O(n2.5k2). Albeit polynomial in n and
k, this runtime may be too large in practice.

VI. EXPERIMENT RESULTS

In this section we discuss the experiments that we performed
in order to evaluate the new anonymity concepts and our
proposed algorithms. We tested all algorithms for k- and
(k, k)-anonymization on both artificial and real data.
Artificial data. For a given value of n, we randomly generated
tables of n records over a set of six attributes A1, . . . , A6.
Each of those six attributes consisted of finitely many values
that were selected according to the following probability
distributions:
A1 : {0.7, 0.3}
A2 : {0.3, 0.3, 0.2, 0.2}
A3 : {0.25, 0.25, 0.4, 0.1}
A4 : {6× 0.07, 10× 0.04, 9× 0.02}
A5 : {10× 0.1}
A6 : {0.05, 0.05, 0.5, 0.3, 0.1}

For each of the above attributes, A = {a1, . . . , am}, the
collection of permissable generalized subsets, A, is described

below. As all of those collections include all singleton subsets,
{ai}, 1 ≤ i ≤ m, as well as the entire set A, we list below
only the non-trivial subsets in A.

A1 : None (other than{a1}, {a2} and {a1, a2})
A2 : {a1, a2}, {a3, a4}
A3 : {a1, a2}, {a3, a4}
A4 : {a1, . . . , a6}, {a7, . . . , a12}, {a13, . . . , a18},

{a19, . . . , a25}, {a1, . . . , a12}, {a13, . . . , a25}
A5 : {a1, a2}, {a3, a4}, {a6, a7}, {a8, a9},

{a1, a2, a3, a4, a5}, {a6, a7, a8, a9, a10}
A6 : {a1, a2}, {a4, a5}, {a3, a4, a5}

Real-life data. We used two real-life datasets, Adult and
Contraceptive Method Choice (or CMC), from the
UCI Machine Learning Repository.1

Adult: This dataset was extracted from the US Census
Bureau Data Extraction System. It contains demographic in-
formation of a small sample of US population. The public
attributes are: age, work-class, education-level, marital-status,
occupation, family-relationship, race, sex and native-country.
For our experiments we used a subset of the dataset of size
n = 5000. The collection of permissable generalized subsets
in each of the attributes was selected by grouping together
values that are semantically close. (For example, the attribute
education-level was divided into three groups: high-school,
college, and advanced-degrees.) Such generalized databases
have more value to the data miner. A complete description
of those collections is postponed for the full version of this
paper.

CMC: This dataset is a subset of the 1987 National Indone-
sia Contraceptive Prevalence Survey. Its purpose is to help
predicting the contraceptive method choice (no use, long-term
methods, or short-term methods) of a woman, based on her
demographic and socio-economic characteristics. This dataset
has n = 1500 records. In the full version of the paper we
provide more details on this dataset.

A. Results

The algorithms that we compared were: (a) The two ag-
glomerative algorithms for k-anonymization (Algorithm 1 and
its modified version, Algorithm 2); each of them was executed
with each of the four distance functions that were described
in Section V-A.2. (b) The forest Algorithm, [2]. (c) The
two (k, k)-anonymization algorithms that were described in
Section V-B (namely, either of Algorithms 3 and 4, coupled
with Algorithm 5).

We tested the performance of those algorithms on each
of the datasets described above – artificial, adult or CMC
(denoted hereinafter as ART, ADT, and CMC, respectively)
– and measured the information loss by either the entropy
measure (EM) or the LM measure. (In the full version of this
paper we used additional measures.)

1http://mlearn.ics.uci.edu/MLSummary.html



TABLE I
SUMMARY OF RESULTS

k 5 10 15 20

ART
EM

best k-anon 0.65 0.98 1.13 1.22
forest 0.89 1.25 1.42 1.51

(k, k)-anon 0.53 0.83 0.99 1.08

ADT
EM

best k-anon 0.66 0.93 1.08 1.18
forest 1.02 1.45 1.63 1.73

(k, k)-anon 0.50 0.75 0.90 1.00

CMC
EM

best k-anon 0.67 0.95 1.08 1.20
forest 0.99 1.31 1.46 1.53

(k, k)-anon 0.54 0.80 0.98 1.10

ART
LM

best k-anon 0.12 0.19 0.23 0.25
forest 0.15 0.24 0.28 0.31

(k, k)-anon 0.10 0.16 0.19 0.22

ADT
LM

best k-anon 0.14 0.20 0.24 0.26
forest 0.22 0.37 0.46 0.53

(k, k)-anon 0.09 0.13 0.16 0.18

CMC
LM

best k-anon 0.14 0.21 0.25 0.28
forest 0.19 0.31 0.40 0.44

(k, k)-anon 0.11 0.17 0.20 0.23

Our results are summarized in Table I. They are partitioned
into six sets of experiments according to the choice of dataset
and measure. In each set, the first row (“best k-anon”) shows
the results of the agglomerative k-anonymization algorithm
that minimized the sum of information loss over four experi-
ments with k = 5, 10, 15, 20. The second row shows the result
of the forest algorithm, and the third one shows the result of
the better (k, k)-anonymization. Figures 2 and 3 illustrate the
results for the adult database. (The graphs for the other two
databases are similar.)

The main conclusions of our experimental results are:
• All of the suggested agglomerative k-anonymity algorithms
yield better anonymizations than the forest algorithm; infor-
mation loss is reduced by 20%–50%.
• The improvement offered by (k, k)-anonymity over the best
k-anonymity algorithm, ranges between 10% and 30%.

Additional conclusions that arise from our experiments are
as follows (more details will be provided in the full version
of this paper):
• Among the different variants of the k-anonymity agglomer-
ative algorithms, the two distance functions that consistently
bring the best results are (10) and (11).
• In all of the experiments, the coupling of Algorithms 4 and
5 produced better (k, k)-anonymizations than the coupling of
Algorithms 3 and 5.
• The corrections made in the modified agglomerative al-
gorithm usually reduce the information loss, as expected.
However, those improvements are negligible for the two
distance functions mentioned above, because these functions
were designed so that the resulting clusters have the required
size, thus leaving only little room for improvement.

Another interesting finding from Table I is that the average
information loss per entry remains roughly the same for each
of our algorithms, regardless of the dataset. For example,
the best k-anonymization algorithm loses about 0.66 bits of
information per entry, and about 0.13 LM-”information units”
per entry, in all datasets.
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Fig. 3. Comparison of algorithms by the LM measure

VII. CONCLUSIONS

In this paper we proposed new notions of k-type anonymiza-
tions. Our goal has been to ensure anonymization of a
dataset while minimizing the amount of information lost
during the anonymization process. The anonymity concepts we
defined are called (1, k)-, (k, 1)-, (k, k)-, and global (1, k)-
anonymizations, all of which are relaxations of the original
k-anonymity notion, hence they offer solutions with higher
utility. As (1, k)- and (k, 1)-anonymity were exemplified to
be weak, we proposed (k, k)-anonymity and global (1, k)-
anonymity as more secure notions. (k, k)-anonymizations are
secure if we assume that the adversary has access to a limited
amount of records in the dataset, but can be insecure against
a powerful adversary that has full knowledge of all public
records. On the other hand, global (1, k)-anonymity is as
secure as k-anonymity, even against such powerful adversaries.

We described algorithms for k-anonymity and for the new k-
type anonymity notions. Our experiments showed that our new
agglomerative k-anonymity algorithms perform in practice
better than algorithms previously proposed in the literature
for the same problem (for the local recoding model). Also,



we verified that (k, k)-anonymization yields indeed solutions
that have smaller amount of information loss than solutions
obtained by k-anonymization.

Many interesting problems remain for future work. One is
to find more scalable algorithms or algorithms with better
approximation guarantees. Experimentally, we would like to
explore the relation between (k, k)-anonymity and global
(1, k)-anonymity. For instance, for real-life datasets, it might
be true that (k, k)-anonymization (or perhaps a ((1+ε)k, (1+
ε)k)-anonymization for a suitably chosen ε) yields solutions
that satisfy also global (1, k)-anonymity.
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