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Abstract—Viral marketing is a methodology which is based
on exploiting a pre-existing social network in order to
increase brand awareness or product sales through self-
replicating viral processes. An essential computational task
towards setting up an effective viral marketing campaign is to
estimate social influence. Such estimates are usually done by
analyzing user activity data. The data analysis and sharing
that is needed to estimate social influence raises important
privacy issues that may jeopardize the legal, ethical and
societal acceptability of such practice, and in turn, the
concrete applicability of viral marketing in the real world.
Tassa and Bonchi (EDBT 2014) devised secure multi-party
protocols that allow a group of service providers and a social
networking platform to jointly compute social influence in a
privacy preserving manner. They assumed that the players
are semi-honest, i.e., that they follow the protocol correctly,
but at the same time they examine their view of the protocol
in order to extract information on inputs provided by their
peers. In this paper we discuss the case of selfish rational
players; such players participate in the protocol and follow
it correctly only if it is in their best interest and maximizes
their utility. We enhance the protocol of Tassa and Bonchi by
incorporating into it mechanisms that incentivize the players
to participate in the protocol truthfully.

Keywords-viral marketing; privacy-preserving data min-
ing; game theory

I. INTRODUCTION

Viral marketing is a methodology which is based on
exploiting a pre-existing social network in order to in-
crease brand awareness or product sales through self-
replicating viral processes. A basic idea in the practice
of viral marketing is to target a small subset of seed users
in the network who, hopefully, will trigger a word-of-
mouth driven cascade which will deliver the marketing
message to a large portion of the network, with a small
initial marketing cost.

The key computational problem in this context was
formalized by Kempe et al. [4] and is known as influence
maximization. The input to that problem consists of two
ingredients. The first one is a directed social graph where
each arc is labeled with a probability representing the
strength of social influence along the arc; in other words,
the label of an arc (u, v) is an estimate to the probability
that an action which was carried out by u will influence v
to do that action too. The second ingredient is an integer
k, which represents the “budget” that is allocated for some
viral marketing campaign. The goal is then to find k nodes
in the graph which, if activated, will maximize the ex-

pected number of nodes that eventually get activated. This
fundamental problem has received a substantial attention
by the data mining research community ever since its for-
malization. However, despite being under the spotlights of
academic research for more than ten years, the problem of
influence maximization remains a theoretical one, which
is still far from real-world applicability.

One of the unrealistic assumptions made by most of the
studies in this field is that the input social graph is already
labeled with the above described probabilities representing
the influence strengths of the social links. However, real-
world social networks do not come with such additional
information. Consequently, several studies [11], [9], [2]
focused on the more preliminary problem of learning
social influence strength. That problem takes, as input, the
social graph together with a log of past propagation traces
(for instance, the history of sales of some products to
the users in the social network). Assuming a propagation
model which governs the manner in which influence-
driven propagations occur, the goal is then to learn the
parameters of the model, i.e., the influence probability
associated to each arc.

But even though such studies helped bridging between
theory and practice, the gap remained substantial. Another
manifestation of that gap is the fact that all of the
above mentioned studies assumed that all inputs to the
problem of learning social influence strength are owned
by one party. In real life, however, social networking
platforms are owned by a third party such as Facebook
or Twitter (we refer to the network owner as the host,
denoted H), while the log of past propagation traces is
distributed among several service providers, P1, . . . , Pm

who are different entities (e.g. e-book stores or travel
websites). Viral marketing is offered by H as a service
to P1, . . . , Pm [1], [27]: this might be in the form of
advertising space, paid by P1, . . . , Pm to H on a pay-per-
impression basis. H attempts to optimize the placement of
advertisements in order to maximize influence diffusion.
This optimization is provided as a service to P1, . . . , Pm,
with the primary goal of making the social network more
attractive as a marketing platform. However, in order to
solve the influence maximization problem and to set up
the viral marketing campaign, it is first needed to learn
the influence strength.

Since each of the involved parties wish to keep their
proprietary data secret (in order to maintain commercial



benefits and to respect privacy legislation12, the problem
becomes a problem of secure multi-party computation.
The inputs to the computation are held by distinct and
non-trusting parties (the host H and the service providers
P1, . . . , Pm) – the former has the social graph, while the
latter hold logs of past propagation traces; the output is
the social strength of each link in the network. Tassa
and Bonchi [22] addressed that problem and offered
secure multi-party protocols that allow a group of service
providers and a social network host to jointly compute
the link influence strengths, while respecting their privacy.
(The privacy analysis was carried out under the standard
assumption that the participating players are semi-honest,
i.e., they respect the protocol, but try to learn as much
as they can from their own view of the protocol on the
private information held by other players.3)

Alas, even that seminal work which, to the best of
our knowledge, initiated the study of privacy-preserving
viral marketing, is not expected to make the industry
embrace such innovative technological solutions with open
arms. The problem now is that in the protocols that were
presented in [22], only the host receives all information
regarding the strength of the social links, while the service
providers get nothing, even though they participate in
the protocol by contributing their private data. However,
rational players (service providers) might refuse to partic-
ipate and contribute their private data or condition their
participation in such protocols on receiving part of the
computational result. Hence, it is needed to devise game-
theoretic mechanisms that incorporate incentives for the
service providers who participate in the protocol. By
incorporating incentives and designing the game-theoretic
mechanism accordingly, the service providers will know
upfront that if they contribute their data to the com-
putation, they too may learn part of the output which
they can use for their own direct marketing purposes. In
this paper we offer such game-theoretic mechanisms to
enhance the protocols of [22] for estimating the social
influence strength.

The paper is organized as follows. In Section II we
review related work. In Section III we define the computa-
tional problem. In Section IV we provide a brief summary
of the protocol that was proposed in [22] and is the basis
of our rational protocol which we proceed to describe in
Section V. We conclude in Section VI.

II. BACKGROUND AND RELATED WORK

In this section we provide a brief overview of the
problem of learning link influence strength and the field of
secure multi-party computation (Sections II-A and II-B).
Then, in Section II-C, we provide a somewhat more
elaborated overview of the field of rational computations,
as the main contribution of this study is the extension of

1http://techcrunch.com/2013/01/24/my-precious-social-graph/
2http://mashable.com/2012/07/27/twitter-instagram-find-friends/
3See [18], [10] for a discussion and justification of that

assumption.

an existing secure multi-party protocol to the realm of
rational behavior.

A. Learning link influence strength

A basic computational problem in the area of viral
marketing is that of selecting the set of users to be
targeted by the campaign. The first algorithmic treatment
of the problem was provided by Domingos and Richardson
[17], [5], who modeled the diffusion process in terms of
Markov random fields and proposed heuristic solutions.
The problem was formalized by Kempe et al. [4] as a
discrete optimization problem, named influence maximiza-
tion: given a social network where each link is associated
with an estimate of influence strength, and a budget k,
find k nodes that provide the maximum expected spread,
i.e., the expected number of active nodes at the end
of the process. The activation of nodes is governed by
a probabilistic propagation model. For instance, in the
Independent Cascade (IC) model [4], when a node u first
becomes active, say at time t, it is considered contagious.
It has one chance of influencing each inactive neighbor
v with probability pu,v (the strength of influence asso-
ciated with the arc (u, v)), independently of the history
thus far. If the activation tentative succeeds v becomes
active at time t + 1, and consequently, has a one-time
chance to influence its yet inactive neighbors. Part of the
contribution of Kempe et al. [4] was to provide a simple
(but computationally prohibitive) greedy algorithm with
approximation guarantees. Following that seminal work,
considerable effort was devoted to developing methods
for improving the efficiency of influence maximization
computations. Most of those studies assumed a weighted
social graph as input and did not consider the problem
of computing the link influence strength, e.g. [26], [25].
Other studies focused specifically on the latter problem
[11], [9], [2].

Saito et al. [11] were the first to study how to learn
the link influence probabilities from a set of past propaga-
tions. They neatly formalized the likelihood maximization
problem and then applied Expectation Maximization (EM)
to solve it. Although elegant, their formulation has some
limitations when it comes to practice. First, real data
needs to be heavily discretized to meet the assumed input
format [16]. Second, the EM-based method is particularly
prone to overfitting [3]. Finally, it is not very scalable as
it needs to update the influence probability associated to
each arc in each iteration.

For these reasons and for the sake of simplicity, we
avoid the complexity of the EM-based approach when
learning the influence probabilities for the influence max-
imization problem, and instead we follow a simpler defi-
nition by Goyal et al. [2], which also considered temporal
decay of influence. We provide the details of this definition
in Section III.

B. Secure multi-party computation

Consider a setting in which data is distributed among
several parties who aim to jointly perform data mining on



the unified corpus of data that they hold, while protecting
their privately owned data records. This is a problem
of secure multi-party computation (SMC). In the general
setting of SMC, there are several parties (or players),
P1, . . . , Pn, where each party Pi holds a private value xi.
The goal is to compute the value f(x1, . . . , xn), where f
is some publicly known function of n variables, so that
each party does not learn anything about the private inputs
of the other parties, except the information that is implied
by his own input and the output result f(x1, . . . , xn). The
problem of secure two-party computation was solved by
Yao [29] for any function f that can be represented by
a binary or an algebraic circuit. While generic protocols,
such as Yao’s and its extensions to any number of play-
ers, apply in theory to a wide class of functions, their
applicability in practice is limited to functions that have
a compact representation as a circuit, due to their high
computational and communication complexities. The aim
of further studies in this field is to find more efficient
solutions for specific problems of SMC: e.g., decision trees
[14], clustering [28], association rule mining [24], [12],
[20], or anonymization [21], [23].

C. Rational computations

The fields of game theory and cryptographic protocol
design are both concerned with the study of ”interactions”
among mutually distrusting parties. These two subjects
have, historically, developed almost entirely independently
within different research communities and, indeed, they
tend to have a very different flavor. In the last decade,
however, motivated by the desire to develop more realistic
models of (and protocols for) such interactions, there
has been significant interest in combining the techniques
and approaches of both fields. Current research at the
intersection of game theory and cryptography can be clas-
sified into two broad categories: applying cryptographic
protocols to game-theoretic problems, and applying game-
theoretic models and definitions to the general area of
cryptographic protocol design. In our work we focus on
the latter category, on which we proceed to elaborate.

Traditionally, cryptographic protocols are designed un-
der the assumption that some parties are honest and faith-
fully follow the protocol, while some parties are malicious
and behave in an arbitrary fashion. The game-theoretic
perspective, however, is that all parties are simply rational
and behave in their own best interests. This viewpoint
is incomparable to the cryptographic one: although no
one can be trusted to follow the protocol (unless it is in
their own best interests), the protocol need not prevent
”irrational” behavior. Early on Shoham and Tennenholtz
[19] considered the following rational problem: Assume
a set of parties P1, . . . , Pn, where party Pi begins by
holding an input xi. We assume that the vector of inputs
x = (x1, . . . , xn) is chosen according to some known
distribution D. The parties want to compute a (possibly
probabilistic) function f , where f(x) = y = (y1, . . . , yn)
and Pi receives yi. The parties run some protocol Π =
(Π1, . . . ,Πn), and we assume that this protocol is correct

in the sense that it yields the correct output if it is run
honestly (namely, if all players supply to the protocol their
true inputs and then they execute the operations of the
protocol correctly). However, we do not assume that the
parties use their given true inputs. The utility function of
Pi is now a polynomial-time function of its view during
the execution of Π, the initial inputs x, and the outputs
y−i := (y1, . . . , yi−1, yi+1, . . . , yn) of all other parties. In
the computation of f(x), a party Pi that has xi as input
can replace its input with some other value x′i = δi(xi),
where δi denotes Pi’s strategy. Shoham and Tennenholtz
[19] define the class of Non-Cooperative Computation
functions for which, roughly speaking, setting δi to the
identity function is a Nash equilibrium for all distributions
D. Focusing on Non-Cooperative Computation functions
appears to be a mistake that unnecessarily limits the class
of functions under study.

Halpern and Teague [7] were the first to suggest that
Nash protocols do not suffice but, instead, stronger notions
are needed. As a motivating example [7], consider t-out-
of-n secret sharing (t < n) under the assumption that each
party (1) prefers to learn the secret above all else; and (2)
otherwise, prefers that other parties do not learn the secret.
Consider the naı̈ve protocol in which each party simply
broadcasts their share. (We assume authenticated shares,
so each party can choose either to broadcast the correct
value or nothing.) It appears that a Nash equilibrium
of this protocol is that each Pi would prefer not to
broadcast if t − 1 parties broadcast. In this case only
Pi recovers the secret. That is, following the protocol is
weakly dominated by not following the protocol, and we
might expect that no one follows the protocol, whence the
protocol is not very useful. To address this, Halpern and
Teague suggest looking for Nash protocols where players’
strategies survive iterated deletion of weakly dominated
strategies. Such protocols were constructed in [7], [8],
[15], [6]. Kol and Naor [13] argue that the requirement
of surviving iterated deletion does not suffice to rule out
protocols that are, intuitively, irrational and they explicitly
reject the idea of ”weighting” the utility of strategies
according to the probability with which a given history
is reached (the basic idea of iterated deletion of weakly
dominated strategies). They also claim that the notion of
surviving iterated deletion is difficult to work with and
does not seem to capture intuition very well. Moreover,
it leads to other undesirable consequences such as the
fact that, if we do not assume simultaneous channels,
then protocols in which two parties are supposed to speak
in the same round are inherently problematic, since each
party will simply wait for the other to go first. Kol and
Naor thus suggest another notion. Informally, they require
that conditioned on reaching any history that occurs with
positive probability, players’ strategies should remain in
equilibrium. In their definition of a computational game,
they allow the action of a player Pi to run in time
polynomial in k+r, where r is the number of rounds that
have been played thus far and k is a security parameter
provided to all parties at the beginning of the game.



Regardless of the equilibrium definition the literature
mentioned above, e.g. [7], [8] point to the fact that the
only hope of getting a practical mechanism for secret
sharing lies in using uncertainty about when the game
will end to induce cooperation. In order to induce the
uncertainty, the literature composes mechanisms with an
addition entity that is in charge of initiating multiple
rounds of the protocol such that the timing of the last
round is unknown. Such a mechanism structure allows for
a punishment strategy where the player might gain if he
chooses not to cooperate in the last round, however, he will
be ”punished” with much reduced utility if he is caught
being uncooperative and it is not the last round.

III. PROBLEM DEFINITION

We consider a social network, which is a graph G =
(V,E) where the nodes are users and the links denote
some relation between the users. When the relation is
symmetric (such as the “friendship” relation in Facebook)
the graph is undirected; when the relation is asymmetric
(such as the “following” relation in Twitter) the graph is
directed. We shall assume hereinafter that the graph is
directed4 and a link (u, v) ∈ E indicates the fact that v is
a follower of u, i.e., v is notified about u’s activities, or
in other terms, u can influence v.

We are also given a relation L(User;Action;Time),
that we call action log. Each record in that log is a tuple
of the form (v, α, t) which indicates the fact that user v
performed action α at time t. We assume that: (a) the
projection of L on the first column is contained in the
set V of nodes of the social graph G = (V,E);5 (b) the
set of all possible actions is denoted A; and (c) time is
represented by positive integers. Moreover, we assume that
any given user performs any given action at most once.
(Hence, if a user bought, for example, the same book
twice, we consider only the first purchase.)

There are m service providers, P1, . . . , Pm, and each
Pi, 1 ≤ i ≤ m, owns an action log Li that consists of the
actions performed at the site of that service provider. The
unified log is L =

⋃m
i=1 Li. These m service providers,

together with the host, wish to compute the influence
strength of each link in the social graph in a privacy-
preserving manner.

For each arc (u, v) ∈ E, we define the influence
probability pu,v , as an estimate to the probability that user
v will perform some action if u performs that action. The
estimate is based on the past activity of those users as
reported in the action logs. To define pu,v (following [2]),
we introduce the following notations:

• au is the number of tuples in L in which the first
component is u. It equals the number of actions that
u did.

4Undirected graphs will be thought of as directed graph where each
undirected edge {u, v} is replaced by the two directed arcs (u, v) and
(v, u).

5In practice, the service providers may have users that are not members
of the social network. Such users may be ignored since questions of
influence are relevant only in a social framework.

• bu,v = bhu,v is the number of actions α such that
L includes a record (u, α, t) as well as a record
(v, α, t′), where t < t′ ≤ t + h, for some integer
h ≥ 1. It represents the number of times in which v
followed u in doing some action, assuming a memory
window of width h.
• chu,v is the number of actions α such that L includes

a record (u, α, t) as well as a record (v, α, t+h). It is
the number of times in which v followed u in doing
some action exactly h time steps after u performed
that action.

One way of defining pu,v is by picking some value of h
and then set

pu,v =
bu,v
au

. (1)

Namely, it is the fraction of times in which u succeeded
in influencing v (to follow him within h time steps). A
more generalized definition would be

pu,v =

∑h
`=1 w`c

`
u,v

au
, (2)

where 0 < w` and
∑h

`=1 w` = h. The definition in
equation (1) is a special case of the definition in equation
(2) when w` = 1 for all 1 ≤ ` ≤ h. By taking
w1 > · · · > w`, one may achieve a temporal decay effect;
namely, the faster v follows u in doing an action, the more
we consider v’s action to be a result of u’s influence on
him. In either of these definitions, pu,v is set arbitrarily to
zero if the denominator au is zero (since if u performed no
action, we have no way of determining his influence on
others). Here we concentrate on the first definition, Eq.
(1). The extension of the protocols to the more general
definition, Eq. (2), is straightforward and thus omitted.

IV. A SECURE MULTI-PARTY PROTOCOLS FOR
COMPUTING THE LINK INFLUENCE STRENGTHS

In this Section we describe the secure multi-party pro-
tocol that was offered in [22] (see Protocol 4 there). That
protocol is the basis for the rational version which we
introduce here in the next section.

The players H (the host) and P1, . . . , Pm (the service
providers) wish to compute jointly influence probabilities
pu,v for all (u, v) ∈ E, as defined in Section III. Their
goal is to perform those computations while preserving
their private information. The private information of Pi,
1 ≤ i ≤ m, is his private log Li. The private information
of H is the arc structure E.

Tassa and Bonchi [22] distinguished between two cases:
(1) the exclusive case, where each action is supported
exclusively by one of the service providers, and (2) the
non-exclusive case, where each action can be supported
by more than one service provider. In the first case, all
evidence of information propagation that relate to some
specific action α ∈ A are contained within the action
of log Li of the service provider Pi that supports that
action. For example, if α is the action of purchasing a
specific book and that book is offered solely by P1, then



all episodes of influence that relate to that action will be
recorded within L1. In the non-exclusive case, however,
if the same action is supported by say P1 and P2 (since
both are, say, e-book stores that sell the book that the
action α represents) then it is possible that Alice bought
that book through P1 while Bob, her Facebook friend,
saw her post about it and bought it through P2. In order
to deal with the non-exclusive case, Tassa and Bonchi
suggested a secure multi-party protocol (see Protocol 5
there) that can be executed solely by P1, . . . , Pm, and
reduces the non-exclusive case to the exclusive one by
modifying the private action logs accordingly. Hence, we
concentrate here on the exclusive case; the discussion of
the non-exclusive case is deferred to the full version.

As defined in Section III, au is the number of actions
that user u performed, while bu,v is the number of actions
that v performed following u. For each 1 ≤ i ≤ m, let
aiu denote the number of records in Li that involve u.
Since we assumed that each user may perform any given
action at most once, then au =

∑m
i=1 a

i
u. Let biu,v denote

the number of actions α such that Li includes a record
(u, α, t) as well as a record (v, α, t′), where t < t′ ≤ t+h.
Then, since each action α can appear in only one of the
logs (as we focus here on the exclusive case), we have

bu,v =

m∑
i=1

biu,v . (3)

We proceed to describe Protocol 1 (which is Protocol 4
in [22]) that H and P1, . . . , Pm run towards learning the
link influence probabilities. That protocol is based on two
secure arithmetic protocols:
• Protocol ΠS is a secure protocol for computing integer

additive shares in the sum of private inputs (see [22,
Protocol 2]). Specifically, assume that each of the players
P1, . . . , Pm holds a private integer xi where xi ∈ [0, A]
for some integer A and also x =

∑m
i=1 xi ∈ [0, A], for

some publicly known upper bound A. Let N be an integer
where N � A. Then ΠS ends with P1 getting a random
s1 ∈ [0, N − 1] and P2 getting s2 := x− s1.
• Protocol ΠQ is a secure protocol for computing the

quotient of private integers (see [22, Protocol 3]). Assume
that Pi has an integer ai ∈ [0, A], i = 1, 2. Then the
protocol, which is executed by P1, P2 and H , ends with
H getting q := a1/a2, if a2 > 0, or q = 0 if a2 = 0,
while P1 keeps a1 private (from P2 and H) and P2 keeps
a2 private (from P1 and H). In a nutshell, P1 and P2

jointly generate a random real number M ∼ Z where Z is
the distribution on [1,∞) with probability density function
fZ(µ) = µ−2; then they jointly generate a random r ∼
U(0,M), and they send to H the values rai, i = 1, 2,
which H proceeds to divide in order to recover q = a1/a2.
(The selection of the probability distribution from which
the masking multiplier r is drawn is made in order to
minimize the information that H can extract from rai on
ai.)

We now turn to describe Protocol 1, which involves
the service providers and the host, and enables the latter

Protocol 1 - Secure computation of link influence proba-
bility.
Input: H owns the social graph, G = (V,E). Pi, 1 ≤

i ≤ m, owns an action log Li.
Output: H gets pu,v for all (u, v) ∈ E.

1: H generates a set E′ ⊂ V ×V such that E′ ⊃ E and
|E′| ≥ c|E| for some given constant c > 1.

2: H sends E′ to Pi, 1 ≤ i ≤ m.
3: P1, . . . , Pm perform Protocol ΠS in parallel for au =∑m

i=1 a
i
u, for all u ∈ V . At the end of that protocol,

Pi, i = 1, 2, has siu such that s1
u + s2

u = au.
4: P1, . . . , Pm perform Protocol ΠS in parallel for
bu,v =

∑m
i=1 b

i
u,v , for all (u, v) ∈ E′. At the end

of that protocol, Pi, i = 1, 2, has siu,v such that
s1
u,v + s2

u,v = bu,v .
5: For each u ∈ V , P1 and P2 jointly generate indepen-

dent random real numbers Mu ∼ Z, where Z is as in
Protocol ΠQ.

6: For each u ∈ V , P1 and P2 jointly generate indepen-
dent random real numbers ru ∼ U(0,Mu).

7: Pi, i = 1, 2, sends rusiu for all u ∈ V and rusiu,v for
all (u, v) ∈ E′ to H .

8: For each (u, v) ∈ E, H computes pu,v =∑2
i=1 rus

i
u,v/

∑2
i=1 rus

i
u (where the quotient is set

to zero if the denominator is).

to compute the influence probabilities pu,v , for all arcs
(u, v) ∈ E, according to the definition in Eq. (1). First,
H hides his arc set within a larger set of arcs, E′, which
he sends to P1, . . . , Pm (Steps 1-2); the arcs in E′ \ E
are selected uniformly at random from the set of all pairs
(u, v) /∈ E, where u 6= v.

Then, the service providers perform Protocol ΠS for au
and bu,v for all pairs of nodes that appear in the augmented
arc set E′ (Steps 3-4). Note that Protocol ΠS is designed
to compute integer additive shares for a single sum. Here,
we perform that protocol in parallel for n + |ΩE′ | sums,
namely, all counters au and bu,v . Note that each of those
counters is bounded by A = |A|; the value of N � A
that is used in Protocol ΠS is chosen jointly by the service
providers.

At this stage, P1 and P2 hold random additive shares in
au (the number of actions that u performed in total) and
bu,v (the number of times where v followed u) for all users
u ∈ V and all arcs in E′. They now wish to let H compute
the quotient bu,v/au, being a measure of the influence that
u has on v, without leaking to him information on au
and bu,v beyond what is implied by the quotient. To that
end, P1, P2 and H engage in a variant of Protocol ΠQ,
where the multipliers ru are chosen independently for each
user u (Steps 5-8). (It is a variant of Protocol ΠQ since
here the masking random value ru multiplies the shares
of the numerator bu,v and the denominator au, rather than
directly bu,v and au).

It is clear that Protocol 1 is correct and complete in the
sense that it ends with H having pu,v = bu,v/au for all



arcs in E. Indeed,∑2
i=1 rus

i
u,v∑2

i=1 rus
i
u

=

∑2
i=1 s

i
u,v∑2

i=1 s
i
u

=
bu,v
au

.

A protocol for computing the link influences by Eq. (2)
goes along the same lines, since also in that definition
the numerator is a sum of private values which each Pi

has, 1 ≤ i ≤ m. Hence, the only modification in Protocol
1 is in Step 4, where the players invoke Protocol ΠS to
compute additive shares in

∑h
`=1 w`c

`
u,v; all other steps

remain the same.

V. EXTENDING THE SECURE PROTOCOL FOR
COMPUTING LINK INFLUENCE STRENGTHS TO THE

REALM OF RATIONAL PLAYERS

The problem with Protocol 1 is that all of its output
goes to H , while P1, . . . , Pm get nothing, even though
they participate in the protocol by contributing their private
data. While Protocol 1 is secure and does not reveal
the private data of the service providers, rational players
might condition their participation in such a protocol on
receiving part of the computational result. Hence, in order
to motivate P1, . . . , Pm to participate in the protocol we
devise herein a version of it that incentivizes H to share
with P1, . . . , Pm part of the output that he recovers. The
design of this variant incentivizes H by integrating a utility
for H of which the expected value is maximized when H
participates in the protocol truthfully.

This section is organized as follows. In Section V-A we
describe the benefits that the service providers request for
themselves if they participate in the protocol. In Section
V-B we formalize the utility functions for each of the
interacting players. We then describe in Section V-C the
modified protocol, and analyze its properties in Section
V-D.

A. The requested benefits for the service providers

The output of Protocol 1 is O := {pu,v : (u, v) ∈
E′} where E′ is a superset of the exact arc set E in the
social network. (Recall that |E′| = c|E|; higher values of
c yield better protection of the arc set E, but at the same
time they entail higher computational and communication
costs.) Assume that each service provider Pi, 1 ≤ i ≤ m,
is interested in a subset of the nodes (users) Vi ⊂ V in the
graph that H owns. Then the benefit which Pi requests, as
an incentive to participate in the protocol, is Oi := {pu,v :
(u, v) ∈ E′i} where E′i := {(u, v) ∈ E′ : u ∈ Vi or v ∈
Vi}. Namely, Pi is interested in the strength of all links
in E′ that involve at least one user in Vi. The sets Vi,
1 ≤ i ≤ m, need not be disjoint. However, |Vi| should
be proportional to the publicly known size of the business
that Pi is running; namely, large businesses that contribute
much larger activity logs to the process of learning the
link influence probabilities should be rewarded with larger
portions of the output.

B. Utility functions of the interacting players

We assume that the host H is a rational selfish player;
hence, as we would like to incentivize him to share with
P1, . . . , Pm their requested part of the input, we define H’s
utility in the following way: Let cju,v , ncju,v be parameters
denoting whether player j ∈ {H, 1, . . . ,m} learned the
link strength estimate pu,v of some true arc (u, v) ∈ E
correctly or incorrectly, respectively. Let

UH : {cHu,v, ncHu,v, c1u,v, nc1u,v, ...cmu,v, ncmu,v} → R

be a utility function for H (not necessarily positive). Let
Γ denote an execution of the protocol. The outcome of Γ
can be described by the following set of binary variables:

γHu,v , (u, v) ∈ E ,

and
γiu,v , (u, v) ∈ Ei , 1 ≤ i ≤ m,

where γHu,v ∈ {cHu,v, ncHu,v} indicates whether H learned
the strength pu,v of the arc (u, v) ∈ E or not, while
γiu,v ∈ {ciu,v, nciu,v} indicates whether Pi learned the
strength pu,v of the arc (u, v) ∈ Ei := E′i ∩ E correctly
or not, 1 ≤ i ≤ m. Then the overall utility for H from Γ
is

UΓ
H :=

∑
(u,v)∈E

UH(γHu,v) +

m∑
i=1

∑
(u,v)∈Ei

UH(γiu,v) . (4)

On the one hand, if H participates truthfully in the
protocol then all players learn all arcs’ strengths that they
were expected to learn, and so the resulting utility is

U c
H :=

∑
(u,v)∈E

UH(cHu,v) +

m∑
i=1

∑
(u,v)∈Ei

UH(ciu,v) . (5)

On the other hand, if H dose not participate truthfully in
the protocol and cheats on a subset Ed of d arcs in E then
there are two possible scenarios:
(1) H is caught cheating and, consequently, the protocol
aborts prematurely and then no player learns anything; in
this scenario the resulting utility is

Unc
H :=

∑
(u,v)∈E

UH(ncHu,v) +

m∑
i=1

∑
(u,v)∈Ei

UH(nciu,v) .

(6)
(2) H is not caught cheating and, consequently, H learns
all arcs’ strengths while the service providers learn their
designated output except for the strength of arcs in Ed;
the resulting utility in this case is

Uo
H(Ed) :=

∑
(u,v)∈E

UH(cHu,v) +

m∑
i=1

UH:Pi (7)

where

UH:Pi
=

∑
(u,v)∈Ei\Ed

UH(ciu,v) +
∑

(u,v)∈Ei∩Ed

UH(nciu,v) .

Note that H’s utility from a successful cheat may depend
on the service provider who was mislead and on the arcs
in the subset Ed.



We assume herein that the utility function UH satisfies
the following condition for all (u, v) ∈ E:

[CH1]: UH(cHu,v) +
∑

i:(u,v)∈Ei

UH(ciu,v) >

UH(ncHu,v) +
∑

i:(u,v)∈Ei

UH(nciu,v) .

Namely, for every arc in E, H prefers learning its arc
strength, and at the same time having all interested service
providers learn it too, over the opposite option in which no
player (neither him, nor any service provider) learns that
value. Summing up inequality [CH1] over all (u, v) ∈ E
we infer that

U c
H > Unc

H ; (8)

i.e., H prefers to act truthfully over being caught cheating
(a case that ends with aborting the protocol). We also
assume herein that the utility function UH satisfies the
following condition for all 1 ≤ i ≤ m and all (u, v) ∈ Ei:

[CH2]: UH(nciu,v) > UH(ciu,v) .

Namely, for every arc in E H prefers Pi not learning
the arc’s strength over learning it. (Note that if there are
arcs in E for which the opposite of [CH2] holds then it
is an uninteresting case in the current context since H
would simply not attempt cheating regarding those arcs’
strengths.) Finally, inequality [CH2] implies that

Uo
H(Ed) > U c

H . (9)

As for the service providers, each Pj , 1 ≤ j ≤ m, can
either participate in the protocol or not. If he does, and
the protocol ends successfully, then all involved players
H and P1, . . . , Pm will learn their designated output.
However, if Pj stays out, then he will not learn Oj while
all the others will learn (again, in the case of a successful
termination of the protocol) an approximate output Õi, for
i ∈ {H, 1, . . . ,m} \ {j}, which is the result of computing
the arcs’ strengths without Pj providing his inputs. If Pj

is a large business then the errors in Õi in comparison
to Oi are more significant than in the case where Pj is
a smaller business. Our assumption on Pj’s utility is as
follows:

[CP]
∑

(u,v)∈E′

UPj
(cHu,v) +

m∑
i=1

∑
(u,v)∈E′

i

UPj
(ciu,v) >

∑
(u,v)∈E′

UPj
(c̃Hu,v) +

∑
(u,v)∈E′

j

UPj
(ncju,v)+

∑
i∈{1,...,m}\{j}

∑
(u,v)∈E′

i

UPj (c̃iu,v) ,

where ciu,v (resp. c̃iu,v) indicates that player i ∈
{H, 1, . . . ,m} learned (u, v)’s strength correctly (resp. ap-
proximately). Hence, condition [CP] states that Pj prefers
collaborating over not collaborating.

We note that conditions [CH1] as well as [CP] depend
on the size of the sets Vi. On one hand, the host H may
decide to refrain from participating in the protocol if the

sets Vi are too large (say, if |
⋃m

i=1 Vi| > |V |/2); in such
cases condition [CH1] will no longer be true, since in
such cases H would prefer that no one (including himself)
learns anything. On the other hand, the service providers
may choose not to participate if the sets Vi are too small
(say, if Vi = ∅). H and P1, . . . , Pm are therefore expected
to engage in a negotiation for determining the size of
the sets Vi which will make condition [CH1] hold and
will also make condition [CP] hold for a sufficiently large
subset of service providers.

C. The modified protocol

In order to turn Protocol 1 into a protocol that incen-
tivizes H to share with Pi, 1 ≤ i ≤ m, his requested part
of the output, we suggest to perform Protocol 1 several
times (so called “rounds”) with an additional player T that
acts as a coordinator. In each round, the coordinator will
toss a coin that issues the result “fake” with probability
1 − ϕ and “true” with probability ϕ, for some preset
parameter ϕ ∈ (0, 1). In fake rounds, all computations will
yield meaningless random results for the link influence
probabilities. Only in the true round, which will be the
final one, the results will be correct.

The preliminary stage.
Before running the sequence of rounds, the parties

perform the following steps:

1) H and P1, . . . , Pm decide on a random labeling of
the users in V which they keep secret from T .

2) H generates a set E′ ⊂ V × V such that E′ ⊃ E
and |E′| = c|E| for some given constant c.

3) H sends to P1, . . . , Pm the set E′.
4) Pi computes E′i := {(u, v) ∈ E′ : u ∈ Vi or v ∈

Vi}, 1 ≤ i ≤ m.

The procedure in each round: Part 1. In each round
of the modified protocol (MP) the players perform the
following steps:

• Step MP1: The players perform Steps 3-4 of Protocol
1. After doing that, the two service providers Pi, i =
1, 2, hold additive shares in all counters au and bu,v
(denoted, respectively, by siu and siu,v).

• Step MP2: The coordinator T tosses a (ϕ, 1 − ϕ)-
coin to determine whether the current round is true
or fake. (We defer to a later stage the discussion of
how to choose ϕ.)

• Step MP3: For each u ∈ V , T generates independent
random real numbers Mu ∼ Z, where Z is as in
Protocol ΠQ.

• Step MP4: For each u ∈ V , T generates independent
random real numbers ri,nu , ri,du ∼ U(0,Mu), i = 1, 2,
and uniformly random signs σnu, σ

d
u ∈ {−1, 1}.

• Step MP5: T sends {ri,nu , ri,du , σnu, σ
d
u : u ∈ V } to Pi,

i = 1, 2.
• Step MP6: Pi, i = 1, 2, sends to H the two sets

of values as follows: {σduri,du siu : u ∈ V } and
{σnuri,nu siu,v : (u, v) ∈ E′}.



• Step MP7: For each (u, v) ∈ E, H computes

pu,v =

∑2
i=1 σ

n
ur

i,n
u siu,v∑2

i=1 σ
d
ur

i,d
u siu

(10)

(where the quotient is set to zero if the denominator
is zero).

The main idea is that in fake rounds, for any given
u ∈ V , T will generate in Step MP4 the four multipliers
{ri,nu , ri,du : 1 ≤ i ≤ 2} independently. However, in the
true round he will select only r1,n

u , r1,d
u ∼ U(0,Mu) and

then will set r2,n
u = r1,n

u and r2,d
u = r1,d

u . As a result, in
fake rounds, the values pu,v which H computes in Step
MP7 will be totally unrelated to the true link influence
probabilities

p̂u,v := bu,v/au . (11)

On the other hand, in the true round we shall have

pu,v = αup̂u,v , αu :=
σnur

1,n
u

σdur
1,d
u

. (12)

Two comments are in order:
(1) The usage of the sign multipliers σnu, σ

d
u is necessary

since, without them, the fraction that H computes in the
true round, (12), would be always nonnegative, while the
fractions in fake rounds could be negative. (Recall that
some of the additive shares siu and siu,v , i = 1, 2, could
be negative.) Hence, without using the sign multipliers, H
could have inferred that a round in which pu,v ≥ 0 for all
(u, v) ∈ E is the true round with almost certainty.

(2) In fake rounds, the numbers that H holds at this
stage are totally meaningless, since r2,n

u is independent
of r1,n

u and, likewise, r2,d
u is independent of r1,d

u . In the
true round, however, those numbers reveal the relations
between the probabilities over arcs that emerge from
the same node u, since they are all multiplied by the
same factor αu. But they do not reveal such relations
globally, since the factors αu are chosen randomly and
independently for each node. Moreover, H is being told
that the current round is the true round only when it was
verified that he respected his part in the agreement (as we
discuss below) and it is possible to allow him to compute
the correct results.

The procedure in each round: Part 2.
We now proceed to describe the next stage of the

protocol in which H exchanges with P1, . . . , Pm the
required information for completing the computation. To
this end, we first elaborate on three ingredients in that part
of the protocol:

Encryption. In the revised and enhanced protocol that
we describe below, we assume that each service provider
Pi, 1 ≤ i ≤ m, has a probabilistic6 public key encryption
function Ei(·) for which the domain and the range are
some large finite field Fi. Everyone can compute Ei(·),
since the encryption key is publicly known. The decryption

6A probabilistic encryption function is a randomized encryption func-
tion; in such ciphers, if the same plaintext is encrypted several times,
the resulting ciphertexts are typically different.

function on the other hand, E−1
i (·), depends on a private

key and, hence, can be computed only by Pi.

Encoding real numbers as finite field elements. We
shall need hereinafter to encode real numbers as finite
field elements in order to apply on them discrete circuit
computations. Let us assume that all real numbers are
taken from the range [−M,M ]. Let us also assume that
our tolerance for rounding effects is, say, 2−d. Then if q
is a prime larger than 2d+1M , we can encode such real
numbers as follows:

y ∈ [0,M ] 7→ 〈y〉 = b2d · yc ,

and
y ∈ [−M, 0) 7→ 〈y〉 = bq + 2d · yc .

y can be recovered from 〈y〉, up to a rounding error.
Specifically, if 〈y〉 < q/2 then it is clear that y ≥ 0
and then z := 2−d〈y〉 is an approximate recovery of
the original real value y. Specifically, z = y + ε where
−2−d < ε ≤ 0. (The recovery of a negative y is similar.)

Encoding the subgraphs. The host H , upon computing
the resulting graph with the corresponding values of pu,v ,
can construct for each Pi a vector over the encryption
field Fi with the strength of all arcs in E′i. Such a vector
will consist of |E′i| triplets of the form (u, v, `u,v) where
(u, v) is an arc in E′i and `u,v := 〈pu,v〉 is a representation
in Fi of the real fraction pu,v that H computed for
that arc. Consequently, we can encrypt such a vector
representation of the graph by applying Ei on each of
its components, independently. We denote hereinafter that
vector of information for Pi by gi and its encryption by
Ei(gi).

Now we are ready to describe the final steps in the
protocol:
• Step MP8: H sends to T the vectors Ei(gi), 1 ≤ i ≤
m; we assume that the arcs appear in gi in a random
order.

• Step MP9: T and P1, . . . , Pm perform a statistical
check on the received vectors to see that H did not
cheat. (See details below). If he did, the protocol
aborts.

• Step MP10: T sends to Pi the vector Ei(gi), 1 ≤ i ≤
m.

• Step MP11: Pi, 1 ≤ i ≤ m, decrypts the received
vectors and recovers gi. He checks that all arcs in E′i
appear in gi. If not, the protocol aborts.

• Step MP12-f: In fake rounds T stops at this stage and
starts a new round.

• Step MP12-t: In the true round, T sends to both
H and the service providers P1, . . . , Pm all the
multipliers {αu : u ∈ V }. Consequently, H recovers
O := {pu,v : (u, v) ∈ E} while Pi recovers
Oi := {pu,v : (u, v) ∈ E′i}, 1 ≤ i ≤ m.

It remains to discuss the verification in Step MP9:
• T selects a small and random subset of triplets from
Ei(gi) and sends them to Pi, 1 ≤ i ≤ m.



• Pi decrypts the obtained triplets; as a result, he gets
a list of triplets of the form (u, v, `u,v).

• Pi sends the obtained triplets to T and he also
informs P1 and P2 on the pairs (u, v) in those triplets.
(Note that Pi can be one of P1, P2.)

• Pi, i = 1, 2, sends to T the shares siu,v and siu for
all those pairs.

• T computes pu,v as in Step MP7 above and sees if
it agrees with the corresponding `u,v .

• If all equality verification passed successfully, the
overall verification procedure ends successfully. Oth-
erwise, it fails.

Note that in the above verification procedure T learns
au and bu,v for some pairs (u, v). However, due to the
secret random labeling of the users that H and P1, . . . , Pm

generated upfront, T does not know who are the users
behind the labels u, v.

D. Properties of the protocol

We conclude the subsection by claiming the properties
of our modified protocol. Let w :=

∑m
i=1 |E′i| denote the

number of triplet-entries in the vectors gi, 1 ≤ i ≤ m.
In view of assumption [CH2], H may wish to prevent
some of the service providers from learning the strength
of some true arcs. Assume that, in a given round, H cheats
by reporting wrong values for d of those entries, while in
the verification stage T randomly selects t of those entries
for verification. Then the probability of H to successfully
pass the verification stage in that round is

ψ(d) :=

(
w−d
t

)(
w
t

) . (13)

Next, we proceed to determine an upper bound on ϕ, the
probability of selecting a true round, that will guarantee
that a rational host H would behave truthfully. To that
end, recall that U c

H and Unc
H , Eqs. (5) and (6), denote the

utilities for H in case of a truthful behavior or in case of an
untruthful behavior that ended with aborting the protocol,
respectively, while Uo

H(Ed), Eq. (7), denotes the utility
for H in case of an untruthful behavior regarding the d
entries associated with the arcs in the subset Ed ⊂ E.

Claim 5.1: If

ϕ ≤ min
1≤d≤w,Ed⊂E

U c
H − (1− ψ(d))Unc

H

ψ(d) · Uo
H(Ed)

, (14)

then H is truthful in our modified protocol and the service
providers are incentivized to participate.

A proof outline is given in the appendix. The expression
to be minimized on the right hand side of Eq. (14) equals

F (t; d) :=
Unc
H + (U c

H − Unc
H )/ψ(d)

Uo
H(Ed)

. (15)

F (t; d) is a quotient between two values that increase with
d; indeed, the numerator increases with d as implied by
Eqs. (8) and (13), while the denominator increases with
d as implied by assumption [CH2]. In order to achieve
a minimal expected number of rounds, the coordinator T
should compute, for any fixed value of t, the minimum

min1≤d≤w,Ed⊂E F (t; d), and then set t so that this mini-
mum is maximized.

VI. CONCLUSIONS

In this paper we extended a viral marketing model and
protocol that were presented in [22] to include a host and
service providers that are rational players. Namely, they
will cooperate and engage in a computational protocol
only if it is in their best interest; otherwise they will
not. We integrated game theoretic principles – punishment
strategy and uncertainty regarding the number of the
protocol’s rounds, in order to establish truthful behavior
among the protocol participants – the host as well as the
service providers.

The current modified protocol (as well as the original
protocols in [22]) is not immune against coalitions; indeed,
P1 and P2 may collude in order to recover the values of
all counters. While our assumption of rationality in the
modified protocol as well as the semi-honest assumption in
the original protocol excludes the possibility of coalitions,
in future work we intend to enhance our protocols to be
immune against coalitions of service providers of bounded
sizes.
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