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Abstract

We study the problem of privacy preservation in sequential releases of databases.
In that scenario, several releases of the same table are published over a period of
time, where each release contains a different set of the table attributes, as dictated
by the purposes of the release. The goal is to protect the private information from
adversaries who examine the entire sequential release. That scenario was studied
in [32] and was further investigated in [28]. We revisit their privacy definitions,
and suggest a significantly stronger adversarial assumption and privacy definition.
We then present a sequential anonymization algorithm that achieves `-diversity.
The algorithm exploits the fact that different releases may include different at-
tributes in order to reduce the information loss that the anonymization entails.
Unlike the previous algorithms, ours is perfectly scalable as the runtime to com-
pute the anonymization of each release is independent of the number of previous
releases. In addition, we consider here the fully dynamic setting in which the dif-
ferent releases differ in the set of attributes as well as in the set of tuples. The
advantages of our approach are demonstrated by extensive experimentation.

1. Introduction

1.1. Overview
Large organizations regularly collect personal data, such as medical records,

marketing information, or census data, in order to perform on it data mining for
the purpose of revealing trends and patterns in the general population. However,
the use of data containing personal information has to be restricted in order to
protect individual privacy. Although identifying attributes like ID numbers and
names are never released for data mining purposes, sensitive information might
still leak due to linking attacks, whereby an attacker may uncover hidden identities
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or sensitive information by joining the released data attributes with other publicly
available data. The attributes that can be efficiently used to create such links,
such as gender, zipcode, and age, are called quasi-identifiers. The problem of
anonymity calls for the modification of those attributes in order to thwart such
attacks, while maintaining as much as possible of the utility of the released data.

The first model of privacy-preserving data publication was k-anonymity [27,
29]. That model suggests to generalize the values of the quasi-identifiers so that
each of the released records becomes indistinguishable from at least k − 1 other
records, when projected on those attributes. As a consequence, each individual
may be linked to sets of records of size at least k in the released anonymized ta-
ble, whence privacy is protected to some extent. While k-anonymity aims at pre-
venting identity disclosure, the later models of `-diversity [20, 34] and t-closeness
[19] aim at preventing sensitive attribute disclosure by imposing conditions on the
distribution of the sensitive values within each subset of records that are indistin-
guishable with respect to their quasi-identifiers.

In all those models, the values of the database are typically modified via the
operation of generalization, while keeping them consistent with the original ones.
A cost function is used to measure the amount of information that is lost by the
generalization process. The objective is to modify the table entries in order to
respect the underlying privacy condition while minimizing the information loss.

Most of the studies thus far concentrated on scenarios of a single release, in
which the underlying table is released just once in an anonymized manner. How-
ever, there are scenarios in which the same table is released more than once, for
example, when new records are added to the table, or when partial views of the
data have to be released to different clients. In such scenarios, it is imperative to
consider the potential threats that may be caused by joining information from the
different views.

Example 1.1. Consider the table with two quasi-identifiers, age and gender,
and one sensitive attribute, disease, that is given in Table 1, alongside with two
releases of it. The first release includes the age and disease attributes, while
the second release includes the gender and disease attributes. Each of the
two releases satisfies 2-diversity, since it can be used to link each individual to
two sensitive values with equal probabilities. For instance, if an adversary wishes
to find sensitive information about Alice, a female of age 20, then the first release
allows him to infer that she has either measles or hepatitis, while the second re-
lease reveals that she has either measles or flu. However, the combination of the
two releases discloses with certainty that Alice has measles. Therefore, in order to
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achieve 2-diversity, one of the two releases would have to be further generalized.

Table 1: A table (left) and two corresponding releases (middle and right)

name age gender disease
Alice 20 female measles
Bob 20 male hepatitis
Carol 30 female flu
David 30 male angina

age disease
20 measles
20 hepatitis
30 flu
30 angina

gender disease
female measles
male hepatitis
female flu
male angina

2

The two main scenarios of multiple releases of a given table are the follow-
ing (see [9]): (a) The scenario of sequential release publishing [28, 32], where
different (vertical) projections of a given table on different subsets of attributes
are released in a sequential manner; and (b) Continuous data publishing [1, 3, 10,
25, 28, 35, 37], in which the underlying table changes over time (e.g., tuples are
added, removed, or updated), and updated snapshots of the table are released over
time.

In both scenarios, several releases of partial views of the same basic table
are published in a sequential manner, where already published releases cannot be
modified. The goal is to anonymize the next release so that the combination of
information from all releases does not lead to a privacy breach. In the scenario
which is called above “sequential release publishing”, the set of tuples (rows) is
fixed, while the set of attributes (columns) changes from one release to another.
On the other hand, in the scenario of so called “continuous data publishing”, the
set of attributes is fixed while the set of tuples is dynamic.

In the lion’s part of this paper we study the scenario of sequential release
publishing (in which the set of attributes changes between releases, but the set
of tuples is fixed). The approach that we propose here differs significantly from
the one proposed in [32] and then further developed in [28]. Then, in Section 5,
we explain how to extend our approach to handle also the case of dynamically
changing tables, where tuples can be added from time to time; in such cases, the
set of attributes as well as the set of tuples may change from one release to the
next one.

1.2. Related work on privacy-preservation in sequential release publishing
Wang and Fung [32] were the first to study the privacy problem in sequential

releases and they developed an algorithm for anonymizing such a release. They
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focused on the case in which only one previous release of the underlying table
was published, and then the problem is to generalize a second release so that a
given privacy goal is met. They (as well as the study [28] that we review below)
considered two privacy goals in that context: `-linkability and `-diversity1. `-
Linkability requires that the sequential release does not enable to link any quasi-
identifier tuple to less than ` distinct values of the sensitive attribute. `-Diversity
demands, in addition, that no sensitive value can be linked to any quasi-identifier
tuple with probability greater than 1/`. The algorithm of [32] generalizes the
second release so that the required privacy goal is met. They considered a strict
model of global recoding, called “cut generalization” (see Section 2.1 for a formal
definition of generalization models).

Shmueli et al. [28] extended the framework that was considered in [32] in
three ways:

• By considering a more flexible local recoding generalization model (the so
called “cell generalization”), what enabled substantially better utility re-
sults.

• By proposing privacy definitions that are suitable for any number of releases
or generalization model and designing a corresponding anonymization al-
gorithm.

• By proposing solutions to the dynamic setting in which tuples may be added
to the underlying table in between releases. (It is the only study so far that
considered the combination of the sequential release scenario with continu-
ous data publishing.)

The approach in [28] is based on viewing the sequential release as anR-partite
graph, where R is the number of releases: The nodes in the rth part are the tuples
in the rth release, 1 ≤ r ≤ R, and an edge connects two nodes in two differ-
ent parts if the corresponding two tuples contain consistent generalized values
(namely, they could both be the generalized view of the same original tuple). A
full clique in that graph is a collection of R nodes, one from each part, that are all
pairwise connected.

Two tuples in the sequential release (or two nodes in the multipartite graph)
are called siblings if they are the generalized images of the same original tuple.
A full clique is called genuine if all nodes in it are siblings of each other. Some

1We use herein the terms that were suggested in [28]; they differ from the terms used in [32].
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of the full cliques in the graph are genuine, and some are fake (full cliques con-
sisting of tuples that happen to be consistent even though they are not siblings).
[32] assumed that the adversary considers all cliques as genuine, and based their
privacy definitions on that assumption. [28] realized that the adversary may rec-
ognize some of the cliques as fake, since the set of all genuine cliques forms a
perfect matching in the R-partite graph, and then modified the privacy definition
to reflect that. According to [32, 28], the sequential release offers `-diversity if
any given quasi-identifier tuple is linked to any given sensitive value in no more
than 1/` of the full cliques [32] or no more than 1/` of the full cliques that cannot
be recognized by the adversary as fake [28].

The above described multipartite graph framework has several significant dis-
advantages, in terms of privacy guarantee, runtime, and utility:

• In order to compute properly the level of linkability or diversity, it is needed
to identify all full cliques that are part of a perfect matching; that problem
was shown in [28] to be NP-hard for R > 2.2 It is therefore suggested in
[28] to perform relaxed computations in order to circumvent those computa-
tional barriers; consequently, their solution does not guarantee compliance
with the targeted privacy goals.

• Even if we could identify all full cliques that are part of some perfect match-
ing, it is needed to weigh the cliques according to the number of perfect
matchings in which they participate; counting the number of perfect match-
ings even in a bipartite (R = 2) graph is #P-complete3.

• The above described approach is highly non-scalable, since the anonymiza-
tion of each release requires to compute cliques in the R-partite graph; the
cost of such computations depends exponentially on the number R of re-
leases.

• The multipartite graph approach may suffer from a problem of a reduc-
ing privacy budget. Assume that the data owner already published several
anonymized releases of the table that he owns. It is possible that in order
to publish the next release, while still meeting the desired privacy goal, he

2When R = 2 the problem is in P and can be solved at the same cost of finding one perfect
matching in the bipartite graph [30].

3#P is the class of counting problems associated with the decision problems in NP.
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would need to anonymize that new release aggressively (say, by suppress-
ing many entries), because of the previously published releases. Namely,
the level of information loss in each release may depend on its position in
the sequence of releases and on the previous releases.

1.3. Our contributions
In this paper we offer a different approach for anonymizing sequential releases

towards meeting the `-diversity privacy constraint. Instead of trying to ensure di-
versity by examining the collection of perfect matchings in the underlying multi-
partite graph, we devise a technique for anonymizing each release in its turn, so
that the resulting multipartite graph has ` perfect matchings that link each quasi-
identifier tuple with ` different sensitive values. In order to achieve that, we first
generate `− 1 tables having the same set of quasi-identifier tuples as the original
table, as well as the same multiset of sensitive values. We refer to those tables as
possible worlds. Those tables, together with the original table, are `-diverse, in the
sense that each quasi-identifier tuple is linked in each of them to a different sen-
sitive value. Then, whenever we need to publish an anonymized version of some
vertical projection of the table, we generalize the entries of the relevant attributes
until the resulting generalized table is consistent with all of those ` − 1 possible
worlds. By doing so, we guarantee that no adversary can tell the true world from
the other possible worlds, and, as a result, cannot link any quasi-identifier tuple
with any sensitive value with probability greater than 1/` (Theorem 4.1).

The advantages offered by our approach are as follows:

• Privacy. As opposed to [28, 32], our approach guarantees that even a
computationally-unbounded adversary cannot link any quasi-identifier tu-
ple with any sensitive value with probability greater than 1/`. In addition,
our adversarial assumption is much stronger — we assume that the adver-
sary knows the quasi-identifier information of all tuples in the table, and not
just that of a specific target individual.

• Scalability. The runtime of our algorithm in computing an anonymized
view of a new release is independent of the number of previous releases, as
opposed to that of the algorithm in [28] which depends exponentially on the
number of releases.

• Utility. The anonymization of each release is independent of its position
in the release sequence and of the past (or future) releases. Namely, even
if we already published many anonymized releases of the same table, the
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anonymization of the next release, and therefore its utility, would be exactly
the same as if it was the first release.

• Dynamics. Our approach can handle both vertical and horizontal dynamics.
Specifically, it can handle cases where new attributes (columns) are added
to the table, as well as cases where new records (rows) are added.

1.4. Organization of the paper
Section 2 provides the basic definitions and terminology. In Section 3 we

define the adversarial model and the privacy goal, and compare them to those
in [28, 32]. In Section 4 we describe our algorithm for anonymizing sequential
releases while respecting privacy by providing diversity. Section 5 is devoted
to the case of dynamically changing tables. Our experiments are described in
Section 6 and we conclude in Section 7. In Section 8.3 in the Appendix we discuss
the applicability of differential privacy to the problem of sequential release of
databases.

2. Preliminaries

In this section we provide the basic definitions and terminology. For conve-
nience, Section 8.1 in the Appendix includes a table that summarizes the main
notations that we introduce herein.

Let A1, . . . , AM be M attributes and T = {t1, . . . , tN} be a table of N tu-
ples in A1 × · · · × AM . Here, Am, m ∈ [M ] := {1, . . . ,M}, denotes the mth
attribute as well as the domain in which it takes values. We shall assume that
the first Q attributes are the quasi-identifiers, attributes AQ+1, . . . , AM−1 are the
non-identifiers (namely, attributes that are not quasi-identifiers and do not hold
sensitive information), and AM is the sensitive attribute. (We adopt the usual
assumption of a single sensitive attribute.) So, if we let tn(m) denote the mth
component of tn (i.e., tn = (tn(1), . . . , tn(M))), tn(m) is a quasi-identifier value
when 1 ≤ m ≤ Q, a non-identifier value when Q < m < M , and the sensitive
value when m = M .

2.1. Generalization
For each m ∈ [M ], let Am be a collection of subsets of Am, which can be used

as generalized values in anonymized releases.
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Definition 2.1. Let t and v be tuples in A1 × · · · × AM and A1 × · · · × AM ,
respectively, and for allm ∈ [M ] let t(m) and v(m) denote theirmth components.
Then v is a generalization of t (or v generalizes t) if t(m) ∈ v(m) for allm ∈ [M ].
The table V = {v1, . . . , vN} is a generalization of T = {t1, . . . , tN} if vn is a
generalization of tn for all n ∈ [N ].

Typically, if Am is a categorical attribute (e.g. occupation) Am is a corre-
sponding hierarchical generalization tree (a taxonomy); namely, each node in Am
is a subset of Am, the root of Am is the entire set, the leaves are all the singleton
subsets, and the children of any non-leaf node form a partition of the parent node.
If Am is a fully-ordered attribute (usually a numerical attribute such as age), Am
is typically the collection of all intervals in Am; i.e., it consists of all subsets of
Am of the form [a, b] := {x ∈ Am : a ≤ x ≤ b}.

Another notion which we shall use is that of a closure.

Definition 2.2. The closure of a set of (possibly generalized) tuples B ⊂ A1 ×
· · · × AM is the generalized quasi-identifier tuple tB ∈ A1 × · · · × AQ where
tB(m), m ∈ [Q], is the minimal subset in Am that contains

⋃
t∈B t(m).

A sequential release of T is a sequence 〈V1, . . . , VR〉 of generalizations of T ;
the tuples in those releases will be denoted by Vr = {vr1, . . . , vrN}, 1 ≤ r ≤ R.
Typically, each generalization Vr includes only a subset of the M attributes in the
original table T . In that case, all entries in the missing attributes are suppressed.
We shall denote hereinafter by Ir the set of indices of attributes that appear in
release Vr. Namely, Ir is a subset of [M ] := {1, . . . ,M} and for all m ∈ [M ] \ Ir,
the mth attribute in Vr is suppressed.

As explained earlier, the norm is to apply generalization only to the quasi-
identifiers, and not to the non-identifiers nor to the sensitive attribute. Hence, the
collection Am for an attribute Am that is either a non-identifier or the sensitive
value (m > Q), is Am = Am ∪ {Am}. Namely, it includes all singleton subsets
of Am, together with the entire set Am. Then, if such an attribute appears in a
given release, it will appear in its non-generalized form in all tuples; if it does not
appear in another release, it will be suppressed in all of the tuples in that release.

There are two main models of generalizations. In local recoding, each entry
in the table’s mth attribute can be generalized independently to any of the gen-
eralized values in Am that includes it. In global recoding, each element in Am
is always generalized in the same way in a given release. Cut generalization is
a special case of global recoding which is even stricter. In that model, one se-
lects in Am a sub-collection of subsets that forms a partition of Am (namely, those
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subsets are disjoint and cover the entire set) and then each element in Am is gen-
eralized to the subset in that sub-collection that includes it. In this paper we use
the local recoding model. Since the local recoding model is more flexible than
the global recoding model, it may allow achieving a certain privacy goal with less
information loss than the global recoding model.

2.2. Measures of information loss
Many measures were suggested in the literature for the cost of generalization,

or information loss. Among the commonly used ones is the Loss Metric (LM)
measure [15] and the Entropy Measure (EM) [13]. In this study we concentrate
on these two measures; however, our entire discussion is independent of the choice
of measure of information loss and equally applies to any other measure.

The LM measure associates with a given generalized quasi-identifier tuple
v ∈ A1 × · · · × AQ an information loss as follows:

IL(v) :=

Q∑
m=1

|v(m)| − 1

|Am| − 1
. (1)

Namely, in entries that were not generalized at all (v(m) is a singleton) the penalty
is 0, in entries that were totally suppressed (v(m) = Am) the penalty is 1, and in
intermediate generalizations the penalty is proportional to the size of the general-
izing subset.

The EM measure assumes that the distribution of each of the attributes Am,
m ∈ [M ], in T is made known. Let V = {v1, . . . , vN} be a generalization of T .
Then, if the original value tn(m) was generalized to the subset of values vn(m) ⊆
Am, the uncertainty regarding the exact original value tn(m) ∈ vn(m) is given
by the corresponding conditional entropy. Specifically, if vn(m) = {b1, . . . , bz}
and pi is the relative frequency of bi in T ’s mth attribute, 1 ≤ i ≤ z, then the
corresponding conditional entropy is

H(vn(m)) := −
z∑
i=1

qi log2 qi , where qi =
pi

p1 + · · ·+ pz
, 1 ≤ i ≤ z .

The overall EM information loss in V is given by the sum of H(vn(m)) for all
n ∈ [N ] and m ∈ [M ].

Usually, the purposes of the data release are unknown at the stage when the
data is anonymized. Hence, it is customary to use general purpose informa-
tion loss measures, such as the LM or EM, as an indicator for the utility of the
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anonymized data. The question of how to use the anonymized data in order to,
say, learn a classifier or mine association rules, and whether those general purpose
information loss measures are good indicators for the accuracy of data mining on
the anonymized tables, was considered by very few studies so far, e.g. [11, 15, 24].
The recent study [17] is devoted to that topic. It is shown there that reduced infor-
mation loss, as measured by either the LM or the EM, translates also to enhanced
accuracy when using the anonymized tables to learn classification models.

2.3. Anonymity and diversity in a single release
One of the main threats in publishing tables that include data on individuals is

that of linking attacks. An adversary who knows the values of the quasi-identifiers
of some target individual may look for tuples in the released table that could be
linked to that individual, in the sense that their quasi-identifiers are consistent
with the known values. Then, the adversary may infer that the sensitive value of
his target individual is one of the sensitive values in those tuples. In order to thwart
such linking attacks, it is customary to generalize the table before publication.

Let V be a generalization of T and consider the following equivalence relation
on V ’s tuples:

vn ∼ vn′ iff vn(m) = vn′(m) ∀m ∈ [Q] . (2)

V is called an anonymization of T if all equivalence classes in V/∼ satisfy some
privacy criterion. The k-anonymity criterion requires that all equivalence classes
are of size at least k. The `-diversity criterion, on the other hand, requires that the
diversity of each equivalence class is at least `. A common definition of diversity
is the following:

Definition 2.3. The diversity of a set of tuples B ⊂ A1 × · · · × AM is defined
as the inverse of the relative frequency of the most frequent sensitive value in B’s
tuples, i.e.,

div(B) := min
s∈B(M)

|B|
|{t ∈ B : t(M) = s}|

,

where B(M) = {t(M) : t ∈ B}.

3. Privacy by diversity in a sequential release

The privacy goal in the sequential release setting is similar to that in a single
release setting (see Section 2.3). It is needed to anonymize the sequential release
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in a manner that would limit the ability of an adversary to deduce links between
individuals and sensitive values. However, the sequential release setting has two
major differences compared with the single release setting:

• Privacy. Ensuring `-diversity in each release separately is insufficient, since
information from different releases may be combined to infer links between
quasi-identifiers and sensitive values with probability greater than 1/`, as
exemplified by Example 1.1. Hence, one must take into account the global
view of the entire sequence of releases.

• Information Loss. The sequential release setting breaks up tuples. As a
consequence, the adversary faces a puzzle-like problem of finding the true
links between the different pieces of tuples as they appear in the different
releases. Because of that, it is possible to achieve in a sequential release a
similar level of diversity with much less information loss, in comparison to
a scenario in which the table is published at once with all of its attributes.

Therefore, the sequential release setting calls for a new definition of diversity and
algorithms that are specially designed for it.

As a first step, we must define the adversarial model. Wang and Fung [32]
and Shmueli et al. [28] assumed that the adversary knows the quasi-identifier val-
ues of his target individual, but not those of other individuals in the table. We
make here a much stronger adversarial assumption (which was also assumed in
e.g. [12, 31, 36, 37]): the adversary knows the exact set of individuals that are
represented in T and their quasi-identifier values. In other words, such an ad-
versary knows the projection of the table T onto the subset of quasi-identifiers,
A1 × · · · × AQ, and their corresponding identifiers. Hereinafter, if I ⊂ [M ] is
a subset of indices, T |I will denote the table T where all attributes with indices
in [M ] \ I are suppressed. Therefore, the above adversarial assumption means
that the adversary knows ID ‖

(
T |[Q]

)
, where ID stands for the attribute of cor-

responding identifiers. For instance, for Table 1 (see Example 1.1), the assumed
background knowledge of the adversary is as shown in Table 2.
Hence, in order to incorporate that adversarial assumption into the release model,
we shall always assume that there exists an additional release of T that equals
V0 = ID ‖

(
T |[Q]

)
; i.e., V0 = {v01, . . . , v0N}, where

v0n = (idn, tn(1), . . . , tn(Q), ∗, . . . , ∗) , n ∈ [N ] , (3)

and idn is the identity of the nth tuple in T .

Next, we define the notion of possible worlds.
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Table 2: Adversarial background knowledge for Table 1.

name age gender disease
Alice 20 female *
Bob 20 male *
Carol 30 female *
David 30 male *

Definition 3.1. Let V := 〈V0, V1, . . . , VR〉 be a sequential release of a table T .
Let W = {w1, . . . , wN} be a set of N tuples in ID × A1 × · · · × AM . Assume
that for each 0 ≤ r ≤ R there exists a bijection fr : [N ] → [N ] such that for
each n ∈ [N ], the tuple vrfr(n) ∈ Vr generalizes wn. Then W is called a possible
world for V . The set of all possible worlds for the sequential release V is denoted
PW(V).

Stated differently, a specific table W is a possible world for the sequential
release V if it could be the original table T : it agrees with the background knowl-
edge V0 when projected onto ID × A1 × · · · × AQ, and in addition, each release
is consistent with W .

Clearly, T is a possible world for V . Indeed, let us make hereinafter the order-
ing assumption that for all 0 ≤ r ≤ R and n ∈ [N ], vrn is the generalized image
of tn ∈ T in the rth release Vr. (That assumption is made only for simplifying
our discussion; the tuples in the actual release will be randomly shuffled in or-
der to obfuscate the linkage between them.) Then by taking fr to be the identity
bijection from [N ] to [N ], for all 0 ≤ r ≤ R, we see that T ∈ PW(V).

We proceed to define `-diversity for a set of possible worlds and for a sequen-
tial release.

Definition 3.2. Let E ⊆ PW(V) be a set of possible worlds. For any selection
of v0n as one of the tuples in V0 (see Eq. (3)) and s ∈ AM as one of the sensitive
values, we let E[v0n, s] denote the subset of possible worlds in E that contain a
tuple w such that w(m) = v0n(m) for all m ∈ [Q] and w(M) = s. Then E is
`-diverse if

|E[v0n, s]|
|E|

≤ 1

`
∀v0n ∈ V0 , s ∈ AM . (4)

Definition 3.3. The sequential release V respects `-diversity if the setE = PW(V)
of all possible worlds that it induces is `-diverse.

12



Namely, a sequential release satisfies `-diversity if the fraction of possible
worlds that link any tuple in the background knowledge table V0 with any sensitive
value does not exceed 1/`.

Later on we shall also use the term `-linkability. The sequential release V
respects `-linkability if for every v0n ∈ V0 there exist ` distinct sensitive values
s ∈ S such that |E[v0n, s]| > 0, for E = PW(V); namely, like `-diversity it
requires every quasi-identifier tuple to be linked to at least ` distinct sensitive
values, but it ignores the linkage frequencies.

Any possible world in PW(V) constitutes a possible linkage of tuples in V0, the
background knowledge of the adversary, to sensitive values. Under our adversar-
ial assumption, the adversary cannot distinguish between those possible worlds,
whence each of them is equally likely to be the true one. Therefore, if the sequen-
tial release respects `-diversity, the adversary may not infer the sensitive value of
a given target individual with probability greater than 1/`.

Example 3.1. This toy example illustrates the concepts of possible worlds and
`-diversity. Consider the table T with a single quasi-identifier, A1, and a sensitive
attribute, A2, in Table 3(a). Table 3(b) shows a corresponding sequential releases:
V0 represents the assumed adversarial background knowledge, and includes just
the identifier and quasi-identifier attributes; and V1 is a release in which the quasi-
identifier A1 was totally suppressed.

It is easy to see that in this example there are three possible worlds: T , and
the two additional worlds that are shown in Table 3(c). This sequential release
respects `-diversity with ` = 3

2
since every individual is linked with every sensitive

value in no more than 2
3

of the possible worlds. For example, the individual a is
linked to the sensitive value 1 by the first two possible worlds, and to the sensitive
value 2 by the third possible world.

Table 3: (a) A table T ; (b) Two releases V0, V1; (c) Additional possible worlds.

ID A1 A2

a x 1
b y 1
c z 2

ID A1

a x
b y
c z

A1 A2

* 1
* 1
* 2

ID A1 A2

a x 1
b y 2
c z 1

ID A1 A2

a x 2
b y 1
c z 1

2

The `-diversity problem. Assume that the data owner has already published
R − 1 releases, V1, . . . , VR−1, of the table T , and that the sequential release up
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to that point, 〈V0, V1, . . . , VR−1〉, respects `-diversity. It is needed now to publish
another release of T that includes some subset of the attributes, IR. Then it is
desired to find a generalization VR of T |IR with minimal information loss that
maintains `-diversity.

Comment. We assumed that the adversary knows the exact set of individuals
that are represented in T and their corresponding quasi-identifiers. Such an as-
sumption corresponds to adversarial environments that are more threatening than
what can be expected in practice, but by making it we achieve a better privacy
guarantee. To illustrate the importance of basing our privacy analysis on such
strong adversaries, assume that we considered only potential leakage of infor-
mation from PW(V[1,R]), where V[1,R] = 〈V1, . . . , VR〉, and made sure that the
sequential release V[1,R] would not enable to link any identifier in V0 with any
sensitive value with probability greater than 1/`. Such a guarantee does not take
into account the possibility that the adversary may use his background knowledge
V0 in order to rule out some of the possible worlds in PW(V[1,R]) and, by thus,
achieve linkage probabilities greater than the intended bound of 1/`.

Example 3.2. Consider the table T with three tuples having two quasi-identifiers
and one sensitive value, and the corresponding releases V0, V1, V2, as shown in
Table 4. (Attributes that were totally suppressed in those releases are not shown.)
An adversary who knows only the quasi-identifier values of the individual who is
labeled “a”, may deduce from V1 and V2 that there are three possible worlds, as
shown in Table 5. Hence, such an adversary can only infer that the sensitive value
of “a” is either 1 (in probability 2/3) or 2 (in probability 1/3). On the other hand,
the adversary which we assume knows also V0. Such an adversary can rule out
the two possible worlds that are inconsistent with V0 (the second and third tables
in Table 5) and deduce with certainty that the sensitive value of “a” is 1.

Table 4: A table T and three releases V0, V1 and V2

ID A1 A2 A3

a r x 1
b s x 2
c r y 2

ID A1 A2

a r x
b s x
c r y

A2 A3

x 1
x 2
y 2

A1 A3

r 1
s 2
r 2

2

14



Table 5: The three possible worlds that are implied by V1 and V2 and the quasi-identifier values of
“a”

ID A1 A2 A3

a r x 1
? s x 2
? r y 2

ID A1 A2 A3

a r x 1
? r x 2
? s y 2

ID A1 A2 A3

a r x 2
? r x 1
? s y 2

Before concluding this section we note that both previous studies that dealt
with privacy-preservation in sequential releases, i.e. [28, 32], used weaker pri-
vacy definitions. The reader is referred to [28] for a thorough discussion of those
definitions and their weakness with respect to the `-diversity definition (Definition
3.3).

4. `-Diverse anonymizations of sequential releases

There are two approaches towards achieving `-diversity in sequential releases.
In the first approach, one produces a single anonymization V of the entire T (in-
cluding all its M attributes) that respects `-diversity, according to one of the ac-
ceptable definitions of `-diversity for a single release (e.g. [20, 31, 34, 36]). Then,
whenever it is needed to publish a new release that includes some subset of the
attributes, say Ir ⊂ [M ], one releases the projection of V on the Ir-attributes. The
second approach exploits the sequential nature of the release, by which not all
attributes in T are released at once.

The first approach is simplistic and leads to excessive generalization, since by
considering the entire table as a whole, we assume that the adversary sees at once
the entire tuples, with all of their M attributes. However, in the sequential release
setting, the adversary sees each time only part of the tuples and, hence, he does
not know how to correctly join the different “pieces” of each tuple. Therefore,
by exploiting the sequential nature of the release, it is possible to achieve the
same privacy goal with less information loss, as we exemplify later on. Another
advantage of the second approach is that it can cope with situations in which new
attributes, which were not known upfront, are added to the table.

Our sequential anonymization algorithm takes the second approach. Most of
this section is devoted to describing and discussing that algorithm (Sections 4.1–
4.4). We conclude in Section 4.5 with a description of an algorithm that follows
the first approach (the non-sequential one) which will be used later in our experi-
ments.
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4.1. A bird’s-eye view of the sequential anonymization algorithm
In Section 3 we defined the privacy notion of `-diversity, based on the collec-

tion of possible worlds. Verifying satisfiability of that definition may be infeasible,
due to the exponential cardinality of PW(V). Our proposed strategy achieves the
same privacy goal, in polynomial time, as we proceed to explain.

Let T = {t1, . . . , tN} (the real world) be as given on the left of Table 6; it is
described in a schematic manner, where qn represents the quasi-identifier part of
tn (attributes 1 to Q), rn is the non-identifier part (attributes Q+ 1 to M − 1), and
sn is the sensitive attribute (attribute M ), n ∈ [N ]. We randomly create `− 1 fake
worlds by permuting the non-identifier and sensitive attributes, using the same
permutation πi for all those columns in the ith possible world, as shown on the
right of Table 6. Letting E be the set of all ` possible worlds (the true one and the
`− 1 fake ones), as shown in Table 6, we make sure that:

1. All fake worlds in E are generated so that they are semantically close to
T in the following sense: in each of those worlds, every tuple is generated
as a concatenation of the quasi-identifier part of some tuple t ∈ T with the
non-identifier and sensitive values of another tuple t′ ∈ T , such that t and
t′ have similar quasi-identifiers. In other words, for each n ∈ [N ] and 1 ≤
i ≤ ` − 1, we would like the tuple (qn, rπi(n), sπi(n)) of the ith fake world
to be semantically close to its matching tuple in T , (qπi(n), rπi(n), sπi(n)).
Since the non-identifier and sensitive values of the two tuples are identical,
we only need to make sure that the quasi-identifier values of the two tuples
are similar.

2. E is `-diverse; i.e., for each n ∈ [N ], the ` sensitive values sπi(n), 1 ≤ i ≤ `,
(where π` denotes the identity permutation which corresponds to the real
world T ) are distinct.

Table 6: `-diverse possible worlds

qid n.i. sens.
q1 r1 s1
q2 r2 s2
...

...
...

qN rN sN

;

qid n.i. sens.
q1 rπi(1) sπi(1)

q2 rπi(2) sπi(2)

...
...

...
qN rπi(N) sπi(N)

1 ≤ i ≤ `− 1
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After this preliminary computation, we generalize each release in its turn until
it becomes consistent with each of those possible worlds. In doing so, we consider
all of those possible worlds equivalent (see Section 4.3). Namely, we generalize
the next release so that if V is the sequential release up to that release (including),
then each W ∈ E is a possible world in PW(V).

The above described method achieves effectively the same privacy goal as that
which underlies Definition 3.3:

Theorem 4.1. Let V be a sequential release of T that was generated by the above
described method. Then even an adversary who knows the anonymization al-
gorithm and is computationally-unbounded cannot infer from V links between
quasi-identifier tuples and sensitive values in probability greater than 1/`.

Proof. Given V , the adversary, who is computationally-unbounded, may enu-
merate the set PW(V) of all possible worlds that are consistent with V . The ad-
versary, who knows the anonymization algorithm, may then infer that the true
world T has in PW(V) ` − 1 possible worlds T1, . . . , T`−1, such that the set
{T1, . . . , T`−1, T` := T} is `-diverse. Hence, he may look in PW(V) for all
subsets E ⊂ PW(V) such that |E| = ` and E is `-diverse. Let us denote by
E = {E1, . . . , Ez} the collection of all such subsets. Then the adversary knows
that the true subset E that was used in generating V is one of the subsets in E .
Assume further that the adversary has a probability belief distribution over E , say
Pr(Ei), 1 ≤ i ≤ z. (For example, as the adversary knows that the data holder
attempted to find a subset E where the ` possible worlds are semantically close,
he may base his belief probabilities on that knowledge.)

Let v0n ∈ V0 be a quasi-identifier tuple, n ∈ [N ], and s ∈ AM be a sen-
sitive value. Assume that the adversary is told that the subset of `-diverse pos-
sible worlds that was used by the data owner when he computed the sequen-
tial release was Ei, for some 1 ≤ i ≤ z. Then, given that information, the
adversary’s linkage belief probability between v0n and s would equal 1/`, if Ei
contains a possible world in which v0n is linked with the sensitive value s (be-
cause all ` possible worlds in Ei are equally likely and only in one of them
v0n is linked with s), and zero otherwise. Therefore, as the adversary has a be-
lief probability Pr(·) over E = {E1, . . . , Ez}, where Pr(Ei) is his belief that
Ei was the actual subset that was used, the resulting linkage belief probability
between v0n and s is P (v0n, s) := 1

`
·
∑

i Pr(Ei), where the sum is taken over
all subsets Ei which contain a possible world that links v0n and s. Therefore,
P (v0n, s) ≤ 1

`
·
∑

1≤i≤z Pr(Ei) = 1
`
. Hence, even such a computationally un-
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bounded adversary cannot infer from V links between quasi-identifier tuples and
sensitive values in probability greater than 1/`. 2

The case of `-linkability is easier: clearly, the sequential release as generated
by the above described approach links every quasi-identifier tuple to at least `
different sensitive values. Recall that the previous algorithms in [32] and [28] do
not guarantee even the relaxed notion of `-linkability, as discussed in Section 1.2.

We proceed to describe the algorithm in detail. In Section 4.2 we describe
the preliminary computation, and in Section 4.3 we describe the anonymization
of each release in the sequence of releases.

4.2. Generating the fake possible worlds
Our goal is to create ` − 1 fake worlds as described above. Bearing in mind

that each of the future releases will have to be generalized in a manner that will
make it consistent with each of those fake worlds, we have to generate fake worlds
that will entail low information losses. Algorithm 1, that we proceed to describe,
does that; it is inspired by the algorithm for non-homogeneous anonymization of
[36].

The algorithm starts with ` − 1 empty fake possible worlds (Step 1). Then,
it divides T ’s tuples into buckets of diversity at least ` such that the overall gen-
eralization cost of the buckets’ closures (see Definition 2.2) is small (Step 2). To
that end, we may adopt any algorithm for `-diverse anonymization. (In our exper-
iments we adopted the Mondrian algorithm [18].)

The rest of the work proceeds within each bucketB independently (Steps 3-8).
For each bucket B, the algorithm orders the sensitive values in it in a cycle where
every ` consecutive values are distinct (Step 4). As each bucket has diversity at
least `, such an ordering exists. (We provide a constructive proof of that in Section
8.2 in the Appendix.)

After doing so, it finds an ordering of B’s tuples that agrees with the ordering
of the sensitive values (Step 5). Assuming thatB’s tuples have S distinct sensitive
values, say a1, . . . , aS , andB has ns tuples with the sensitive value as, 1 ≤ s ≤ S,
there are

∏S
s=1(ns!) ways of orderingB’s tuples in accord with a given ordering of

the sensitive values. We select one of these orderings in a greedy manner in order
to minimize future generalization costs. We defer the description of this greedy
subroutine to a later stage where it will be more easily understood.

Next (Step 6), we randomly select `− 1 permutations, σ1, . . . , σ`−1, over B =
{tB0 , . . . , tB|B|−1} that satisfy the following conditions (indices of B’s tuples are
modulo |B|):
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1. Range limitation: Every permutation satisfies σi(tBh ) ∈ {tBh+1, . . . , t
B
h+`−1}

for all 0 ≤ h ≤ |B| − 1.

2. Diversity: If 1 ≤ i 6= i′ ≤ ` then σi(th) 6= σi′(th) for all 0 ≤ h ≤ |B| − 1,
where σ` is the identity permutation.

The problem of randomly generating such permutations is equivalent to the prob-
lem of finding so called “match different” perfect matchings in bipartite graphs,
that was discussed in [36]. A simple algorithm that generates such perfect match-
ings based on random walks and backtracking is described in [36, Section 5.2].
Its basic time complexity is O(`|B|2), but Wong et al. describe heuristics to re-
duce the runtime of that procedure. (The reader is referred to [36, Section 5.2] for
further details.)

Then (Step 7), we add to the fake world Ti the tuples σi(B), where σi(B)
holds the tuples in B after permuting their suffixes (the part that consists of the
non-identifiers and the sensitive attribute) according to σi :

σi(B) := {(t(ID), t(1), . . . , t(Q), σi(t)(Q+ 1), . . . , σi(t)(M)) : t ∈ B} . (5)

As B’s tuples were ordered so that every cyclically consecutive ` tuples have
different sensitive values, and since the permutations were selected so that they
satisfy the above specified range limitation and diversity constraints, we infer that
the resulting possible worlds provide the sought-after diversity: each identifier is
linked through them to ` different sensitive values.

We now return to the greedy ordering of the tuples (Step 5), in accord with
the ordering of the sensitive values. The fake worlds associate with the quasi-
identifiers of tBh , the suffixes of the tuples tBh+1, . . . , t

B
h+`−1. Hence, in order to

make each of those fake worlds a possible world in the future releases, we shall
have to generalize the tuple tBh so that it would be consistent with tBh−1, . . . , t

B
h−`+1.

The resulting overall generalization cost is then

|B|−1∑
h=0

IL(closure(tBh , t
B
h−1, . . . , t

B
h−`+1)) . (6)

Therefore, we order B’s tuples greedily in order to minimize the above sum.
Specifically, if |B| = n and the ordering of the sensitive values is z0, . . . , zn−1,
we generate an ordering tB0 , . . . , t

B
n−1 of B’s tuples so that tBh (M) = zh for all

0 ≤ h ≤ n− 1, and tBh is the tuple in B \ {tB0 , . . . , tBh−1} (i.e., a tuple that was not
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selected yet) that minimizes

min{h,`−1}∑
j=1

IL(closure{tBh , tBh−1, . . . , tBh−j}) , (7)

where ties are broken evenly. (Note that the jth term in the sum in Eq. (7) is the
contribution of the candidate tuple tBh to the generalization cost in (6), given that
tB0 , . . . , t

B
h−1 are the h first tuples that were already placed in the ordering.)

Algorithm 1 Preprocessing the table
Input: A table T = {t1, . . . , tN}; a parameter ` ≤ div(T ).
Output: (a) A partition of T ’s tuples into `-diverse buckets;

(b) `− 1 fake worlds, T1, . . . , T`−1.
1: Ti = ∅, 1 ≤ i ≤ `− 1.
2: Divide T ’s tuples into disjoint low cost buckets, where each bucket has diver-

sity at least `.
3: for each bucket B do
4: Order the sensitive values inB’s tuples in a cycle where every ` consecutive

values are distinct.
5: Order B’s tuples in accord with the above ordering of the sensitive values.
6: Randomly select permutations σ1, . . . , σ`−1 over B, that satisfy the range

limitation and diversity conditions.
7: For all 1 ≤ i ≤ ` − 1, add to Ti the |B| tuples that are generated by σi

according to Eq. (5).
8: end for

Example 4.1. To illustrate the operation of Algorithm 1, assume that ` = 4 and
that one of the low cost `-diverse buckets that were generated in Step 2 are as
shown on the top of Table 7; we show the bucket tuples in a schematic manner,
illustrating their quasi-identifier part (attributes 1 to Q), non-identifier part (at-
tributes Q + 1 to M − 1), and the sensitive attribute (attribute M ). As the bucket
is 4-diverse, the 5 sensitive values, s0, . . . , s4, are different. (That implies that the
bucket is even 5-diverse.) When processing that bucket (Steps 4-7), we first order
the tuples so that every ` consecutive tuples have distinct sensitive values; in the
present example, every ordering will do, and we shall assume that the selected or-
dering is the one shown on the top of Table 7. Next (Step 6), we randomly select
` − 1 = 3 permutations over {0, 1, 2, 3, 4} such that, together with the identity
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permutation, form a set of ` = 4 permutations that satisfy the range limitation and
diversity conditions. Table 8 shows one possible selection of such a quadruple of
permutations. Indeed, each column in Table 8 is a permutation over {0, 1, 2, 3, 4};
the fourth one is the identity permutation; the range limitation conditions are met
(i.e., each value h is mapped, by the non-identity permutations, to one of the
values h + 1, h + 2, h + 3 mod 5); and all four permutations map each of the
values h to four distinct images (e.g., the value 3 is mapped to the four distinct
values 3,4,0,1). Finally, the three fake possible worlds that are induced by the
non-identity permutations are shown on the bottom of Table 7.

Table 7: A 4-diverse bucket of tuples (top) and three corresponding possible worlds (bottom)

qid n.i. sens.
q0 r0 s0
q1 r1 s1
q2 r2 s2
q3 r3 s3
q4 r4 s4

qid n.i. sens.
q0 r1 s1
q1 r3 s3
q2 r4 s4
q3 r0 s0
q4 r2 s2

qid n.i. sens.
q0 r3 s3
q1 r2 s2
q2 r0 s0
q3 r4 s4
q4 r1 s1

qid n.i. sens.
q0 r2 s2
q1 r4 s4
q2 r3 s3
q3 r1 s1
q4 r0 s0

Table 8: Four permutations over five elements that satisfy the range limitation and diversity con-
ditions

σ1 σ2 σ3 σ4 = id
1 3 2 0
3 2 4 1
4 0 3 2
0 4 1 3
2 1 0 4

2

Theorem 4.2. The set E := {T1, . . . , T`−1, T` := T} of ` possible worlds that
Algorithm 1 generates is `-diverse (Definition 3.2).
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Proof. As |E| = `, we only need to show that for any v0n ∈ V0, each of
the possible worlds in E associates a different sensitive value. This is indeed
the case since the generated permutations σ1, . . . , σ` satisfy the range limitation
and diversity conditions (see Step 6 in the algorithm), and, in addition, the tuples
within each bucket are arranged so that every ` cyclically consecutive tuples have
distinct sensitive values (Step 4). 2

4.3. Computing a new release that maintains `-diversity
Let Ir, r ≥ 1, be the subset of attributes that should be included in the release

Vr. Ir is typically a subset of [M ], which is the set of attributes that was known
upfront during the preprocessing stage in which the `-diverse possible worlds were
created. But the algorithm that we present here applies also to cases in which
the data owner acquired new type of data and then he augments the table with
new attributes that were not known upfront and need to be included in the new
release Vr. In both of those cases, Vr will be a generalization of T |Ir . Our goal
is to generalize each release, with minimal information loss, so that it becomes
consistent with the table T and the ` − 1 fake worlds that were generated by
Algorithm 1. Algorithm 2 does that.

Before explaining that algorithm, we discuss the case where the new release
VR includes some new attributes for the first time. As those attributes were not
known when the possible worlds were generated, they will be suppressed in the
possible worlds. Recall that the possible world Ti was induced by some permuta-
tion σi of the tuples of the database. For example, if σi matched t1 with t2, then
the tuple that Ti holds, in lieu of the true t1, would be

Ii(t1) := (t1(ID), t1(1), . . . , t1(Q), t2(Q+ 1), . . . , t2(M)) ; (8)

namely, it ties together the identifier and quasi-identifiers of t1 with the non-
identifiers and sensitive value of t2 (see Eq. (5)). Assume that the quasi-identifier
AQ and the non-identifier AQ+1 are revealed for the first time in VR. Then we up-
date their values in Ti (that were suppressed so far) as implied by Eq. (8); i.e., the
Qth entry in Ii(t1) will be set to its newly-revealed value in t1 while the (Q+ 1)th
entry in Ii(t1) will be set to its newly-revealed value in t2.

Algorithm 2 receives as an input the set of possible worlds, Ti, 1 ≤ i ≤ `, of
which T` is the true world T . In addition, it receives the subset of attribute indices
IR to be included in the Rth release. It produces a generalized table VR which is
consistent with (Ti)|IR for all 1 ≤ i ≤ `, while keeping the information loss as
small as possible. It achieves that goal by considering the possible worlds, each
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one in its turn, according to a randomly generated order (Step 1). VR is initialized
to be the projection of the first possible world in the selected order on the IR at-
tributes (Step 2). It then starts a loop over the remaining ` − 1 possible worlds
(Steps 3-9). In each iteration, it examines the current VR versus the current possi-
ble world, denoted by W . It then generalizes the tuples of VR, while minimizing
the entailed information loss, until W becomes a possible world for VR. (We ex-
plain below in greater detail how this is achieved.) Thus, after the completion of
the loop, VR is a generalized table for which all Ti, 1 ≤ i ≤ `, are possible worlds.

Algorithm 2 Computing an `-diverse release
Input: Possible worlds Ti = {ti1, . . . , tiN}, 1 ≤ i ≤ `, where T` = T .

A subset of attribute indices IR ⊂ [M ].
Output: A generalization of T |IR that is consistent with the given possible

worlds.
1: Generate a random permutation ψ on [`] = {1, . . . , `}.
2: Initialize VR = {vR1 , . . . , vRN} to be the projection Tψ(1)|IR .
3: for 2 ≤ i ≤ ` do
4: Set W = Tψ(i) and denote by {w1, . . . , wN} the tuples in W .
5: Find a minimal cost perfect matching π between the tuples of W and the

tuples of VR.
6: for 1 ≤ n ≤ N do
7: If π matches vRn ∈ VR with wjn ∈ W , generalize the quasi-identifiers of

vRn until they are consistent with those of wjn .
8: end for
9: end for

In order to make a given table W a possible world for VR, we consider the
bipartite graph G on W and VR, where an edge connects vRn ∈ VR and wn′ ∈ W
if and only if those two tuples satisfy the condition

vRn (m) = wn′(m) ∀m ∈ IR ,m ≥ Q+ 1 . (9)

Namely, G connects tuples that agree in the attributes which are not subjected to
generalization (i.e., the non-identifier and sensitive attributes, m ≥ Q + 1) and
are included in IR. If condition (9) is verified, it implies that vRn could be made
consistent with wn′ by generalizing the quasi-identifiers of the former.

Next, we define edge weights: The weight of the edge connecting vRn and wn′

is the distance between them in terms of information loss,

dist(vRn , wn′) = IL(closure{vRn , wn′})− IL(vRn ) .
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Namely, it equals the addition to the overall information loss in case we generalize
the quasi-identifiers of vRn to be consistent also with those of wn′ (see Definition
2.2 and Eq. (1)). Our task now is to find a minimal weight perfect matching π inG
(Step 5). This problem can be solved optimally by The Kuhn-Munkers algorithm,
a.k.a The Hungarian algorithm [16, 23]. Once we find π, we generalize the tuples
of VR to be consistent with their π-matched tuples in W (Steps 6-8).

The following example illustrates the operation of Algorithm 1 and Algo-
rithm 2.

Example 4.2. Consider the table T with two quasi-identifiers, A1, A2, and a sen-
sitive attribute, A3, in Table 9(a). Assume that we wish to publish two releases
of T — one with I1 = {1, 3} and another with I2 = {2, 3}, while respecting
2-diversity. We achieve that by applying Algorithm 1 and Algorithm 2 con-
secutively as we proceed to explain.

First, we need to generate a possible world T1 that differs from the real possi-
ble world T . This is done by applying Algorithm 1. That algorithm starts by
dividing T s tuples into disjoint low cost buckets, where each bucket has diver-
sity at least ` (Step 2). For the sake of simplicity, T in our example consists of
just one bucket with 5 tuples, and they are already sorted in a way that every
two cyclically consecutive sensitive values are different (whence the bucket is
2-diverse). Hence, Steps 4-5 in Algorithm 1 are already accomplished. Then,
we need to generate ` − 1 permutations that, together with the identity per-
mutation, satisfy the range limitation and diversity conditions (Step 6). In
our case, the permutation σ1(th) = t(h+1)mod 4, 0 ≤ h ≤ 4, satisfies the range
limitation and diversity constraints. The fake world that it induces through
Eq. (5) (see Step 7 in Algorithm 1), is given in Table 9(b).

In order to compute V1 as a generalization of T |I1 , we apply Algorithm 2.
We put side by side T |I1 = T |{1,3} and the possible world T1, see Table 10(a),
and then we look for a perfect matching between those two tables that connects
tuples that agree in their sensitive value, and achieves a minimal cost (Step 5 in
Algorithm 2). After doing so, we generalize the records in the table to be
released in accord with the found matching (Steps 6-8).

The sensitive values induce a partition of the 5 tuples on each side to 3 buckets:
those with the sensitive value 1 (there is only one such tuple), those with the
sensitive value 2 (there are two such tuples), and those with the sensitive value 3
(two tuples).

The tuple (r,1) in T |I1 can go only with (e,t,z,1) in T1; hence, we generalize the
tuple (r,1) to (rt,1), as can be seen in the final release V1, which is shown in Table
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10(b). The tuples (r,2) and (s,2) on the left (T |I1) can be matched with (a,r,x,2)
and (c,s,y,2) on the right (T1) without generalization. Therefore, they appear in
their original form in the final release V1. Finally, the tuples (s,3) and (t,3) on
the left can be matched with (b,r,y,3) and (d,s,x,3) on the right. If the distance
function that is induced by the information loss measure is a metric (in the sense
that it satisfies the triangle inequality), the optimal matching is to match (s,3)
with (d,s,x,3) (no generalization is needed) and (t,3) with (b,r,y,3) (this requires to
generalize “t” to “rt”). Hence, V1 includes the tuples (s,3) and (rt,3).

The second release is computed similarly, see Table 11. Table 12 shows the
two releases V1 and V2 together with the background knowledge table V0.

Table 9: (a) A table T and (b) A fake world T1.

ID A1 A2 A3

a r x 1
b r y 2
c s y 3
d s x 2
e t z 3

ID A1 A2 A3

a r x 2
b r y 3
c s y 2
d s x 3
e t z 1

Table 10: (a) T |I1 versus T1 (b) V1.

A1 A3 ID A1 A2 A3

r 1 a r x 2
r 2 b r y 3
s 3 c s y 2
s 2 d s x 3
t 3 e t z 1

A1 A3

rt 1
r 2
s 3
s 2
rt 3

Table 11: (a) T |I2 versus T1 (b) V2.

A2 A3 ID A1 A2 A3

x 1 a r x 2
y 2 b r y 3
y 3 c s y 2
x 2 d s x 3
z 3 e t z 1

A2 A3

xz 1
y 2
y 3
x 2
xz 3

2
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Table 12: V0, V1 and V2.

ID A1 A2

a r x
b r y
c s y
d s x
e t z

A1 A3

rt 1
r 2
s 3
s 2
rt 3

A2 A3

xz 1
y 2
y 3
x 2
xz 3

Theorem 4.3. The generalization VR of T |IR that Algorithm 2 generates is con-
sistent with each of the possible worlds T1, . . . , T`.

Proof. Let ψ be the random permutation on [`] that was generated in Step 1
of the algorithm. After Step 2, VR is consistent with Tψ(1), since VR is initialized
to Tψ(1)|IR . Then, after the ith iteration of the loop in Steps 3-8, VR is further
generalized to be consistent also with Tψ(i), 2 ≤ i ≤ `. Hence, after completing
the loop, VR is consistent with all of the ` possible worlds T1, . . . , T`. 2

Theorem 4.4. The generalization VR of T |IR that Algorithm 2 generates, as well
as the time to compute it, are indifferent to the index R of the release and to the
previous releases in the sequence.

Proof. Let us denote by τ = 0 the time of the preprocessing stage, by τ = R the
time of release R, and by τ = ∞ any time in the future until which all columns
of the table are exposed. For any τ ∈ {0, R,∞} we let T τ denote the table that is
known at time τ , and T τ1 , . . . , T

τ
`−1 be the corresponding fake worlds at that time.

Algorithm 2 computes VR, the generalization of of T |IR , based only on IR
and the possible worlds TR1 , . . . , T

R
`−1, T

R. Consider a clairvoyant Algorithm 2C
that operates exactly like Algorithm 2, but instead of TR1 , . . . , T

R
`−1, T

R it uses
T∞1 , . . . , T∞`−1, T

∞. We claim as follows:
CLAIM 1. For each 1 ≤ j ≤ `, TRj |IR = T∞j |IR (the case j = ` corresponds

to the true world). Indeed, T∞j differs from TRj only in the columns that will be
exposed after time R. (Each of those columns is suppressed in TRj but has specific
values in T∞j , 1 ≤ j ≤ `.) Hence, the two tables coincide on the IR-columns.

CLAIM 2. Algorithms 2 and 2C will compute the same VR. Indeed, as both
algorithms concentrate only on the IR-columns of the possible worlds, and those
columns are the same in TRj and T∞j (Claim 1), the equality of the corresponding
outputs follows.

26



CLAIM 3. The fake worlds T∞1 , . . . , T∞`−1 can be computed at time τ = 0,
given T 0 and T∞. Indeed, after computing the permutations σ1, . . . , σ`−1 and the
corresponding fake worlds T 0

1 , . . . , T
0
`−1, the fake worlds T∞1 , . . . , T∞`−1 are derived

through Eq. (8) in Section 4.3.
Finally, Claims 2 and 3 above imply that the output VR of Algorithm 2 depends

only on IR, T 0 and T∞. In particular, it does not depend neither on the index R of
the release nor on the previous releases V1, . . . , VR. Arguing along the same lines
we infer that also the runtime for computing VR has no dependence on neither R
nor V1, . . . , VR. 2

A direct consequence of Theorem 4.4 is that our algorithm can be run in paral-
lel in order to compute simultaneously all releases (as opposed to the algorithms in
[28, 32] that need to compute all previous releases before starting to compute the
next release in the sequence). Specifically, if the subsets of attributes I1, I2, . . . , IR
are known in advance, they can be computed in parallel on R different machines.

Before concluding this section we note the following. Most anonymization
algorithms aim at minimizing the information loss in the anonymized tables that
they output. More specifically, such algorithms will not generalize the data more
than necessary for achieving the underlying privacy requirement. However, striv-
ing for minimal information loss may allow so-called “minimality attacks” [33].
In our context, a possible world W ∈ PW(V) can be ruled out if an execution of
the anonymization algorithm on W cannot output the published release sequence
V , because another release sequence that respects `-diversity exists, and it has a
smaller total information loss. As a consequence of such a potential ruling out
of possible worlds, some individuals may be linked to some sensitive values with
probabilities greater than 1/`. As discussed in [5], one of the countermeasures
against minimality attacks is the use of randomization. The sequential algorithm
uses randomization twice: Once in Step 6 of Algorithm 1, and once in Step 1 of
Algorithm 2. Therefore, minimality attacks are practically ineffective against it.
In addition, randomness may be introduced also in Step 2 of Algorithm 1, if using
a randomized clustering algorithm (e.g., [14]).

4.4. Efficiency and scalability
The most time consuming procedure in the sequential algorithm is the appli-

cation of the Hungarian algorithm. The Hungarian algorithm is highly inefficient,
as its runtime is cubic in the number of nodes.

The edge structure in the bipartite graph G is defined by condition (9); that
edge structure implies that G is a disjoint union of connected components, each
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of which is a complete bipartite graph4. Hence, since there are no edges in G
that connect nodes in different connected components, we may apply the Hun-
garian algorithm separately in each of the connected components. However, even
those components may be too large for applying on them the Hungarian algo-
rithm directly. To cope with that problem, we split each of the graph components
to sub-components of sizes no greater than some threshold p, and then find a per-
fect matching within each such sub-component. Clearly, smaller values of p will
entail less good generalizations, but they will allow faster runtimes.

We explain briefly how to perform such a partition to sub-components of size
no larger than p. Assume that the entire graph G consists of K connected com-
ponents of sizes N1, . . . , NK , where

∑K
k=1Nk = N . Consider the kth connected

component in G that includes Nk tuples from VR and Nk tuples from the current
possible world W ; we shall denote those two sets of Nk tuples by V (k)

R and W (k)

respectively. We first apply any clustering algorithm on the Nk tuples of V (k)
R in

order to split them to groups of size no more than p, where all tuples within each
group are semantically close to each other. Assume that we got J such groups with
nj tuples in the jth group, and that (a)

∑J
j=1 nj = Nk, and (b) p ≥ n1 ≥ · · · ≥ nJ .

Let uj be the closure (Definition 2.2) of the nj tuples in the jth group, 1 ≤ j ≤ J .
There is a natural distance between the tuplesw ∈ W (k) and the generalized tuples
u1, . . . , uJ ,

dist(uj, w) = IL(closure{uj, w})− IL(uj) . (10)

Namely, the distance equals the added information loss in case uj is further gen-
eralized to be consistent with w. Next, we compute a corresponding partition of
the Nk tuples in W (k). First, we select the n1 tuples that are closest to u1; then, we
select from among the remaining n− n1 tuples the n2 ones that are closest to u2,
and so forth. This way, we create a partition of the kth connected component in
G to smaller sub-components (where the partition is geared towards reducing the
information loss) and we may proceed to apply the Hungarian algorithm in each
of the J sub-components separately.

The runtime of the above described partitioning procedure is analyzed as fol-
lows, for every single connected component of size Nk (1 ≤ k ≤ K). The cost of
the initial partitioning of V (k)

R ’s tuples to J sub-components depends on the cho-
sen clustering algorithm. Let us denote that cost by Fp(Nk, |IR|); the cost depends
on p, which is the required upper bound on the size of the sub-components, and

4A complete bipartite graph is a bipartite graph in which each node in one part is connected by
an edge to each of the nodes in the other part.
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of course on the number of tuples Nk and the number of attributes |IR| . Next, the
computation of the closures u1, . . . , uJ entails a runtime of O(Nk|IR|). (For the
sake of the complexity analysis, we consider the sizes of the attribute domainsAm
and the collections of generalized subsets Am, m ∈ [M ], as constant.) Next, we
turn to estimate the runtime of computing the corresponding partition of the tuples
in W (k). To find the tuples in W (k) that are closest to u1 (in terms of the distance
in Eq. (10)), we have to compute Nk distances (where each distance computa-
tion depends linearly on |IR|) and then find the n1 closest tuples, what requires an
additional runtime of O(n1Nk). In the next stage, we need to compute Nk − n1

distances and then find the n2 tuples that are closest to u2, in additional cost of
O(n2(Nk − n1)). That procedure has an overall cost of(

J−1∑
j=1

(
Nk −

∑
i<j

ni

))
· |IR|+

J−1∑
j=1

nj(Nk −
∑
i<j

ni) . (11)

For the sake of estimating that runtime, we may assume that nj = Θ(p) for all
1 ≤ j ≤ p. In that case, the first addend in Eq. (11) is O(N2

k/p) · |IR|, while the
second addend isO(N2

k ). Hence, the overall runtime of that partitioning procedure
is

K∑
k=1

Fp(Nk, |IR|) +

(
1 +
|IR|
p

) K∑
k=1

O(N2
k ) . (12)

Now, we turn to analyze the runtime of Algorithm 2:

1. The runtimes of Steps 1 and 2 are O(`) and O(N |IR|), respectively.

2. Then, we start a loop over ` − 1 possible worlds (Steps 3-8). For each
possible world we have the following runtimes:

(a) (Step 5) Create a partition of each connected component to sub-components
of size p at most. The runtime of that procedure is given in Eq. (12).

(b) (Step 5) For each of the sub-components we first compute the O(p2)
distances between the nodes in the corresponding bipartite graph, where
the cost of each single distance computation depends linearly on |IR|.
Then we apply the Hungarian algorithm, that runs in time O(p3).
Hence, the overall cost in each sub-component is O(p2)|IR| + O(p3).
Since there areO(N/p) sub-components altogether, the overall cost of
that stage is O(Np|IR|) +O(Np2).
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(c) (Steps 6-8) After finding the perfect matching in the entire graph G,
the generalization stage takes O(N |IR|).

Hence, the overall runtime of Algorithm 2 for computing the Rth release is

O(`)+O(N |IR|)+(`−1)·

(
K∑
k=1

(
Fp(Nk, |IR|) +

(
1 +
|IR|
p

)
O(N2

k )

)
+O(Np|IR|) +O(Np2)

)
.

As can be seen from the above expression, the runtime decreases with p up to some
value p0 and then it starts to increase; our experimental evaluation (see Section 6)
validates that behavior.

In particular, as implied by Theorem 4.4, Algorithm 2’s runtime for computing
the anonymization of the Rth release is independent of R, since that computation
is indifferent to the history of releases so far. Namely, the time to compute the one
hundredth release is on par with the time to compute the first release; the runtime
for the Rth release depends only on the number |IR| of attributes that are included
in it, and on the sizes of Am and Am for all m ∈ IR.

The situation with the anonymization algorithm of [28] is different. There, it
is necessary to keep all previous releases and to find all full cliques in the growing
multipartite graph. As the number of such full cliques may grow exponentially
with R, it is highly non-scalable. Therefore, on top of the significant advantage
in terms of privacy, our algorithm offers also a significant advantage in terms of
scalability.

4.5. The non-sequential approach
As noted in the beginning of the section, a more simplistic approach would be

to produce a single anonymization V of the entire T that respects `-diversity and
then publish the needed projections of V . If the entire table V does not enable
to link any quasi-identifier tuple to any sensitive value in probability greater than
1/`, then neither does the combination of all of its projections, since it does not
contain additional information. However, as explained earlier, such an approach
leads to excessive generalization, as we proceed to illustrate.

Consider the basic table T in Example 4.2 (see Table 9(a)). Its optimal 2-
diverse anonymization is as shown on the left of Table 13. That anonymization
is a homogeneous one, in the sense that the tuples in it may be clustered into
buckets, where within each bucket all tuples have the same generalized quasi-
identifiers, and each bucket is `-diverse (Definition 2.3). However, as shown in
[36, 31], `-diversity may be also obtained through so-called non-homogeneous
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anonymizations. The model of non-homogeneous anonymization was introduced
in [12] and then further explored in [36, 31]. That model extends the model of
homogeneous anonymization and it allows achieving the same privacy goal (be it
k-anonymity or `-diversity) with smaller information loss. The anonymization on
the right of Table 13 is an optimal non-homogeneous anonymization of the same
basic table T that respects 2-diversity. (The exact meaning of 2-diversity here is
that even an adversary who has the background knowledge of all quasi-identifier
tuples in the table cannot link any quasi-identifier tuple to any sensitive value in
probability greater than 1/2.) As can be seen, that anonymization is better than
the homogeneous one, since it has 7 generalized entries, as opposed to 10.

Table 13: 2-Diverse anonymizations of T in Table 9(a) — homogeneous and non-homogeneous

A1 A2 A3

rs xy 1
rs xy 2
rs xy 3
st xz 2
st xz 3

A1 A2 A3

r xy 2
rs y 3
s xy 2
st xz 3
rt xz 1

In view of the above, we base our non-sequential approach on the non-homogeneous
anonymization algorithm of [36]. Using the non-homogeneous anonymization in
Table 13 for producing the anonymized sequential release in the simplistic ap-
proach, we would get the sequential release shown in Table 14. Comparing that
sequential release to the one in Table 12, we see that the latter one, which was
obtained by our sequential algorithm, is better since it has 4 generalized entries
rather than 7.

Table 14: The sequential release that is produced by the non-sequential algorithm.

A1 A3

r 2
rs 3
s 2
st 3
rt 1

A2 A3

xy 2
y 3

xy 2
xz 3
xz 1

In Section 6 we exemplify the advantages of the sequential algorithm over the
non-sequential one through experimentation on real datasets.
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5. Dynamically changing tables

5.1. Related work on privacy-preservation in multiple releases of dynamically
changing tables

Anonymization of dynamically changing tables was discussed in several stud-
ies so far. The first study was that of Byun et al. [3]. It dealt with the case of tuple
insertions only (i.e., no tuple removals or updates). It considered anonymizations
that respect `-linkability; it did not offer anonymizations that achieve `-diversity.
The case of tuple insertions only was studied also in [10, 25]; the privacy mea-
sure that was applied there was that of k-anonymity rather than `-linkability or
`-diversity; Pei et al. [25] assumed that each release includes a key attribute that
enables to link tuples that correspond to the same individual in different releases.
Xiao and Tao [37] were the first to include in their discussion the case of tuple re-
movals; that scenario in which tuples may be removed presents some difficulties
which we describe later on. The subsequent studies [1, 35] considered the case
where tuples can be updated between releases.

We note that all of those studies utilized methods of homogeneous anonymiza-
tion; i.e., the anonymization of each release consists of blocks of tuples which are
identical when projected onto the quasi-identifier attributes. In addition, they con-
centrated on the case in which all releases include the exact same set of attributes.
Those two features imply excessive information losses, as we proceed to explain
by focusing on the m-invariance framework [37]. In that framework, the multiple
release has to comply with two conditions: (a) each block of indistinguishable
tuples in each release has diversity at least m (see Definition 2.3); and (b) for any
tuple in T , the multiset of sensitive values in the block to which it belongs in any
of the releases remains the same. Namely, an adversary who will try to collect in-
formation on Alice’s disease will always be able to link Alice to the same multiset
of disease values (no matter which of the releases he examines), and that mul-
tiset will not include any specific value in relative frequency greater than 1/m.
Therefore, using the m-invariance method for anonymizing a sequential release
(where each release may have a different set of attributes) is equivalent to apply-
ing our non-sequential algorithm, when using homogeneous anonymization. In
other words, it reduces to computing a single homogeneous anonymization of T
and then publishing the required vertical projections. As discussed and exem-
plified in Section 4.5, such a simplistic approach is significantly inferior to our
sequential algorithm (which exploits the vertical dynamics), even when it uses the
more powerful non-homogeneous anonymization model. (See also Section 6 for
an experimental validation of that claim.)
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The recent study [28] differs from all previously mentioned studies in two
aspects: it does not restrict itself to homogeneous anonymizations, and it is the
only study so far that handles both vertical and horizontal dynamics (focusing on
tuple insertions only). In this section we describe how to extend our framework to
include the case of tuple insertions. Hence, both [28] and the current study share
the above two features which distinguish them from the other literature. However,
they achieve that goal by taking different privacy and anonymization approaches,
which translate to different privacy guarantees and scalability (see the Introduction
and Section 3).

5.2. Extending the sequential algorithm to support addition of tuples
To cope with the scenario of tuple insertions, let V0 = {v01, . . . , v0N} denote the

set of all background knowledge tuples in the table T during its entire life time
(see Eq. (3)), and let fn ≥ 1 be the index of the release in which v0n was inserted
to the table T . Hence, v0n will have a generalized image vrn only in releases Vr
with r ≥ fn. As in [37], we assume that the adversary knows V0 as well as the
insertion times fn of v0n, for all n ∈ [N ].

Just like [3, 37], we assume that when a new group of tuples is added to the
table T , that group of tuples is `-diverse (see Definition 2.3). Such an assumption
is inevitable. Indeed, an adversary who targets an individual that was part of
that group can compare the sensitive values in releases before and after that group
entered T and then extract the subset of sensitive values of the newly added tuples;
if the corresponding diversity is smaller than `, he may link some sensitive values
to those tuples with probability greater than 1/`.

Hence, under these assumptions, we may create separate `-diverse possible
worlds for the group of newly added tuples, say Tnew

1 , . . . , Tnew
` . Then, if

Told
1 , . . . , Told

` were the selected `-diverse possible worlds on the “old” popu-
lation, we augment each of them in the following manner to arrive at an updated
list of `-diverse possible worlds, T all

i = Told
i ∪ Tnew

i , 1 ≤ i ≤ `. (The order in
which we pair the “old” and “new” worlds is insignificant, as long as we pair the
true “old” world with the true “new” world.) Then, Algorithm 2, which computes
the generalization of the next release, is applied as is, without making any further
distinction between the old and new tuples.

[28] suggested two approaches for dealing with dynamically changing tables.
The so-called separative approach treats the new set of tuples as a first release
of a new database that is anonymized independently from the old database (the
database that includes only the old tuples). The other unifying approach considers
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the whole set of tuples, old and new, together. The approach that we take here
may be seen as a combination of those two approaches. In the preprocessing
stage in which we generate the ` possible worlds we take a separative approach,
as we augment the existing set of possible worlds by a new set of possible worlds
that are computed only based on the new tuples. But then, when computing the
anonymized view of each new release, we unify the two parts of the possible
worlds and no longer separate between old and new tuples, as such a unifying
approach may achieve lower information losses.

5.3. A preliminary discussion of the case of tuple removals
The case where tuples can be also removed from T (or tuples may be up-

dated, an action that can be seen as a tuple removal followed by a tuple addition)
is harder, due to a phenomenon that was called in [37] critical absence. For ex-
ample, if the table T had only one individual with some sensitive value, and that
tuple was removed at some point, subsequent releases of T would not include that
sensitive value. If the adversary knows when that individual was removed from
the table (since he knows, for example, when that individual was discharged from
the hospital), he may be able to infer his sensitive value.

That problem was addressed in [37] by introducing counterfeit tuples so that
the multiset of sensitive values in the dynamic table will never narrow down. That
solution is designed for settings where the table has only three types of attributes
— identifiers, quasi-identifiers, and sensitive attributes. However, as discussed in
the introduction, there usually exist also attributes of a fourth type (see [2]), which
we refer to as non-identifiers. Those attributes, on one hand, are not sensitive,
and on the other hand, represent data that an adversary is unlikely to get hold of.
Examples for such attributes in health information may include lab results, dietary
information, or information on allergies. Such non-identifiers are insignificant,
from privacy preservation perspective, in the case of a single release. However,
in the case of multiple releases they empower the adversary by allowing him to
create links between tuples in different releases.

Example 5.1. Consider a table that has two quasi-identifiers, age and zipcode,
one non-identifier, blood type, and the sensitive attribute disease. Assume
that the table is released in two times. The snapshot of the table at the time of the
first release is shown in Table 15, alongside its anonymized view. The snapshot
of the table at the time of the second release is shown in Table 16, alongside its
anonymized view. As can be seen, between the two releases Alice was removed
from the data and Janet was added. The shown sequence of two releases satisfies
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2-invariance, since for each of the three individuals (Bob, David and Helen), their
candidate sensitive set in the first release (namely, the set of diseases that can be
linked to them through that anonymization) equals their candidate sensitive set
in the second release, and, moreover, that candidate sensitive set has diversity
2. Alas, the existence of the blood type attribute changes everything. An
adversary who wishes to infer Bob’s disease, based on the knowledge of his age
and zipcode and the fact that he appears in both releases, may conclude that
Bob suffers from measles, since that is the disease which is attached to blood type
O+, which is the only blood type that appears in both blocks in which Bob can be
traced.

Table 15: A table at the 1st release (left) and its anonymization (right)

name age zip b.t. disease
Bob 21 65K O+ measles
Alice 23 58K A+ hepatitis
David 44 12K B− flu
Helen 48 23K A+ angina

age zip b.t. disease
[21, 23] [58-65K] O+ measles
[21, 23] [58-65K] A+ hepatitis
[44, 48] [12-23K] B− flu
[44, 48] [12-23K] A+ angina

Table 16: A table at the 2nd release (left) and its anonymization (right)

name age zip b.t. disease
Bob 21 65K O+ measles
Janet 30 61K B+ hepatitis
David 44 12K B− flu
Helen 48 23K A+ angina

age zip b.t. disease
[21, 30] [61-65K] O+ measles
[21, 30] [61-65K] B+ hepatitis
[44, 48] [12-23K] B− flu
[44, 48] [12-23K] A+ angina

2

There are two naı̈ve solutions to that problem. One is to consider the non-
identifiers as sensitive too; e.g., in Example 5.1 it entails taking the coupling of
blood type and disease as the sensitive value. However, such a strategy
increases significantly the domain of sensitive values (bearing in mind that there
could be several non-identifiers); as a consequence, it would be necessary to in-
troduce more counterfeit tuples in lieu of removed tuples, because the probability
of finding a newly added tuple with the same sensitive value as a tuple that was re-
moved could be very small. (In other words, it is more probable to find among the
newly added individuals one that suffers from a specific disease, than to find one
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that suffers from a specific disease and has a certain blood type.) The result would
be, effectively, the replacement of almost all deleted tuples by counterfeit tuples.
That result is of-course not recommended, since in that case it would be better to
retain all tuples, instead of replacing them with counterfeit ones that could dam-
age the utility of the table for data mining. A second naı̈ve solution would be
to consider those attributes as quasi-identifiers and, therefore, to generalize them
so that they too would have the same generalized value in all tuples in the same
block. However, such an approach would significantly damage utility.

Hence, the case of tuple removals or updates is genuinely harder. The exten-
sion of our algorithms to that case is left for future research.

6. Experimental evaluation

We conducted most of our experiments on the CENSUS dataset [26]. It has
500000 tuples with 7 quasi-identifiers (A1 =age,A2 =gender,A3 =education
level,A4 =marital status,A5 =race,A6 =work class,A7 =country)
and one sensitive attribute, A8. We applied on it generalization using taxonomies
of heights between 2 and 4, which were adopted from [28]. The diversity of the
sensitive attribute in the entire database is 13.425.

Another dataset that we used was ADULT, from the UCI Machine Learning
Repository [8]. That dataset was extracted from the US Census Bureau Data Ex-
traction System. It holds demographic information of a small sample of US pop-
ulation with 14 quasi-identifiers such as age, education level, marital
status, and native country and contains 32,561 tuples. We adopted the
taxonomies in [28, 32] for this dataset. Since its sensitive attribute is too narrow
(binary), we used one of the quasi-identifiers, occupation, as the sensitive at-
tribute in our experiments. It has 15 distinct values and its overall diversity is
7.86.

All experiments were conducted on an Intel Core i7 CPU 2.67 GHz personal
computer with 4 GB of RAM, running Windows 7 Enterprise.

6.1. Comparing the possible worlds and multipartite consistency graph approaches
We compared the sequential algorithm to the algorithms proposed in [28] and

[32] in three settings that were considered in [28]:

1. two releases, where I1 = {1, 3} and I2 = {1, 8};

2. three releases, where I1 = {1, 2}, I2 = {2, 8} and I3 = {1, 8};
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3. four releases, where I1 = {1, 2}, I2 = {1, 8}, I3 = {1, 2, 6} and I4 =
{2, 8}.

We did not conduct experiments with more than four releases since the algorithms
in [28] and [32] are highly non-scalable. (Note that the algorithm in [32] was
designed for R = 2 only; we used here an extension of it for R > 2.)

In the first set of experiments, N was set to 100000 and the underlying privacy
requirement was 5-linkability. Figures 1, 2 and 3 show the average information
losses that were obtained by the three algorithms in the three settings, alongside
the total runtime. The displayed information loss is the average over all entries
in all releases, as given by the LM measure (see Section 2.2). (If release r in-
cludes the attributes Ir, then the suppressed entries in that release outside Ir are
not included in the average computation.) The total runtime is the sum of the
computation time of all releases (including preprocessing time for the sequential
algorithm).

In terms of information loss, the sequential algorithm achieves much lower
information losses than the algorithm in [32], in all three settings, due to its uti-
lization of the flexible local recoding generalization model. In addition, we see
that the algorithm of [28], which also uses the local recoding model, achieves even
lower information losses than the sequential algorithm. As for runtime, in the case
of two releases (Figure 1) the sequential algorithm is slower than the algorithms
in [28] and [32], because of the preprocessing stage. However, in the case of three
releases (Figure 2) and four releases (Figure 3), the sequential algorithm is signif-
icantly faster than the other two algorithms since the time it takes to anonymize
the Rth release is independent of R, while in the other algorithms the dependence
on R is exponential.
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Figure 1: Two releases (5-linkability)
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Figure 2: Three releases (5-linkability)
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Figure 3: Four releases (5-linkability)

We repeated the above experiments with 3-diversity as the underlying privacy
requirement. The results were similar to those reported in the previous experi-
ments. We include here only one figure, Figure 4, that shows the average infor-
mation loss and total runtime for the three algorithms in the second setting. Note
that changing the underlying privacy requirement from 5-linkability to 3-diversity
increased the information loss that was obtained by the algorithms of [32] and
[28], but decreased the information loss that was obtained by the sequential algo-
rithm. The reason for the latter effect is that the sequential algorithm is designed
to achieve the stronger measure of `-diversity, even when required to satisfy the
weaker measure of `-linkability. In other words, for the sequential algorithm, the
underlying privacy requirement was changed from 5-diversity to 3-diversity; that
is the reason why the information loss in its output was reduced.
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Figure 4: Three releases (3-diversity)

We repeated our experiments with another dataset and also with another mea-
sure of information loss. To that end, we considered the following two settings:

1. The CENSUS dataset with N = 100000 tuples, where the two releases in-
cluded attributes {1, 5} and {1, 5, 8}, respectively.

2. The ADULT dataset with N = 32561 tuples, where the two releases in-
cluded attributes {work class, native country} and {work class,
native country, occupation}, respectively.

Each of these settings was evaluated twice: once with the LM measure and once
with the EM measure. The underlying privacy requirement was 5-diversity. The
information losses are reported in Figure 5. The results are consistent with those
of the previous experiments.
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Figure 5: Additional settings of two releases (5-diversity)
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To summarize, the sequential algorithm offers staggering improvements in
terms of runtime; while the other two algorithms become impractical already for
very low values of R, our algorithm remains efficient for any value of R. (Re-
call that in our algorithm, the anonymization of each release is independent of
the previous releases.) In terms of information loss, the sequential algorithm is
substantially better than that of [32], and comparable to the algorithm of [28].
Moreover, we expect the sequential algorithm to obtain lower information loss
than the algorithm of [28] for a large number of releases, as it does not suffer
from the problem of a reducing privacy budget. However, we were not able to
conduct such experiments since the algorithm of [28] is highly non-scalable. In
terms of privacy, while the algorithms in [28] and [32] do not guarantee the re-
quired linkability or diversity level for R > 2, the sequential algorithm does, for
all R.

6.2. Comparing the sequential and non-sequential algorithms
We tested the performance of the non-sequential and sequential algorithms

in terms of information loss and runtime. To that end, we created ten releases,
each containing a random subset of the quasi-identifier attributes, and the sensitive
attribute: I1 = {2, 6, 7, 8}, I2 = {4, 5, 6, 7, 8}, I3 = {3, 5, 8}, I4 = {1, 8}, I5 =
{1, 2, 6, 7, 8}, I6 = {1, 2, 3, 4, 8}, I7 = {2, 3, 5, 8}, I8 = {2, 5, 6, 8}, I9 = {4, 8},
and I10 = {2, 3, 8}.

Figure 6 shows the average LM-information losses in each of the ten releases,
as obtained by the non-sequential and sequential algorithm, over N = 100000
tuples, when the privacy requirement was 5-diversity. The value of p (see Section
4.4) was set to p = 100. Those results, like the example in Section 4.5, show that
the sequential algorithm is capable of achieving the same level of diversity with
significantly smaller information losses, as it exploits the fact that each release
includes only a subset of the attributes.

Recall that the anonymization of each release depends only on the attributes
that were selected to be included in that release; it does not depend on the position
of that release in the sequence of releases, nor it depends on the preceding releases
in the sequence. Therefore, if we had shuffled the order of the ten releases in this
example, the average information losses in each of those releases would remain
the same as those shown in Figure 6.
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Figure 6: Information loss (LM) in ten releases

Next, we examined the influence of the target diversity parameter. We ran both
algorithms on the dataset with N = 100000 for five values of ` and computed the
average information loss in all ten releases. As can be seen from Figure 7, the
information loss increases with `, since larger values of ` require to generalize the
releases to be consistent with more possible worlds.
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Figure 7: Information loss (LM), different `

We then examined the influence of N (with ` = 5) and report the average
information loss in all ten releases for the two algorithms for various values of
N (Figure 8). The difference between the performance of the two algorithms in
terms of information loss remains more or less the same.
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Figure 8: Information loss (LM), different N

We also examined the influence of p (with N = 100000 and ` = 5) and
report the average information loss in each of the ten releases for the sequential
algorithm for various values of p (Figure 9). As expected, the information loss
decreases with p, but the rate of decrease is rather slow.
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Figure 9: Information loss, different p

Figures 10, 11 and 12 report the runtime of the sequential algorithm, as a func-
tion of ` (with N = 100000, p = 100), and N (with ` = 5, p = 100) and p (with
N = 100000 and ` = 5), respectively. The figures show the runtime of the prepro-
cessing stage and the runtime for the computation of each of the ten releases. (See
Section 4.4 for an analysis of the runtime for computing each release; as discussed
there, the runtime for a given release depends on the attributes that it includes, but
is independent on its position within the sequence of releases.) The time which is
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shown for the preprocessing stage of the sequential algorithm reflects also the run-
ning time of the non-sequential algorithm. Indeed, the non-sequential algorithm
performs the same preprocessing stage, and then only projects the generalized ta-
ble onto the required subsets of attributes; the latter operation entails a negligible
addition to the running time. (In some of the figures, e.g., Figure 12, the prepro-
cessing time is not visible since it is much smaller than the computation times of
the following releases.) As expected, the dependence of the runtime on either ` or
N is roughly linear, while the dependence on p is consistent with the analysis in
Section 4.4; indeed, the runtime decreases with p up to p ≈ 100 and then it starts
to increase.
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We conducted all of the above experiments also with the entropy measure
instead of LM as in the above experiments. The findings were quite consistent
with the ones reported in Figures 6-11. We include herein only one figure, Figure
13, that shows the average entropy information loss in all ten releases, for N =
100000 and five values of `.
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Figure 13: Information loss (EM), different `

We do not report herein experiments that we performed with additional re-
leases beyond the reported ten releases, since those experiments produced similar
results, in the sense that the sequential algorithm constantly yields significantly
reduced information losses, and the fact that the runtime for each new release is
independent on the number of previous releases.
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We repeated all of our experiments also with the ADULT dataset. The re-
sults were consistent with those that we obtained with the CENSUS dataset. We
include herein only one figure, Figure 14, that shows the average information
loss in ten, randomly selected, releases: {age, gen, education, marital
status, race, occupation}, {education, marital status, work
class, native country, occupation}, {age, gen, marital status,
race, occupation}, {age, race, native country, occupation}, {education,
marital status, work class, native country, occupation}, {marital
status, race, native country, occupation}, {age, gen, marital
status, race, native country, occupation}, {age, native country,
occupation}, {marital status, occupation}, {education, race,
work class, occupation}, for N = 32561 and five values of `.
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Figure 14: Information loss (Adult), different `

6.3. The dynamic setting
Here we report results of experiments that we conducted with vertical and

horizontal dynamics. To test the performance of the sequential algorithm in the
vertically dynamic setting, we created the following four releases: I1 = {2, 5, 8}
(namely, V1 includes gender, race and the sensitive attributeA8), I2 = {1, 7, 8},
I3 = {1, 3, 4, 8}, and I4 = {6, 7, 8}. However, this time, the sequential algorithm
was initially oblivious of the attributes A7 =country (which is revealed for the
first time only in the second release) and A6 =work class (which is revealed
only in the fourth release). Figure 15 shows the average information losses in the
four releases in that setting, compared to the information losses that were obtained
by a “prophetic” sequential algorithm that knows upfront all 8 attributes. The for-
mer “adaptive” algorithm achieves slightly better information losses in the first
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and third releases, since those consist only of attributes that it knew upfront, and,
consequently, the possible worlds that it created are better suited for such releases.
The advantages of the prophetic algorithm are expressed in releases 2 and 4, since
those releases include attributes of which that algorithm was aware upfront, while
the other adaptive algorithm was not.
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Figure 15: A vertically dynamic setting

To test the performance of the sequential algorithm in the horizontally dy-
namic setting, we considered the case where all releases have all seven quasi-
identifiers, but they differ from each other in the number of tuples: The first release
includesN = 100000 tuples, the second one has additional 50000 tuples, the third
one has additional 30000 tuples, and the fourth one has additional 20000 tuples
(so it holds 200000 tuples altogether). Here too we compared an adaptive sequen-
tial algorithm (that learns of tuples only when they are introduced) to a prophetic
algorithm that knows all 200000 tuples upfront. The average information losses
in this setting are shown in Figure 16.
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Figure 17 compares the adaptive and prophetic algorithms in the combina-
tion of the above described vertical and horizontal settings. Namely, the set of
attributes changes from one release to another, as in the experiment reported in
Figure 15, and the number of tuples changes, as in the experiment reported in Fig-
ure 16. In addition, the adaptive algorithm knows upfront only the tuples and at-
tributes that are included in the first release, and it learns of each tuple or attribute
only when it appears first; in contrast, the prophetic algorithm has all information
upfront.

It is interesting to see that the adaptive algorithm maintains its advantage over
the prophetic algorithm in releases 1 and 3. In release 3, the prophetic algorithm
has only “horizontal advantage” over the adaptive one (namely, it knows upfront
the new tuples that appear for the first time in that release), but no “vertical ad-
vantage”, since releases 1 and 3 consist of attributes that were all known from the
start. However, the adaptive algorithm has the advantage of constructing possible
worlds that are better suitable for minimizing information loss over the attributes
in those two releases. The advantage of focusing on the relevant attributes has in
this case a greater impact than the advantage of knowing all tuples upfront. As
for releases 2 and 4, the prophetic algorithm has advantage over the adaptive one
regarding both vertical and horizontal information.
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Figure 17: A fully dynamic setting

7. Conclusions and future work

In this study we revisited the problem of anonymizing sequential releases. We
presented a general framework for dealing with such scenarios. We defined an
enhanced notion of privacy that takes into account all information available to the
adversary. We considered a strong adversary who knows all quasi-identifiers of all
tuples in the underlying table. Our algorithm achieves `-diversity — a notion of
privacy that bounds the probabilities of linking sensitive values to quasi-identifier
tuples. Our algorithm, as opposed to previous ones, is highly scalable with re-
spect to the number of releases, as the runtime for anonymizing any given release
is independent of the number of previous releases. Finally, we showed how to ex-
tend our methods to the fully dynamic setting, in which the set of attributes may
change and tuples may be added from time to time. Our experiments showed the
importance of exploiting the vertical dynamics (i.e., the fact that different releases
may include different attributes) for significantly reducing the information loss.

Our study is the first one that offers an algorithm that achieves provable `-
diversity in the general scenario of sequential release. While `-diversity signif-
icantly enhances the privacy offered by simpler notions like k-anonymity or `-
linkability, it may be vulnerable to skewness or correlation attacks. The notion
of t-closeness [19] is a stronger privacy model which is more immune to such
attacks. An interesting research direction is to use the ideas presented here to
achieve stronger privacy notions, such as t-closeness. That may be achieved if
the set of possible worlds that the algorithm generates in the preprocessing stage
links every quasi-identifier tuple with a multiset of sensitive values that have a
distribution which is close to the general distribution of sensitive values. In doing
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so, a careful attention must be given to the resulting utility. Imposing such a rigid
condition on the possible worlds, towards enhancing privacy, may increase the
information loss to levels which could render the released tables useless.

In the future, we intend to extend our methods to support more intricate sce-
narios of continuous data publishing, such as scenarios in which tuples can be
removed or updated.

8. Appendix

8.1. Summary of notations

Table 17: Notations

Notation Meaning
[N ] The set {1, . . . , N}
A1, . . . , AM The M attributes of the table, as well as the attribute domains
A1, . . . , AQ The quasi-identifier attributes
AQ+1, . . . , AM−1 The non-identifier attributes
AM The sensitive attribute
Am The collection of subsets of Am that could be used for generalization, 1 ≤ m ≤M
T The underlying table
tn The nth tuple in T , 1 ≤ n ≤ N
tn(m) The mth entry in tn, 1 ≤ m ≤M , 1 ≤ n ≤ N
idn The identifier of the nth tuple in T , 1 ≤ n ≤ N
V A single anonymization of the entire table T
vn The nth tuple in V , 1 ≤ n ≤ N
vn(m) The mth entry in vn, 1 ≤ m ≤M , 1 ≤ n ≤ N
V := 〈V0, V1, . . . , VR〉 A sequential release of T
V0 The adversarial background knowledge
Vr The rth release of T , 0 ≤ r ≤ R
Ir The set of indices of all attributes that are included in Vr, 0 ≤ r ≤ R
vrn The nth tuple in Vr, 0 ≤ r ≤ R, 1 ≤ n ≤ N
vrn(m) The mth entry in vrn, 0 ≤ r ≤ R, 1 ≤ m ≤M , 1 ≤ n ≤ N
T |Ir The table T where all attributes with indices in [M ] \ Ir are suppressed
W A possible world
E A set of possible worlds
PW(V) The set of all possible worlds
GV The multipartite consistency graph of V
C A full clique in GV
tB The closure of the set of tuples B
div(B) The diversity of a set of tuples B
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8.2. Ordering `-diverse sets
In Algorithm 1 we partition T ’s tuples to buckets that are all `-diverse (Defi-

nition 2.3). Let B be one of those buckets and {a1, . . . , aS} be the set of sensitive
values in B’s tuples. We denote by ns the number of B’s tuples that have the
sensitive value as. Assume further that n1 ≥ · · · ≥ nS and let n = |B|. The
`-diversity of B implies that div(B) = n/n1 ≥ `.

Our goal is to order B’s tuples in a cycle so that every ` consecutive tuples
in that cycle have distinct sensitive values. Assume that n = q` + r where 0 ≤
r ≤ `− 1. Let A be an array of q rows and p = dn/qe columns, whose rows and
columns are indexed starting from zero.

Assume that

(z0, . . . , zn−1) =

(
n1︷ ︸︸ ︷

a1, . . . , a1, · · · ,
nS︷ ︸︸ ︷

aS, . . . , aS

)
(13)

is the sequence of all sensitive values in B, sorted from the most frequent to the
least frequent one. We assign those values to A’s entries by columns, namely
A(i, j) = zi+rj for 0 ≤ i ≤ q − 1 and 0 ≤ j ≤ p − 1 (when j = p − 1 the last
pq − n entries remain empty). The following lemma states that the order that is
induced by the rows of A satisfies the sought-after property that is described in
Step 4 of the algorithm.

Lemma 8.1. The sequence

A(0, 0), . . . , A(0, p− 1), . . . , A(q − 1, 0), · · · , A(q − 1, p− 1) , (14)

where empty entries are skipped, has the property that every cyclically consecutive
` values in it are distinct.

Proof. It is easy to see that if r = 0 then p = ` and all entries in A are filled;
otherwise, if r > 0, then p = ` + 1 and the last pq − n rows of A have only their
first ` entries filled. Therefore, when we look at the ordering of A’s entries, (14),
every ` consecutive elements in it are elements from ` distinct columns of A. It is
impossible that such a subsequence will have the same value twice. Assume, to-
wards contradiction, that there exists a subsequence with the same value repeated
twice. Then, since the number of columns is at least `, there exist 1 ≤ j1 < j2 ≤ p
such that A(i, j1) = A(i, j2) or A(i + 1, j1) = A(i, j2). But that cannot be since
we allocated the values to A by columns, starting from the most frequent one,
according to (13), and each of them occurs at most q times (which is the number
of rows) since ns ≤ n1 ≤ bn/`c = q for all 1 ≤ s ≤ S. 2
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8.3. On the applicability of differential privacy to the problem of sequential re-
lease

Recently, there has been a growing debate over approaches for handling and
analyzing private data. Research has identified issues with syntactic approaches
such as k-anonymity and `-diversity. Differential privacy, which is based on
adding noise to the analysis outcome, has been promoted as the answer to privacy-
preserving data mining. The recent study [4] looks at the criticisms of both ap-
proaches and identifies the main problems with each of them. The conclusion in
that paper is that both approaches have their place, and that each approach has
issues that call for further research. Here, we focus on the main issues that render
differential privacy less applicable to the problem of sequential release. The in-
terested reader is referred to [4] for other issues and a more thorough discussion.
Another recent study that reaches similar conclusions by comparative evaluation
of the two approaches is [6].

Models based on the release of anonymized data can safely be used for as
many distinct uses as desired. Methods that release only query results require
tracking the results: early uses of the data can affect the quality of later uses,
or even result in a threshold beyond which no new queries can be permitted on
the data. While noise can be applied to a data release (e.g., the techniques used
in Public Use Microdata Sets [22]), most recent research has concentrated on
answering queries against the data. It has long been known that care must be taken
to ensure that multiple queries do not violate privacy [7]. Differential privacy does
address this, as differentially private answers to queries are composable, with each
consuming a portion of the “privacy budget”. For example, in order to achieve
ε-differential privacy over two queries, the answer to each query can be made
noisier so that each complies with ε/2-differential privacy. However, if the query
stream is not known in advance, adding too little noise to early queries can prevent
reasonable answers to later queries.

There is also an issue of determining how to set a “privacy budget”. Assum-
ing public access to a dataset, any privacy budget could quickly be exhausted.
An alternative is to assign individual privacy budgets, but this requires ensuring
that individuals do not collude, limiting dataset access to individuals who can be
authenticated and vetted. This poses interesting policy challenges for use of dif-
ferential privacy.

As explained in detail herein, our approach does not suffer from the problem of
having a limited privacy budget that is consumed by each release. In our approach,
it is possible to publish as many releases of the underlying table, without violating
the `-diversity privacy requirement, and without degrading the utility of the later
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releases, since the anonymization of each release is independent on the past or
future releases.

As a concluding remark we note that Mohammed et al. [21] proposed an algo-
rithm for producing a single release of a given dataset that complies with the dif-
ferential privacy condition. Their algorithm is a variation of the top-down special-
ization algorithm of [32], where compliance with differential privacy is achieved
by modifying two of its stages: (a) in the course of the top-down specialization
loop, instead of choosing the optimal taxonomy node for specialization, the choice
is made in a probabilistic manner in accord with the so-called exponential mech-
anism; and (b) at the end of the specialization loop, instead of publishing for each
block of records that have the same generalized quasi-identifiers the exact counts
of sensitive values, those counts are being perturbed by Laplacian noise. Clearly,
such modifications reduce further the utility of the output, which is limited in the
first place due to the usage of the rigid cut generalization model, rather than the
more flexible local recoding model (as discussed in detail in [28]). That algo-
rithm may be used in the sequential release scenario by applying to it the non-
sequential approach (as described in Section 4.5). However, such an approach
yields poor utility of the sequential release (which adds to the poor utility of the
basic anonymization algorithm of the entire table), as discussed in Section 4 and
exemplified by our experimental evaluation. In addition, such an approach is not
suitable to handling dynamics in the table.
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