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Abstract

Given a set of participants that is partitioned into distinct compartments, a multi-
partite access structure is an access structure that does not distinguish between partici-
pants that belong to the same compartment. We examine here three types of such access
structures: two that were studied before – compartmented access structures and hierar-
chical threshold access structures, and a new type of compartmented access structures
that we present herein. We design ideal perfect secret sharing schemes for these types of
access structures that are based on bivariate interpolation. The secret sharing schemes
for the two types of compartmented access structures are based on bivariate Lagrange
interpolation with data on parallel lines. The secret sharing scheme for the hierarchical
threshold access structures is based on bivariate Lagrange interpolation with data on
lines in general position. The main novelty of this paper is the introduction of bivariate
Lagrange interpolation and its potential power in designing schemes for multipartite
settings, as different compartments may be associated with different lines or curves in
the plane. In particular, we show that the introduction of a second dimension may
create the same hierarchical effect as polynomial derivatives and Birkhoff interpolation
were shown to do in [17].
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1 Introduction

Secret sharing schemes have attracted a lot of attention over the past decade. A great
deal of the ongoing research in this area is devoted to the properties of multipartite access
structures and to secret sharing schemes (especially ideal ones) that realize them. Letting
U = {u1, . . . , un} be the underlying set of participants and P = {C1, . . . , Cm} be a partition
of U into m disjoint subsets, or compartments, an m-partite (or multipartite) access structure
on U with respect to partition P is any access structure that does not distinguish between
members of the same compartment. Weighted threshold access structures [15, 1], multilevel
access structures [16, 3], hierarchical threshold access structures [17], compartmented access
structures [3, 9], bipartite access structures [13], and tripartite access structures [1, 5, 9] are
typical examples of such multipartite access structures.

There are several reasons why multipartite access structures were the focus of attention
of so many studies in secret sharing, from the first years of secret sharing [15, 16, 3] till
today, e.g. [6]. The first reason lies in their generality; in fact, every access structure
may be viewed as a multipartite access structure with singleton compartments (though,
usually, when speaking of multipartite access structures one thinks of settings in which m,
the number of compartments, is significantly smaller than n, the number of participants).
The second reason is that those are very natural and well-motivated access structures, from
both theoretical and practical points of view. The practical motivation stems from the fact
that we live in a world where everyone is equal, but some are more equal than others. The
theoretical motivation is due to the fact that such access structures usually have a very
concise description by a small set of conditions, and since they seem like a natural way of
generalizing threshold access structures: Instead of imposing a threshold condition on the
number of participants in a given subset, we impose a small set of conditions on the number
of participants in the subset from each of the compartments.

Shamir’s threshold secret sharing scheme [15] is based on polynomial interpolation. That
scheme realizes the k-out-of-n threshold access structure, where any subset of U of size at
least k is authorized to recover the secret S. Letting the secret S be an element of a finite
field F, the dealer selects a random polynomial P (x) of degree k−1 over F where P (0) = S.
Each participant ui ∈ U is identified with some (public) identity in the field, xi ∈ F, and
is given the private share P (xi). Clearly, any subset of U of size at least k has enough
information to recover P , and, consequently, also the secret. It is easy to see that any
subset of size less than k remains completely oblivious regarding the value of S = P (0).

Polynomial interpolation served as the basis for secret sharing also in [17] for realizing
hierarchical threshold access structures. Such access structures are multipartite where the
partition represents a hierarchy on U . In order to distinguish between the participants of
different levels, the dealer uses polynomial derivatives. Participants of lesser ranks in the
hierarchy receive private shares that correspond to higher derivatives of the polynomial, as
such shares convey less information on the polynomial than shares that correspond to lower
derivatives. By appropriately selecting the orders of the derivatives and the identities of
the participants in the underlying field, one obtains a secret sharing scheme that realizes
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the hierarchical threshold access structure.
In this paper we show how to utilize bivariate interpolation in order to realize some

multipartite access structures. Letting F be a finite field of size q = |F| sufficiently large so
that the domain of all possible secrets may be embedded in F, the secret S ∈ F is encoded by
the coefficients of an unknown bivariate polynomial P (x, y) ∈ F[x, y]. The dealer associates
each participant ui ∈ U with a unique point (xi, yi) ∈ F2 and gives that participant the
private share P (xi, yi). The idea is to select the participant identities and the secret value so
that authorized subsets will be able to recover P (x, y) and, consequently, the secret, while
unauthorized subsets will not be able to learn any information about the secret. What
makes bivariate interpolation suitable for multipartite settings is the ability to associate
each compartment with a different line in the plane. Namely, participants from a given
compartment are associated with points that lie on the same line, where each compartment
is associated with a different line.

To the best of our knowledge, this is the first time in which bivariate interpolation is
used in the context of secret sharing. Bivariate polynomials were used in conjunction with
secret sharing in the past, e.g. [12]. However, those bivariate polynomials were no more
than a sequence of univariate polynomials. Namely, the bivariate polynomial P (x, y) was
interpreted as a sequence of univariate polynomials {P (·, y) : y ∈ F} and Shamir’s threshold
secret sharing scheme was utilized separately on each of those univariate polynomials.

The paper is organized as follows. In Section 2 we provide the necessary formal defini-
tions and notation agreements regarding secret sharing (Subsection 2.1) and monotone span
programs (Subsection 2.2). We also outline the main idea of our proof strategy (Subsection
2.3) and review some basic results in algebra that we shall use later on (Subsection 2.4).
In Section 3 we deal with compartmented access structures. We distinguish between two
types of such structures: one that agrees with the type that was presented and studied by
Brickell in [3], and another that we present here for the first time. We design for those
access structures ideal secret sharing schemes that are based on bivariate Lagrange inter-
polation with data on parallel lines. In Section 4 we deal with hierarchical threshold access
structures and we realize them by bivariate Lagrange interpolation with data on lines in
general position. In [17], those access structures were realized by introducing polynomial
derivatives and Birkhoff interpolation in order to create the desired hierarchy between the
different compartments (that are called levels in that context). Here, we show that we may
achieve the same hierarchical effect by introducing a second dimension, in lieu of polynomial
derivatives. All necessary background from bivariate interpolation theory is provided there.
Finally, in Section 5, we contemplate on the possible advantages of using more involved
interpolation settings.
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2 Preliminaries

2.1 Secret Sharing

Hereinafter, we adopt the following notation convention: Vectors are denoted by bold-face
letters while their components are denoted with the corresponding italic-type indexed letter.
In addition, N stands for the nonnegative integers.

We begin by formal definitions of access structures and secret sharing schemes.

Definition 2.1 (Access Structure) Let U = {u1, . . . , un}. A collection Γ ⊆ 2U is mono-
tone if V ∈ Γ and V ⊆ W imply that W ∈ Γ. An access structure is a monotone collection
Γ ⊆ 2U of non-empty subsets of U . Sets in Γ are called authorized, and sets not in Γ are
called unauthorized. An authorized set V ∈ Γ is called a minterm if for every W ( V, the
set W is unauthorized. An unauthorized set V /∈ Γ is called a maxterm if for every W ) V,
the set W is authorized.
Definition 2.2 (Secret-Sharing Scheme) Let S be a finite set of secrets, where |S| ≥ 2.
A (perfect) secret-sharing scheme Π on U = {u1, . . . , un} with domain of secrets S is a
randomized mapping from S to a set of n-tuples

∏n
i=1 Si, where Si is called the share-

domain of ui. A dealer shares a secret S ∈ S among the n participants of U according to
Π by first sampling a vector of shares Π(S) = (S1, . . . , Sn) ∈ ∏n

i=1 Si, and then privately
communicating each share Si to the participant ui. We say that Π realizes an access structure
Γ ⊆ 2U if the following two requirements hold:

Correctness. The secret S can be reconstructed by any authorized set of participants.
That is, for any authorized set V ∈ Γ (where V = {ui1 , . . . , ui|V|}), there exists a
reconstruction function1 ReconV : Si1×· · ·×Si|V| → S such that for every S ∈ S and
for every possible value of the restriction of Π(S) to its V-entries, denoted ΠV(S), the
following equality holds:

ReconV(ΠV(S)) = S.

Privacy. Every unauthorized set can learn nothing about the secret (in the information
theoretic sense) from their shares. Formally, for any unauthorized set W 6∈ Γ, for
every two secrets S, S′ ∈ S, and for every possible |W|-tuple of shares 〈Si〉ui∈W :

Pr[ ΠW(S) = 〈Si〉ui∈W ] = Pr[ ΠW(S′) = 〈Si〉ui∈W ].

Viewing the secret S as a random variable that takes values in S, and letting H(·)
denote the entropy, the correctness and privacy requirements are equivalent to saying that
for any value of the random mapping Π,

H(S|ΠV(S)) = 0 ∀V ∈ Γ , while H(S|ΠV(S)) = H(S) ∀V /∈ Γ .

We proceed to define multipartite access structures.
1The reconstruction function ReconV need not be efficiently implemented. However, this is the case for

all the secret sharing schemes designed in this paper.
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Definition 2.3 (Multipartite Access Structures) Let U be a set of participants and
assume that it is partitioned into m disjoint compartments,

U =
m⋃

i=1

Ci . (1)

Let Γ ∈ 2U be an access structure on U and assume that for all permutations π : U → U
such that π(Ci) = Ci, 1 ≤ i ≤ m, V ∈ Γ if and only if π(V) ∈ Γ. Then Γ is called m-partite
or multipartite with respect to partition (1).

Given any subsetW ⊆ U , its type with respect to partition (1) is the vector (t1, . . . , tm) ∈
Nm where ti = |W ∩ Ci|, 1 ≤ i ≤ m. In view of Definition 2.3, the status of a given subset
with respect to the multipartite access structure is solely determined by its type.

In every secret-sharing scheme, the size of the domain of shares of each participant is
at least the size of the domain of the secrets [11], namely |Si| ≥ |S| for all 1 ≤ i ≤ n. This
motivates the next definition.
Definition 2.4 (Ideality) A secret-sharing scheme with domain of secrets S is ideal if the
domain of shares of each user is S. An access structure Γ is ideal if for some finite domain
of secrets S there exists an ideal secret sharing scheme realizing it.

In the Shamir k-out-of-n threshold secret sharing scheme that was described in the
introduction, the domain of secrets is some finite field F. That field serves also as the
domain of possible private shares for each participant. Therefore, that scheme is ideal.

It is important to note that ideality is concerned only with the private data, and does
not care about additional public data. For example, in the Shamir scheme, there are other
pieces of information that are public, like k, n and the identities of all participants. The
reason for this distinction between the private and public data is twofold: First, the security
of any system tends to degrade when the amount of information that must be kept secret
increases. Second, the size of the private shares influences the memory constraints for the
participants as well as the efficiency of the distribution algorithm. Based on this distinction
between private and public data, we present in this paper a novel framework in which
the dealer publishes shares of some dummy participants, in addition to the private shares
that are distributed to the real participants. Our schemes are still ideal, since the private
shares are drawn from the same field F from which the secret is drawn. In fact, our proof
techniques may be used to show that the dealer may always select the polynomial P (x, y)
so that the public shares of the dummy participants are all zero (whence, they need not be
published). However, for convenience, we prefer to describe our ideal schemes in the more
natural setting where we simply publish the shares of the dummy participants.

Most previously known secret sharing schemes are linear. The concept of linear secret
sharing schemes was introduced by Brickell [3] in the ideal setting and was later generalized
to non-ideal schemes. Linear schemes are equivalent to monotone span programs [10]. For
simplicity we only define ideal linear schemes.
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Definition 2.5 (Ideal Linear Secret Sharing Scheme) Let F be a finite field. An ideal
linear secret sharing scheme over F takes the following form: The domain of secrets and
shares is S = F. The scheme is specified by n+1 vectors in Fd for some integer d: a vector
ui for each participant ui ∈ U , 1 ≤ i ≤ n, and a so-called target vector t. To share a secret
S ∈ F, the dealer chooses a random vector w ∈ Fd such that w · t = S and then the share
of participant ui is w · ui.

The next theorem characterizes the access structure that is realized by a linear secret
sharing scheme.
Theorem 2.1 ([3, 10]) A linear secret sharing scheme with vectors {ui}1≤i≤n and t real-
izes the access structure Γ = {V ⊆ U : t ∈ Span{ui : ui ∈ V}}.

2.2 Monotone Span Programs

Karchmer and Wigderson [10] introduced monotone span programs as a linear algebraic
model of computation for computing monotone functions. A monotone span program (MSP
hereinafter) is a quintupleM = (F,M,U , φ, t) where F is a field, M is a matrix of dimensions
a × b over F, U = {u1, . . . , un} is a finite set, φ is a surjective function from {1, . . . , a} to
U , and t is some target row vector from Fb. The MSP M realizes the monotone access
structure Γ ⊂ 2U when V ∈ Γ if and only if t is spanned by the rows of the matrix M
whose labels belong to V. The size of M is a, the number of rows in M . Namely, in the
terminology of secret sharing, the size of the MSP is the total number of shares that were
distributed to all participants in U . An MSP is ideal if a = n.

If Γ is a monotone access structure over U , its dual is defined by Γ∗ = {V : Vc /∈ Γ}.
It is easy to see that Γ∗ is also monotone. In [8] it was shown that if M = (F,M,U , φ, t)
is an MSP that realizes a monotone access structure Γ, then there exists an MSP M∗ =
(F,M∗,U , φ, t∗) of the same size like M that realizes the dual access structure Γ∗. Hence,
an access structure is ideal if and only if its dual is. An efficient construction of the MSP
for the dual access structure was proposed in [7].

2.3 Our Strategy

All the secret sharing schemes that we shall present herein are ideal linear schemes. Namely,
they are monotone span programs of size n (every participant has exactly one row in M with
his label). In order to prove that a given scheme realizes perfectly some access structure Γ
we shall prove two claims. Letting V be some subset of U and MV be the sub-matrix of M
that consists of all rows of M with labels in V, we first show that if V is a minterm then, with
high probability, t ∈ row(MV). Namely, the vectors associated with the members of V span
the target vector t with high probability, whence, V may reconstruct the secret S. Since the
matrices MV , for a minterm V, will always be square, we shall simply show that, with high
probability, their determinant is nonzero. This will prove that, with almost certainty, V
may reconstruct the secret. Then we proceed to show that if V is a maximal unauthorized
subset then, with high probability, t /∈ row(MV). This is established by showing that if
we augment MV with the additional row t, we get a matrix of full rank. Since the latter
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matrix will always be square, we shall show that, with high probability, it has a nonzero
determinant. This will prove that, with almost certainty, V may not learn any information
about the secret.

2.4 Some Algebra

Throughout this study we use the following basic lemma that provides an upper bound for
the number of zeros of a multivariate polynomial over a finite field.
Lemma 2.2 (Schwartz-Zippel Lemma) [14, 18] Let G(z1, . . . , zk) be a nonzero polyno-
mial of k variables over a finite field F of size q. Assume that the highest degree of each of
the variables zj in G is no larger than d. Then the number of zeros of G in Fk is bounded
from above by kdqk−1.

Proof. The claim is obviously true for k = 1. Proceeding by induction, we assume that it
holds for k − 1 variables and prove the claim for k variables. The polynomial G may be
written as follows:

G(z1, . . . , zk) =
d∑

j=0

Gj(z1, . . . , zk−1)z
j
k .

For every selection of (z1, . . . , zk−1) ∈ Fk−1 there are two possibilities: Either Gj(z1, . . . , zk−1) 6=
0 for at least one 0 ≤ j ≤ d, or Gj(z1, . . . , zk−1) = 0 for all 0 ≤ j ≤ d. In the first case, there
are at most d values of zk for which G(z1, . . . , zk−1, zk) = 0; in the second case, on the other
hand, G(z1, . . . , zk−1, zk) = 0 for all zk ∈ F. By the induction assumption, the number of
points (z1, . . . , zk−1) ∈ Fk−1 of the second kind, denoted herein `, satisfies ` ≤ (k−1)dqk−2.
Hence, the number of points (z1, . . . , zk) ∈ Fk in which G(z1, . . . , zk) = 0 is bounded by

(qk−1 − `) · d + ` · q = dqk−1 + ` · (q − d) < dqk−1 + (k − 1)dqk−1 = kdqk−1 .

¤
All the matrices that we shall consider in this study will consist of entries that are

multivariate polynomials evaluated at a randomly selected point (x1, . . . , xt) ∈ Ft for some t.
The idea is to fix some of the components, say x1, . . . , xt−k, and then view the determinant of
the matrix as a polynomial in the last k variables xt−k+1, . . . , xt. Denoting that polynomial
by Gx1,...,xt−k

(xt−k+1, . . . , xt), we then prove two claims, using Lemma 2.2:

1. For almost all selections of the first t−k variables, the resulting polynomial Gx1,...,xt−k

is a nonzero polynomial.

2. When Gx1,...,xt−k
is a nonzero polynomial, for almost all selections of (xt−k+1, . . . , xt),

we have Gx1,...,xt−k
(xt−k+1, . . . , xt) 6= 0.

As a final remark, we note that in some of our proofs we use the fact that a determinant
of a matrix may be expressed as a linear combination of all minors that are contained within
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a selection of rows in that matrix. More specifically, let M be a n× n matrix and let k be
an integer smaller than n. A minor of order k in M is a determinant of a sub-matrix of M
of dimensions k × k. There are

(
n
k

)
such minors that are contained within the first k rows

of M . It is easy to see that detM equals a linear combination of all those minors, where
the coefficients of the linear combination depend only on the entries in the last n− k rows
of M . The proof for the case k = n− 1 is immediate if we expand the determinant by the
last row. The proof for other values of k now easily follows by induction.

3 Compartmented Access Structures

The original compartmented access structure that was presented in [3] is defined as follows.
Let ti ∈ N, 1 ≤ i ≤ m, and t ∈ N be thresholds such that t ≥ ∑m

i=1 ti. Then

Γ = {V ⊆ U : ∃W ⊆ V such that |W ∩ Ci| ≥ ti, 1 ≤ i ≤ m, and |W| = t} . (2)

Such access structures are suitable for situations in which the size of an authorized subset
must be at least some threshold t, but, in addition, we wish to guarantee that every com-
partment is represented by at least some number of participants in the authorized subset.
In other situations, however, an opposite demand may occur: while the size of an authorized
subset must be at least some threshold, we would like to limit the number of participants
that represent each of the compartments; namely,

∆ = {V ⊆ U : ∃W ⊆ V such that |W ∩ Ci| ≤ si, 1 ≤ i ≤ m, and |W| = s} , (3)

where si, s ∈ N and s ≤ ∑m
i=1 si. Those two types of compartmented access structures pro-

tect democracy: While the first attempts to protect possibly weak compartments from being
left out of a coalition that is capable of recovering the secret, the second prevents possibly
strong compartments from dominating such a coalition. We refer to Γ as a compartmented
access structure with lower bounds, while ∆ is referred to hereinafter as a compartmented
access structure with upper bounds.

When m = 1 both types of compartmented access structures coincide with the standard
threshold access structures of Shamir [15]. When m = 2 the two types of access structures
agree: a compartmented access structure with lower bounds t1, t2 and threshold t is a
compartmented access structure with upper bounds s1 = t − t2, s2 = t − t1 and threshold
s = t; conversely, an access structure of type (3) with bounds s1, s2 and s may be viewed
as an access structure of type (2) with bounds t1 = s− s2, t2 = s− s1 and t = s. However,
when m ≥ 3, these two types of compartmented access structures differ. To exemplify this,
we show an access structure of type (2) that does not fall within the framework (3), and
another access structure of type (3) that does not fall within the framework (2).

The access structure Γ of type (2) with m = 3, t1 = 1, t2 = 1, t3 = 1, and t = 4
has minterms V of types (1, 1, 2) (namely, |V ∩ C1| = 1, |V ∩ C2| = 1, and |V ∩ C3| = 2),
(1, 2, 1), or (2, 1, 1). This collection of minterms does not fall within the framework (3) for
any choice of si and s. Indeed, if that collection of subsets was to fall under framework (3)
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then we should have had s1 = s2 = s3 = 2, and s = 4; but then that collection should have
also included subsets of type (0,2,2), which it doesn’t. Hence, there is no way of fitting
that compartmented access structure with lower bounds within the framework with upper
bounds. An example that demonstrates the non-containment in the other direction is the
access structure ∆ of type (3) with m = 3, s1 = 1, s2 = 1, s3 = 1, and s = 2. Its minterms
are of types (0, 1, 1), (1, 0, 1), or (1, 1, 0). To fit this collection into (2) we would need to
have t1 = t2 = t3 = 0 and t = 2, but such a choice of parameters allows also subsets of type
(0, 0, 2).

Compartmented access structures with lower bounds, (2), are already known to be
ideal [3]. We design here ideal linear schemes for these access structures, as well as for
the corresponding access structures with upper bounds, (3), that are based on bivariate
interpolation.

3.1 Ideal Secret Sharing for Compartmented Access Structures with Up-
per Bounds

In this section we describe a linear secret sharing scheme for compartmented access struc-
tures with upper bounds, (3). Hereinafter, S ∈ F is the secret to be shared. Let xi,
1 ≤ i ≤ m, be m distinct random points in F. Let Pi(y) =

∑si−1
j=0 ai,j yj , 1 ≤ i ≤ m, be

random polynomials over F such that S =
∑m

i=1

∑si−1
j=0 ai,j . Finally, we set

P (x, y) =
m∑

i=1

Pi(y)Li(x) =
m∑

i=1

si−1∑

j=0

ai,j yjLi(x) , (4)

where Li(x) are the Lagrange polynomials of degree m− 1 over {xi : 1 ≤ i ≤ m}, namely,

Li(x) =
∏

1≤j≤m

j 6=i

x− xj

xi − xj
, 1 ≤ i ≤ m . (5)

These polynomials have the property that Li(xj) = δi,j for all 1 ≤ i, j ≤ m. Then the secret
sharing scheme is as follows:

Secret Sharing Scheme 1:

1. Each participant ui,j from compartment Ci is identified by a unique public point
(xi, yi,j), where yi,j 6= 1 is random, and his private is P (xi, yi,j).

2. In addition, we publish the value of P at k :=
∑m

i=1 si − s random points (x′i, zi),
where x′i /∈ {x1, . . . , xm}, 1 ≤ i ≤ k.

Figure 1 illustrates that scheme for the case of m = 3 compartments and k = s1 + s2 +
s3− s = 3. The k = 3 public point values are denoted by full bullets. The point values that
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F

F

x = x1 x = x2 x = x3

(x1’,z1)

(x2’,z2)

(x3’,z3)

Figure 1: Secret Sharing Scheme 1

correspond to the participants are marked by empty circles along the three random parallel
lines, x = xi, 1 ≤ i ≤ 3.

Clearly, this is an ideal scheme since the private shares of all users are taken from
the domain of secrets F. The number of unknowns in the polynomial P is

∑m
i=1 si (the

coefficients of all the univariate polynomials Pi(y), 1 ≤ i ≤ m). Since we are given for free
k :=

∑m
i=1 si − s point values, we need additional s points for full recovery. Moreover, we

cannot use more than si points from the line x = xi, 1 ≤ i ≤ m, because any si points from
along that line already fully recover Pi(y), but they do not contribute anything towards the
recovery of Pj(y) for j 6= i. In view of the above, this scheme agrees with the constraints in
(3). We proceed to show that, with high probability (with respect to the random selection
of points), the resulting scheme is perfect.

Lemma 3.1 If V ∈ ∆ it may recover the secret S with probability 1 − Cq−1, where the
constant C depends on m, s, and s1, . . . , sm.

Proof. Let V be a minimal set in ∆. Let us assume that |V ∩ Ci| = ki ≤ si, 1 ≤ i ≤ m.
Then the system of equations in the unknown coefficients of P (x, y), (4), namely {ai,j : 1 ≤
i ≤ m, 0 ≤ j ≤ si − 1} that V may construct has a matrix of coefficients of the following
form:

M =




M1 0 0 · · · 0
0 M2 0 · · · 0
0 0 M3 · · · 0
...

...
...

...
...

0 0 0 · · · Mm

H1 H2 H3 · · · Hm




(6)

Here, Mi is a block of size ki× si that represents the equations that are contributed by the
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ki participants from compartment Ci. If V ∩ Ci = {ui,1, . . . , ui,ki
} and ui,j is characterized

by the point (xi, yi,j) then

Mi =




1 yi,1 y2
i,1 · · · ysi−1

i,1

1 yi,2 y2
i,2 · · · ysi−1

i,2
...

...
...

...
...

1 yi,ki y2
i,ki

· · · ysi−1
i,ki




. (7)

The last k =
∑m

i=1 si−s rows in the matrix, denoted in (6) by the row of H-blocks, represent
the additional k equations that result from the k public values of P that were published by
the dealer. These k values are of the form P (x′j , zj), 1 ≤ j ≤ k. Then the jth row within
the last row of blocks in M has the following form:
(

L1(x′j) L1(x′j)zj · · · L1(x′j)z
s1−1
j · · · · · · Lm(x′j) Lm(x′j)zj · · · Lm(x′j)z

sm−1
j

)

We proceed to prove that, with high probability, the matrix M has a nonzero determi-
nant, whence the minimal authorized set V may solve the corresponding system of linear
equations and recover the entire polynomial, and consequently the secret, from their shares.
To that end, we view the determinant of M as a k-variate polynomial G(z1, . . . , zk) whose
coefficients depend on Li(x′j), 1 ≤ i ≤ m, 1 ≤ j ≤ k, and on all s × s minors of M that
are contained within its first s rows. There are two cases to consider: the case where that
polynomial is identically zero, and the case that it is not.

Let us assume first that G(z1, . . . , zk) is not identically zero. Assuming, without loss of
generality, that s1 ≤ · · · ≤ sm. Then the degree of G with respect to each of its variables
is no more than sm − 1. Hence, Lemma 2.2 implies that the number of zeros of G in Fk is
bounded by k(sm − 1)qk−1. Since zj , 1 ≤ j ≤ k, were randomly selected from F, we infer
that the probability of (z1, . . . , zk) being one of the zeros of G is bounded from above by
k(sm − 1)q−1.

Regarding the case where G(z1, . . . , zk) ≡ 0, we claim that the probability for such an
event is also O(q−1). Let us exemplify how such an event may occur. Assume, for example,
that m = 2, s1 = s2 = 3 and s = 5, whence, k = 1. Then, if V is a minimal authorized set
with |V ∩ C1| = 3 and |V ∩ C2| = 2, the corresponding matrix has the following form:

M =




1 y1 y2
1 0 0 0

1 y2 y2
2 0 0 0

1 y3 y2
3 0 0 0

0 0 0 1 y4 y2
4

0 0 0 1 y5 y2
5

L1(x′1) L1(x′1)z1 L1(x′1)z
2
1 L2(x′1) L2(x′1)z1 L2(x′1)z

2
1




.

Then G(z1) = a0 + a1z1 + a2z
2
1 where the coefficients a0, a1, a2 depend on L1(x′1), L2(x′1),
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and yi, 1 ≤ i ≤ 5. For example,

a2 = L2(x′1) ·

∣∣∣∣∣∣∣∣∣∣

1 y1 y2
1 0 0

1 y2 y2
2 0 0

1 y3 y2
3 0 0

0 0 0 1 y4

0 0 0 1 y5

∣∣∣∣∣∣∣∣∣∣

− L1(x′1) ·

∣∣∣∣∣∣∣∣∣∣

1 y1 0 0 0
1 y2 0 0 0
1 y3 0 0 0
0 0 1 y4 y2

4

0 0 1 y5 y2
5

∣∣∣∣∣∣∣∣∣∣

.

Then G ≡ 0 if and only if a0 = a1 = a2 = 0. In general, G is identically zero if and only if
all of its coefficients are zero, where each of the coefficients is a polynomial in ` :=

∑m
i=1 si

variables (the s values of yi,j and x′1, . . . , x
′
k) whose degree with respect to each of its

variables is bounded by d = max{sm−1,m−1}. Hence, the number of selections of those `
variables that would make a single coefficient of G zero is bounded by `dq`−1. The number of
choices of the yi,j ’s and x′j ’s, on the other hand, is Ω(q`). Hence, we get that the probability
of each of the coefficients to be zero is Cq−1, where the constant C depends on m, s, and
s1, . . . , sm. This implies that the probability that G ≡ 0 is also Cq−1. ¤

Lemma 3.2 If V /∈ ∆ then with probability 1 − Cq−1 it may not learn any information
about the secret S, where the constant C depends on m, s, and s1, . . . , sm.

Proof. Assume that V /∈ ∆. Without loss of generality we may assume that |V ∩Ci| = ki ≤
si, 1 ≤ i ≤ m, since if |V ∩ Ci| > si for some 1 ≤ i ≤ m, we may discard the redundant
participants from that compartment without reducing the row space of the corresponding
matrix. Furthermore, we may assume that |V| = s − 1, since if |V| < s − 1 we may find
a superset V ′ ⊃ V such that |V ′ ∩ Ci| ≤ si, 1 ≤ i ≤ m, and |V ′| = s − 1 and prove that
V ′ cannot learn a thing about the secret with probability 1 − O(q−1); since V ′ has more
information than V does, that will settle our claim.

The matrix that corresponds to the information that V has regarding the coefficients of
the polynomial is given by (6). As in the proof of Lemma 3.1, Mi is a Vandermonde block
(7) of size ki × si that represents the equations that are contributed by the ki participants
from compartment Ci. The last k =

∑m
i=1 si − s rows correspond to the public values of

the polynomial. However, here M has only
∑m

i=1 si − 1 rows. We need to show that the
vector (1, . . . , 1) is, most probably, not spanned by the rows of M . In order to show that,
we augment M by adding to it that vector as a first row, and then show that the augmented
M has a full rank of

∑m
i=1 si, with probability 1 − O(q−1). That part of the proof goes

along the same line of argumentation as in the proof of Lemma 3.1. ¤

We are now ready to state and prove our main result regarding Secret Sharing Scheme
1.
Theorem 3.3 The ideal Secret Sharing Scheme 1 is a perfect scheme that realizes the
compartmented access structure with upper bounds (3) with probability 1 − ε where ε =(
n+1

s

)
Cq−1, and C is a constant that depends on m, s, and s1, . . . , sm.
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Proof. Lemmas 3.1 and 3.2 provide an upper bound for the probability of a failure of the
scheme for a given subset V ⊆ U . We may now use the union bound to upper bound the
probability of having any failure at all. It is sufficient to consider only the minterms and
maxterms. Namely, if we guarantee that the scheme is correct for all minterms V ∈ ∆0,
then it is also correct for all other authorized subsets in ∆. Similarly, if the scheme is
private with respect to all maxterms V /∈ ∆ it is certainly private with respect to any other
unauthorized subset.

Since any minterm of ∆ is of size s, the number of minterms is bounded from above
by

(
n
s

)
. In view of the analysis in the proof of Lemma 3.2, it suffices to consider only

maxterms of size s − 1. The number of such maxterms is bounded from above by
(

n
s−1

)
.

Therefore, as
(
n
s

)
+

(
n

s−1

)
=

(
n+1

s

)
, we may combine the probability estimates in Lemmas

3.1 and 3.2 to conclude that the scheme fails to be perfect with probability that does not
exceed ε =

(
n+1

s

)
Cq−1, where C is a constant that depends on m, s, and s1, . . . , sm. This

completes the proof. ¤
We would like to stress that the probability here is with respect to the choices of the

points in the plane. Once such a choice was made, the dealer may check that all minimal
authorized subsets (minterms) may recover the secret while all maximal non-authorized
subsets (maxterms) may not learn a thing about the secret. If all those subsets pass the
test then the resulting scheme is perfectly secure. In the event that one of the subsets
did not pass the test, the dealer has only to try another selection. Having said that, it
should be noted that as, typically, n and s are small numbers while q is of cryptographic
magnitudes, the probability of success in Theorem 3.3 is overwhelming and it renders the
above described check unnecessary.

Most constructions of linear schemes, including the linear scheme of Brickell for com-
partmented access structures with lower bounds [3], suffer from a similar problem: there is
a small probability that the allocation of vectors to participants might result in a minterm
that cannot recover the secret, or a maxterm that can. However, as explained above, practi-
cally it is an insignificant problem, unless the underlying parameters (n, m, s, and s1, . . . , sm

in our case) are exceptionally large. There are very few linear schemes in which there is an
allocation of vectors that is provably secure (namely, an allocation that may be proven to
always yield a perfect scheme). The Shamir scheme is such. Another example is the scheme
due to Tassa in [17] for hierarchical threshold secret sharing, where, relying upon results
from the theory of Birkhoff interpolation, it was possible to get a provably perfect scheme
using the so-called monotone allocation of identities in the field (provided that the field is
large enough).
Corollary 3.4 The compartmented access structure with upper bounds (3) may be realized
ideally by a linear secret sharing scheme over fields F of size q = |F| > C

(
n+1

s

)
, where C is

a constant that depends on m, s, and s1, . . . , sm.
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3.2 Ideal Secret Sharing for Compartmented Access Structures with Lower
Bounds

In this section we describe a linear secret sharing scheme for compartmented access struc-
tures with lower bounds, (2). To that end, we construct a scheme for the dual access
structure Γ∗.

3.2.1 Realizing the dual access structure

The dual access structure of (2) is given by Γ∗ = {V : Vc /∈ Γ}. Hence, V ∈ Γ∗ if and only
if |Vc| < t or |Vc ∩ Ci| < ti for some 1 ≤ i ≤ m. Introducing the notations n = |U| and
ni = |Ci|, 1 ≤ i ≤ m, we infer that V ∈ Γ∗ if and only if |V| ≥ n−t+1 or |V ∩Ci| ≥ ni−ti+1
for some 1 ≤ i ≤ m. Namely,

Γ∗ = {V ⊆ U : |V| ≥ r or |V ∩ Ci| ≥ ri for some 1 ≤ i ≤ m} , (8)

where
r = n− t + 1 and ri = ni − ti + 1 , 1 ≤ i ≤ m . (9)

Since t ≥ ∑m
i=1 ti and n =

∑m
i=1 ni, we see that

m∑

i=1

ri =
m∑

i=1

ni −
m∑

i=1

ti + m ≥ n− t + m = r + m− 1 .

Therefore, the thresholds in the dual access structure (8) satisfy

m∑

i=1

ri ≥ r + m− 1 . (10)

We proceed to describe a linear ideal secret sharing scheme for realizing such access struc-
tures and then prove that, with high probability, it is perfect.

Let xi, 1 ≤ i ≤ m, be m distinct random points in F and let Pi(y) be a polynomial of
degree ri − 1 over F, such that

P1(0) = · · · = Pm(0) = S , (11)

where S is the secret. Define

P (x, y) =
m∑

i=1

Pi(y)Li(x) =
m∑

i=1

ri−1∑

j=0

ai,j yjLi(x) , (12)

where Li(x), 1 ≤ i ≤ m, are, as before, the Lagrange polynomials of degree m − 1 over
{xi : 1 ≤ i ≤ m}, (5). Note that condition (11) implies that a1,0 = · · · = am,0 and,
consequently, the number of unknown coefficients in the representation of P (x, y) with
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respect to the basis Li(x)yj , 1 ≤ i ≤ m, 0 ≤ j ≤ ri− 1, is g =
∑m

i=1 ri− (m− 1). Note that
by (10), g ≥ r.

Our secret sharing scheme for the realization of the dual access structure Γ∗, (8), is as
follows:

Secret Sharing Scheme 2:

1. Each participant ui,j from compartment Ci will be identified by a unique public point
(xi, yi,j), where yi,j 6= 0 is random, and his private share will be the value of P at that
point.

2. In addition, we publish the value of P at k = g − r random points (x′i, zi), where
x′i /∈ {x1, . . . , xm}, 1 ≤ i ≤ k.

Lemma 3.5 If V ∈ Γ∗ it may recover the secret S with probability 1 − Cq−1, where the
constant C depends on m, r, and r1, . . . , rm.

Proof. Let V be an authorized set in Γ∗. Then either |V ∩ Ci| ≥ ri for some 1 ≤ i ≤ m,
or |V| ≥ r. In the first case the claim is straightforward. Indeed, if |V ∩ Ci| ≥ ri for some
1 ≤ i ≤ m then it may fully recover Pi(y), and, consequently, it may learn the value of
S = Pi(0).

Hence, we assume hereinafter that |V ∩Ci| = ki < ri, 1 ≤ i ≤ m, and that V is a minimal
authorized subset, namely, |V| = r. Then the system of equations in the

∑m
i=1 ri unknown

coefficients of P (x, y) that V may construct has a matrix of coefficients of the following
form:

M =




M1 G1,2 0 0 · · · 0
0 M2 G2,3 0 · · · 0
0 0 M3 G3,4 · · · 0
...

...
...

...
...

...
0 0 0 · · · Mm−1 Gm−1,m

0 0 0 · · · 0 Mm

H1 H2 H3 · · · Hm−1 Hm




(13)

The pair of blocks Mi and Gi,i+1, 1 ≤ i ≤ m − 1, represents the equations that are
contributed by the ki participants from compartment Ci, plus the additional equation
ai,0 = ai+1,0. If V ∩ Ci = {ui,1, . . . , ui,ki} and ui,j is characterized by the point (xi, yi,j)
then this pair of blocks has the following form:

(
Mi Gi,i+1

)
=




1 yi,1 y2
i,1 · · · yri−1

i,1 0 0 · · · 0
1 yi,2 y2

i,2 · · · yri−1
i,2 0 0 · · · 0

...
...

...
...

...
...

... · · · ...
1 yi,ki y2

i,ki
· · · yri−1

i,ki
0 0 · · · 0

1 0 0 · · · 0 −1 0 · · · 0




(14)
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Here, Mi is a block of size (ki + 1)× ri and Gi,i+1 is a block of size (ki + 1)× ri+1.
Mm represents the equations that are contributed by the km participants from compart-

ment Cm. Assuming that they are identified by the points (xm, ym,j), 1 ≤ j ≤ km,

Mm =




1 ym,1 y2
m,1 · · · yrm−1

m,1

1 ym,2 y2
m,2 · · · yrm−1

m,2
...

...
...

...
...

1 ym,km y2
m,km

· · · yrm−1
m,km


 . (15)

As for the last k = g− r =
∑m

i=1 ri− (m− 1)− r rows in the matrix, denoted in (13) by
the row of H-blocks, they represent the additional k equations that result from the k public
values of P that were published by the dealer. These k values are of the form P (x′j , zj),
1 ≤ j ≤ k. Then, as in the previous section, the jth row within the last row of blocks in M
has the following form:
(

L1(x′j) L1(x′j)zj · · · L1(x′j)z
r1−1
j · · · · · · Lm(x′j) Lm(x′j)zj · · · Lm(x′j)z

rm−1
j

)

We claim that the first
∑m

i=1 ki + (m− 1) rows in M are independent. This stems from
the Vandermonde structure of the blocks, our assumption that ki < ri, and the fact that
yi,j 6= 0, for 1 ≤ i ≤ m and 1 ≤ j ≤ ki. Indeed, consider the rectangular block (Mi Gi,i+1)
that is given in (14). Since ki ≤ ri − 1, the first ki columns in this rectangular block form
a square Vandermonde block of the form




1 yi,1 y2
i,1 · · · yki

i,1

1 yi,2 y2
i,2 · · · yki

i,2
...

...
...

...
...

1 yi,ki y2
i,ki

· · · yki
i,ki

1 0 0 · · · 0




Since yi,j , 1 ≤ j ≤ ki, are distinct and nonzero, the above Vandermonde block is nonsingular.
Hence, by applying a Gaussian elimination within that row of blocks we may arrive at a
full-rank row-reduced echelon form for that row of blocks. Applying a Gaussian elimination
within each of the first m block-rows in M , (13), we may arrive at a full-rank row-reduced
echelon form for the first

∑m
i=1 ki +(m−1) rows in M . That settles our claim that the first∑m

i=1 ki + (m− 1) rows in M are independent.
Next, we aim at showing that all of the rows in M are linearly independent, with

probability 1 − O(q−1). To that end, we may view the determinant of M as a k-variate
polynomial G(z1, . . . , zk) whose coefficients depend on Li(x′j), 1 ≤ i ≤ m, 1 ≤ j ≤ k, and on
all (

∑m
i=1 ri− k)× (

∑m
i=1 ri− k) minors of M that are contained within its first

∑m
i=1 ri− k

rows. Arguing along the same lines as in the proof of Lemma 3.1, we claim, omitting further
details, that G(z1, . . . , zk) vanishes with probability Cq−1, where the constant C depends
on m, r, and r1, . . . , rm. ¤
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Lemma 3.6 If V /∈ Γ∗ then with probability 1 − Cq−1 it may not learn any information
about the secret S, where the constant C depends on m, r, and r1, . . . , rm.

Proof. Assume that V /∈ Γ∗. Then |V ∩ Ci| = ki < ri, 1 ≤ i ≤ m, and in addition
|V| = r − 1 − ` for some ` ≥ 0. Condition (10) on the thresholds imply that we may
augment V with ` additional participants so that its size becomes exactly r − 1 while its
number of participants in each compartment Ci, 1 ≤ i ≤ m, still does not reach the necessary
threshold ri. Indeed, the maximal number that the augmented V may have in compartment
Ci so that it remains unauthorized is ri − 1. As, by (10),

∑m
i=1(ri − 1) ≥ r − 1, the above

described procedure is possible.
We proceed to show that the augmented V cannot learn a thing about the secret S with

probability 1 − O(q−1). The matrix that corresponds to V is given by (13), and its size
is (d − 1) × d where d =

∑m
i=1 ri. Let ei denote the standard basis vector in Fd whose

ith component equals 1 while all the rest are zero. In addition, we introduce the notation
hj = 1 +

∑j−1
i=1 ri, 1 ≤ j ≤ m; hj denotes the index of the free coefficient of Pj(y) within

the vector of unknown coefficients of P (x, y) (hence, h1, . . . , hm correspond to the indices
of the m unknown coefficients that equal the secret S). We need to show that none of the
vectors ehj

is in the row space of the matrix M . It is easy to see that it suffices to show
that ehm is not in that row space.

To show that, we add ehm as a last row vector in the block-row ( 0 · · · 0 Mm ).
Since yi,j 6= 0 for all 1 ≤ i ≤ m and 1 ≤ j ≤ ki, we may argue along the same lines as in the
proof of Lemma 3.5 to conclude that the first

∑m
i=1 ki + m rows in the augmented matrix

M are linearly independent. Then, the remainder of the proof that the augmented M has,
with probability 1 − O(q−1), a full rank of

∑m
i=1 ri is the same as in the proof of Lemma

3.5. ¤

Using Lemmas 3.5 and 3.6 and arguing along the same lines as in the proof of Theorem
3.3, we arrive at the following result:
Theorem 3.7 The ideal Secret Sharing Scheme 2 is a perfect scheme that realizes the
compartmented access structure (8) with probability 1− ε where ε =

(
n+1

r

)
Cq−1, and C is a

constant that depends on m, r, and r1, . . . , rm.

3.2.2 A scheme for compartmented access structures with lower bounds

Using the results of Section 3.2.1 we may now easily construct an ideal secret sharing scheme
for compartmented access structures with lower bounds, (2). Given such an access structure,
Γ, we construct the ideal linear secret sharing scheme for its dual, (8)-(9). Then we translate
that ideal scheme (equivalently, MSP) into an ideal scheme (MSP) for Γ = (Γ∗)∗, using the
explicit construction that is described in [7]. We omit further details.

Our scheme differs from the scheme suggested by Brickell [3]. Both schemes require
to check a large number of matrices for non-singularity. (There are no known schemes for
compartmented access structures that circumvent that problem.) However, while in [3] it
is only proven that a proper allocation of participant identities exist, in our scheme we may
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randomly select the participant identities, knowing that the resulting scheme is guaranteed
to be perfect with probability of at least 1− (

n+1
r

)
Cq−1, Theorem 3.7. As that probability

is overwhelmingly close to certainty with typical values of q, n, m and the thresholds, the
check of all matrices that correspond to the minterms and maxterms of the access structure
may be avoided.

4 Hierarchical Threshold Access Structures

Here we present an ideal secret sharing scheme for the realization of hierarchical access
structures. That scheme uses Lagrange interpolation of bivariate polynomials where the
data is given on lines in general position in the plane. In Subsection 4.1 we review all
necessary background regarding that type of interpolation. Then, in Subsection 4.2 we
deal with the following question: Given the values of a bivariate polynomial in a set of
points in the plane, what is the amount of information that those values reveal on the
polynomial. Using those results, we proceed to Subsection 4.3 where we define hierarchical
access structures and present a scheme that realizes them.

4.1 Lagrange Interpolation with Data on Lines in General Positions

Let
{Li}1≤i≤n , Li = {(x, y) ∈ F2 : Li(x, y) := aix + biy + ci = 0} ,

be a collection of n lines in F2 in general position. Namely, for every pair 1 ≤ i < j ≤ n,
Li and Lj intersect in a point Ai,j = (xi,j , yi,j) and Ai,j 6= Ak,` whenever {i, j} 6= {k, `}
(Figure 2 illustrates the case n = 4). Let f(x, y) be a function on F2. Then there exists a
unique polynomial of degree n− 2,

P (x, y) =
∑

0≤i+j≤n−2

ai,jx
iyj ∈ F[x, y] , (16)

that satisfies
P (xi,j , yi,j) = f(xi,j , yi,j) 1 ≤ i < j ≤ n . (17)

That polynomial is given by

P (x, y) =
∑

1≤i<j≤n

f(xi,j , yi,j)Li,j(x, y) (18)

where
Li,j(x, y) =

∏

1≤k≤n

k 6=i,j

Lk(x, y)
Lk(xi,j , yi,j)

. (19)

The bivariate Lagrange polynomials Li,j(x, y) are of degree n − 2, and Li,j(xi,j , yi,j) = 1
while Li,j(xk,`, yk,`) = 0 for all {k, `} 6= {i, j} (because the point (xk,`, yk,`) lies on a line
other than Li or Lj , whence the numerator in (19) becomes zero). Note that the number
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L2

A2, 4

A2, 3

A3, 4

A1, 4 A1, 2 A1, 3

Figure 2: Four lines in general position and the corresponding interpolation points

of independent terms (monoms) in (16) agrees with the number of constraints in (17), i.e.,(
n
2

)
.

This type of bivariate interpolation was studied first in [4]. We shall be using this
bivariate interpolation in a slightly different manner. As described above, in order to
recover a polynomial P (x, y) of degree k, we need its values at the intersection points of
k + 2 lines in general position. Assume, however, that we have only k + 1 lines in general
position, but we were able to fully recover the restriction of P (x, y) to each of these lines
(the restriction of a bivariate polynomial of degree k to a line is the univariate polynomial of
degree k that is obtained by replacing x and y in P (x, y) with their linear parameterization
along that line). Then that information is also sufficient for the full recovery of P (x, y)
since we may add a (k + 2)th line that intersects all of the original k + 1 lines and then,
as we know the value of P along each of those k + 1 lines, we know its value in all of the(
k+2
2

)
intersection points of the k + 2 lines; this enables the full recovery of P (x, y) through

(18)-(19). For example, in order to recover a quadratic polynomial P (x, y) (k = 2), we need
its values in the 6 intersection points of k + 2 = 4 lines in general position (L1, L2, L3 and
L4 in Figure 2); alternatively, we may compute its restriction to only k + 1 = 3 of those
lines, say L1, L2, and L3, and that is sufficient for finding the value of P in all 6 intersection
points of L1, L2, L3 and L4. Hence, while in this section our setting included n lines and
a polynomial P (x, y) of degree n − 2, in the following sections our settings will include n
lines and a polynomial P (x, y) of degree n− 1.

4.2 Constructibility and Non-constructibility Results

Let:

• F be a finite field;

• {Li}1≤i≤n, Li = {(x, y) ∈ F2 : Li(x, y) := aix+ biy + ci = 0}, be a collection of n lines
in F2 in general position;
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L3

L1

L2 L2L3

L1

Figure 3: Two point sets of type (2, 2, 3)

• P (x, y) =
∑

0≤i+j≤n−1 ai,jx
iyj be a polynomial of degree (at most) n − 1 in F[x, y];

and

• V ⊂ ⋃n
i=1 Li be a set of points on the given lines, none of which is an intersection

point of two of those lines.

The question that we address here is the amount of information that D := P |V reveals on
the polynomial P .

In order to answer that question, we define the type of a set V (Definition 4.1) and an
order on such types (Definition 4.2).

Definition 4.1 Let {Li}1≤i≤n be n lines in general position in F2. A finite subset of points,
none of which is an intersection point,

V ⊂
(

n⋃

i=1

Li

)
\


 ⋃

1≤i<j≤n

Li ∩ Lj


 ,

is said to be of type v ∈ Nn, where v is a monotone vector in the sense that 0 ≤ v1 ≤
v2 ≤ · · · ≤ vn, if there exists a permutation π of (1, . . . , n) such that |V ∩ Lπ(i)| = vi for all
1 ≤ i ≤ n.
For example, the two subsets depicted in Figure 3 are of type v = (2, 2, 3).

Definition 4.2 A vector u ∈ Nn dominates the vector v ∈ Nn, denoted u º v, if for all
1 ≤ i ≤ n,

∑i
j=1 uj ≥

∑i
j=1 vj.

For example, (1, 3, 3, 3) º (1, 2, 3, 4) while (1, 1, 4, 5) � (1, 2, 3, 4).

Theorem 4.1 Let F be a finite field of size q and n be a natural number such that q >
Cn :=

∑n
k=3 kk+2. Let:

• {Li}1≤i≤n be n lines in general position in F2, none of which goes through the origin
(0, 0);
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• V be a randomly selected set of points on those lines, none of which is an intersection
point, and let v be the type of that set;

• P (x, y) =
∑

0≤i+j≤n−1 ai,jx
iyj be a polynomial of degree (at most) n − 1 in F[x, y],

and P |V be the values of P in the points of V.

Then if v º (1, 2, . . . , n), the set of values P |V determines the polynomial P with probability
of 1− Cnq−1 at least.
Theorem 4.2 Let:

• {Li}1≤i≤n be n lines in general position in F2;

• V be a set of points on those lines, none of which is an intersection point, of type
v � (1, 2, . . . , n);

• P (x, y) =
∑

0≤i+j≤n−1 ai,jx
iyj be a polynomial of degree (at most) n − 1 in F[x, y],

and P |V be the values of P in the points of V.

• S be a random linear combination of the coefficients of P .

Then P |V does not yield any information on S with probability 1 − q−1 at least, where
q = |F|.

Remarks.

1. Note that the probability in Theorem 4.1 is with respect to the random selection of
V ∈ Ω where

Ω :=



V ⊆

(
n⋃

i=1

Li

)
\


 ⋃

1≤i<j≤n

Li ∩ Lj




∣∣∣∣∣∣
v := type(V) º (1, 2, . . . , n)



 . (20)

In Theorem 4.2, the set V is fixed and the probability is with respect to the selection
of the random coefficients in the linear combination S.

2. The value of the constant Cn may be reduced by applying tighter estimates. However,
in practical applications of Theorem 4.1 for the secret sharing scheme that we present
later on, the typical values of n and q are usually such that Cnq−1 is a very small
probability.

In the following, we use the notation σn =
∑n

i=1 i = n(n+1)
2 .

Lemma 4.3 Let v be a monotone vector such that v º (1, 2, . . . , n). Then there exists a
monotone vector u such that u ≤ v (namely, ui ≤ vi for all 1 ≤ i ≤ n), u º (1, 2, . . . , n),∑n

i=1 ui = σn, and un ≤ n.
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Proof. We prove the claim by induction. The claim clearly holds for n = 1. Assume it holds
for vectors of length n−1 and let v be a monotone vector in Nn such that v º (1, 2, . . . , n).

If vn ≥ n, we define u = (u1, . . . , un) as follows: un = n while (u1, . . . , un−1) is a
monotone vector such that ui ≤ vi for all 1 ≤ i ≤ n− 1, (u1, . . . , un−1) º (1, 2, . . . , n− 1),∑n−1

i=1 ui = σn−1, and un−1 ≤ n − 1. The vector (u1, . . . , un−1) exists by the induction
hypothesis since if v º (1, 2, . . . , n) then (v1, . . . , vn−1) º (1, 2, . . . , n − 1). The vector
u = (u1, . . . , un−1, un) thus defined satisfies all of the requirements.

Assume next that vn < n. If
∑n

i=1 vi = σn, we are done, since we can take u = v.
If, on the other hand,

∑n
i=1 vi > σn, we proceed to find a vector u = (w1, . . . , wn−1, vn)

such that wi ≤ vi, 1 ≤ i ≤ n − 1, (w1, . . . , wn−1) is a monotone vector that dominates
(1, 2, . . . , n−1),

∑n−1
i=1 wi = σn−1+(n−vn) and wn−1 ≤ vn. Such a vector would satisfy all of

the requirements. By the induction hypothesis there exists a monotone vector (u1, . . . , un−1)
such that ui ≤ vi for all 1 ≤ i ≤ n−1, (u1, . . . , un−1) º (1, 2, . . . , n−1), and

∑n−1
i=1 ui = σn−1.

Hence, since

n−1∑

i=1

vi −
n−1∑

i=1

ui =

(
n∑

i=1

vi −
n−1∑

i=1

ui

)
− vn > (σn − σn−1)− vn = n− vn ,

there exists a monotone vector (w1, . . . , wn−1), such that ui ≤ wi ≤ vi, 1 ≤ i ≤ n − 1,
and

∑n−1
i=1 wi = σn−1 + (n − vn). Specifically, if j is the maximal index for which dj :=∑n−1

i=j vi −
∑n−1

i=j ui ≥ n− vn, then

wi =





ui 1 ≤ i < j
vj − (dj − (n− vn)) i = j
vi j < i ≤ n− 1

.

Finally, as (w1, . . . , wn−1) º (u1, . . . , un−1) º (1, 2, . . . , n − 1) and wn−1 ≤ vn−1 ≤ vn, we
are done. ¤

Proof of Theorem 4.1. Let V be a randomly selected set from Ω, (20). By Lemma 4.3, V
has a subset of points V ′ of type v′ such that v′ º (1, 2, . . . , n),

∑n
i=1 v′i = σn, and v′n ≤ n.

We proceed to show that P |V ′ determines the polynomial P with probability of 1−Cnq−1 at
least. Since P |V is a superset of P |V ′ , this will settle our claim. For simplicity of notation,
we denote the subset V ′ and its type v′ by V and v, respectively.

The case n = 1 is trivial. Let us examine the case n = 2. In that case, the unknown
polynomial is P (x, y) = a + bx + cy, there are two intersecting lines, L1 and L2, and we
are given the value of P at three points: (x1, y1) ∈ L1 and (x2, y2), (x3, y3) ∈ L2 (none of
which is A1,2 := L1 ∩L2), see Figure 4. First, we compute the restriction of P to L2. That
restriction is a linear univariate polynomial, and hence, we may compute it by standard
univariate interpolation through the two points (x2, y2) and (x3, y3). As a result, we have
the value of P in A1,2. This, in turn, enables us to compute the restriction of P to L1,
again, by univariate interpolation, this time through A1,2 and (x1, y1). Now, if L3 is any
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L3

L1

L2

A2, 3

A1, 3A1, 2

(x3, y3)

(x2, y2)

(x1, y1)

Figure 4: Interpolating a linear polynomial on two intersecting lines

line that lies in a general position with respect to L1 and L2, we have the value of P in the
corresponding three intersection points, Ai,j = Li∩Lj , 1 ≤ i < j ≤ 3. Using the techniques
presented in Section 4.1, we may fully recover P (x, y).

We proceed by induction. Without loss of generality we may assume that |V ∩Li| = vi,
1 ≤ i ≤ n (namely, we assume that the permutation π in Definition 4.1 is the identity). Let
us denote the points in V by {(xi, yi) : 1 ≤ i ≤ σn}. The values P |V give rise to a linear
system of σn equations in the σn unknown coefficients of P (x, y) =

∑
0≤i+j≤n−1 ai,jx

iyj .
Denote by M the matrix of that linear system; then its ith row, 1 ≤ i ≤ σn, is given by

Mi,· =
(

1 xi yi x2
i xiyi y2

i . . . xn−1
i xn−2

i yi . . . xiy
n−2
i yn−1

i

)
.

We aim at showing that M is singular with probability that does not exceed Cnq−1.
To that end, we invoke Lemma 4.3 for the vector (v1, . . . , vn−1). Since that vector

dominates the vector (1, . . . , n− 1) there exists a monotone vector (u1, . . . , un−1) such that
ui ≤ vi, 1 ≤ i ≤ n− 1, un−1 ≤ n− 1 and

∑n−1
i=1 ui = σn−1. Let us rearrange the order of the

rows in M so that the first σn−1 rows correspond to a subset of points of type (u1, . . . , un−1).
Hence, by induction, the main σn−1-dimensional minor of M is singular with probability
that does not exceed Cn−1q

−1.
Next, we consider the determinant

detM = det




1 x1 y1 . . . xn−1
1 xn−2

1 y1 . . . yn−1
1

...
...

...
...

...
...

...
...

1 xσn−1 yσn−1 . . . xn−1
σn−1

xn−2
σn−1

yσn−1 . . . yn−1
σn−1

1 xσn−1+1 yσn−1+1 . . . xn−1
σn−1+1 xn−2

σn−1+1yσn−1+1 . . . yn−1
σn−1+1

...
...

...
...

...
...

...
...

1 xσn yσn . . . xn−1
σn

xn−2
σn

yσn . . . yn−1
σn




.
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We view the first σn−1 points in the sequence as fixed, and the last n points as variables. In
addition, for all σn−1 +1 ≤ i ≤ σn, yi depends on xi linearly, yi = âixi + b̂i. (The constants
âi and b̂i are the parameters of the line on which the point (xi, yi) lies. We assume, without
loss of generality, that none of the lines is of the form x=Const.) Therefore, we may view
detM as a polynomial in the variables (xσn−1+1, . . . , xσn). For the sake of simplicity, we
denote the variables (xσn−1+1, . . . , xσn) by ξ1, . . . , ξn (and the corresponding y-coordinates
by η1, . . . , ηn).

We claim, and prove later, that detM(ξ1, . . . , ξn) is a nonzero polynomial whenever the
main σn−1-dimensional minor of M is nonzero. Since ξi are chosen randomly in F, under
the restriction that ξi 6= ξj whenever they both correspond to points on the same line,
the number of selections of (ξ1, . . . , ξn) is at least

(
q
n

)
. Since the degree of the polynomial

detM(ξ1, . . . , ξn) with respect to each of its variables is at most n− 1, we infer, by Lemma
2.2, that detM(ξ1, . . . , ξn) has at most n(n − 1)qn−1 zeros. Therefore, the probability
of selecting (ξ1, . . . , ξn) as one of the zeros of detM is at most n(n−1)qn−1

(q
n)

< cnq−1 for

cn = nn+2. Altogether, we conclude that detM vanishes with probability that does not
exceed Cn−1q

−1 + cnq−1 = Cnq−1. This implies that P |V determines the polynomial with
probability at least 1− Cnq−1.

It remains to prove that if the main σn−1-dimensional minor of M is nonzero, then
detM(ξ1, . . . , ξn) is a nonzero polynomial. Observe that

detM(ξ1, . . . , ξn) = Mσn−1 · p(ξ1, . . . , ξn) + r(ξ1, . . . , ξn) ,

where Mσn−1 is the main σn−1-dimensional minor of M (which is assumed to be nonzero),

p(ξ1, . . . , ξn) := det




ξn−1
1 ξn−2

1 η1 . . . ξ1η
n−2
1 ηn−1

1
...

...
...

...
...

ξn−1
n ξn−2

n ηn . . . ξnηn−2
n ηn−1

n


 (21)

is the determinant of the lower right block in M , and r(ξ1, . . . , ξn) stands for the sum of all
other terms in the determinant. We show that detM(ξ1, . . . , ξn) is a nonzero polynomial by
proving the following two claims:

• Claim 1. p(ξ1, . . . , ξn) is a nonzero polynomial.

• Claim 2. deg r(ξ1, . . . , ξn) < deg p(ξ1, . . . , ξn).

Proof of Claim 1. By extracting ξn−1
i from the ith row in the determinant in (21), for all

1 ≤ i ≤ n, we obtain a Vandermonde determinant. This brings us to the conclusion that

p(ξ1, . . . , ξn) =
n∏

i=1

ξn−1
i ·

∏

1≤i<j≤n

(
ηj

ξj
− ηi

ξi

)
=

∏

1≤i<j≤n

(ξiηj − ξjηi) ,
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or, after substituting ηi = âiξi + b̂i, that

p(ξ1, . . . , ξn) =
∏

1≤i<j≤n

pi,j(ξ1, . . . , ξn) , (22)

where
pi,j(ξ1, . . . , ξn) = (âj − âi)ξiξj + b̂jξi − b̂iξj .

The polynomial pi,j(ξ1, . . . , ξn) is nonzero since b̂i, b̂j 6= 0 (as implied by our assumption
that none of the lines goes through the origin). As it is a polynomial of degree 1 in each of
the two variables ξi, ξj , it has no more than 2q zeros in Fξi × Fξj . Consequently, viewed as
a polynomial in (ξ1, . . . , ξn), pi,j(ξ1, . . . , ξn) has no more than 2qn−1 zeros. Since, by (22),
p(ξ1, . . . , ξn) is a product of

(
n
2

)
such polynomials, it has no more than n(n−1)qn−1 zeros in

Fn. As n(n− 1) < q, the number of zeros of p(ξ1, . . . , ξn) is smaller than |Fn|. This implies
that p(ξ1, . . . , ξn) is a nonzero polynomial.

Proof of Claim 2. detM is a linear combination of all minors of size n×n that are contained
within the last n rows of M . While p(ξ1, . . . , ξn) is the n × n minor that corresponds to
the n right-most columns, the remainder r(ξ1, . . . , ξn) corresponds to all other minors that
involve at least one of the first σn−1 columns.

Let µ(ξ1, . . . , ξn) and µ′(ξ1, . . . , ξn) be two such n× n minors that differ in one column
only: while the first column in µ(ξ1, . . . , ξn) consists of entries of the form ξj

i η
k
i , the first

column in µ′(ξ1, . . . , ξn) consists of entries of the form ξj′
i ηk′

i . (All other n − 1 columns
in those two minors are the same.) We proceed to show that if j′ + k′ < j + k then
degµ′(ξ1, . . . , ξn) < degµ(ξ1, . . . , ξn). As shown later, this will settle our claim.

Let µ(ξ1, . . . , ξn) =
∑n

i=1 µi(ξ1, . . . , ξn) be the expansion of the determinant µ with re-
spect to its first column. Then the corresponding expansion of µ′ is given by µ′(ξ1, . . . , ξn) =∑n

i=1 µ′i(ξ1, . . . , ξn) where µ′i = µi · ξj′−j
i ηk′−k

i . Assume that degµ(ξ1, . . . , ξn) = d. Namely,
the highest order terms in each of µi(ξ1, . . . , ξn), 1 ≤ i ≤ n, are of the form

∏n
i=1 ξhi

i where∑n
i=1 hi ≤ d. Hence, the highest order terms in all of µ′i(ξ1, . . . , ξn), 1 ≤ i ≤ n, are of

degree d + (j′ + k′) − (j + k) < d at most. That settles our claim because every minor in
r(ξ1, . . . , ξn) may be obtained from the minor p(ξ1, . . . , ξn) by a number of degree-decreasing
column-switches of that sort, and, consequently, the degree of each such minor is strictly
less than that of p(ξ1, . . . , ξn).
¤

Proof of Theorem 4.2. Assume that v � (1, 2, . . . , n). To prove this part of the theorem,
it is more convenient to change the basis of the space of bivariate polynomials of degree
n− 1. Let L0 be a line in F2 that intersects all of the lines L1, . . . , Ln in n distinct points,
none of which is in V. Then, in view of our discussion in Section 4.1, any polynomial

P (x, y) =
∑

0≤i+j≤n−1

ai,jx
iyj ∈ Fn−1[x, y]
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has an alternative representation

P (x, y) =
∑

0≤i<j≤n

bi,jLi,j(x, y) (23)

where
Li,j(x, y) =

∏

0≤k≤n

k 6=i,j

Lk(x, y) , (24)

and Lk(x, y) = 0 is the equation that defines the line Lk, 0 ≤ k ≤ n.
As in the proof of Theorem 4.1, let us denote the points in V by {(xi, yi) : 1 ≤ i ≤ |v|}.

The values P |V give rise to a system of |v| equations in the σn unknown coefficients in (23).
Letting M denote the matrix of coefficients in that system, the ith row of M , 1 ≤ i ≤ |v|,
is given by,

Mi,· =
(

L0,1(xi, yi) L0,2(xi, yi) L1,2(xi, yi) · · · L0,n(xi, yi) · · · Ln−1,n(xi, yi)
)

.
(25)

We proceed to show that the rank of M is smaller than σn. This will imply that a random
vector from Fσn is in the row space of M with probability q−1 at the most. Since S is a
random linear combination of the σn coefficients of P , this will imply that P |V does not
yield any information on S with probability 1− q−1 at least.

The main observation towards this end is that if (xi, yi) ∈ Lj then Lk,`(xi, yi) = 0 if
j /∈ {k, `}. Consequently, in every row of the matrix M there are σn−1 entries that are
zero. For example, in rows that correspond to points (xi, yi) ∈ Ln, only the last n entries,
Lj,n(xi, yi), 0 ≤ j ≤ n− 1, are nonzero.

As v � (1, 2, . . . , n), there exists 1 ≤ j ≤ n for which
∑j

i=1 vi < σj . Assume that the
rows of the matrix M are ordered so that the first v1 rows correspond to the points on L1,
the next v2 rows correspond to the points on L2, and so forth. Then in all the rows after
the first

∑j
i=1 vi rows, the first σj entries are zero. Indeed, the first σj entries in each row

are

Mi,1 : σj =
(

L0,1(xi, yi) L0,2(xi, yi) L1,2(xi, yi) · · · L0,j(xi, yi) · · · Lj−1,j(xi, yi)
)

.

Each row after the first
∑j

i=1 vi rows corresponds to a point (xi, yi) that lies on one of the
lines Lj+1, . . . , Ln. For such points, Lk,`(xi, yi) = 0 for all 0 ≤ k < ` ≤ j. We arrive at the
conclusion that the first σj columns of the matrix M are identically zero beyond the first∑j

i=1 vi < σj rows. That means that the column rank of M is lacking. As the number of
columns of M is σn, we infer that the rank of M is at most σn − 1. ¤

4.3 Hierarchical Threshold Access Structures

Let U be a set of participants that is partitioned into m disjoint levels, (1), and let k1 <
k2 < · · · < km be a sequence of thresholds. The corresponding hierarchical threshold access
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structure is defined by

Γ =



V ⊂ U :

∣∣∣∣∣∣
V ∩




i⋃

j=1

Cj




∣∣∣∣∣∣
≥ ki for all 1 ≤ i ≤ m



 . (26)

Those access structures were presented and studied in [17]. They are realized there by an
ideal secret sharing scheme that is based on Birkhoff interpolation, namely, interpolation
in which the given values of the unknown polynomial, P (x), include also derivative values.
Specifically, participants from level Ci, 1 ≤ i ≤ m, receive the value of the (ki−1)th derivative
of P at the point x that identifies them (where hereinafter k0 := 0). As participants from
higher levels (namely, Ci for lower values of i) have shares that equal derivatives of P of
lower orders, those shares carry more information on the coefficients of P than shares of
participants from lower levels.

Here we show how to realize such hierarchical access structures using bivariate Lagrange
interpolation on lines in general position. The scheme that we present here does not use
derivatives, as the Birkhoff interpolation-based scheme of [17] did, but instead it adds one
more dimension in order to achieve the same hierarchical effect.

Let {Lj}1≤j≤n be n := km lines in general position in F2, none of which goes through the
origin (0, 0). Let {wi,j}0≤i+j≤n−1 be publicly known values that are selected randomly and
independently from F. Finally, let P (x, y) =

∑
0≤i+j≤n−1 ai,jx

iyj be a random polynomial
in Fn−1[x, y], whose coefficients are selected so that S =

∑
0≤i+j≤n−1 ai,jwi,j . Then the

secret sharing scheme in this case is as follows.

Secret Sharing Scheme 3:

1. Each participant from level Ci will be identified by a unique public point on Lki \(⋃
1≤j≤n

j 6=ki

Lj

)
and his private share will be the value of P at that point.

2. In addition, we publish the value of P at:

• ki−1 additional points on Lki
, 2 ≤ i ≤ m; and

• j points on Lj for all j ∈ {1, 2, . . . , n} \ {ki : 1 ≤ i ≤ m}.

Example. Assume that there are m = 3 levels with thresholds k1 = 2, k2 = 4 and k3 = 5
(namely, V ∈ Γ if and only if it has at least 2 participants from the highest level C1, at least
4 participants from the two highest levels C1 ∪ C2, and at least 5 participants altogether).
Then we select 5 random lines in general position: Li, 1 ≤ i ≤ 5. The allocation of private
shares will be as follows:

1. Participants from C1 will be given polynomial shares on L2 (since k1 = 2).

2. Participants from C2 will be given polynomial shares on L4 (since k2 = 4).
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L3

L1

L2

L5

Figure 5: Secret Sharing Scheme 3

3. Participants from C3 will be given polynomial shares on L5 (since k3 = 5).

The corresponding points are marked in Figure 5 by empty circles. The public values will
be:

1. 2 point values on L4, and 4 point values on L5 (those points are marked by full bullets
in Figure 5).

2. 1 point value on L1 and 3 point values on L3 (those points are marked by full squares
in Figure 5).

Theorem 4.4 The ideal Secret Sharing Scheme 3 is a perfect scheme that realizes the
hierarchical threshold access structure (26), with probability 1−Cnq−1 at least, where Cn :=∑n

k=3 kk+2.

A direct consequence of Theorem 4.4 is that there exists an ideal secret sharing scheme
for the hierarchical threshold access structure, (26), whenever

q = |F| > Cn :=
n∑

k=3

kk+2 , (27)

where n = km is the size of minimal authorized subsets. This lower bound on the size of
the underlying field is a significant improvement with respect to the corresponding result
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in [17, Corollary 3.4] where the condition on the size of the field was

q >

(|U|+ 1
n

)
· (n− 2)(n− 1)

2
+ n .

(The improvement is due to the fact that typically |U| >> n.)

Proof of Theorem 4.4. Given V ⊂ U , let xi = |V ∩ Ci|, 1 ≤ i ≤ m, denote the number of
participants that V has from the ith level. Then V knows the value of P at vj points along
Lj , 1 ≤ j ≤ n, where

vj =
{

ki−1 + xi j = ki for some 1 ≤ i ≤ m
j otherwise

. (28)

Let us denote v := (v1, . . . , vn), and let v′ denote the monotone non-decreasing ordering of
v; namely, v′ is the type of the set of points in which V knows the value of P . In view of
Theorems 4.1 and 4.2 we need only to show that v′ º (1, 2, . . . , n) if and only if V ∈ Γ.

Part 1: V ∈ Γ implies that v′ º (1, 2, . . . , n).
Assume that V ∈ Γ. Then, by (26),

i∑

j=1

xj ≥ ki , 1 ≤ i ≤ m . (29)

The vectors v and v′ include components of two kinds, as seen in (28): level components, that
correspond to positions {k1, . . . , km} in v, and separator components, that are the remaining
n − m components. This induces a similar separation on the components of the vector
(1, 2, . . . , n): we refer to the components in positions {k1, . . . , km} as level components, and
to the remaining ones as separator components. Let w = (vk1 , vk2 , . . . , vkm) be the sub-
vector of all level components within v, let w′ be its monotone non-decreasing ordering,
and let (k1, k2, . . . , km) be the sub-vector of all level components within (1, 2, . . . , n). We
begin by proving that

w′ º (k1, k2, . . . , km) . (30)

We will then use (30) in order to establish the full domination relation, i.e.,

v′ º (1, 2, . . . , n) . (31)

• Step 1: Proving (30). In order to prove (30) we need to show that

∑̀

j=1

w′j ≥
∑̀

j=1

kj , 1 ≤ ` ≤ m . (32)
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Fix ` in the range 1 ≤ ` ≤ m. There are two cases to consider: If {w′1, . . . , w′`} =
{vk1 , . . . , vk`

} then

∑̀

j=1

w′j =
∑̀

j=1

vkj =
∑̀

j=1

(kj−1 + xj) =
`−1∑

j=1

kj +
∑̀

j=1

xj ≥
∑̀

j=1

kj , (33)

where the last inequality stems from (29). If, on the other hand, {w′1, . . . , w′`} 6= {vk1 , . . . , vk`
}

(this may happen only when ` < m) then there exists a minimal index i, 1 ≤ i ≤ `, such
that vki

/∈ {w′1, . . . , w′`}. Hence,

∑̀

j=1

w′j =
i−1∑

j=1

vkj +
∑̀

j=i

vkrj
, (34)

where
i < ri < ri+1 < · · · < r` . (35)

As argued in (33),
i−1∑

j=1

vkj
≥

i−1∑

j=1

kj . (36)

On the other hand, (35) implies that rj ≥ j + 1 for all i ≤ j ≤ `. Hence, as k1 ≤ k2 ≤ · · · ≤
km, we conclude that krj ≥ kj+1. Therefore, by the definition of vkj , (28), we conclude that

vkrj
≥ krj−1 ≥ kj , i ≤ j ≤ ` . (37)

Finally, (32) follows from (34), (36) and (37).

• Step 2: Proving (31). Having shown (30) we proceed to prove (31). To that end we need
to show that if we add to the two vectors on both sides of the domination relation (30) the
n−m separator components {1, 2, . . . , n} \ {k1, . . . , km}, the domination relation (31) still
holds, i.e.,

i∑

j=1

v′j ≥
i∑

j=1

j , 1 ≤ i ≤ n . (38)

Fix an i, let 1 ≤ ` ≤ m be the maximal index such that k` ≤ i, and let t be the number of
level components in (v′1, . . . , v

′
i). There are three cases to consider:

1. If t = `, then (38)i follows from (32)`. Indeed, in that case the t = ` level components
in (v′1, . . . , v

′
i) are exactly (w′1, . . . , w

′
`) and the additional separator components on

the left hand side of (38)i are {1, 2, . . . , i} \ {k1, . . . , k`}. Hence, by adding the sum of
{1, 2, . . . , i} \ {k1, . . . , k`} to both sides of the inequality (32)`, we arrive at (38)i.

2. If t > ` then
i∑

j=1

v′j =
t∑

j=1

w′j + gi−t (39)
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where gr stands for the sum of the smallest r separator values, namely, the r minimal
numbers in {1, 2, . . . , n} \ {k1, . . . , km}. In view of (32), equality (39) implies that

i∑

j=1

v′j ≥
t∑

j=1

kj + gi−` − (gi−` − gi−t) .

By the definition of the partial sums gr,
∑`

j=1 kj + gi−` =
∑i

j=1 j. Hence, it remains
to prove that

t∑

j=`+1

kj ≥ (gi−` − gi−t) (40)

in order to establish our claim (38) in this case. Indeed, as, by our assumption, the
prefix {1, 2, . . . , i} includes exactly ` level components, {k1, . . . , k`}, the difference
gi−` − gi−t is composed of the t − ` largest numbers in {1, 2, . . . , i} \ {k1, . . . , k`}, all
of which are less than or equal to i. On the other hand,

t∑

j=`+1

kj ≥ (t− `) · k`+1 > (t− `) · i .

Hence, (40) follows and our claim in this case is settled.

3. If t < ` then equality (39) still holds. In view of (32), equality (39) implies that

i∑

j=1

v′j ≥
t∑

j=1

kj + gkt−t + (gi−t − gkt−t)

(note that in this case kt < k` ≤ i). Since, by the definition of the partial sums gr,∑t
j=1 kj + gkt−t =

∑kt
j=1 j we need only to prove that

gi−t − gkt−t ≥
i∑

j=kt+1

j (41)

in order to establish our claim (38) in this case. Indeed, as the minimal separator
value in gi−t − gkt−t is at least kt + 1 and each separator value is strictly larger than
its predecessor, inequality (41) holds. This settles our claim in this case as well, and
thus the proof of (38) is complete.

Part 2: V /∈ Γ implies that v′ � (1, 2, . . . , n).
Assume next that V /∈ Γ. Then there exists a minimal i ≥ 1 such that

∑̀

j=1

xj ≥ k` for all 1 ≤ ` < i (42)
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and
i∑

j=1

xj < ki . (43)

In that case, we claim that
ki∑

j=1

vj <

ki∑

j=1

j . (44)

Indeed, by the definition of v, (28),

ki∑

j=1

vj =
∑

1≤j≤ki
j /∈{k1,...,ki}

vj +
i∑

j=1

vkj =
∑

1≤j≤ki
j /∈{k1,...,ki}

j +
i∑

j=1

(kj−1 + xj) =
ki−1∑

j=1

j +
i∑

j=1

xj <

ki∑

j=1

j ,

where the last inequality is implied by (43). Since v′ is the monotone non-decreasing
ordering of v, inequality (44) implies that

∑ki
j=1 v′j <

∑ki
j=1 j, whence v′ � (1, 2, . . . , n).

The proof is thus complete. ¤

5 Epilogue

The advantage of bivariate interpolation over the standard univariate one in designing lin-
ear secret sharing schemes for multipartite settings is in the ability to associate different
compartments with different lines in the plane. Bivariate interpolation on lines was ex-
tended to multivariate interpolation on flats in several dimensions in [2]. By going to higher
dimensions and by adequately choosing the flats that represent the compartments, it might
be possible to design secret sharing schemes for a wide array of interesting access structures.
(In several dimensions we have more flexibility in choosing the dimensions of the flats and
their interrelation.) It would be also interesting to explore the possible advantages of using
non-linear manifolds instead of flats.

We would like to note that after the completion of this work, we came across the new
paper of Herranz and Sáez [9] where they introduce a new type of a multipartite access
structure. In that access structure, each authorized subset must be of size at least t, and
it must include representatives from at least k different compartments. Namely, if U is
partitioned to m compartments, (1), then V ∈ Γ if and only if |V| ≥ t for some t > 0 and
|V ∩ Ci| > 0 for at least k indices 1 ≤ i ≤ m. (Clearly, k ≤ m, t.) The linear scheme
that was proposed in [9] for that access structure may be viewed as a scheme that is based
on bivariate polynomial interpolation. With that interpretation, their scheme takes the
following form:

Secret Sharing Scheme 4:

1. The dealer generates a random polynomial P (x, y) = Q(x) + R(y) over F, where
Q(x) =

∑k−1
i=0 aix

i and R(y) =
∑t−k

j=1 biy
i.
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2. The secret is S = P (0, 0).

3. Each participant ui,j from compartment Ci will be identified by a unique public point
(xi, yi,j), where xi 6= 0 and yi,j 6= 0, and his private share will be P (xi, yi,j).

Here, xi, 1 ≤ i ≤ m, are m distinct values in the field F. All participants of compartment
Ci receive private shares on the vertical line x = xi. It is shown in [9] that there exists an
allocation of identities in F2 for which the resulting scheme is perfect. Utilizing the same
techniques that we used here for the compartmented access structures, it is possible to
prove that a random allocation of identities will result in a perfect scheme with probability
of 1−O(q−1).
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