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ABSTRACT
Consider a multilayer graph, where the different layers cor-
respond to different proprietary social networks on the same
ground set of users. Suppose that the owners of the differ-
ent networks (called hosts) are mutually non-trusting par-
ties: how can they compute a centrality score for each of the
users using all the layers, but without disclosing information
about their private graphs?

Under this setting we study a suite of three centrality
measures whose algebraic structure allows performing that
computation with provable security and efficiency. The first
measure counts the nodes reachable from a node within a
given radius. The second measure extends the first one by
counting the number of paths between any two nodes. The
final one is a generalization to the multilayer graph case: not
only the number of paths is counted, but also the multiplicity
of these paths in the different layers is considered.

We devise a suite of multiparty protocols to compute those
centrality measures, which are all provably secure in the
information-theoretic sense. One typical challenge and lim-
itation of secure multiparty computation protocols is their
scalability. We tackle this problem and devise a protocol
which is highly scalable and still provably secure. We test
our protocols on several real-world multilayer graphs: inter-
estingly, the protocol to compute the most sensitive measure
(i.e., the multilayer centrality) is also the most scalable one
and can be efficiently run on very large networks.
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1. INTRODUCTION
Nowadays social networking platforms, such as Facebook

or Twitter, have realized that their proprietary social graph
is an important asset with inestimable value, thus they keep
it secret for obvious reasons of commercial benefits, as well
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as due to privacy legislation.1,2 At the same time, users are
more and more allowed to log in one platform using another
platform’s account (e.g., log in Tripadvisor using a Face-
book account) or by explicitly connecting their accounts in
different networks3. This flexibility gives rise to a situation
in which multiple social networks are defined over the same
set of users (nodes), but the connections among these users
(links) are secret information of the different social network-
ing platforms’ owners (which we call in the following hosts).

Multilayer graphs (sometimes called multi-dimensional
networks or multiplex networks) are graphs that are com-
posed of several layers, where each layer is a graph on the
same set of nodes. Recently, the problem of computing node
centrality measures in multilayer graphs has received a lot
of attention [17, 9, 20, 31]. All of these studies assume
a centralized setting, where all the layers are accessible at
once. Contrarily to the literature, in this work we consider
the problem of computing centrality measures in distributed
multilayer graphs, i.e., where each layer in the graph is held
by a different host. We assume that the hosts are mutually
distrustful and do not wish to reveal any sensitive informa-
tion about their perspective layer. In particular, we study
three simple – yet meaningful – measures of centrality, one
progressively generalizing the previous, which enable effi-
cient and provably secure computation.

The first measure counts the number of nodes reachable
from a node within a given radius D: this is a straightfor-
ward generalization of the most trivial definition of central-
ity, which is the degree (corresponding to the case D = 1).

The second measure extends the first one by counting the
number of paths between any two nodes: this is the trun-
cated version of the classic index introduced by the sociolo-
gist Leo Katz in 1953 [19], which, according to a recent ax-
iomatization by Boldi and Vigna [4], is one of the centrality
definitions exhibiting most of the desirable properties of cen-
trality measures. The Katz index has been widely applied
in link prediction (where it is known to be one of the best
performing predictors [22]), anomalous link detection [28],
and recommendation [29]. It is also worth mentioning that
the Katz index is a close progenitor of PageRank [5]: the
two measures differ only by a constant factor and by the `1
normalization of the adjacency matrix in PageRank [4].

While the first two measures are relevant for both a nor-
mal (i.e. single-layered) graph and a multilayer graph, the

1
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third measure extends the Katz index to the multilayer set-
ting, by keeping in consideration the fact that one node
might be reachable from another node by different paths
and in different layers. For example, if Bob is a friend of
Alice in Facebook, Twitter and Linkedin, the chances of
Bob being influenced by Alice in doing some action are, ar-
guably, greater than Carol’s, if Carol is a friend of Alice only
in Facebook. Based on this intuition we introduce our third
centrality measure, called Multilayer Truncated Katz.

The main challenges. The problem we study is signif-
icantly more challenging than the centralized case, as no
algorithm can freely access all the layers at once. Secure
multiparty computation, introduced by Yao in 1982 [36], pro-
vides general solutions for problems that are similar in na-
ture to ours: mutually distrustful parties wish to compute
some joint function on their inputs without revealing them
to one another. There are three main different approaches
for this problem: garbled circuits [37, 25], boolean shar-
ing [14, 13], and arithmetic sharing [3, 8, 1]. Unfortunately,
all of these general solutions do not cope easily with the
volume of graphs we are interested in, as these protocols re-
quire the transmission of a large amount of data and heavy
processing for the participating parties. Despite the latest
important efficiency improvements in the area (see [27, 2,
10], to state a few), designing the right protocol for a given
task is highly non-trivial, as it requires some subtle algo-
rithmic design, and as it depends on many parameters that
should be considered and on the exact application scenario
(such as the properties of the underlying network, the com-
putational resources of the parties, etc.).

The protocols that we introduce in this paper are based
on the protocol of Ben-Or, Goldwasser and Wigderson [3]
(BGW). The BGW protocol allows n parties, Pi, 1 ≤ i ≤
n, each holding a private integer xi in some finite field
F, to jointly compute a multi-polynomial f(x1, . . . , xn) =
(y1, . . . , yn) over those private inputs, without disclosing to
each other their private inputs. The main challenge in this
context is to cast the needed centrality scores as polyno-
mials, over the private inputs of the different hosts, with as
minimal degree as possible, as the degree is tightly connected
to the running time of the protocol. This is non-trivial, since
even a simple operation such as an IF-statement is translated
to a polynomial with relatively high degree (specifically, the
size of the underlying finite field, which in our setting is
larger than the number of nodes). devise two protocols, the
second of which is highly scalable and can be efficiently run
on very large networks. We obtain this significant scalability
boost by modifying the output of the protocol. Specifically,
all of our centrality scores depend on a radius parameter
D; while our basic protocol for the multilayer Katz score
outputs only the D-centrality score, our scalable protocol
outputs the d-centrality score for all 1 ≤ d ≤ D. This
slight modification of the problem definition enables not only
the scalability boost (which makes the difference between a
theoretical protocol and a practical one) but also increased
flexibility and independence for the collaborating hosts, as
explained in Section 5.

Paper contributions and roadmap. The contributions
of this paper are summarized as follows:

• We initiate investigation in the area of secure dis-
tributed computation of centrality measures over mul-
tiple, mutually non-trusting, social networks.

• Our main contribution is a suite of multiparty protocols
to compute three different measures of centrality of in-
creasing complexity. Our protocols are provably secure
in the information-theoretic sense.

• The third of the measures of centrality that we consider
is the most sensitive one, as it takes into consideration
the multiplicity of paths in the multilayer graph. For
that measure we devise a scalable protocol and empir-
ically show that it can be efficiently run on very large
real-world multilayer graphs.

To the best of our knowledge ours is the first study that
deals with problems of computing centrality scores over mul-
tiple, mutually non-trusting, social networks.

The paper is organized as follows. The next section dis-
cusses related work. Section 3 introduces the three measures
of centrality and provides the formal problem statement and
some background in Secure Multiparty Computation needed
to understand the protocols, which are given in Section 4.
Scalability is discussed in Section 5, while Section 6 reports
our empirical assessment, and Section 7 concludes the paper.

2. RELATED WORK
Several authors have proposed definitions of centrality

measures in multigraphs [17, 9, 20, 31]. However, none of
these previous articles deal with the distributed setting in
which each layer in the graph is owned by a different party.

Secure protocols have been shown to be useful in a wide-
variety of applications. Protocols for secure computation
were studied in the area of privacy-preserving data mining
where the data is distributed among several parties who aim
to jointly perform data mining on the unified corpus of data,
while protecting the data records of each of the data owners
from the other parties. For example, Lindell and Pinkas [24]
showed how to securely build an ID3 decision tree when the
training set is distributed horizontally; Lin et al. [23] dis-
cussed secure clustering using the EM algorithm over hor-
izontally distributed data; and the problem of distributed
association rule mining was studied in [34, 38] in the verti-
cal setting, and in [18, 33] in the horizontal setting.

3. PRELIMINARIES
We consider a setting with ` players (named hosts),

H1, . . . , H`, each one holding a private directed graph on
the same set of nodes V . We do not tackle here the tech-
nical problem of network reconciliation [21], i.e., identifying
which node corresponds to which node in different networks,
as it is beyond the scope of this paper. We assume that the
problem is solved and we know the identity of the same users
across different networks: this is more and more the case as
nowadays many users explicitly connect their accounts in
different networks. A directed edge (or an arc for short)
(u, v) indicates the fact that v is a follower of u, i.e., v is
notified about u’s activities and thus u can influence v, or
in other terms, information can propagate from u to v.4

The private graph of Ht, 1 ≤ t ≤ `, is Gt = (V,Et) where
Et can be described by an adjacency matrix At : V 2 →
{0, 1}. The entry in At that corresponds to the ordered

4
We adopt here the direction of links used in the information

propagation and social influence literature. Sometimes the opposite
direction is adopted: a directed edge (u, v) indicates the fact that u
endorses v, as it is the case in, e.g., the WWW graph where web pages
refer to other pages.



v2

v1 v4

v3

G1
G2
G3

Figure 1: An example of a multilayer graph.

pair of nodes (u, v) is 1 if and only if Et has an arc from
u to v. Those private graphs induce the unified graph G =
(V,E) where E =

⋃`
t=1Et. Its adjacency matrix is A =∨`

t=1At; namely, for every (u, v) ∈ V 2, A(u, v) (the entry
of A corresponding to the pair (u, v)) equals 1 if and only if
there exists 1 ≤ t ≤ ` such that At(u, v) = 1.

The private graphs Gt, 1 ≤ t ≤ `, induce also a multilayer
graph G = (V, {E1, . . . , E`}). While in G each ordered pair
of nodes (u, v) ∈ V 2 is either connected by an arc or not, as
indicated by A(u, v), in G such a pair is connected by any
number of arcs between 0 and `. The number of connecting
arcs for any ordered pair of nodes is given by the entries of
the matrix B =

∑`
t=1At.

Definition 1 (Path and path scenario) Consider the
collection of private graphs G1, . . . , G` and the correspond-
ing unified graph G and multigraph G. If (u, v) ∈ V 2

then a (directed) path from u to v is a sequence of nodes
〈w0 = u,w1, . . . , ws−1, ws = v〉 such that (wi−1, wi) ∈ E for
all 1 ≤ i ≤ s; in that case s is the length of the path. A path
scenario is a path as defined above together with a sequence
of indices 1 ≤ t1, . . . , ts ≤ ` such that (wi−1, wi) ∈ Eti for
all 1 ≤ i ≤ s.

Example 1 Let G = (V, {E1, E2, E3}) be the multigraph in-
duced by the three graphs G1, G2, G3 depicted in Figure 1.
An example of path scenario in G is (〈v1, v2, v4〉, 〈3, 2〉), in-
dicating that one can go from v1 to v4 trough v2 with an arc
in E3 and then with an arc in E2.

The following is a simple observation (we omit the proof for
space economy).

Theorem 1 For any integer k ≥ 1, Ak(u, v) equals the
number of paths of length k from u to v in the unified graph
G, while Bk(u, v) equals the number of path scenarios of
length k from u to v.

Example 2 Consider again the three graphs G1, G2, G3 of
Figure 1 and their adjacency matrices A1, A2, A3: 0 0 1 1

0 0 0 1
1 0 0 0
1 1 0 0

 ,

 0 1 1 0
1 0 1 1
1 1 0 0
0 1 0 0

 ,

 0 1 1 1
1 0 0 0
1 0 0 0
1 0 0 0

 .

Then the matrices A and B are:

A =

 0 1 1 1
1 0 1 1
1 1 0 0
1 1 0 0

 , B =

 0 2 3 2
2 0 1 2
3 1 0 0
2 2 0 0

 .

For example A(1, 2) = 1 indicates that there is an arc in
G from v1 to v2, while B(1, 2) = 2, indicates that such arc
exists in two of the private graphs. Next, we have

A2 =

 3 2 1 1
2 3 1 1
1 1 2 2
1 1 2 2

 , B2 =

 17 7 2 4
7 9 6 4
2 6 10 8
4 4 8 8

 .

Here, A2(1, 2) = 2 indicates that G has two paths from
v1 to v2 of length 2 (one through v3 and one through v4).
However, B2(1, 2) = 7 as there are 7 ways to realize those
paths in G.

Definition 2 Given an integer D and k scalar weights
β1 ≥ β2 ≥ · · · ≥ βk, we define A[D] :=

∑D
k=1 βkA

k and

B[D] :=
∑D

k=1 βkB
k.

When all weights βk = 1, it is easy to see that A[D](u, v)
equals the number of paths of length at most D from u to v
in G, while B[D](u, v) equals the number of path scenarios
of length at most D from u to v. The weights βk are used
to give more importance to shorter paths over longer ones.

We are now ready to define the three measures of central-
ity which are the main focus of our work. In the context of
social networks they may be viewed as measures of influence
or prestige. The measures are denoted for simplicity π1, π2,
and π3 in increasing order of complexity. The first measure
counts the number of nodes that are reachable from u by a
path of length at most D in the union graph G.

Definition 3 (Reach) For a nonnegative integer x, let
[(x) = 0 if x = 0 and [(x) = 1 if x > 0 . Then the reach of
a node u ∈ V is

πD
1 (u) =

∑
v∈V

[(B[D](u, v)).

The reach of a node is a straightforward generalization of
the most trivial definition of centrality, which is the degree
of a node (corresponding to the case D = 1).

The next measure we consider is the classic index intro-
duced by the sociologist Leo Katz in 1953 [19].

Definition 4 (Truncated Katz) The Katz score of a node
u truncated at D is

πD
2 (u) =

∑
v∈V

A[D](u, v).

In the classic Katz index βk = ak for a constant a, and D =
∞: the infinite sum converges if a < 1/ρ(A), where ρ(A) is
the spectral radius of A. When we consider a given D <∞,
the index is called Truncated Katz [11, 35, 26]. Truncated
Katz can be seen as an extension of the Reach score: instead
of just counting the reachable nodes, it gives each such node
v a multiplicity weight that equals the number of different
paths from u to v of length at most D in G, and it then
applies the distance weights βk.

The measures π1 and π2 are relevant for both a normal
graph and a multigraph. The third measure, π3, that we
introduce next, is relevant only in a multigraph setting. It
gives higher weights to nodes v that can be reached by u
in more ways: e.g., if Bob is a friend of Alice in Facebook,
Twitter and Linkedin, the chances of Bob being influenced
by Alice in doing some action are, arguably, greater than
Carol’s, if Carol is a friend of Alice only in Facebook. Based
on this intuition we introduce Multi-layer Truncated Katz.

Definition 5 (Multi-layer Truncated Katz) The Katz
score of a node u truncated at D over a multigraph G is

πD
3 (u) =

∑
v∈V

B[D](u, v).



Surprisingly, Multi-layer Truncated Katz is not only the
most sensitive of the three measures, it is also the most
efficient and scalable to compute. Before getting into the
details, some background in secure multiparty computation
is needed.

3.1 Secure multiparty computation
In the setting of secure multiparty computation

(MPC) [36], n mutually distrustful parties, P1, . . . , Pn, that
hold private inputs x1, . . . , xn wish to compute some joint
function on their inputs, i.e., (y1, . . . , yn) = f(x1, . . . , xn),
without revealing any unnecessary information about these
inputs (except for what is logically learned from the output).

MPC enables the parties to compute the function using an
interactive protocol, where each party Pi learns exactly yi
and nothing else. The security of the protocol is preserved
even in the presence of an adversarial entity that corrupts
some of the parties, combines their transcripts and tries to
learn information about the honest parties’ inputs. In this
work, we consider a semi-honest adversary (who follows the
protocol’s specification but tries to learn more than it should
by inspecting the protocol’s transcript) that may have an
unbounded computational power.

MPC provides a formal and rigorous definition of secu-
rity, where the standard definition follows the “simulation
paradigm”, and it is similar in its nature to the definition
of semantic security of encryptions [15] and zero-knowledge
proofs [16]. In order to prove that a protocol is secure in the
presence of a semi-honest adversary, one needs to show the
existence of a simulator that receives as input the inputs and
outputs of the corrupted parties, and simulates the messages
that the corrupted parties see during the execution of the
protocol. The existence of such a simulator implies that all
the messages that the corrupted parties see during the in-
teraction can be computed solely from their own input and
output. Hence, the messages that the honest parties send
during the protocol do not provide any other meaningful in-
formation. The formal definitions are more subtle, and we
refer to [7, 13, 1] for formal definitions. We emphasize that
even though secure protocols are very powerful, they cannot
hide information that is logically leaked from the function
that the parties compute. (For example, in case where three
parties compute, say, the average of their salaries, the result
reveals to each party the average of the other two.)

3.2 The BGW protocol
Our protocols, described in Section 4, are inspired by the

BGW protocol [3] (the security of which was proven in [1]),
with the efficiency improvement of [12]. Consider n parties,
Pi, 1 ≤ i ≤ n, each holding a private element xi in some
finite field F. They wish to jointly compute a function over
those inputs, f(x1, . . . , xn) = (y1, . . . , yn), where yi is the
output to Pi, without disclosing to each other their private
input. To that end, the parties P1, . . . , Pn agree on some
arithmetic circuit C that computes f over the finite field
F; the field’s size must be greater than the number of par-
ticipating parties as well as greater than the apriori bound
on the input and output values. The circuit consists of two
different types of gates: addition gates, and multiplication
gates. Let α1, . . . , αn be distinct non-zero elements in F;
then αi will be used as a public identifier of Pi. The par-
ties preserve the following invariant during the computation:
the value of each wire of the circuit is secret-shared using

a Shamir’s (t+ 1)-out-of-n secret sharing scheme (see [30]),
with t < n/2. The protocol consists of the following three
stages: input sharing phase, circuit emulation phase, and
output reconstruction phase.

The input sharing phase. In this phase, each party Pi

shares its input xi with all parties; i.e., it chooses a random
polynomial gi of degree t such that gi(0) = xi, and it then
sends to each party Pj the value gi(αj), 1 ≤ j ≤ n.

The circuit emulation phase. In this phase, the parties
emulate the computation of C(x1, . . . , xn), where in each
gate, the parties compute shares of the value of the output
wire using their shares of the input wire by invoking a secure
protocol. There are two types of gates to consider: addition
gates and multiplication gates.

Addition gates. The computation of the output shares
can be performed locally and without any interaction, since
if f1(αi) and f2(αi) are the shares that Pi holds for the
two input wires to an addition gate, then f(αi) = f1(αi) +
f2(αi) is a valid sharing of the output wire. Indeed, if the
polynomials f1(x) and f2(x) are of degree at most t, then
so is their sum f(x) := f1(x) + f2(x); and, in addition,
f(0) = f1(0) + f2(0).

Multiplication gates. The case of multiplication gates
is more involved as it requires interaction among the par-
ties. In particular, given shares f1(αi) and f2(αi) for the
two input wires of a multiplication gate, then f(αi) :=
f1(α) · f2(αi) are shares of a polynomial f(x) with the cor-
rect constant term f(0) = f1(0) · f2(0), as required, but its
degree could be as high as 2t, while we need the sharing
polynomial to be of degree at most t. Hence, the players
must interact in order to reduce the degree of that polyno-
mial. The degree reduction procedure can be done using
the method of [12], which is based on the fact that if f is
a polynomial of degree at most n − 1 and α1, . . . , αn are n
distinct non-zero points in the field, then the constant term
f(0) is a linear combination of the other points on that poly-
nomial. That is, f1(0)·f2(0) = f(0) =

∑n
i=1 λi ·f(αi), where

λi :=
∏

j 6=i αj/(αi − αj) are the Lagrange coefficients.
The multiplication sub-protocol proceeds as follows.

Given the shares f1(αi), f2(αi) of the party Pi, the party
Pi locally multiplies these two shares and gets the value
f(αi). Then, it chooses a polynomial gi(x) of degree at
most t such that gi(0) = f(αi) = f1(αi) · f2(αi). It then
shares the polynomial gi with all parties, so that each party
Pj receives the share gi(αj). At the end of this stage, each
party Pj holds the shares g1(αj), . . . , gn(αj). Next, let us
define the polynomial h(x) :=

∑n
i=1 λi · gi(x), which has a

degree at most t. Each party Pj locally computes the linear
combination

∑n
i=1 λi · gi(αj) = h(αj), which is its share in

the implicitly defined polynomial h(x). Note that h(x) is a
polynomial of degree at most t, and h(0) =

∑n
i=1 λi ·gi(0) =∑n

i=1 λi · f(αi) = f1(0) · f2(0). We later relate to this multi-
plication procedure as“the multiplication protocol of BGW”.

Output reconstruction phase. In this phase, each party
Pi receives all the shares of the output wire that corresponds
to its respective output yi, and it then reconstructs yi.

4. THE PROTOCOLS
All of our protocols are based on sharing values among

the ` hosts using Shamir’s `′-out-of-` secret sharing scheme.
If x is any integer that the ` hosts share among themselves,



then [x] denotes the set of all ` shares in x and [x]t denotes
Ht’s share, 1 ≤ t ≤ `. The parameters of the scheme must
satisfy `′ < `/2, where `′ is the number of corruptions that
our protocols can deal with. We note that this bound is
tight for protocols that are perfectly secure [3].

Our protocols use the following building blocks as sub-
protocols. The FBool sub-protocol, defined below, is used in
implementing the operator [ (see Definition 3) in a secure
manner. The FOR sub-protocol is used when computing
shares of the adjacency matrix A of the unified graph.

The FBool sub-protocol. Assume that the hosts hold
shares [x] in some nonnegative integer x using an `′-out-
of-` secret sharing scheme. The function FBool enables
them to translate those shares into shares in the corre-
sponding boolean value [(x). Formally, FBool(x1, . . . , x`)→
(y1, . . . , y`), where (x1, . . . , x`) are `′-out-of-` shares of a se-
cret x, and (y1, . . . , y`) are fresh `′-out-of-` shares of y = [(x)
(i.e., y = 1 if x > 0 and y = 0 if x = 0). Note that the defi-
nition of this function does not leak to a set of less than `′

parties any information about the value of x nor that of y.
The classical way to realize this function (e.g. [6]) is based

on Fermat’s little theorem, by which xp−1 = [(x) in the
prime-order field Zp. Therefore, in order to compute this
function, the hosts can just raise the underlying secret of
their input shares to the power p− 1. By using the square-
and-multiply method (see e.g. [32]), this results in a circuit
of depth O(log p), which can be evaluated using the BGW
protocol.

The FOR sub-protocol. The OR function is defined by
FOR(b1, . . . , b`) → (y1, . . . , y`), where b1, . . . , b` are private
bits (bt is known only to Ht) and (y1, . . . , y`) are fresh `′-
out-of-` shares of the bit y := ∨`

i=1bi, which is also kept
secret. Since y = 1 −

∏`
i=1(1 − bi), such a function can be

implemented by the BGW protocol using only ` − 1 multi-
plication gates, which can be parallelized and implemented
in O(log `) layers.

We proceed to describe three protocols, Πj , for computing
πD
j , j = 1, 2, 3. We begin with Π3 which is the simplest one,

as well as the most efficient one.

4.1 Protocol for Multigraph Truncated Katz
We present here Protocol Π3 that enables the hosts to

compute together πD
3 (u) for all u ∈ V . By Definition 5,

πD
3 (u) =

∑
v∈V B

[D](u, v), where B[D] :=
∑D

k=1 βkB
k and

B =
∑`

t=1At. We begin by making the following ob-
servation, which enables us to refrain from computing ex-
plicit shares in all |V |2 entries of the matrix powers Bk,

2 ≤ k ≤ D, nor those of B[D]. Define

sk(u) =
∑
v∈V

Bk(u, v) . (1)

Then the required centrality score πD
3 (u) of a specific user

u ∈ V is given by

πD
3 (u) =

D∑
k=1

βksk(u) . (2)

We show below how the hosts can compute shares in the
values sk(u) for all k = 1, . . . , D and u ∈ V . After comput-
ing such shares, each host can compute shares in πD

3 (u) for
all u ∈ V using Eq. (2). Finally, by implementing the secret
sharing reconstruction procedure, any subset of `′ hosts can
combine their shares to recover πD

3 (u) for any u ∈ V .

The protocol begins with every host sharing its adjacency
matrix with all hosts (Step 1). Specifically, each hostHt, 1 ≤
t ≤ `, performs |V |2 independent `′-out-of-` secret sharings
for each entry in its adjacency matrix At(u, v). At the end
of this step, each host Ht holds a share [Aj(u, v)]t for each
(u, v) ∈ V 2 and 1 ≤ j ≤ `. Then, each host Ht computes

[B(u, v)]t =
∑`

j=1[Aj(u, v)]t, which is its share in an `′-out-

of-` secret sharing of B(u, v), for all (u, v) ∈ V 2. To conclude
the initialization phase, Ht computes, for every u ∈ V , the
sum [s1(u)]t =

∑
v∈V [B(u, v)]t, which is its share in s1(u)

(Step 2).
Next, the hosts can proceed by induction to compute

shares in sk(u), for all u ∈ V and k = 2, . . . , D (Steps 3-
6). It is easy to see that Eq. (1) implies that

sk(u) =
∑
v∈V

B(u, v)sk−1(v) . (3)

Hence, as each host holds shares in B(u, v) (computed in
Step 1) as well as in sk−1(v) (induction), they can compute
shares in B(u, v)sk−1(v) by implementing multiplication
gates in the BGW protocol (Section 3.2) for all (u, v) ∈ V 2.
(Note that all |V |2 multiplication gates can be implemented
in parallel.) After doing that (Step 4), they may add the
received shares for B(u, v)sk−1(v) over all v ∈ V in order
to get a corresponding share in sk(u), for all u ∈ V (Step
5). After completing the loop over k, each host Ht holds a
share [sk(u)]t in sk(u) for all 1 ≤ k ≤ D and u ∈ V . Hence,
each host may proceed to compute on its own a share in
πD
3 (u) for each u ∈ V using Eq. (2), as a weighted sum of its

shares in sk(u), for 1 ≤ k ≤ D (Step 7). Finally, the hosts
broadcast their shares in πD

3 (u) for all u ∈ V and then each
host can recover πD

3 (u) for any u ∈ V from any subset of `′

shares (Step 8).

Protocol Π3: Computing πD
3 (u) for all u ∈ V .

Sub-Protocols: The multiplication protocol of BGW.
Input: Each host Ht holds its association matrix At.
1: Sharing of the matrix B. Each host Ht shares At(u, v),
∀(u, v) ∈ V 2, with H1, . . . , H`. Then, Ht computes its share

in B(u, v), [B(u, v)]t =
∑`

j=1[Aj(u, v)]t, ∀(u, v) ∈ V 2.

2: Ht computes [s1(u)]t =
∑

v∈V [B(u, v)]t, ∀u ∈ V .
3: for k = 2, . . . , D do
4: Given the shares [B(u, v)]t and [sk−1(v)]t, the hosts invoke

BGW multiplication protocol to compute shares of [B(u, v) ·
sk−1(v)]t, ∀(u, v) ∈ V 2

5: Ht computes [sk(u)]t =
∑

v∈V [B(u, v)sk−1(v)]t, ∀u ∈ V .
6: end for
7: Ht computes [πD

3 (u)]t =
∑D

k=1 βk[sk(u)]t, ∀u ∈ V .

8: Each host Ht broadcasts [πD
3 (u)]t, and all hosts reconstruct

πD
3 (u) for every u ∈ V .

Output: Each host outputs πD
3 (u) for all u ∈ V .

4.2 Protocol for Truncated Katz
Here we present Protocol Π2 for computing πD

2 (u) for all
u ∈ V . The protocol is similar to Protocol Π3, except for
the initialization phase, where here the parties share the
matrix A =

∨`
t=1At (rather than sharing the matrix B =∑`

t=1At). This is done by invoking the FOR sub-protocol
independently and concurrently for all |V |2 entries of the
matrix. Protocol Π2 now proceeds (Steps 2-8) just like the
corresponding steps in Protocol Π3, where the hosts use their
computed shares in the matrix A (rather than B as in Π3).



Protocol Π2: Computing πD
2 (u) for all u ∈ V .

Sub-Protocols: The multiplication protocol of BGW and the
FOR sub-protocol.

Input: Each host Ht holds its association matrix At.
1: Sharing of the matrix A. The parties invoke the FOR sub-

protocol for every (u, v) ∈ V 2, where in each invocation the
input of the host Ht is At(u, v) and its output is its share

[A(u, v)]t, i.e., its share in A(u, v) =
∨`

t=1At.
2: Ht computes [s1(u)]t =

∑
v∈V [A(u, v)]t, ∀u ∈ V .

3: for k = 2, . . . , D do
4: Given the shares [A(u, v)]t and [sk−1(v)]t, the hosts invoke

BGW multiplication protocol to compute shares of [A(u, v) ·
sk−1(v)]t, ∀(u, v) ∈ V 2.

5: Ht computes [sk(u)]t =
∑

v∈V [A(u, v)sk−1(v)]t, ∀u ∈ V .
6: end for
7: Ht computes [πD

2 (u)]t =
∑D

k=1 βk[sk(u)]t, ∀u ∈ V .

8: Each host Ht broadcasts [πD
2 (u)]t, and all hosts reconstruct

πD
2 (u) for every u ∈ V .

Output: Each host outputs πD
2 (u) for all u ∈ V .

4.3 Protocol for the Reach score
Here we present Protocol Π1 for computing πD

1 (u) for all
u ∈ V . That protocol, as opposed to the previous two,
requires the hosts to compute shares in all powers of the
relevant matrix, B; that renders this protocol more costly
in terms of both computation and communication.

The protocol begins by sharing the matrix B among
all hosts (Step 1). Then, the hosts proceed to compute
shares in the matrix powers B2, . . . , BD (Steps 2-5). Since
Bk(u, v) =

∑
w∈V B

k−1(u,w)B(w, v), the hosts invoke the
multiplication protocol of BGW to compute shares in the
product Bk−1(u,w)B(w, v) for all (u,w, v) ∈ V 3. After con-
cluding the execution of those |V |3 multiplications (which
can be executed in parallel), each host Ht has a share
[Bk−1(u,w)B(w, v)]t for all (u,w, v) ∈ V 3. It then pro-
ceeds to compute shares in Bk(u, v) as follows: [Bk(u, v)]t =∑

w∈V [Bk−1(u,w)B(w, v)]t.
Then, each host computes a share in each entry of the

matrix B[D] (Step 6), and then the shares of [(B[D](u, v)) by
invoking the FBool sub-protocol for all (u, v) ∈ V 2 in parallel
(Step 7). Finally, each host computes a share in πD

1 (u) for
every u ∈ V (Step 8), and then the hosts reconstruct πD

1 (u)
(Step 9).

Table 1: The communication complexity of our three protocols.
Inp, Emu, Rec relate to the input sharing phase, circuit emulation
phase and output reconstruction phase, respectively. ||F|| denotes
the number of bits required to represent an element in the under-
lying field (which is O(log `) for Π1, and O(D log(|V |`)) for Π2

and Π3). The communication column shows the total number of
field elements that are transmitted by all hosts.

Protocol Stage Rounds Communication

Π3

Inp 1 `(`− 1)|V |2
Emu D − 1 (D − 1)`(`− 1)|V |2
Rec 1 `(`− 1)|V |

Π2

Inp 1 + dlog `e `2(`− 1)|V |2
Emu D (D − 1)`(`− 1)|V |2
Rec 1 `(`− 1)|V |

Π1

Inp 1 `(`− 1)|V |2
Emu D − 1 (D − 1)`(`− 1)|V |3
Rec ||F||+ 1 `(`− 1)(||F||+ |V |)

Communication and round complexity. Table 1 sum-
marizes the communication and round complexity of our
protocols. Communication complexity measures the total

Protocol Π1: Computing πD
1 (u) for all u ∈ V .

Sub-Protocols: The multiplication protocol of BGW and the
FBool sub-protocol.

Input: Each host Ht holds its association matrix At.
1: Sharing of the matrix B. Each host Ht shares At(u, v),
∀(u, v) ∈ V 2, with H1, . . . , H`. Then, Ht computes its share

in B(u, v), [B(u, v)]t =
∑`

j=1[Aj(u, v)]t, ∀(u, v) ∈ V 2.
2: for k = 2, . . . , D do
3: Given the shares [Bk−1(u, v)]t and the shares [B(u, v)], the

hosts invoke the BGW multiplication protocol to receive shares
of [Bk−1(u,w) ·B(w, v)]t for every (u, v, w) ∈ V 3.

4: For every (u, v) ∈ V 2, each host locally computes
[Bk(u, v)]t =

∑
w∈V [Bk−1(u,w) ·B(w, v)],

5: end for
6: Ht computes [B[D](u, v)]t =

∑D
k=1 βk[Bk(u, v)]t, ∀(u, v) ∈ V 2.

7: For every (u, v) ∈ V 2, the parties invoke the FBool sub-

protocol where each host inputs its share [B[D](u, v)]t and

receives as output a share [[
(
B[D](u, v)

)
]t.

8: Ht computes [πD
1 (u)]t =

∑
v∈V [[(B[D](u, v))]t, ∀u ∈ V .

9: Each host Ht broadcasts [πD
1 (u)]t, and all hosts reconstruct

πD
1 (u) for every u ∈ V .

Output: Each host outputs πD
1 (u) for all u ∈ V .

number of field elements that are transmitted in the pro-
tocol by all hosts. Since our protocols are symmetric (in
the sense that each host performs the exact same amount
of work), the communication complexity of each host is the
value in the table divided by `. We also recall that in our sce-
nario, both ` and D are relatively small (typically no more
than 10) while |V | can be several millions.

Privacy. Our protocols are optimizations of circuits that
implement the scores πD

1 , πD
2 and πD

3 , including placement of
the gates and design of the layers. Correctness of the circuits
is straightforward, hence their security follows directly from
the security of the BGW protocol [3, 1].

Theorem 2 Protocol Πj for j ∈ {1, 2, 3}, privately com-
putes the function Fj(A1, . . . , At) = ({πD

j (u) : u ∈ V }),
respectively, in the presence of an unbounded semi-honest
adversary, with `′ = d`/2e − 1.

5. SCALING TO BIG GRAPHS
All protocols in the previous section begin by comput-

ing shares in all entries of the matrix B (Π3 and Π1) or A
(Π2), which entails Ω(|V |2) complexity. In case where |V |
is in the millions, that communication overhead is clearly
impractical. In this section we show that it is possible to
avoid sharing the matrix of the multigraph, but still com-
pute properties of that multigraph, in particular the cen-
trality score πD

3 (u) for all u ∈ V . Specifically, we show how
the hosts can compute the set of vectors s1, . . . , sD, where
sk = (sk(u) : u ∈ V ) and sk(u) is as defined in Eq. (1), with-
out sharing the matrices A or B, but, instead, sharing and
transmitting O(|V |) values only. This improvement dramat-
ically reduces the runtime of the protocol and enables scaling
the computation to graphs of millions of nodes.

Such a significant acceleration of runtime is possible due
to the following two reasons. First, as we will see, our pro-
tocol heavily relies on the the special algebraic structure of
the score πD

3 ; in contrast, the algebraic structure of the other
two measures, πD

2 and πD
1 , does not seem to allow a similar

improvement in their respective protocols. Second, the Pro-
tocol Π4 that we propose here reveals some additional values



to the hosts, in comparison to Protocol Π3. Intuitively, by
revealing more information there is less to hide, and there-
fore the computation can become more efficient. As a result,
we benefit twice: the hosts gain more from the interaction,
and enjoy this significant acceleration. To elaborate further,
while protocol Π3 reveals only the final vector of πD

3 scores,
the efficient Protocol Π4 that we present here reveals the set
of vectors {πd

3} for every 1 ≤ d ≤ D, and nothing more. We
stress that these intermediate vectors reveal only general,
yet meaningful, information about each of the nodes. Im-
portantly, these vectors do not reveal any information about
specific relationship between nodes nor specific information
on any of the private graphs.

Our protocol proceeds in iterations, where in each itera-
tion the hosts compute the vector sk from the vector sk−1.
Recall that by Eq. (3), sk(u) =

∑
v∈V B(u, v)sk−1(v). If M

is a matrix over V 2, we let M [u] denote its row correspond-
ing to u. Therefore, we can write sk(u) = 〈B[u], sk−1〉, and,
consequently,

sk(u) =

〈∑̀
t=1

At[u], sk−1

〉
=
∑̀
t=1

〈At[u], sk−1〉 . (4)

Moreover, if we let 1 denote the all-one vector of size |V |
then, by Eq. (1), s1(u) =

∑
v∈V B(u, v) = 〈B[u],1〉 =∑`

t=1〈At[u],1〉. Hence, if we set s0 := 1, Eq. (4) holds
for all k ≥ 1.

In view of the above, Protocol Π4 consists of a main loop
over k = 1, . . . , D (Steps 2-9). In each iteration in that loop,
each host Ht, for 1 ≤ t ≤ `, individually computes the value
yt(u) := 〈At[u], sk−1〉, for all u ∈ V (Step 3), where s0 was
initialized to 1 in Step 1. Then, Ht secret shares yt(u), for
all u ∈ V , with all hosts (Step 4). Each host then proceeds
to locally sum up all the shares that it received from all `
hosts (Step 5). The resulting value for each u ∈ V is that
host’s share, [sk(u)]t, for sk(u) (as implied by Eq. (4)). The
hosts proceed to broadcast these shares (Step 6) and then
each host reconstructs the value sk(u), for each u ∈ V , by
applying the secret sharing reconstruction procedure, and
construct the vector sk (Steps 7-8). After completing the
loop, each host has recovered all vectors sk, 1 ≤ k ≤ D.
Finally, each host computes πd

3(u) for all u ∈ V and all
1 ≤ d ≤ D (Step 10).

Protocol Π4: Computing πd
3(u), ∀d ∈ {1, . . . , D}, u ∈ V .

Input: Each host Ht holds its association matrix At.
1: All hosts set s0 := 1.
2: for k = 1, . . . , D do
3: Ht computes yt(u) := 〈At[u], sk−1〉, ∀u ∈ V .
4: Ht shares yt(u) with H1, . . . , H` for every u ∈ V . At the end

of this step, Ht holds [yj(u)]t for every u ∈ V and 1 ≤ j ≤ `.
5: Ht computes [sk(u)]t =

∑`
j=1[yj(u)]t, ∀u ∈ V .

6: Each Ht broadcasts {[sk(u)]t : u ∈ V }.
7: Ht has now the shares {[sk(u)]j : 1 ≤ j ≤ t}. It proceeds to

reconstruct the secrets {sk(u) : 1 ≤ j ≤ t}.
8: Ht sets sk = (sk(u) : u ∈ V ).
9: end for

10: Ht computes the value πd
3(u) =

∑d
k=1 βksk(u) for every u ∈ V

and 1 ≤ d ≤ D.
Output: Ht outputs πd

3(u) for every u ∈ V and 1 ≤ d ≤ D.

In addition to its scalability, Protocol Π4 enjoys the fol-
lowing advantages:

(1) As opposed to the protocols described earlier, in Π4

each host can internally represent its respective graph using
adjacency lists or a sparse adjacency matrix, rather than a
full adjacency matrix. Then, the individual computation of
〈At[u], sk−1〉 (Step 3) is proportional to the actual size of
the row At[u]; in particular, it is independent of the size of
the multigraph.

(2) The functionality that is computed in Π4 is linear and
does not contain any multiplication gates. Therefore, in this
protocol, instead of using Shamir’s `′-out-of-` secret sharing
scheme with `′ < `/2, we may use a secret sharing scheme
with `′ = `. The advantage is twofold: such a protocol
is immune against coalitions of any size (while the previ-
ous protocols were immune only against coalitions smaller
than `′); and instead of a polynomial-based secret shar-
ing scheme (which requires costly polynomial evaluations
and interpolations), the `-out-of-` secret sharing scheme is a
simple scheme in which any given secret is split into ` uni-
formly random shares whose sum equals the secret. In such
a scheme, the generation of shares is very efficient and so is
the reconstruction of the secret from all shares.

(3) Having the vectors s1, . . . , sD grants each host the free-
dom to apply an individual score function (say, by selecting
its own weights β1, . . . , βD).

Communication costs. As opposed to protocols Π1,Π2

and Π3, the hosts here do not share the matrices A or B,
and the communication complexity is proportional to |V |
only (and not |V |2, or even |E|, where E is the set of edges in
the unified graph). The number of rounds in each iteration
is 2 (and therefore there are 2D rounds in total), and the
total number of field elements that are transmitted in each
iteration is 2`(`− 1)|V | (or 2`(`− 1)D|V | overall).

Computational costs. We summarize briefly the compu-
tational costs of our four protocols, in terms of running time
per host. Protocol Π1 (the Reach score, Section 4.3) runs in

time Õ(|V |3D`3), because it performs O(|V |3D) secret mul-

tiplications, each of which takes `2`′Õ(||F||) time. Protocols
Π2 (Truncated Katz, Section 4.2) and Π3 (Multigraph Trun-
cated Katz, Section 4.1) are more efficient and have roughly

the same complexity, Õ(|V |2D2`2). Finally, the running

time of Π4 can be shown to be Õ(|V |D2`2 +D2T ), where T
is the sum of the number of edges of all graphs.

Privacy. We prove the following Theorem:

Theorem 3 Protocol Π4 privately computes the function
F (A1, . . . , At) = ({πd

3(u) : 1 ≤ d ≤ D,u ∈ V }) in the
presence of an unbounded semi-honest adversary corrupting
at most `− 1 parties.

Proof. The protocol can be represented as D sequential
invocations of a “secure addition” protocol. That is, let Fadd

be the following addition functionality,

Fadd(y1, . . . ,y`) = (s, . . . , s) ,

where each yj = (yj(u) : u ∈ V ) is a vector of size |V |, and

each component in the output is the vector s =
∑`

j=1 yj .

Thus, given the output of the previous stage sk−1 (where
initially s0 is the all-one vector 1), each host Ht, 1 ≤ t ≤ `,
computes its input vector y

(k)
t = At · sk−1, and the par-

ties then invoke the functionality Fadd. The output of Fadd,
denoted sk, will be served as the input for the next stage.
Note that Protocol Π4 implements this Fadd-functionality



exactly as the BGW protocol implements it; hence, the se-
curity of this sub-protocol relies on the security of the BGW
protocol [3, 1]. Interpreting the protocol as D sequential
invocations of the Fadd-functionality, we have in fact a pro-
tocol in the Fadd-hybrid model. It is easy to see that in this
protocol, the corrupted parties do not receive any messages
from the honest parties and their view consists of the out-
puts of the Fadd invocations only. However, these values are
exactly the vectors s1, . . . , sD which the simulator receives
as input (as the output of the Fadd-functionality for the cor-
rupted parties). Therefore, simulation is straightforward,
where the simulator just outputs the values s1, . . . , sD (that
it received as input) as the outputs of Fadd; clearly, those
values are exactly the view of the corrupted parties in the
real execution of the protocol Π4. 2

6. EXPERIMENTS
Since our protocols are provably secure (Theorems 2 and

3), and correct (i.e., return the same answer as their non-
secure counterparts), the main goal of our experimental as-
sessment is to study their efficiency. In this regard we will
report and analyze their total work defined as the sum of
running times over all hosts. Observe that, while the num-
ber and total size of communication messages may also be of
interest, no experiments are required here as these numbers
are completely determined by our protocols (see Table 1).

Experiments settings. All our experiments are run on a
dual-core Intel i7-5600U CPU (2.60 GHz) with 16Gb RAM
under Linux. We implemented our protocols in C++ and
compiled the code using g++ with speed optimizations.
We used the NTL library5 to perform computations with
arbitrary length integers, as well as polynomial interpolation
over large finite fields (as required by our protocols). The
finite fields we use are integers modulo a prime large enough
to guarantee exact computation of the results (e.g., of length
O(log `) for π1, and O(D log(|V |`)) for π2 and π3). The
threshold parameter `′ is set to b(`− 1)/2c for Π1, Π2, and
Π3 as in Theorem 2 (recall that ` ≥ 3 denotes the number of
hosts). For Π4 we set `′ = ` as this protocol allows the use
of the `-out-of-` secret sharing scheme (see Section 5). The
weights βk for matrix powers are set to 1/2k, 1 ≤ k ≤ D.

Datasets. For our experiments we used publicly-available
real-world multigraphs of various types and sizes, spanning
different domains: offline relationships (aarhus), road net-
works (london), genetic interactions (hiv, arabi), online so-
cial networks (higgs, obama), interactions in sharing sites
(youtube), human genealogies (wikitree) and co-authorship
networks (dblp). All except dblp are separated by layers; for
dblp we use instead the timestamp information to partition
the edges into 3 groups. Some of these graphs are undi-
rected; in this case we duplicate each edge. Table 2 reports
their main characteristics and origin.6,7,8,9

6.1 π3 as a median ranking
In this section we show that, if the hosts are interested

in a ranking of “influential” users, the ranking obtained by
joining forces through secure multiparty computation is in-
tuitively better than the individual rankings that each host
should be able to obtain on its own. Specifically, the ranking

5
http://www.shoup.net/ntl/

6
http://deim.urv.cat/~manlio.dedomenico/data.php

7
http://socialcomputing.asu.edu/datasets/YouTube

8
http://proj.ise.bgu.ac.il/sns/wikitree.html

9
http://konect.uni-koblenz.de/networks/dblp_coauthor

Table 2: Dataset characteristics: name, directed (D) or undi-
rected (U), source (please refer to the footnotes below), number
of hosts, number of nodes, number of edges in the union graph
G = (V,E) (corresponding to the sum of entries of the matrix A),
and number of edges considering their multiplicity (corresponding
to the sum of entries of the matrix B).

dataset U/D url ` |V | |E|
∑`

t=1 |Et|
aarhus U 6 5 61 353 620
london U 6 3 369 430 503
hiv D 6 3 1,005 2,310 2688
arabi U 6 7 6,980 17,497 18,117

youtube U 7 5 14,992 10,726,107 32,980,158
higgs D 6 3 304,691 904,404 1,110,962

wikitree D 8 4 1,382,750 9,620,090 18,381,878
dblp U 9 3 1,314,050 10,724,828 18,986,618
obama D 6 3 2,281,259 6,283,002 9,182,052

Table 3: Kendall-Tau correlations between rankings induced by
the 7 individual layers of arabi, and π3-based ranking using all
layers. The last column is the sum of the row values minus 1.

layer 1 2 3 4 5 6 7 π3
∑

- 1
1 1.0 -0.307 0.042 -0.001 0.033 0.052 0.0 0.314 0.13
2 -0.307 1.0 0.013 0.01 0.018 0.041 0.055 0.452 0.28
3 0.042 0.013 1.0 0.392 0.272 0.028 -0.002 0.055 0.8
4 -0.001 0.01 0.392 1.0 0.237 0.046 0.017 0.023 0.72
5 0.033 0.018 0.272 0.237 1.0 0.053 0.026 0.036 0.68
6 0.052 0.041 0.028 0.046 0.053 1.0 0.14 0.063 0.42
7 0.0 0.055 -0.002 0.017 0.026 0.14 1.0 0.031 0.27
π3 0.314 0.452 0.055 0.023 0.036 0.063 0.031 1.0 0.97

Table 4: Kendall-Tau correlations between rankings induced by
the 5 individual layers of youtube, and π3-based ranking using all
layers. The last column is the sum of the row values minus 1.

layer 1 2 3 4 5 π3
∑

- 1
1 1.0 0.421 0.379 0.386 0.219 0.401 1.8
2 0.421 1.0 0.37 0.239 0.317 0.483 1.83
3 0.379 0.37 1.0 0.35 0.353 0.615 2.07
4 0.386 0.239 0.35 1.0 0.137 0.374 1.49
5 0.219 0.317 0.353 0.137 1.0 0.617 1.64
π3 0.401 0.483 0.615 0.374 0.617 1.0 2.49

obtained by π3 on the multilayer graph lies “in the middle”
of all the individual rankings obtained on each layer (π2 and
π3 coincide when using a single layer).

We proceed as follows for an `-layer dataset:
(1) Compute all π3 (or equivalently π2) scores based on

each single layer, obtaining ` rankings R1, . . . , R`. Then we
obtain the additional ranking R`+1 induced by the π3 scores
on the multilayer network.

(2) Compute a symmetric table with the Kendall-Tau10

correlation between all the rankings from the previous step.
(3) For each i ∈ [` + 1], define the global score of i as

the sum of all Kendall-Tau correlations between Ri and Rj

for j 6= i. The larger this value is, the better the ranking i
correlates with all other rankings on average.

Tables 3 and 4 show the correlations thus obtained for
arabi and youtube, respectively. We verify that the global
score of the ranking induced by π3 is larger than any of the
individual scores. That is, by applying a secure protocol to
compute π3, all parties can obtain a ranking that is closer
on average to all individual rankings.

6.2 Efficiency of Π1, Π2, and Π3

We next report runtime comparison of the three basic pro-
tocols Π1, Π2, and Π3. We already know, by the computa-
tional complexity analysis reported in Section 5, about the
inefficiency of Π1, which constraints us to use small graphs
for this comparison.

10
https://en.wikipedia.org/wiki/Kendall_tau_distance



Table 5: Running times (s) for computing π3 in a centralized
setting (left column) versus computation by Π4 (right column).
These running times represent the total work (summed over all
hosts) to compute centralities for every node in the network.

dataset D = 3 D = 5 D = 10
arabi 0.01 0.08 0.01 0.28 0.03 1.11

youtube 3.23 1.42 4.89 4.04 10.28 15.56
higs 0.88 1.28 1.20 3.27 2.19 14.56

wikitree 4.77 7.02 7.44 20.55 15.18 90.53
dblp 7.22 5.51 11.53 16.67 21.83 72.72

obama 5.98 7.99 9.45 24.11 17.94 109.26

Figure 2 reports the running time of the three protocols on
the datasets aarhus, london, and hiv. It is important to note
that in the first two, due to the different order of magnitude
of the runtime of Π1, the Y -axis has a logarithmic scale.
On the third dataset instead, we do not report Π1 at all.
The figure confirms that, as expected, Π3 and Π2 are close
in runtime, even if Π3 is always faster. Π1 instead is, as
already mentioned several times, totally impractical.

6.3 Efficiency and scalability of Π4

We now focus on our most efficient protocol, Π4, and study
how its runtime varies with the size of the graph, the num-
ber of hosts, and the parameter D, when everything else is
fixed. Table 5 reports run-times of Π4 versus a centralized
computation, as a demonstration of the price of privacy.

We observe that in youtube, for D = 3, the secure proto-
col runs faster than the centralized one. Moreover, while the
run-times are comparable, they increase quadratically with
D in the secure protocol, but roughly linearly in the central-
ized one. While these two facts may seem counterintuitive,
the reason behind them is our choice of different implemen-
tations, tailored to the needs of each task so as to speed
them up. The centralized computation of π3 only needs to
use arbitrary-size integer arithmetic, but there is no need
to perform arithmetic modulo a large prime (which would
slow things down). In contrast, for the secure computation,
this is not possible as we need to work over a large finite
field, whose size needs to be known right from the start.
But instead of performing all computations modulo a large
prime (of the order of (`|V |)D), we choose to use D different
primes of the order of `|V |, and then reconstruct the final re-
sult using the Chinese Remainder Theorem. This speeds up
some computations as opposed to working directly on a very
large field, as only word-size integers are used. However, as
D increases, we pay a factor of D because we perform simi-
lar work D times. While this factor of D is also implicit in
the centralized computation (because intermediate results
may grow to be O(D)-bits long), in practice the real-world
inputs are not worst-case and most intermediate results are
less than O(D)-bits long, so the run-time increases by a sub-
linear factor of D instead. Coupled with the fact that the
number of rounds for both methods is D, this explains the
slowdowns by roughly D and D2 in both methods.

Figure 2 (right column) shows the run-time of Π4. The
first two plots show that run-time increases roughly quadrat-
ically as a function of D and of `. The third plot examines
the dependence of the run-time on the number of nodes:
sub-networks of a certain size are created by picking a ran-
dom node and performing a BFS until the required number
of nodes is reached. Here we observe that run-time increases
roughly linearly.
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Figure 2: Left column: running time of protocols Π1,Π2, and
Π3 on three datasets (aarhus, london, and hiv top to bottom)
for varying D. Right column reports scalability of Π4. Top to
bottom: running time as a function of D; as a function of ` with
D = 3; as a function of |V | with D = 3.

7. CONCLUSIONS AND FUTURE WORK
We study a setting in which several social network hosts

wish to compute a centrality score for each user in the multi-
layer graph induced by their private graphs. We define three
centrality scores and devise secure multiparty protocols for
computing them. For πD

3 – the most sensitive measure – we
devise a protocol which has computational and communica-
tion costs that are linear in the number of users, whence it
is scalable to very large graphs.

This study is one of very few studies to date that
present secure multiparty protocols on distributed multi-
layer graphs, where different players hold different layers of
links. As future work we intend to explore the applicabil-
ity of the methods presented here to compute the PageR-
ank score [5] when the underlying graph data is distributed
among several hosts. The PageRank score is closely related
to our πD

2 ; the only difference between the two scores is
that while πD

2 is based on powers of the adjacency matrix
A, PageRank is based on powers of the matrix (K−1A)T ,
where K is a diagonal matrix that records the out-degrees.
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A. Arenas. Navigability of interconnected networks
under random failures. Proceedings of the National
Academy of Sciences, 111(23):8351–8356, 2014.

[10] D. Demmler, T. Schneider, and M. Zohner. Ad-hoc
secure two-party computation on mobile devices using
hardware tokens. In USENIX Security Symposium,
pages 893–908, 2014.

[11] K. C. Foster, S. Q. Muth, J. J. Potterat, and R. B.
Rothenberg. A faster katz status score algorithm.
Computational & Mathematical Organization Theory,
7(4):275–285, 2001.

[12] R. Gennaro, M. O. Rabin, and T. Rabin. Simplified
VSS and fact-track multiparty computations with
applications to threshold cryptography. In PODC,
pages 101–111, 1998.

[13] O. Goldreich. The Foundations of Cryptography -
Volume 2, Basic Applications. Cambridge University
Press, 2004.

[14] O. Goldreich, S. Micali, and A. Wigderson. How to
play any mental game or A completeness theorem for
protocols with honest majority. In STOC, pages
218–229, 1987.

[15] S. Goldwasser and S. Micali. Probabilistic encryption.
J. Comput. Syst. Sci., 28(2):270–299, 1984.

[16] S. Goldwasser, S. Micali, and C. Rackoff. The
knowledge complexity of interactive proof systems.
SIAM J. Comput., 18(1):186–208, 1989.

[17] A. Halu, R. J. Mondragón, P. Panzarasa, and
G. Bianconi. Multiplex pagerank. PloS one,
8(10):e78293, 2013.

[18] M. Kantarcioglu and C. Clifton. Privacy-preserving
distributed mining of association rules on horizontally
partitioned data. Transactions on Knowledge and
Data Engineering, 16(9):1026–1037, 2004.

[19] L. Katz. A new status index derived from sociometric
index. Psychometrika, pages 39–43, 1953.

[20] M. Kivelä, A. Arenas, M. Barthelemy, J. P. Gleeson,
Y. Moreno, and M. A. Porter. Multilayer networks.
Journal of Complex Networks, 2(3):203–271, 2014.

[21] N. Korula and S. Lattanzi. An efficient reconciliation
algorithm for social networks. PVLDB, 7(5):377–388,
2014.

[22] D. Liben-Nowell and J. M. Kleinberg. The link
prediction problem for social networks. In CIKM,
pages 556–559, 2003.

[23] X. Lin, C. Clifton, and M. Zhu. Privacy-preserving
clustering with distributed EM mixture modeling.
Knowl. Inf. Syst., 8(1):68–81, 2005.

[24] Y. Lindell and B. Pinkas. Privacy preserving data
mining. In Crypto, pages 36–54, 2000.

[25] Y. Lindell and B. Pinkas. A proof of security of yao’s
protocol for two-party computation. J. Cryptology,
22(2):161–188, 2009.

[26] Z. Lu, B. Savas, W. Tang, and I. S. Dhillon.
Supervised link prediction using multiple sources. In
ICDM, pages 923–928, 2010.

[27] D. Malkhi, N. Nisan, B. Pinkas, and Y. Sella. Fairplay
- secure two-party computation system. In USENIX
Security Symposium, pages 287–302, 2004.

[28] M. J. Rattigan and D. Jensen. The case for anomalous
link discovery. SIGKDD Explor. Newsl., 7(2):41–47,
2005.

[29] P. Sarkar and A. W. Moore. A tractable approach to
finding closest truncated-commute-time neighbors in
large graphs. In UAI, pages 335–343, 2007.

[30] A. Shamir. How to share a secret. Commun. ACM,
22(11):612–613, 1979.
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