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A typical model of investment under uncertainty, where firms pay an irreversible cost 

in order to produce, is studied. The analysis has a novel focus on the recipient of this 

payment, which is modeled as a firm or government that sells a resource (or a right) 

necessary for the production of the final good. Our main finding is that the resource 

owner may choose to set the price of the resource at a level high enough so as to cause 

the producers of the final good to delay their purchase of the resource and withhold 

production. The resource owner does so because it expects increased demand for the 

final good in the future. Another important result is that the price of the resource is a 

decreasing function of the elasticity of demand for the final good.  
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1. Introduction1. Introduction1. Introduction1. Introduction    

Usually, the models on investment under uncertainty deal with the decisions of a firm 

that has to pay a certain irreversible exogenous cost in order to start producing and 

make profits.
1
 In this article we remain within the traditional framework used in those 

models but shift the focus of attention elsewhere - to the recipient of this cost. We 

model this recipient as a firm or a government that sells a certain resource which is 

necessary for the production of a final durable good. The producers of the final good 

face the typical investment under uncertainty problem studied in the literature, as the 

cost of each unit of the resource is an exogenously given irreversible cost from their 

point of view. The sellers of the resource face a problem not yet studied - they must 

decide at what level to set the price of their resource.   

 For simplicity, we assume that the resource is sold by a monopolist. Two cases 

are studied: In the first case the resource owner is a firm interested in maximizing the 

value of its sales; in the second case the resource owner is a government interested in 

enhancing social welfare. The government case is of particular relevance to this 

setting because the government is indeed often an owner and provider of resources 

such as land, broadcast frequencies and franchises. Specifically, we assume that the 

government uses its income from the sales of the resource to finance its welfare 

enhancing activities in other markets. We show that since the government is also 

concerned about welfare in the market of the relevant final good, it sells the resource 

below the price that a profit maximizer would charge. 

The common result in the literature on investment under uncertainty is that the 

optimal policy for the firm is to delay investment until profits from the investment are 

sufficiently large. In particular it has been found that a positive Net Present Value is 

                                                
1
 For detailed surveys of this literature see Pindyck (1991) or Dixit and Pindyck (1994). 
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not enough to trigger investment, as the firm seeks to cover not only its direct 

investment cost but also the opportunity cost of the forgone option to delay 

investment. We find that these results may not survive the endogenization of the 

investment cost that we do here, as the resource owner may set the price of its 

resource low enough to induce the producers of the final good to invest immediately. 

Abstracting from full endogeniztion and assuming that there are some exogenous 

components to the investment costs revives the delay results.  

Trivially, if the resource owner can change the price of its resource at any time 

and with no cost then it changes its price continuously in response to swings in the 

demand for the final good. By doing so, the resource owner strips the producers of the 

final good from any profit and keeps them at constant indifference as to whether to 

invest immediately or delay investment. Avoiding this redundant case, we assume 

therefore that the resource owner faces limitations on changing the price of its 

resource. For simplicity, we take this assumption to the extreme in which once the 

resource owner sets the price of the resource it cannot change it anymore. 

Consequently, in setting its price the resource owner faces the following dilemma: 

Pushing the price up yields, on the one hand, more upon selling, but on the other hand 

it may delay the timing of these sales because it may induce the producers of the final 

good to delay their purchases until the demand they face sufficiently rises.     

We find that if buying this resource is the only cost for the producers of the 

final good then wishing to receive payments early is the overriding consideration and 

the resource owner sets its price low enough to induce immediate investment. This 

occurs for all levels of the demand for the final good. In particular, when this demand 

is very low the resource owner sets an accordingly low price for its resource rather 

than set a higher price which it could enjoy later when demand would eventually rise. 
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This happens because when the demand is low the probability of a large surge in it is 

accordingly small under the standard assumption of a geometric process taken here 

for the demand dynamics. 

A situation where the producers of the final good delay their investments is 

possible therefore only later on in time if the demand for the final good falls 

sufficiently below its initial level. Note that this possibility hinges on the assumption 

that the resource owner is limited in its ability to change its price over time.   

Assuming that there are some exogenous components to the investment costs 

alters the relative force of the two factors in the dilemma described above, restoring 

the possibility of delay of investment. Specifically, we find that in that case if demand 

is sufficiently low then the resource owner indeed sets a price that sends the producers 

of the final good to a period in which they delay their investments until demand is 

sufficiently high. Only if demand is sufficiently high does the resource owner set a 

price that induces immediate investment.   

Another important assumption in the model is that the resource owner not only 

charges the producers of the final good for their purchases of the resource but also 

receives a share of their profits. This assumption fits the case of a government 

resource owner very well, as the government taxes firms' profits. Thus, in selling land, 

cellular frequencies or other resources, the government considers not just the direct 

payment it gets for selling the resource but also the future tax proceeds from the 

resulting economic activity. Such contracts exist nonetheless in the private sector as 

well.
2
 This taxation assigns an important role to the elasticity of the demand for the 

                                                
2
 In the pharmaceutical industry developers of new drugs usually have to pay the owners of the 

protected technologies they use not just a single payment but also a share of their sales revenues. Mall 

owners often rent out their stores for a percentage of the sales revenue.    One final example is that of 

writers, musicians, as well as television production companies, who often have a sales dependent 

component in the payment they receive from the publisher (a book publisher, a record label or a 

broadcasting network) that sells their output to the general public. 
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final good in the determination of the price of the resource. Specifically, we find that 

if this demand is sufficiently inelastic then the resource owner will opt to avoid 

lowered tax revenues by preventing any increase in the quantity of the final good, 

setting therefore an infinite price for the resource.
3
 At the other extremity we find that 

if demand is sufficiently elastic then the resource owner may set a negative price for 

its resource, subsidizing thus the production of the final good in order to raise its tax 

revenues.  

The market for the final good in our model is the same market studied by 

Leahy (1993). This is true even though we introduce an endogenous determination of 

the investment cost. This endogenous determination concerns only the 

firm/government resource owner, and the producers of the final good take the cost of 

the resource as given, just as in Leahy's model. Since it is the same model, all relevant 

results already proven by Leahy are used here without proof. 

As stated above, the subject at the focus of this paper has never to our 

knowledge been studied. The study closest to our paper is Yu et al. (2007) who 

examine the case where the irreversible investment cost of the firms is subject to the 

endogenous decisions of a government. Yet, it does not share the key element of our 

study, namely that the irreversible cost of the producers of the final good is the cost of 

a necessary resource or right determined endogenously by its owner. Specifically, 

they examine the effect of fiscal incentives aimed at accelerating foreign direct 

investment from the perspective of real option theory. They compare two policy 

alternatives for a host country wishing to draw in FDI: entry cost subsidy (which may 

take the form of a cash grant covering part of the investment cost, subsidized labor 

training, provision of free or cheap land, etc.) and tax rate reduction. Their conclusion 

                                                
3
 Since the final good is a durable good, sales of the resource imply additions to the quantity of the final 

good that already exists in the market. 
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is that entry cost subsidy is preferable from the host government's point of view to tax 

rate reduction: when the two alternatives have an equal net present value, an entry 

cost subsidy will lower the threshold for market entry of the prospective multinational 

firm by more than a tax rate reduction (alternatively, a lower net present value is 

needed for entry cost subsidy than for tax reduction so as to reach the same threshold). 

The basic explanation for this result is that entry cost subsidy provides the prospective 

multinational firm greater flexibility. 

 The article is organized as follows. In section 2 the model is presented and the 

value of the resource to its owner is analyzed. In section 3 the resource owner’s 

choice of the price of the resource and the resulting immediate market situation - sales 

or inaction - is analyzed for the case where the resource owner maximizes its profits. 

In section 4 the same choice is analyzed, this time for the case of a government 

concerned about welfare. Section 5 offers some concluding remarks. 

    

2. The Model2. The Model2. The Model2. The Model    

Consider the market for the durable good X. Production of X requires the resource N. 

The seller of N is a monopoly that sets the price k per each unit of N. In addition, in 

each point in time the producers of X have to pay a fraction t of their revenues to the 

seller of N. Once k, the price of N, is set - it cannot be changed anymore.  We assume 

that the X producers can buy N any time they choose and that when such a firm 

purchases N it must transform it to X immediately. All X producers are risk-neutral 

and have the same production process: a unit of N is transformed to a unit of X at a 

cost w, i.e., the production function of firm i is Qi ≤ Ni, where Qi is firm i’s output and 

Ni is the amount of N that firm i has. Thus, the supply of good X is Q = N, where Q is 
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the aggregate amount of good X supplied in the market and ∑
∞

=

=
1i

iNN .  

The demand for X is given by: 

 

(1) P = 
αQ

A
, 

 

where P is the price of X. A is a geometric Brownian motion and its dynamics are 

described by the following rule: 

 

(2) dA = µAdt + σAdZ, 

 

where Z is the standard Wiener process satisfying at each point in time: 

 

(3) E(dZ) = 0,  E[(dZ)
2
] = 1.  

 

µ and σ are constants and 0>σ . By Itô’s lemma and (1), when Q is unchanged the 

evolution of P is governed by: 

 

(4) dP = µPdt + σPdZ, 

 

which means that P is also a geometric Brownian motion. By Itô’s lemma, when Q is 

unchanged the after-tax price, ( )PtP −= 1
~

, is also a  geometric Brownian motion, 

evolving according to: 
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(4') dZPdtPPd
~~~

σµ +=  

  

We denote the discount rate relevant to the X producers and to the resource 

owner by r. Following Dixit (1989) we assume that µ>r , an assumption that makes 

the expected rate of growth of P
~

, the instantaneous profit, smaller than the discount 

rate, preventing thus the value of the firms that produce X from going to infinity.   

Under this modeling, the X market is the same market studied by Leahy 

(1993). As Leahy (1993) shows, under this setup there is a threshold price, HP
~

, that 

characterizes the optimal policy of each single X producer: when HPP
~~

<  the X 

producer does nothing, when P
~

 hits HP
~

 the X producer buys some N and produces X 

from it. This optimal policy is the same for all X producers since they are identical. 

The firms’ purchases of N increase the supply of X and prevent P
~

 from rising 

above HP
~

. As Leahy (1993) shows, the value of HP
~

 is
4
: 

 

(5)  HP
~

 = ( )( )wkr +−
−

µ
β
β

1
, 

 

where β is the positive root of the quadratic: 

 

(6)   ( ) 02
2

122
2

1 =−−+ rYY σµσ . 

                                                
4Throughout most of the paper, Leahy (1993) studies a more general case than the one presented here. 

In page 1119, though, the analysis takes several assumptions that make it entirely equivalent to model 

presented in the current paper. The second equation in p.1199 is equation (5) of the current paper. 

Some notational differences should be mentioned: the instantaneous profit is denoted by P
~

here and by 

P there; the investment threshold is denoted here by HP
~

 and by P there; the irreversible cost of 

producing a unit is denoted by k in Leahy (1993) while the notations here make it k + w; the positive 

root of equation (6) here is denoted by Leahy as α. All the other relevant notations are identical. 
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 Applying Y = 0 and then Y = 1 and using the assumption that µ>r  shows 

that one root of this quadratic (denoted γ) is negative and the other one, denoted β, 

exceeds unity.  

Dividing by t−1  yields the corresponding threshold level of P, the pre-tax 

price: 

 

(7)  ( )wk
t

r
PH +⋅

−
−

⋅
−

=
11

µ
β
β

. 

 

 Given the initial values of A and Q the resource owner sets a value of k 

optimally. We start with the case where this value of k is sufficiently high to make the 

producers of X delay their purchases of N, i.e., the case where ( )kPQA H≤α/ . By 

(7), in this case k is in the range: 

 

(8)  k ≥ 
( )( )

( )
w

Qr

At
−

−
−−

αµβ
β 11

 ≡ k* 

 

Next we analyze the case where the resource owner sets a value of k in the 

range –w < k < k*
. This choice leads to A/Qα > PH(k) and therefore induces immediate 

purchase of N by the X producers, purchases that increase Q until A/Qα = PH(k).  

 

2.1 Delaying purchases of 2.1 Delaying purchases of 2.1 Delaying purchases of 2.1 Delaying purchases of N N N N     

In this case, the X producers delay their purchases of N because the resource owner 

sets a value of k that makes the market price P = A/Qα lower than the threshold PH. 
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Throughout the article we use the term "the value of the resource" for the 

present value of the stream of revenues that the resource owner extracts from the X 

market, revenues that spring both from selling N and from taxing the sales of X. Let 

V(A, Q, k) denote this value in the range defined by (8) given the current levels of A 

and Q and given a value of k. By Itô’s lemma,   

 

(9)           dV(A, Q, k) = ( ) ( )[ ] ( ) AdZkQAVdtAkQAVAkQAV AAAA σσµ ,,,,,, 22

2
1 ++  

 

and due to (3): 

 

(10)  
[ ]

dt

kQAdVE ,,(
 = ( ) ( ) 22

2
1 ,,,, AkQAVAkQAV AAA σµ +  

 

Equation (10) captures the resource owner's expected capital gain due to the change in 

A over time. The no-arbitrage condition implies that this expected capital gain, 

together with the instantaneous revenue from taxing the X market, should equal the 

normal return to the resource. This implies: 

 

(11)  
[ ]

dt

kQAdVE ,,(
 + tPQ  = rV(A, Q, k) 

 

Applying (10) and (1) in (11) and rearranging yields: 

 

(12)  ( ) ( ) ( ) 0,,,,,, 122

2
1 =+−+ −ασµ tAQkQArVAkQAVAkQAV AAA  

 

(12) is a second-order non-homogenous differential equation. Trying a solution of the 
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form V(A, Q, k) = C(Q, k)AY
 to its homogenous part yields the quadratic captured by 

(6). Recall that the two roots of this quadratic satisfy γ  < 0 and β > 1.  

We now turn to finding a particular solution for (12). Trying a solution of the 

form V(A, Q, k) = L(Q, k)A yields: 

 

(13)  L(Q, k) = 
µ

α

−

−

r

tQ1

  

 

Combining the solution to the homogenous part of (12) and the particular solution to 

(12) yields: 

 

(14)  V(A, Q, k) = H(Q, k)Aγ
 + B(Q, k)Aβ

 + 
µ

α

−

−

r

tAQ1

, 

 

where H(Q, k) and B(Q, k) will now be determined using two benchmark 

requirements. To that end, notice that by the standard properties of Brownian motions: 

 

(15)  
µ

α
α

−
=







 −∞
−−∫ r

AQ
dtAQeE rt

1

0

1   

 

Thus, the last addendum in the RHS of (14) is the expected value of tax revenues in 

the case that Q never changes, given the initial levels of A and Q. The two addendums 

preceding it in the RHS of (14) therefore capture the value of future sales of Q that 

occur each time A is sufficiently high so that the price of X hits the investment 

threshold PH. However, if A is close to 0 then the probability of A ever rising so high 

is zero as well. In that case, therefore, the value of the resource is merely the expected 
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value of the tax revenue as generated by the current quantity, Q. Formally:   

 

(16)   ( )kQAVLim
A

,,
0→

 = 
µ

α

−

−

r

tAQ1

.   

 

Since γ is negative, (16) implies that H(Q, k) ≡ 0.  

 
We now turn to the determination of B(Q, k). As appendix A shows, the 

condition for a no-arbitrage evaluation of the value of the resource in the time instants 

when there are changes in Q, i.e., when A/Qα = PH, is: 

 

(17)  VQ(A, Q, k) = - k. 

 

Thus, by (14), (17) and H(Q, k) = 0, when A/Qα = PH, : 

 

(18)  BQ(Q, k)Aβ
  +  

( )
µ

α α

−
− −

r

tAQ1
 = - k.  

 

Applying A/Qα = PH in (18) and rearranging it yields that when A/Qα = PH: 

 

(18’)  BQ(Q, k) = 

( )

βαβ
µ

α

H

H

PQ

k
r

tP
+

−
−

−

1

. 

 

Straightforward integration of BQ(Q, k) leads to: 
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(19)  B(Q, k) = 

( )

( ) βαβαβ
µ

α

H

H

PQ

k
r

tP

11

1

−−

+
−

−

 + C 

 

Applying (7) in (19) and simplifying yields: 

 

(19') B(Q, k) = 
( ) ( )
( )( )( ) βαβαββ

βαββα

HPQt

ktttw
1111

11
−−−−

+−−+−
 + C 

 

As Q goes to infinity P goes to 0 and the probability of P ever reaching PH 

goes to zero as well. This implies that the resource owner is not going to sell any N in 

the future and its value should therefore spring merely from future tax revenues, i.e.:  

 

(20)  LimQ→∞B(Q, k) = 0. 

 

This benchmark dictates a distinction between two cases based on the value of α. We 

start with a case in which α < 1/β. In this case, Q in the denominator of the first term 

at the RHS of (19') is raised by a negative power and as it goes to infinity the entire 

term goes to either ∞ or -∞. This, taken together with (20), implies that C goes to 

either ∞ or -∞, and therefore that so are B(Q, k) and V(A, Q, k) for each finite level of 

Q, a case that is not at the focus of this paper.
5
  

 The economic logic underlying the infinite value of the resource in this case is 

based on the relation between α and the elasticity of demand which is -1/α. The 

smaller α, the larger the demand elasticity and therefore the larger the increase in Q 

                                                
5
 α<1/β implies α<1 and therefore the numerator in the first term at the RHS of (19') is negative if k is 

below the negative value of 
( )

( ) ( )( ) w
tt

t

−−+−
−−

111

1

ββα
βα

.  
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each time that P hits PH. Thus, the smaller α, the faster the process of sales of the 

resource N and the less heavily discounted are its revenues. In addition, the larger 

elasticity due to a smaller α also makes the tax revenues increase by more as Q grows. 

The two positive effects of a smaller α (faster sales of N and greater tax revenues) 

drive the value of future sales of N to infinity when α is sufficiently small, namely - 

below 1/β.
6
 Since this case is not in the focus of this paper, the rest of the paper refers 

to the case where α > 1/β. 

 Returning to (19’) and (20), now with α>1/β, the first term at the RHS of (19’) 

goes to zero as Q goes to infinity, implying that C=0. Applying (7), C=0, (19’) and 

H(Q, k)=0 in (14) yields:  

 

(21)  V(A, Q, k) = 
( ) ( )

( )β
βααββ

wk

twktt
D

+

−++−− 11
 + 

( )µ

α

−

−

r

tAQ1

, 

 

where: 

 

(22)  D ≡ 
( ) ( )

( ) ( ) 1

11

1

11
−

−−

−−

−−
αβββ

βββ

µβαβ
β

Qr

At
, 

 

and D>0. The following Proposition 1 shows some of the properties of V(A, Q, k). 

 

Proposition 1:  

(a)  If ( ) */1 αββα ≡+−> tt α, then ( ) 0,, >kQAVk throughout the range wk −> . 

                                                
6
 Based on this logic, in the case discussed in footnote 4 the value of the resource owner is -∞ because 

in that case the resource owner is subsidizing the X producers' intensive acquiring of the resource N. 
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(b) If *αα <  then there exists a single value of k, denoted k1, that maximizes 

( )kQAV ,, . 

(c) k1 is in the range where ( )kQAV ,,  represents the value of the resource (the range 

*kk > ) iff A/Qα is sufficiently small. 

 

Proof: By (21): 

  

(23)  ( )kQAVk ,,  = D ( ) ( ) ( ) ( )[ ]( )
( ) 1

111
1

++

+−−−+−
−

β

βαββ
β

wk

wktwt
. 

 

If *αα >  then the term in the squares brackets is positive and therefore so is 

Vk(A, Q, k) throughout the range wk −> . This proves part (a).  

 If *αα <  then ( ) ( )11 −−− βαβ t  is negative, implying that ( )kQAVk ,,  is 

positive for sufficiently small values of k and vice versa. Thus, in this case there is a 

single value of k that maximizes V(A, Q, k). This proves part (b). Solving the first 

order condition ( ) 0,, =kQAVk  yields that this value satisfies: 

 

(24)  k =
( ) ( )

( )( ) ( )
w

tt

tt

βαβ
βα

−+−−
−−−

111

11
 ≡ k1. 

 

Applying (24) in (8) shows that k1 is in the range k>k*
, in which V(A, Q, k) 

represents the value of the resource, iff  the following condition holds: 

 

(25)  
αQ

A
 < 

( )
( ) ( ) ( ) ( )

*

2

2

1111
P

tt

wr
≡

−−+−−

−

ββαβ
µβ

. 



  15

 

This proves part (c).                                                                                                        

 

(25) implies that the resource owner will set a value of k that is sufficiently 

large to make the X producers delay their purchases N if current demand in the X 

market is sufficiently low to make the market price fall below P*
.  

Note that α*
>1 which means that in the range α<α*

 the demand for X can be 

either elastic (α<1) or inelastic (α>1).  

Also note that if w=0, i.e., if the X producers do not face costs except for the 

purchase of N, then condition (25) cannot hold. In that case, when α<α*
 the function 

V(A, Q, k) is strictly decreasing and maximized at the lower boundary of its definition 

range, namely at k=k*
, implying that the resource owner does not set k high enough to 

send the market to an inaction period.  

  From continuity it follows, by applying (7) in (21), that at A/Qα
 = PH: 

 

(26)  V(A, Q, k) =  
( )

( )( )
Q

t

wtttk

11

1

−−
++−

αβ
αβαβ

.  

 

2.2 Inducing immediate purchases of 2.2 Inducing immediate purchases of 2.2 Inducing immediate purchases of 2.2 Inducing immediate purchases of NNNN    

The X producers immediately purchase N when the market price, P = A/Qα
, exceeds 

the threshold PH. Applying (7) in A/Qα ≥ PH, this range becomes: 

 

(27)  k < 
( )( )

( ) αµβ
β

Qr

At

−

−− 11
– w ≡ k*

. 
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In this range immediate investment increases Q to Q1 so that the price after the 

investment is made is P = A/Q1
α 

= PH. The resource owner receives from this increase 

in Q: 

 

(28)  k(Q1 – Q) = 
















−








Q

P

A
k

H

α
1

.  

 

Let G(A, Q, k) denote the value of the resource in the range defined by (27) 

given the current levels of A and Q and also for a given value of k. Equation (29) 

below shows G(A, Q, k) as the sum of two factors: First, the immediate proceeds 

described by (28); Second, the value of the resource after the quantity immediately 

becomes Q1, as described by (26).  

 

(29)  G(A, Q, k) = ( )QQk −1 + 
( )

( )( )
Q

t

wtttk

11

1

−−
++−

αβ
αβαβ

, 

 

which can be simplified to: 

 

(29’)  G(A, Q, k) = - kQ + 
( )( ) 1

11
Q

t

wtk

−−
+

αβ
αβ . 

   

Applying Q1 = (A/PH)
1/α and (7) in (29’) yields: 

 

(30)  G(A, Q, k) = ( ) kQkfJA −α
1

. 
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where:  

 

(31.a)  J ≡ 
( ) ( )

( ) ( )αα

αα

µβαβ

β
11

1

1
1

1

1

11

−−

−−
−

−

r

t
 > 0,   

 

(31.b)   f(k) ≡ 

( )α
α

1

wk

wtk

+

+
. 

  

The following Proposition 2 shows some important properties of G(A, Q, k)  

 

Proposition 2:  

(a) There exists a single value of k that brings G(A, Q, k) to a maximum;  

(b) This value of k, denoted by k2, is an increasing concave function of A/Qα
;  

(c) k2 is in the range k<k*
, the range in which G(A, Q, k) represents the value of the 

resource, iff α<α*
 and A/Qα>P*

.  

 

Proof:  In the appendix.             

 

3. The optimal 3. The optimal 3. The optimal 3. The optimal kkkk when the resource owner maximizes its profits when the resource owner maximizes its profits when the resource owner maximizes its profits when the resource owner maximizes its profits    

In this section we analyze how the optimal k is chosen in the case where the resource 

owner is a firm that maximizes its profits. Based on the analysis in the previous 

sections, the value of the resource as a function of A, Q and k can be defined and 

denoted by: 
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(32)  ( )
( ) ( )
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Note that V(A, Q, k*
) = G(A, Q, k*

) as follows from applying (8) in (21) and 

then in (30). Three cases should be analyzed now: The case where α > α*
; The case 

where α < α*
 and A/Qα

 < P*
; The case where α < α*

 and A/Qα
 > P*

.  

  

3.1 When α > α*
   

In this case k2 > k*
 for each value of A/Qα

 as part (c) of Proposition 2 shows. 

Thus, in the range k < k*, the resource firm’s value, represented by G(A, Q, k), is 

increasing in k. From part (a) of Proposition 1 it follows that the resource firm’s 

value, now represented by V(A, Q, k), is increasing in k also in the range k > k*
. Thus, 

in this case the value of the resource, VG(A, Q, k), is an increasing function of k and 

it is optimal for it to push the value of k to infinity. The economic logic in action here 

is that when α is sufficiently large, demand is sufficiently inelastic to make it optimal 

for the resource owner to prevent increases in quantity in order to keep tax revenues 

from falling. Note from (21) that in this case as k goes to infinity VG(A, Q, k) 

approaches ( )µα −− rtAQ /1 , which is the expected value of the tax collection if Q is 

fixed over time at its current level.  

 

3.2 When α < α*
 and A/Qα

 < P*
 

In this case k2 > k*
 as follows from part (c) of Proposition 2. Thus, in the range k < k*, 

the value of the resource, represented by G(A, Q, k), is increasing in k. From parts (b) 

and (c) of Proposition 1 it follows that in the range k > k* the value of the resource, 
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now represented by V(A, Q, k), reaches a maximum at k = k1. Thus, since V(A, Q, k*
) 

= G(A, Q, k*
), the value of the resource, VG(A, Q, k), reaches its maximum in k = k1.  

 The line marked with circles in Figure 1 below presents VG(A, Q, k) in this 

case. The thin line shows V(A, Q, k) and the thick line shows G(A, Q, k).  

 

k

k2 k1k
*

0-w

V(A, Q , k)
G (A, Q , k)

 

Figure 1: Figure 1: Figure 1: Figure 1: The resource firm’s value, VG(A, Q, k), when α < α* and A/Qα < P*. The thick line 

shows V(A, Q, k), the thin line shows G(A, Q, k) and the circles indicate VG(A, Q, k). In 

this case VG(A, Q, k) is maximized at k = k1 > k*
 implying that the resource firm sets a 

value of k sufficiently high to delay immediate purchases of N by the X producers. 

 

3.3 When α < α*
 and A/Qα

 > P*
 

In this case, in the range k < k*, the value of the resource, which is represented 

by G(A, Q, k), reaches a maximum at k = k2 as follows from parts (a) and (c) of 

Proposition 2. Also, k1 < k*
, as follows from parts (b) and (c) of Proposition 1. Thus, 

in the range k > k* the value of the resource, represented now by V(A, Q, k), 

decreases in k. Therefore, since V(A, Q, k*
) = G(A, Q, k*

), the value of the resource 

reaches its maximum at k = k2.  

The line marked with circles in Figure 2 below presents VG(A, Q, k) in this 
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case. The thin line show V(A, Q, k) and the thick line shows G(A, Q, k). 

 

k
*

k2k10-w

k

V(A, Q , k)

G (A, Q , k)

 

Figure 2: Figure 2: Figure 2: Figure 2: The resource firm’s value, VG(A, Q, k), when α < α* and A/Qα > P*. The thick line 

shows V(A, Q, k), the thin line shows G(A, Q, k) and the circles indicate VG(A, Q, k). In 

this case VG(A, Q, k) is maximized at k = k2 < k*
 implying that the resource owner sets a 

value of k sufficiently low to induce immediate purchases of N by the X producers. 

 

Based on the analysis of the two previous sub-sections, Figure 3 below shows 

the optimal k as a function of A/Qα
 for the case when α < α*

.  

AAAA ////QQQQ
αααα

kkkk
optoptoptopt

k 1

P
*

 

Figure 3: Figure 3: Figure 3: Figure 3: The optimal k as a function of A/Qα
 for the case α < α*

. 
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The increasing part in this function is concave and the entire function may be 

below zero, as the following proposition establishes. 

 

Proposition 3: If α < t then the optimal value of k is negative. 

Proof:  If α < t then α < α*
, implying that the resource firm’s value is maximized 

either by k1 or by k2, depending on whether */ PQA >α or not.  As shall be shown 

now, in this case both k1 and k2 are negative. 

 To prove that k1 < 0 in this case, note that α < t implies α < 1 and therefore, by 

(24), the denominator of k1 is positive. The numerator of k1 in that case satisfies: 

 

   1 - t - (1 - α)tβ < 1 - α - (1 - α)αβ = (1 – α)(1 - αβ) < 0, 

 

where the first inequality springs from α < t taken together with the implied α < 1 

which makes the expression to the left of that inequality depend negatively on t. The 

second inequality springs from αβ > 1. Thus k1 is negative in that case.  

 To prove that k2 < 0 in this case, note from (30) that maximizing G(A, Q, k) 

requires the first order condition: 

 

 ( ) 0'
1

=+− kfJAQ α . 

 

Proposition 2 has established the existence and uniqueness of a root to this equation. It 

can also be noticed from the equation above that this root is also characterized by 

( ) 0' >kf , since (31.a) shows that J>0. Differentiating (31.b) yields that this holds if 

and only if: 
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( ) ( ) 012 >−+− twk αα .  

 

If α < t then α is also smaller then 1 and therefore this inequality holds only if 

k2 is smaller than the negative term wt
α
α

−
−−

1
.           

  

4. The optimal 4. The optimal 4. The optimal 4. The optimal kkkk in the case of a welfare objective  in the case of a welfare objective  in the case of a welfare objective  in the case of a welfare objective     

Assume now that the resource owner is a government that is not interested in 

maximizing the value of its potential sales of the resource N, namely VG(A, Q, k). 

Instead, we now assume that the government is concerned about welfare in the X 

market, but also wishes to use it for financing its activities in other markets that could 

benefit from government intervention. Specifically, we assume that the government 

balances these two contradicting targets by setting an objective of bringing the value 

VG(A, Q, k) to a certain level M which is below the maximal level of VG(A, Q, k). 

As has been established, in the case where α < α*
 the function VG(A, Q, k) has an 

inverse-U shape and therefore there are two values of k that yield the value M that the 

government seeks. We assume that the government, wishing to cause as little welfare 

loss as possible in the X market, chooses the lower of the two values of k that solve:  

 

(33)   VG(A, Q, k) = M 

 

As in section 3, three cases will now be analyzed: The case where α > α*
; the 

case where α < α*
 and A/Qα

 < P*
; the case where α < α*

 and A/Qα
 > P*

. 
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4.1 When α > α*
 

As established in section 3.1, in this case VG(A, Q, k) is a monotonically increasing 

function of k that converges to the value µ

α

−

−

r

tAQ1

 as k approaches infinity. In addition, it 

approaches -∞ as k approaches –w, as follows from (30) and (31). Thus, there is 

single value that solves (33) for every level of M that is smaller than µ

α

−

−

r

tAQ1

.  

Note that in contrast to the case where the resource owner is a profit 

maximizing firm, here the chosen value of k is not necessarily infinite. The reason is 

that in the current case the resource owner is a government that is not only interested 

in obtaining revenues from selling N and taxing the market for X, but is also 

concerned about welfare in the X market. The only possibility for the government to 

set an infinitely high level of k is if the M it wishes to extract from the X market is 

above µ

α

−

−

r

tAQ1

. 

By (21), (32) and an implicit differentiation of (33): 

 

(34)  
( )

0
,,

1
>

−
−=

kQAVdM

dk

K

 

 

where the inequality follows from the result that in this case VK(A, Q, k) < 0, as 

established in the proof of part (a) of Proposition 1. Thus, the larger the value of the 

revenues that the government wishes to extract from the X market the larger the level 

of k it sets. In a similar manner it can be shown that in this case k is decreasing in A 

and increasing in Q.  

We denote the value of V(A, Q, k) at the end of its definition range: 

 

(35)   V*
(A, Q) ≡ V[A, Q, k*

(A, Q )] = G[A, Q, k*
(A, Q )] 
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where k*
 is a function of A and Q by (8). Applying (8) in (21) yields V*

(A, Q) 

explicitly. Based on the analysis of the properties of VG(A, Q, k) in section 3.1, if M 

is smaller than V*
(A, Q) then the k chosen by the government is below k*

, implying 

immediate purchases of N and production of X. Otherwise, the k that the government 

chooses is above k*
, a choice that sends the market to a period of inaction until A is 

sufficiently large so that P = PH.  

 

4.2 When α < α*
 and A/Qα

 < P*
 

Based on Figure 1 and the analysis in section 3.2, in this case VG(A, Q, k) has 

an inverse-U shape maximized at k = k1 > k*
. In the range –w < k < k*

 the function 

VG(A, Q, k) is based on G(A, Q, k) and for higher levels of k it is based on V(A, Q, 

k). The value of VG(A, Q, k) at its maximum satisfies: 

 

(36)  V1
(A, Q) ≡ V[A, Q, k1(A, Q )]. 

 

Note that k1 is a function of A and Q by (24). Applying (24) in (21) explicitly yields 

V1
(A, Q), which is the maximal level of M that the government can extract from the 

market in this case. If the government is interested in a level of M that satisfies: 

V*
(A, Q) < M ≤ V1

(A, Q) then the level of k that the government chooses, based on 

(33), is above k*
, implying inaction until A is sufficiently large so that P = PH. If, on 

the other hand, the level of M that the government seeks satisfies M < V*
(A, Q), then 

the government chooses a value of k that is smaller than k*
, implying immediate 

purchases of N and production of X. 

 An important difference from the case where the resource owner maximizes 
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the value of VG(A, Q, k) is that in that case the value of k is constant at k1, whereas 

here it is increasing in Q and decreasing in A.  

 

4.3 When α < α*
 and A/Qα

 ≤ P*
 

Based on Figure 2 and  the analysis in section 3.3, in this case VG(A, Q, k) has 

an inverse-U shape maximized at k = k2 < k*
. In the range –w < k < k*

 the function 

VG(A, Q, k) is based on G(A, Q, k) and for higher levels of k it is based on V(A, Q, 

k). The value of VG(A, Q, k) at its maximum satisfies: 

 

(37)   G2
(A, Q) ≡ G[A, Q, k2(A, Q )] 

 

where k2 is function of A and Q by Proposition 2.  

 G2
(A, Q) is the maximal level of M that the government can extract from the 

market in this case. If the level of M desired by the government is below G2
(A, Q) 

then the level of k that the government chooses, based on (33), satisfies  k < k2 < k*
, 

implying immediate purchases of N and production of X. 

 As in the case where the resource owner maximizes the value of VG(A, Q, k), 

the value of k that the government chooses is increasing in Q and decreasing in A. 

 

5. Concluding Remarks5. Concluding Remarks5. Concluding Remarks5. Concluding Remarks    

In this paper, we returned to the typical model of investment under uncertainty and 

examined it from a new angle – that of the recipient of the investment cost. We 

modeled the recipient of this cost as a firm or a government that sells a resource or a 

right that is necessary for the production of the final good. The focus of our study was 

on how the resource owner sets the price of its resource. A key assumption in the 
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model was that the price of the resource cannot be changed on a continuous basis. For 

simplicity, we took this assumption to its extremity – i.e., once the price is set, the 

resource owner may not change it at all under any circumstances. Relaxing this 

extreme assumption should not change the qualitative results of the analysis, so long 

as the basic assumption – that there are indeed some technical barriers or costs to 

changing the price of the resource continuously – is maintained.  

Our main finding is that when the demand for the final good is sufficiently 

low, the resource owner does not lower its price accordingly, and thus the producers 

of the final good delay their purchases of the resource and withhold their production 

of the final good until demand rises sufficiently. The resource owner does so because 

it expects demand to be higher in the future and does not want to be committed to 

providing the resource at a low price. 

 Another important result is that the price of the resource is a decreasing 

function of the elasticity of demand for the final good. This result is based on the 

assumption that the government or the firm that owns the resource does not only 

receive a one-time payment for the resource when it is sold, but also secures for itself 

a certain share of the profits made by the producers of the final good. 

 Finally, we compared the case where the resource is sold by a private firm that 

is interested only in profit maximization with the case where the resource is sold by a 

government that uses its proceeds for welfare enhancing activities in other markets, 

while also of course concerned about welfare in the market of the resource-based final 

good. We found that in the latter case the price charged for the resource will be lower, 

reflecting the government's interest in welfare rather than profit. In particular, it might 

be the case that under the same initial conditions the market for the final good would 

be lead either to immediate production, if the resource is owned by a government, or 
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to a period of inaction, if the resource is owned by a private firm. This difference 

should be taken into account when the government privatizes a neutral resource. 

    

AppendixAppendixAppendixAppendix    

A. Establishing condition (17)A. Establishing condition (17)A. Establishing condition (17)A. Establishing condition (17)    

In this appendix we derive the benchmark condition (17) for the value of the resource 

at the time instants in which P hits PH. For this end we use the discrete approximation 

of a Brownian Motion presented in Dixit (1991). Since it is more convenient to 

perform this approximation for a Brownian Motion rather than for a Geometric 

Brownian Motion, the analysis is based on the function: 

 

(A.1 )  F(a, Q, k) ≡ V(A, Q, k) 

 

where a ≡ lnA. Due to this definition, by Itô’s lemma, a is a Brownian Motion since A 

is a Geometric Brownian Motion. The drift and variance parameters of a are denoted 

here by µa and σa
2
. To approximate the motion of a we divide time to small intervals 

of length τ and the variable a space into steps of size ξ. The variable a now ranges 

over a discrete set of values ai such that: 

 

(A.2)  ai+1 – ai = ξ for all i. 

 

Starting at state ai, time τ later the variable a takes with probability p a step 

down to the value of ai-1, or takes with probability q=1-p a step up to the value of ai+1. 

Two conditions relating τ, ξ, p and q to µa and σa should be used in order to make this 
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process an approximation of the original Brownian Motion. First: 

 

(A.3)   µτ = qξ + p(-ξ), 

 

which leads to: 

 

(A.4)   q = 







+

ξ
µτ

1
2

1
,  p = 








−

ξ
µτ

1
2

1
 

 

The condition regarding the variance of the process is: 

 

(A.5)  τσ 2  = ( ) ( )22 µτξµτξ −−+− pq  = ( ) ( )22 2 τµµτξξ +−+ qp   

         = 222 τµξ −  

 

Eliminating the term with 2τ leaves: 

 

(A.6)  22 ξτσ =   

 

When ai is such that P = αQ

A
 is at the investment threshold PH then, by (1):  

 

(A.7)  
αα

11











=








=

H

a

H P

e

P

A
Q

i

 

 

If time τ later a takes a step up, the endogenous investment by the X producers raises 
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Q such that P remains at PH. This implies that Q is raised to the level:   
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The change in Q during that time is therefore: 

 

(A.9)  
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 + o(ξ), 

 

where o(ξ) collects all the terms that go to zero faster than ξ, such that o(ξ)/ξ  → 0 as 

ξ → 0. Note from (A.6) that τ too falls under the category of o(ξ).  

 The Bellman equation for the value of the resource when ai and Q are such 

that P = PH is: 

 

(A.10)  F(ai, Q, k) = tPHQτ + e-rτ [pF(ai-1, Q, k) + qF(ai+1, Q + ∆Q, k) + qk∆Q]  

 

(A.10) shows the value of the resource in this situation as the sum of the immediate 

tax revenue and the time τ later value of the resource discounted by e-rτ
. With 

probability p the variable a takes a step down and the value of the resource becomes 

F(ai-1, Q, k). With probability q the variable a takes a step up. In this case, endogenous 

investment by the producers of X raises Q by ∆Q and the value of the resource 

becomes F(ai+1, Q + ∆Q, k). In addition, in this case the resource owner also gains 

k∆Q from sales to the X producers. 
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 Expanding e-rτ
 to a Taylor series, bearing in mind that that τ is o(ξ), yields: 

 

(A.11)   e-rτ
 = 1 + (-rτ) + 

( ) ( )
...

62

32

+
−

+
− ττ rr

 = 1 + o(ξ) 

 

Applying this in (A.10) and expanding terms of (A.10) to Taylor series yields: 

 

(A.12)  F(ai, Q, k) = tPHQτ + p[F(ai, Q, k) + Fa(ai, Q, k)(-ξ) + o(ξ)]  

                  +q[F(ai, Q, k) + Fa(ai, Q, k)(ξ) + FQ(ai, Q, k)∆Q + o(ξ)+ k∆Q]  

 

Using p + q = 1 and the result that τ is o(ξ) by itself helps simplify (A.12) to:  

 

(A.13)  0 = (q – p)Fa(ai, Q, k)ξ +q FQ(ai, Q, k)∆Q + qk∆Q + o(ξ) 

 

By (A.4), (q – p)ξ = µτ = o(ξ) which simplifies (A.13) into: 

 

(A.14)  0 = FQ(ai, Q, k)∆Q + k∆Q + o(ξ) 

 

Dividing by ∆Q and applying (A.9) yields: 

 

(A.15 )  FQ(ai, Q, k) = - k - 
( )

( )
ξ

ξ
α

ξ
ξ

α
O

H

a

O

P

e i
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
1

1

 

 

By the definition of o(ξ), as ξ → 0 the numerator and the second addendum on the 
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RHS of (A.15) approach 0 as well.  This, together with FQ(a, Q, k) ≡ VQ(A, Q, k), 

which follows from the definition of F(ai, Q, k) in (A.1 ), concludes establishing (17). 

 

B. Proof of B. Proof of B. Proof of B. Proof of Proposition 2Proposition 2Proposition 2Proposition 2    

By (30) the first order condition for a maximum is 

 

(B.1)  Gk(A, Q, k) = ( ) 0'
1

=+− kfJAQ α , 

 

Manipulating (B.1) and applying (1) in it, (B.1) becomes: 

 

(B.2)  ( )
α
1

1
'

JP

kf = , 

 

where the RHS of (B.2) is positive. To establish existence of a root to (B.2) note that 

by (31.b): 

 

(B.3)  ( )kf '  = 
( ) ( )

( ) α
α
αα

+
+

−+−
1

1

wk

twk
. 

 

By (B.3), ( )kf '  approaches infinity when k approaches –w and approaches 0 when k 

goes to infinity. Thus, by continuity, there exists a level of k in the relevant range 

(namely k>-w) for which ( )kf '  equals the positive term at the RHS of (B.2). To see 

that there is only one such level of k, note from (B.3) that:  

 



  32

(B.4)       ( )kf "  = 
( ) ( ) ( )
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where the second equality follows from (B.3). From (B.4), together with ( )kf ' >0, it 

follows that ( )kf " <0, implying that there can only be a single value of k for which 

( )kf '  equals the positive term on the RHS of (B.2). Denoting this single root by k2, 

the result that ( )2" kf <0 also asserts that k2 brings G(A, Q, k) to a maximum since: 

 

(B.5)  Gkk(A, Q, k2) = ( )2"
1

kfCAα  < 0. 

 

 (B.2) presents k2 as an implicit function of P. Differentiating it leads to: 

  

(B.6)  
dP

dk2  = 
( )
( )2

2

"

'

kPf

kf

α
−   > 0 

 

where the inequality follows from ( )2' kf >0 and ( )2" kf <0. 

 Applying (8), (31.a) and (B.3) in (B.2) and simplifying yields that k2=k*
 if and 

only if P equals either 0 or P*
. Applying (8), (31.a), (B.3), (B.4) and (25) in (B.6) 

yields that when P=P*
 and k=k*

: 
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The second equality follows from (8) and from the definition of α*
 in Proposition 1. 

The inequality follows from the assumptions that αβ>1 and α<α*
. 

 k2 and k*
 are both increasing functions of P. They meat one another only when 

P=0 and when P=P*
 and in that second meeting point 

dP

dk2 <
dP
dk*

. From these properties 

it follows that k2>k*
 as long as P<P*

 and vice verse.        
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