
Finding All Maximally-Matchable Edges in a Bipartite Graph

Tamir Tassa∗

Abstract

We consider the problem of finding all maximally-matchable edges in a bipartite graph G =
(V,E), i.e., all edges that are included in some maximum matching. We show that given any max-
imum matching in the graph, it is possible to perform this computation in linear time O(n + m)
(where n = |V | and m = |E|). Hence, the time complexity of finding all maximally-matchable
edges reduces to that of finding a single maximum matching, which is O(n1/2m) (Hopcroft and
Karp [12]), or O((n/ log n)1/2m) for dense graphs with m = Θ(n2) (Alt et al. [2]). This time
complexity improves upon that of the best known algorithms for the problem, which is O(nm)
(Costa [5] for bipartite graphs, and Carvalho and Cheriyan [6] for general graphs). Other al-
gorithms for solving that problem are randomized algorithms due to Rabin and Vazirani [15] and
Cheriyan [3], the runtime of which is Õ(n2.376). Our algorithm, apart from being deterministic,
improves upon that time complexity for bipartite graphs when m = O(nr) and r < 1.876. In
addition, our algorithm is elementary, conceptually simple, and easy to implement.

Keywords. Bipartite graphs, perfect matchings, maximum matchings, maximally-matchable edges

1 Introduction

Let V1 be a set of men and V2 be a set of women that are registered in a matchmaking agency.
Each of the men (women) has an associated description and given preferences regarding the woman
(man) with whom he (she) wishes to get acquainted. Those descriptions and preferences induce a
bipartite graph G of compatibilities on the set of nodes V = V1∪V2. The agency then presents to the
clients the links that are relevant to them, so that they can choose whom to meet. Some of those links
may not be extended to a maximum matching in the bipartite graph. The agency has an incentive to
identify those links upfront and not offer them to its clients, since if they would be offered and one
of them would be successful, it would prevent the possibility of achieving a maximum matching.
Therefore, given the full bipartite graph G, it is necessary to remove from it all edges that are not
part of a maximum matching, or, alternatively speaking, it is needed to compute the subgraph of G
that equals the union of all maximum matchings in G.

In order to formalize this problem, we recall some of the basic terminology regarding matchings
in graphs.

∗Department of Mathematics and Computer Science, The Open University, 1 University Road, Ra’anana, Israel 43537.
Telephone: +972-9-7781272. Fax: +972-9-7780706. Email: tamirta@openu.ac.il

1

Definition 1.1. Let G = (V,E) be a graph.

• A matching in G is a collection M ⊆ E of non-adjacent edges.

• A matching M is called maximal if it is not a proper subset of any other matching.

• A maximal matching M is called a maximum (cardinality) matching if there does not exist a
matching with a greater cardinality.

• A maximum matching M is called perfect if it covers all of the nodes in V .

• An edge e ∈ E is a maximally-matchable edge if it is included in some maximum matching.1

We study here one of the fundamental problems in matching theory, namely, the identification
of all maximally-matchable edges in a given graph G. We focus here on bipartite graphs, i.e.
G = (V,E) where V = V1 ∪ V2, V1 ∩ V2 = ∅, and E ⊆ V1 × V2, and devise an efficient algorithm
for that problem in such graphs.

Our main contributions herein are summarized as follows: In case we are given one of the max-
imum matchings in the bipartite graph G = (V,E), Algorithm 3 in Section 2 finds all maximally-
matchable edges in linear time O(n + m), where n = |V | and m = |E|. (In the application that
motivated this study there was indeed one “natural” maximum matching that was known without
any computation, see Section 5.) Without such prior knowledge on the graph, we may first find
any maximum matching in the graph, and then proceed to apply Algorithm 3 in order to complete
the computation in additional linear time. Algorithm 1 implements this approach. Its runtime is
dominated by the runtime of the procedure for finding a maximum matching.

Algorithm 1 Finding all maximally-matchable edges in a bipartite graph G = (V,E).
Input: A bipartite graph G = (V,E).
Output: All maximally-matchable edges in E.

1: Find a maximum matching in G, say M .
2: Using M , invoke Algorithm 3 in order to find all maximally-matchable edges in G.

The Hopcroft-Karp algorithm [12] offers the best known worst-case performance for finding a
maximum matching in a bipartite graph, with a runtime of O(n1/2m). For dense bipartite graphs, a
slightly better alternative exists: An algorithm by Alt et al. [2] finds a maximum matching in a bipar-

tite graph in time O
(
n3/2

(
m

logn

)1/2
)

. In cases where m = Θ(n2), it becomes O((n/ log n)1/2m),

whence it is a (log n)1/2-factor faster than the Hopcroft-Karp algorithm.
A faster algorithm for finding a maximum matching in bipartite graphs was recently proposed by

Goel et al. [10] for the special case of d-regular graphs (graphs in which all nodes have degree d).
However, in such graphs all edges are maximally-matchable (see more on that in Section B).

The paper is organized as follows. The algorithm for finding all maximally-matchable edges from
any maximum matching in the bipartite graph is given in Section 2. In Section 3, we consider the
problem in a dynamic setting and discuss an efficient implementation in such settings. In Section
4, we discuss related work and compare our algorithm to the leading algorithms. We conclude in
Section 5 by describing problems from data privacy that motivated this study, and we suggest future

1Such edges are sometimes called allowed edges, e.g. [6, 13].

2

research. In the Appendix, we comment on the size of a matching to which a given set of non-
adjacent edges can be extended (Section A), and prove that in regular bipartite graphs all edges are
maximally-matchable (Section B).

2 A linear time algorithm for finding all maximally-matchable edges from any max-
imum matching

We begin by considering in Section 2.1 the case of balanced graphs (|V1| = |V2|) with a perfect
matching. In Section 2.2 we consider the general case.

2.1 Bipartite graphs with a perfect matching

Let us denote the nodes of the graph as follows: V1 = {v1, . . . , vñ} and V2 = {v′1, . . . , v′ñ}
(here, ñ = n

2). The graph G is assumed to have at least one known perfect matching; without loss
of generality, we assume that it is M := {(v1, v′1), . . . , (vñ, v′ñ)}.

Definition 2.1. A set of ℓ ≥ 1 edges in the graph G is called an alternating cycle (with respect to M)
if there exist ℓ distinct indices, 1 ≤ i1, . . . , iℓ ≤ ñ, such that the ℓ edges are (vi1 , v

′
i2
), (vi2 , v

′
i3
),. . .,

(viℓ−1
, v′iℓ),(viℓ , v

′
i1
).

Theorem 2.2. Let G = (V,E) be a balanced bipartite graph as described above, and assume that
M := {(v1, v′1), . . . , (vñ, v′ñ)} ⊆ E. Then an edge e ∈ E is maximally-matchable if and only if it
is included in an alternating cycle.

Proof. Assume that e = (vi1 , v
′
i2
) is part of an alternating cycle, say (vi1 , v

′
i2
), (vi2 , v

′
i3
),. . .,

(viℓ−1
, v′iℓ), (viℓ , v

′
i1
). If we augment this alternating cycle with the ñ − ℓ edges (vi, v

′
i) for all

i /∈ {i1, . . . , iℓ} we get a perfect matching. Hence, e is maximally-matchable.
Assume next that e = (vi1 , v

′
i2
) is maximally-matchable. Then it is included in some perfect

matching M ′. We proceed to define a sequence of edges Se ⊆ M ′ in the following manner: e1 :=
e = (vi1 , v

′
i2
); then, for all j ≥ 1, if ej = (vij , v

′
ij+1

), we set ej+1 := (vij+1 , v
′
ij+2

), where v′ij+2

is the node that M ′ matches with vij+1 . Since M ′ is finite, the sequence must repeat itself at some
point. Namely, there must exist a minimal index j0 ≥ 2 such that ej0 equals one of the previous
edges in Se. It is easy to see that ej0 must coincide with e1 since if ej0 would coincide with, say
e2, then M ′ would have included two different edges that are adjacent to vi2 . But then the sequence
Se up to that point, Se = {e1 = e, e2, . . . , ej0−1} is an alternating cycle with respect to M . Hence,
every maximally-matchable edge must be contained in an alternating cycle.

Next, we define the directed graph H = (U,F) that is induced by the bipartite graph G = (V,E).
In the directed graph H = (U,F) the set of nodes is U = {u1, . . . , uñ} and (ui, uj) is a directed
edge in that graph if and only if i ̸= j and (vi, v

′
j) ∈ E. See example of a bipartite graph G and the

corresponding directed graph H in Figure 1.
It is easy to see that, in view of Theorem 2.2, an edge (vi, v

′
j) ∈ E is maximally-matchable in G

if and only if i = j or the edge (ui, uj) ∈ F is part of a directed cycle in H . For example, the edge
(v3, v

′
4) is maximally-matchable in G that is given in Figure 1 since it is part of the perfect matching

{(v1, v′1), (v2, v′3), (v3, v′4), (v4, v′2)} (in which the last three edges are an alternating cycle), and
indeed the corresponding edge (u3, u4) is part of a directed cycle of length 3 in H .

Therefore, the problem of finding all maximally-matchable edges in G reduces to the problem of
finding all edges in the directed graph H that are part of a directed cycle. This may be achieved as

3

u
1

u
2

u
4

u
3

v
1

v
2

v
3

v
4

v’
1

v’
2

v’
3

v’
4

Figure 1. A bipartite graph G and the corresponding directed graph H

follows: First, one has to find all strongly connected components of H; namely, all maximal strongly
connected subgraphs of H (recall that a directed graph is strongly connected if there is a path from
each node in the graph to every other node). If each strongly connected component is contracted
to a single node, the resulting graph is a directed acyclic graph. Consequently, a given edge in
H is part of a directed cycle if and only if it connects two nodes in the same strongly connected
component. There are several efficient algorithms for finding the strongly connected components of
a given directed graph. Tarjan’s algorithm [17] and Cheriyan-Mehlhorn-Gabow algorithm [4] are
both equally efficient with a linear runtime. Finally, we use those findings to mark all maximally-
matchable edges in the original bipartite graph G. Algorithm 2 does all of the above. Its runtime is
O(n+m).

Algorithm 2 Finding all maximally-matchable edges in a bipartite graph, given a perfect matching.
Input: A bipartite graph G = (V,E) where V = V1 ∪ V2, V1 = {v1, . . . , vñ}, V2 = {v′1, . . . , v′ñ},

E ⊆ V1 × V2, and for all 1 ≤ i ≤ ñ, (vi, v′i) ∈ E.
Output: All maximally-matchable edges in E.

1: Mark all edges in E as not maximally-matchable.
2: Construct the directed graph H = (U,F) that corresponds to G.
3: Find all strongly connected components of H .
4: for all edges (ui, uj) ∈ F do
5: if ui and uj belong to the same strongly connected component in H then
6: Mark the edge (vi, v

′
j) ∈ E as maximally-matchable.

7: end if
8: end for
9: Mark all edges (vi, v′i) ∈ E as maximally-matchable, 1 ≤ i ≤ ñ.

2.2 General bipartite graphs

After dealing with balanced bipartite graphs that have a perfect matching, we turn our attention
to the general case. Hereinafter we let G = (V,E) be a bipartite graph where the two parts of the
graph are V1 = {v1, . . . , vn1} and V2 = {v′1, . . . , v′n2

}, n1 ≤ n2, and the maximum matchings are
of size t ≤ n1. We may assume that t < n2 since if t = n2, G is a balanced bipartite graph with a
perfect matching, and we already solved the problem for such graphs. Let M be a given maximum
matching in G. We may assume, without loss of generality, that M := {(v1, v′1), . . . , (vt, v′t)}.

4

Definition 2.3. A node vi or v′i is called an M -upper node if i ≤ t and an M -lower node if i > t.
An edge (vi, v

′
j) in G is called an M -upper edge if it connects two M -upper nodes; all other edges

are called M -lower edges.

In other words, a node is called M -upper if it is covered by M , and called M -lower otherwise.
(The terminology simply reflects the fact that the so-called M -upper nodes appear in the upper part
of the graph.) Consider, for example, the graph in the left of Figure 2. In that graph n1 = n2 = 4,
t = 3, and M = {(v1, v′1), (v2, v′2), (v3, v′3)}; the graph has six M -upper nodes and two M -lower
ones. The edges (v3, v′4) and (v4, v

′
1) are M -lower edges, while all other five edges are M -upper.

v
1

v
2

v
3

v
4

v’
1

v’
2

v’
3

v’
4

v
1

v
2

v
3

v’
1

v’
2

v’
3

Figure 2. A bipartite graph G and the corresponding restriction Gu

For simplicity, we shall use hereinafter the terms upper and lower without specifying the prefix
M . It should always be understood that a node or an edge are upper or lower with respect to the
given M .

Our first observation towards a classification of all maximally-matchable edges in such a graph
is as follows.

Proposition 2.4. Let G = (V,E) be a bipartite graph as described above. Then:

1. The graph has no lower edges that connect two lower nodes.

2. All lower edges are maximally-matchable.

Proof. The first claim is obvious since if there was a lower edge (vi, v
′
j) where i, j > t, then

M ∪ {(vi, v′j)} would have been a matching, thus contradicting the assumed maximality of M . As
for the second claim, let (vi, v′j) be a lower edge with i > t. In view of the first claim, v′j must

be an upper node. Therefore,
(
M ∪ {(vi, v′j)}

)
\ {(vj , v′j)} is also a maximum matching, whence

(vi, v
′
j) is a maximally-matchable edge.

As Proposition 2.4 determines that all lower edges are maximally-matchable, it remains to iden-
tify the maximally-matchable edges among the upper edges. Let Gu denote the restriction of G to
the upper nodes, {v1, v′1, . . . , vt, v′t}. We distinguish between two types of maximally-matchable
edges among the upper edges:

Definition 2.5. An upper edge is a maximally-matchable edge of type I (with respect to M) if it is
included in a maximum matching that consists only of upper edges. An upper edge is a maximally-
matchable edge of type II (with respect to M) if it is maximally-matchable, but all maximum match-
ings that include it include also a lower edge.

5

For example, consider the graph G on the left of Figure 2 and the corresponding Gu on the right.
The edge (v3, v

′
1) is not maximally-matchable, but all other six edges are maximally-matchable:

1. The edges (v3, v
′
4) and (v4, v

′
1) are maximally-matchable since they are lower edges. (For

example, (v3, v′4) may be extended to a maximum matching with (v1, v
′
1) and (v2, v

′
2).)

2. The edges (v1, v′1), (v2, v
′
2), and (v3, v

′
3) are maximally-matchable edges of type I since they

are maximally-matchable edges also in Gu.

3. The edge (v2, v
′
3) is a maximally-matchable edge of type II since it is maximally-matchable

(together with (v1, v
′
1) and (v3, v

′
4) it forms a maximum matching), but it is not maximally-

matchable in Gu.

All maximally-matchable edges of type I can be identified by applying Algorithm 2 on the sub-
graph Gu (since Gu is a balanced graph with a perfect matching). It remains only to identify the
maximally-matchable edges of type II.

Definition 2.6. A set P of ℓ − 1 ≥ 1 upper edges in G is called an upper alternating path (with
respect to M) if there exist ℓ distinct indices, 1 ≤ i1, . . . , iℓ ≤ t, such that

P = {(vi1 , v′i2), (vi2 , v
′
i3), . . . , (viℓ−1

, v′iℓ)} . (1)

If i0 > t and λ = (vi0 , v
′
i1
) is a lower edge in E then {λ}∪P is called a left-augmented alternating

path. If iℓ+1 > t and ρ = (viℓ , v
′
iℓ+1

) is a lower edge in E then P ∪{ρ} is called a right-augmented
alternating path. Finally, we let AP denote the set consisting of all alternating paths of all three
sorts — upper, left- and right-augmented.

For example, P = {(v2, v′3)} is an upper alternating path of length 1 in the graph G of Figure 2,
while P ∪ {(v3, v′4)} is a corresponding right-augmentation.

Theorem 2.7. Any maximally-matchable edge of type II with respect to M must be contained in an
either left- or right-augmented alternating path in G with respect to M . On the other hand, an edge
that is contained in an either left- or right-augmented alternating path is maximally-matchable.

Proof. Let e = (vi, v
′
i′) be an upper edge which is a maximally-matchable edge of type II with

respect to M . Let Me be a maximum matching that includes e. Define

APe = {P ∈ AP : P ⊆ Me and e ∈ P} ;

namely, APe consists of all alternating paths (upper, left- and right-augmented ones) that are con-
tained in Me and include e. Clearly, APe is nonempty since it includes the upper alternating path
of length 1 that consists only of e. Hence, we may select a path P ∈ APe of maximal length among
all paths in APe. We claim, and prove below, that P cannot be an upper alternating path. Hence,
P must be either left- or right-augmented alternating path. Since P includes e, that will settle the
necessary condition in the theorem: Any maximally-matchable edge of type II with respect to M
must be contained in an either left- or right-augmented alternating path with respect to M .

Assume that P is an upper alternating path. Denoting its length by ℓ− 1, P must take the form

P = {(vi1 , v′i2), (vi2 , v
′
i3), . . . , (viℓ−1

, v′iℓ)} ,

where 1 ≤ i1, . . . , iℓ ≤ t. We claim that the matching Me does not match neither v′i1 nor viℓ .
Assume, towards contradiction, that Me includes an edge (vj , v

′
i1
). Then j cannot be any of the

6

indices outside the set {i1, . . . , iℓ}, as that would contradict the assumed maximality of P . In
addition, j cannot be any of the indices in {i1, . . . , iℓ−1} since then Me would include two edges that
are adjacent to vj . Finally, j cannot be iℓ since then e would have been contained in an alternating
cycle in Gu (Definition 2.1) and then, by Theorem 2.2, e would have been maximally-matchable in
Gu, thus contradicting our assumption that e is a maximally-matchable edge of type II. Therefore,
Me does not match v′i1 . For the same reasons, Me cannot match viℓ . But then, consider the set of
edges

M ′
e = (Me \ P) ∪ {(vik , v

′
ik
) : 1 ≤ k ≤ ℓ} .

In view of the above discussion, M ′
e is a matching (since Me \P does not cover any of the nodes vik

and v′ik , 1 ≤ k ≤ ℓ). But as |M ′
e| = |Me|+ 1, it contradicts our assumption that Me is a maximum

matching.
Next, we turn to prove the sufficiency of the condition; namely, that an edge that is contained in

an either left- or right-augmented alternating path with respect to M must be maximally-matchable
in G. Let

P = {(vi0 , v′i1), (vi1 , v
′
i2), (vi2 , v

′
i3), . . . , (viℓ−1

, v′iℓ)}

be a left-augmented path in G (namely, i0 > t and ik ≤ t for all 1 ≤ k ≤ ℓ). Then

M0 = P ∪ {(vj , v′j) : j ∈ {1, . . . , t} \ {i1, . . . , iℓ}} (2)

is a matching of cardinality t. Hence, all edges in P are included in a maximum matching, whence
they are all maximally-matchable. (One of those maximally-matchable edges, namely (vi0 , v

′
i1
), is

a lower edge, while all the other upper edges may be maximally-matchable edges of either type I or
II). The proof for right-augmented paths is similar.

Hence, in order to identify all maximally-matchable edges of type II with respect to M , we have
to scan all left- and right-augmented alternating paths and mark all upper edges along them as being
maximally-matchable (some of those maximally-matchable edges may be of type I, whence they
will be ”discovered” twice). To do that, we use again the representation of G as a directed graph
H = (U,F).

Definition 2.8. Let G = (V,E) be a bipartite graph where the two parts of the graph are V1 =
{v1, . . . , vn1} and V2 = {v′1, . . . , v′n2

}, and n1 ≤ n2. The corresponding left-to-right directed
graph is HLR = (U,FLR) where U = {u1, . . . , un2} and (ui, uj) ∈ FLR if and only if (vi, v′j) ∈ E.
The right-to-left directed graph is HRL = (U,FRL) where U = {u1, . . . , un2} and (ui, uj) ∈ FRL

if and only if (vj , v′i) ∈ E.

With those definitions, an edge (vi, v
′
j) is on a left-augmented alternating path if and only if the

edge (ui, uj) is reachable in HLR from one of the nodes uk, where t+1 ≤ k ≤ n2. Hence, all that is
needed is to perform a BFS of HLR from those nodes and for every edge (ui, uj) that we visit along
this scan, mark the corresponding edge (vi, v

′
j) in G as a maximally-matchable edge. Similarly, an

edge (vi, v
′
j) is on a right-augmented alternating path if and only if the edge (uj , ui) is reachable in

HRL from one of the nodes uk, where t + 1 ≤ k ≤ n2. Here, we need to perform a BFS of HRL

from those nodes and for every edge (uj , ui) that we visit along this scan, mark the corresponding
edge (vi, v

′
j) in G as a maximally-matchable edge. The runtime of such a scan is linear. Algorithm

3 summarizes the procedure of finding all maximally-matchable edges in a general bipartite graph.

7

Algorithm 3 Finding all maximally-matchable edges in a general bipartite graph, given a maximum
matching.
Input: A bipartite graph G = (V,E) where V = V1∪V2, V1 = {v1, . . . , vn1}, V2 = {v′1, . . . , v′n2

},
E ⊆ V1 × V2, and {(vi, v′i) : 1 ≤ i ≤ t} is a given maximum matching in G.

Output: All maximally-matchable edges in E.
1: Mark all lower edges as maximally-matchable.
2: Mark all upper edges as not maximally-matchable.
3: Apply Algorithm 2 on the restriction Gu of G to {v1, v′1, . . . , vt, v′t}, thus marking all upper

edges that are maximally-matchable in Gu.
4: Construct the left-to-right directed graph HLR.
5: Add to HLR a new source node u0 and connect it to each of the nodes uk, where t+1 ≤ k ≤ n1.
6: Apply a BFS on the graph HLR starting from u0. For each edge (ui, uj) that the BFS visits,

mark the corresponding edge (vi, v
′
j) in G as maximally-matchable.

7: Construct the right-to-left directed graph HRL.
8: Add to HRL a new source node u0 and connect it to each of the nodes uk, where t+1 ≤ k ≤ n2.
9: Apply a BFS on the graph HRL starting from u0. For each edge (ui, uj) that the BFS visits,

mark the corresponding edge (vj , v
′
i) in G as maximally-matchable.

3 The dynamic setting

Going back to the opening example of the matchmaking agency, if one of the maximally-matchable
edges materializes and another couple of clients leaves happily the matching game, the agency has
to update the set of maximally-matchable edges in the reduced graph. Here we comment on how
to cope with such dynamic updates efficiently. Before doing so, we describe another interesting
example.

A domino board is a bounded region D in the Euclidean plane which is the union of unit squares
(Si,j := [i, i + 1] × [j, j + 1] for some i, j ∈ N) that are connected in the sense that there exists a
path between the centers of every two unit squares that is fully contained within the interior of D.
Each unit square Si,j is colored white in case i + j is even, or black otherwise. A perfect tiling of
the region D is a cover of D by |D|/2 non-overlapping dominos (|D| being the area of D), where
dominos are shapes formed by the union of two unit squares meeting edge-to-edge.

Now, let us consider the following computerized game: A domino region that has a perfect tiling
is presented to the player, who needs to tile it by placing dominos on it, one at a time. If he places
a domino in a location that prevents any completion of the tiling, the computer issues an alert and
then the player has a chance to try again. The player wins if he was able to complete the tiling
successfully with a number of bad moves below some predefined threshold.

Here too, there is an underlying bipartite graph, where each node represents a white or a black
square in D. Each square is connected to any of its neighboring squares of the opposite color. A
perfect tiling of D is a perfect matching in that graph. The bad moves correspond to edges in that
graph that are not maximally-matchable. In each step in the game, the player places one domino;
it is then needed to remove the corresponding nodes and adjacent edges from the underlying graph
and update the list of maximally-matchable edges in the reduced graph.

Following the two motivating examples, we now formulate the problem in the dynamic setting.
Let G be a bipartite graph as discussed in Section 2.2. Assume that we already found a maximum
matching in G, say M := {(v1, v′1), . . . , (vt, v′t)}, and identified all maximally-matchable edges
in G. In addition, we may assume that each maximally-matchable edge is marked by its type:

8

In balanced graphs with a perfect matching all maximally-matchable edges are of the same type,
but in other graphs we distinguish between maximally-matchable edges that are lower edges, and
maximally-matchable edges that are upper edges of type I or of type II. Let (vi, v′j) be a maximally-
matchable edge in G and let G′ be the graph that is obtained from G by removing vi, v′j , and
all adjacent edges. We wish to find a maximum matching in G′ in an efficient manner, in order to
proceed and identify in linear time all maximally-matchable edges in G′. We separate the discussion
to three cases:

• If (vi, v′j) is a maximally-matchable edge of type I, we look in the directed graph HLR for a
path from uj to ui. Assume that the path is

(uj , uj1), (uj1 , uj2), . . . , (ujℓ−1
, ujℓ), (ujℓ , ui) .

Then it is easy to see that

M \ {(vk, v′k) : k ∈ {i, j, j1, . . . , jℓ}} ∪ {(vj , v′j1), (vj1 , v
′
j2), . . . , (vjℓ−1

, v′jℓ), (vjℓ , v
′
i)}

is a maximum matching in G′.

• If (vi, v′j) is a maximally-matchable edge of type II, then Theorem 2.7 implies that either the
edge (ui, uj) is contained in a path in HLR that ends with a lower node, or the edge (uj , ui)
is contained in a path in HRL that ends with a lower node. Hence, we may apply a BFS on
HLR starting in ui in order to look for a path that connects it to a lower node; if none is found,
a similar BFS on HRL, starting in uj , is guaranteed to find a path that reaches a lower node.
Once such a path is found, we may reconstruct the corresponding maximum matching M0

in G that contains the edge (vi, v
′
j) (see Eq. (2)). Clearly, M0 \ {(vi, v′j)} is a maximum

matching in G′.

• Finally, if (vi, v′j) is a lower edge then M \ {(vi, v′i)} is a maximum matching in G′ in case
i ≤ t, or M \ {(vj , v′j)} is, in case j ≤ t.

4 Related work

Costa [5] presented an algorithm for decomposing the edge set of a bipartite graph G = (V,E)
into three disjoint partitions, E = E1 ∪ Ew ∪ E0, where E1 contains all maximally-matchable
edges that belong to all maximum matchings in G, Ew contains all other maximally-matchable
edges, and E0 consists of the non-maximally-matchable edges. The runtime of her algorithm is
O(nm). Carvalho and Cheriyan [6] designed an algorithm with the same time complexity for
finding all maximally-matchable edges in general graphs, using well-known results on efficient
implementations of Edmonds’ maximum-matching algorithm and other results from the matching
folklore.

Rabin and Vazirani [15] designed a simple randomized algorithm for finding all maximally-
matchable edges in perfectly-matchable general graphs. We outline their algorithm: Let G = (V,E)
be the input graph. Its Tutte matrix is defined as the following n× n matrix,

Ai,j =

xi,j (vi, vj) ∈ E , i > j
−xi,j (vi, vj) ∈ E , i < j
0 otherwise

,

9

where xi,j are indeterminates. Let p > n4 be any prime, S(A) be a random substitition of all xi,j
with elements from GF (p), and B = S(A)−1. Then with probability at least e−2/n2

, the matrix B
identifies the set of maximally-matchable edges, in the sense that (vi, vj) is a maximally-matchable
edge if and only if Bi,j ̸= 0. The runtime of this algorithm is determined by matrix inversion
time and it equals Õ(n2.376). Cheriyan [3] designed a similar algorithm with the same runtime that
applies for any general graphs (i.e., not necessarily ones with a perfect matching).

Our algorithm is deterministic. Its runtime is determined by the time to find a single maximum
matching, which is O(n1/2m) (Hopcroft and Karp [12]) or O((n/ log n)1/2m) for dense graphs
with m = Θ(n2) (Alt et al. [2]). Hence, it improves upon that of [5, 6] by a factor of n1/2 (or
(n log n)1/2 for dense graphs, where m = Θ(n2)). In comparison to the randomized algorithms,
our algorithm is faster when m = O(nr) and r < 1.876, since then its runtime is O(nr+1/2),
where r + 1/2 < 2.376. In addition, our algorithm is elementary, conceptually simple, and easy to
implement. Another advantage of our algorithm in comparison to the above mentioned algorithms
is that in cases where there is one ”natural” maximum matching, which is known without invoking
a costly procedure for finding one, the runtime of our algorithm is only O(n + m). The runtime
of all of the above mentioned algorithms remains the same even in such cases. (Examples of cases
where one maximum matching is known upfront are described in Section 5.)

Identifying all maximally-matchable edges is equivalent to computing the union of all maximum
matchings in the graph. Another line of research concentrated on algorithms for enumerating all
maximum matchings in bipartite graphs, e.g. [7, 18, 19]. Naturally, the runtime of such algorithms
depends on the number of the counted matchings (perfect matchings in [7, 19] and maximal, max-
imum, or perfect matchings in [18]). We recall in this context that counting the number of perfect
matchings in a bipartite graph is equivalent to computing the permanent of a {0, 1}-matrix, a prob-
lem that is known to be #P-complete [20].

5 Epilogue

This study was motivated by a problem of providing anonymity in databases [8]. Consider a
data owner that has a database of records that hold information about individuals in some popu-
lation. He needs to publish the database for the purpose of analysis and data mining. Typically,
such data records contain sensitive information (like medical condition, or income), whence they
are published without identifying attributes such as name or SSN. However, even after removing
identifying attributes, the data still contains so-called quasi-identifier attributes, e.g. age, gender,
or location, that could be used for identification. In particular, an adversary may use combinations
of those attributes in order to uniquely link records from the published de-identified database to
records in other publicly accessible databases that contain identifying attributes. The model of k-
anonymity was proposed as a countermeasure for such linking attacks [16]. That model suggests to
generalize the quasi-identifiers attributes (e.g., by replacing an age entry with a range of ages that
contains it) until every record in the database has at least k − 1 other records which are identical to
it, when projected on the quasi-identifiers. By doing so, any linking attack will succeed in locating
a record of a target individual in no less than k records in the published database, whence, privacy is
respected to some extent. On the other hand, the utility of the data is damaged since the published
data is generalized. The goal is then to find, for a given database and a given anonymity parame-
ter k, a corresponding k-anonymization that maintains maximal utility. (That problem is NP-hard
[1, 9, 14].)

In order to enhance utility, Gionis et al. [8] suggested to relax the k-anonymity notion in a way
that, on one hand, maintains the same level of privacy, and on the other hand, allows anonymizations

10

with higher utility. k-Anonymity demands to generalize the database entries until it consists of
clusters of records, where each cluster contains at least k records that are identical to each other
when projected on the quasi-identifiers. In [8] it was recognized that a similar protection against
linking attacks can be achieved even without reaching this clustered structure. All that is needed
is to generalize the data until the following condition holds: For each individual in the underlying
population, his record of quasi-identifiers (which the adversary is assumed to know) is consistent
with at least k generalized records in the published database.

This setting may be modeled by a bipartite graph: The nodes on the left part of the graph corre-
spond to the records in a publicly-accessible database (the records that include identifying attributes
and exact quasi-identifiers) and the nodes on the right correspond to the records in the published
database (those records include generalized quasi-identifiers and also additional sensitive informa-
tion). An edge connects two nodes if their quasi-identifier data is consistent; namely, if the gen-
eralized values on the right generalize the specific values on the left. As the adversary knows that
there is a one-to-one mapping between the records in the two databases, he may infer that all edges
in the bipartite graph that are not maximally-matchable can be ignored, as they cannot stand for a
correct link. Therefore, the data owner needs to make sure that even after the removal of such non-
maximally-matchable edges from the bipartite graph, the anonymity constraint is still respected.
Since the data owner knows the true perfect matching (because he has the raw data and he performs
on it the generalization), he may use Algorithm 2 to identify all non-maximally-matchable edges
efficiently and then verify that the generalized version of the database that he created provides the
required level of anonymity.

Another example from the realm of privacy and anonymity is the work of Yao et al. [21]. In that
work, they consider the case in which multiple views of the same database need to be released and it
is needed to check whether their release would violate some privacy constraint (k-anonymity). The
algorithm which they suggest needs to identify all edges in a bipartite graph that are part of some
complete matching. (A matching in a bipartite graph is called complete if it covers all nodes in
the possibly smaller part of the graph.) They suggest to do it using a naı̈ve approach: Testing each
edge in the graph whether its removal leaves a graph that still has a complete matching. Such an
approach entails invoking the Hopcroft-Karp algorithm for each edge, whence its time complexity
is O(n1/2m2). However, in the case that was studied there, the data owner knows one complete
matching in the underlying bipartite graph. Whence, he may use Algorithm 3 in order to perform the
same task in O(n+m). The improvement factor in runtime is O(n1/2m). As in such applications
the graphs tend to be very large, such an improvement offers a practical solution instead of an
impractical one.

An interesting research problem that this study suggests is to extend this approach to the gen-
eral case, namely to non-bipartite graphs. The question is whether a similar algorithm that uses
one known maximum matching can be devised in order to find all maximally-matchable edges effi-
ciently.

11

A Extending a set of non-adjacent edges to a matching

The discussion in Section 2 implies that any set of k non-adjacent edges in a bipartite graph may
be extended to a matching of size at least t− k, where t is the size of a maximum matching in G.

Theorem A.1. Let G = (V,E) be a bipartite graph where the two parts of the graph are V1 =
{v1, . . . , vn1} and V2 = {v′1, . . . , v′n2

}, n1 ≤ n2, and the maximum matchings are of size t ≤ n1.
Let P be a set of k non-adjacent edges in E. Then there exists a matching of size t − k in G that
includes P . More specifically, assume that P = {(vji , v′ℓi) : 1 ≤ i ≤ k} where A = {j1, . . . , jk} ⊂
[n1] and A′ = {ℓ1, . . . , ℓk} ⊂ [n2] are the corresponding subsets of k distinct indices. Then there
exists a matching of size k + t− |A ∪A′| in G that includes P .

Proof. As before, we may assume, without loss of generality, that one of the maximum matchings
in G is M := {(v1, v′1), . . . , (vt, v′t)}. Let B = [t]\ (A∪A′) denote the set of indices of edges from
M that are not adjacent to any of the edges in P . The size of B is at least t − |A ∪ A′|. Clearly,
P ∪ {(vi, v′i) : i ∈ B} is a matching that includes P . Its size is k + |B| ≥ k + t− |A ∪ A′|. Since
|A ∪A′| ≤ |A|+ |A′| = 2k, we infer that P is included in a matching of size at least t− k.

It is easy to see that the lower bound in Theorem A.1 is sharp. To exemplify that, consider the
case where M is a perfect matching consisting of t edges, the set of k non-adjacent edges P is such
that |A ∪ A′| = 2k, and E = M ∪ P . The only way to extend P into a matching is by adding
to it edges from M . The maximal number of edges from M that could be added to P is precisely
t− |A ∪A′| in this case.

B All edges in a regular bipartite graph are maximally-matchable

As noted earlier, the problem of finding a maximum matching in a d-regular bipartite graph is
easier. The maximum matchings in such graphs are perfect. A randomized algorithm due to Goel et
al. [10] finds them in time O(n log n). However, the problem of finding all maximally-matchable
edges in such graphs is trivial, since the set of edges in such graphs may be partitioned into a disjoint
union of d perfect matchings, and, consequently, all edges in such graphs are maximally-matchable.

Theorem B.1. All edges in a regular bipartite graph are maximally-matchable.

Proof. In regular bipartite graphs, G = (V,E), where V = V1∪V2, all nodes have the same degree
d. Hence, such graphs are balanced, |V1| = |V2|. Let X be any subset of V1 and let N(X) denote
the set of all its neighbors in V2. Clearly, |N(X)| ≥ |X| since otherwise at least one of the nodes in
N(X) would have to be of degree higher than d. Hence, Hall’s marriage theorem [11] implies that
G has a perfect matching. Let M1 be such a matching and consider the graph G1 = (V,E \M1).
This graph is (d − 1)-regular, whence it too has a perfect matching, say M2. Continuing in that
manner we may construct d disjoint perfect matchings, M1, . . . ,Md, such that E =

∪
1≤i≤dMi. It

follows that all edges in E are maximally-matchable.

12

References

[1] G. Aggarwal, T. Feder, K. Kenthapadi, R. Motwani, R. Panigrahy, D. Thomas, and A. Zhu.
Anonymizing tables. In ICDT, volume 3363 of LNCS, pages 246–258, 2005.

[2] H. Alt, N. Blum, K. Mehlhorn, and M. Paul. Computing a maximum cardinality matching in
a bipartite graph in time O

(
n1.5

√
m

logn

)
. Information Processing Letters, 37:237–240, 1991.

[3] J. Cheriyan. Randomized O(M(|V|)) algorithms for problems in matching theory. SIAM J.
Comput., 26:1635–1669, 1997.

[4] J. Cheriyan and K. Mehlhorn. Algorithms for dense graphs and networks on the random access
computer. Algorithmica, 15:521–549, 1996.

[5] M.-C. Costa. Persistency in maximum cardinality bipartite matchings. Operations Research
Letters, 15:143–149, 1994.

[6] M. H. de Carvalho and J. Cheriyan. An O(|V||E|) algorithm for ear decompositions of
matching-covered graphs. In SODA, pages 415–423, 2005.

[7] K. Fukuda and T. Matsui. Finding all the perfect matchings in bipartite graphs. Applied
Mathematics Letters, 7:15–18, 1994.

[8] A. Gionis, A. Mazza, and T. Tassa. k-Anonymization revisited. In International Conference
on Data Engineering (ICDE), pages 744–753, 2008.

[9] A. Gionis and T. Tassa. k-Anonymization with minimal loss of information. TKDE, 21:206–
219, 2009.

[10] A. Goel, M. Kapralov, and S. Khanna. Perfect matchings in O(n log n) time in regular bipartite
graphs. In STOC, pages 39–46, 2010.

[11] P. Hall. On representatives of subsets. J. London Math. Soc., 10:26–30, 1935.

[12] J. Hopcroft and R. Karp. An n5/2 algorithm for maximum matchings in bipartite graphs. SIAM
Journal on Computing, 2:225–231, 1973.

[13] L. Lovász and M. Plummer. Matching Theory. AMS Chelsea Publishing, 1986.

[14] A. Meyerson and R. Williams. On the complexity of optimal k-anonymity. In PODS, pages
223–228, 2004.

[15] M. O. Rabin and V. V. Vazirani. Maximum matchings in general graphs through randomiza-
tion. J. Algorithms, 10:557–567, 1989.

[16] P. Samarati and L. Sweeney. Generalizing data to provide anonymity when disclosing infor-
mation. In ACM-SIGMOD Symposium on Principles of Database Systems (PODS), page 188,
1998.

[17] R. Tarjan. Depth-first search and linear graph algorithms. SIAM Journal on Computing,
1(2):146–160, 1972.

13

[18] T. Uno. Algorithms for enumerating all perfect, maximum and maximal matchings in bipartite
graphs. In ISAAC, pages 92–101, 1997.

[19] T. Uno. A fast algorithm for enumerating bipartite perfect matchings. In ISAAC, pages 367–
379, 2001.

[20] L. Valiant. The complexity of computing the permanent. Theoretical Computer Science,
8:189–201, 1979.

[21] C. Yao, X. S. Wang, and S. Jajodia. Checking for k-anonymity violation by views. In VLDB,
pages 910–921, 2005.

14

