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Abstract
One of the main reasons for solving constraint1

optimization problems in a distributed manner is2

maintaining agents’ privacy. Several studies in3

the past decade devised privacy-preserving ver-4

sions of Distributed Constraint Optimization Prob-5

lem (DCOP) algorithms. Some of those algorithms6

were complete, i.e., finding an optimal solution,7

while others were incomplete. The main advan-8

tage of the incomplete approach is in its scalabil-9

ity to large problems. One of the important in-10

complete paradigms for solving DCOPs is local11

search. Yet, so far no privacy-preserving algorithm12

for solving DCOPs by means of local search was13

devised. We present P-DSA, a privacy-preserving14

implementation of the classical local-search algo-15

rithm DSA that preserves topology, constraint, and16

assignment/decision privacy. Comparing its per-17

formance to that of P-Max-Sum, which is another18

privacy-preserving implementation of an incom-19

plete DCOP algorithm, shows that P-DSA is signif-20

icantly more scalable and issues much better solu-21

tions than P-Max-Sum. Therefore, P-DSA emerges22

as a suitable solution for practitioners addressing23

large-scale DCOPs with privacy considerations.24

1 Introduction25

The Distributed Constraint Optimization Problem (DCOP) is26

a general model for solving distributed combinatorial prob-27

lems that has a wide range of applications in artificial intelli-28

gence. Complete algorithms for DCOP-solving [Modi et al.,29

2005; Petcu and Faltings, 2005; Gershman et al., 2009] are30

guaranteed to find the optimal solution, but because DCOPs31

are NP-hard, these algorithms’ worst-case runtime is expo-32

nential. Thus, there is a growing interest in incomplete algo-33

rithms, which may find sub-optimal solutions but run quickly34

enough to be applied on large-scale problems or real-time35

applications [Maheswaran et al., 2004; Zhang et al., 2005;36

Teacy et al., 2008; Zivan et al., 2014].37

Approaches of incomplete DCOP algorithms include38

inference (Max-Sum [Farinelli et al., 2008]), sampling39

(DUCT [Ottens et al., 2017], D-Gibbs [Nguyen et al.,40

2019]), region optimal (KOPT [Katagishi and Pearce,41

2007], DALO [Kiekintveld et al., 2010]), and local search 42

(DSA [Zhang et al., 2005], MGM [Maheswaran et al., 2004], 43

and DBA [Hirayama and Yokoo, 2005]). The latter approach 44

is extremely popular due to its simplicity and runtime effi- 45

ciency. 46

Privacy is one of the main motivations for solving con- 47

straint problems in a distributed manner. Preserving privacy 48

is most important in distributed scenarios in which agents rep- 49

resent people who would not like their personal preferences 50

and actions to be revealed, e.g., meeting scheduling [Gersh- 51

man et al., 2008], and smart environments (such as smart 52

homes) [Rust et al., 2016; Fioretto et al., 2017]. The term 53

privacy is quite broad, a fact that gave rise to several catego- 54

rizations of the different types of privacy [Léauté and Falt- 55

ings, 2013; Greenstadt et al., 2007; Grinshpoun, 2012]. In 56

this paper, we relate to the categorization of Léauté and Falt- 57

ings [2013] that distinguishes between agent privacy, topol- 58

ogy privacy, constraint privacy, and decision privacy. 59

Most studies that evaluated distributed constraint algo- 60

rithms in terms of privacy considered complete algorithms 61

[Silaghi and Mitra, 2004; Maheswaran et al., 2006; Green- 62

stadt et al., 2006; Doshi et al., 2008; Léauté and Faltings, 63

2013; Grinshpoun and Tassa, 2016]. Some work has fo- 64

cused on measuring the extent of constraint privacy loss 65

[Maheswaran et al., 2006; Greenstadt et al., 2006]. Doshi 66

et al. [2008] proposed to inject privacy loss as a criterion 67

to the problem-solving process. Some previous work was 68

also directed towards reducing constraint privacy loss. Most 69

efforts in the development of privacy-preserving search al- 70

gorithms focused on DCSP, which is the satisfaction vari- 71

ant of DCOP. Examples include [Nissim and Zivan, 2005; 72

Silaghi and Mitra, 2004; Yokoo et al., 2005]. The work of 73

Silaghi and Mitra [2004] addressed both satisfaction and opti- 74

mization problems. However, the proposed solution is strictly 75

limited to small-scale problems since it depends on an ex- 76

haustive search of all possible assignments. Several privacy- 77

preserving versions of the DPOP algorithm [Petcu and Falt- 78

ings, 2005] were proposed in the past [Greenstadt et al., 2007; 79

Silaghi et al., 2006], including a more recent study by Léauté 80

and Faltings [2013] that proposed several versions of DPOP 81

that provide strong privacy guarantees. While these versions 82

have been designed for DCSPs, some of them may also be 83

applicable to DCOPs. Explicitly for DCOPs, Grinshpoun 84

and Tassa [2016] and Tassa et al. [2021] devised variants of 85



SyncBB [Hirayama and Yokoo, 1997], which preserve topol-86

ogy, constraint, and decision privacy.87

While the problem sizes for which complete DCOP al-88

gorithms are applicable are limited, the problem worsens89

when privacy-preserving algorithms are considered, due to90

the substantial runtime overhead that privacy preservation91

incurs. Consequently, several studies focused on privacy-92

preserving incomplete algorithms. Tassa et al. [2017] and93

Kogan et al. [2023] proposed variations of an incomplete in-94

ference algorithm, Max-Sum [Farinelli et al., 2008], which95

preserve topology, constraint, and decision privacy. Addition-96

ally, Grinshpoun et al. [2019] devised an incomplete region-97

optimal algorithm that preserves constraint privacy and par-98

tial decision privacy. However, though incomplete, the above99

algorithms are very elaborate and are inapplicable to large-100

scale problems. Specifically, the runtime of the Max-Sum-101

based algorithms is exponential in the arity of the constraints,102

which makes them unsuitable for problems with global con-103

straints, e.g., satellite scheduling [Krigman et al., 2024] and104

course allocation [Khakhiashvili et al., 2021].105

Recently, Vion et al. [2022] proposed a local search algo-106

rithm that controls the loss of domain privacy [Grinshpoun,107

2012] by following the Utilitarian DCOP model [Doshi et al.,108

2008; Savaux et al., 2020], in which privacy loss is traded109

off with solution quality. However, their approach is only110

relevant in the Open Constraints Programming model [Falt-111

ings and Macho-Gonzalez, 2005], where the domains are not112

known in advance and grow as the solving process advances.113

Our contributions. We present here P-DSA, a privacy-114

preserving implementation of the classical local-search algo-115

rithm DSA. We show that it offers topology privacy, con-116

straint privacy, and assignment/decision privacy. We compare117

its performance to that of P-Max-Sum [Tassa et al., 2017], a118

privacy-preserving implementation of the incomplete DCOP119

algorithm Max-Sum [Farinelli et al., 2008] which also pro-120

tects topology, constraint and assignment/decision informa-121

tion. We show that P-DSA is significantly more scalable and122

issues much better solutions than P-Max-Sum. In fact, while123

P-DSA was able to solve in short time (3 minutes) problems124

involving as high as 100 agents, prior studies on privacy-125

preserving DCOP algorithms report experiments with at most126

24 agents and runtimes that are significantly higher.1 There-127

fore, P-DSA emerges as a suitable choice for solving large-128

scale DCOPs in a privacy-preserving manner.129

2 DCOP background130

A Distributed Constraint Optimization Problem (DCOP, [Hi-
rayama and Yokoo, 1997]) is a tuple ⟨A,X ,D,R⟩ where
A = {A1, . . . , An} is a set of agents, X = {X1, . . . , Xn}
is a set of variables, D = {D1, . . . , Dn} is a set of finite do-
mains, andR is a set of relations (constraints). Each variable
Xi takes values in the domain Di, and it is held by the agent

1To the best of our knowledge, the only exception is the work of
Damle et al. [2024] that presented P-Gibbs, which is a differentially
private implementation of SD-Gibbs [Nguyen et al., 2019]. How-
ever, differential privacy is a paradigm that is based on injecting ran-
dom noise; hence it is not directly comparable to the cryptographic
paradigm that does not alter the outputs of the underlying algorithm.

Ai. Each constraint C ∈ R defines for a given pair of vari-
ables some non-negative cost; formally, a constraint takes the
form Ci,j : Di×Dj → [0, q], for some 1 ≤ i ≤ j ≤ n, where
q is a publicly known maximal constraint cost q. (Note that
if i = j then the constraint is unary.) The goal in constraint
optimization problems is to find an assignment of values to
all n variables,

(X1, . . . , Xn)← x := (x1, . . . , xn) ∈ D := D1×· · ·×Dn ,

such that the overall incurred cost
∑

Ci,j∈R Ci,j(xi, xj) is 131

minimal. 132

Our framework can also include the case of hard con- 133

straints, i.e., combinations of assignments that are strictly for- 134

bidden, see [Kumar et al., 2008]. Our framework is the one 135

that is studied in most prior art. Some studies consider exten- 136

sions to this framework by (a) assuming that each agent may 137

hold more than one variable [Yokoo and Hirayama, 2000; 138

Burke and Brown, 2006; Grinshpoun, 2015; Fioretto et al., 139

2016], (b) including constraints of arity greater than two [Kim 140

and Lesser, 2013], and (c) assuming asymmetric constraints 141

that incur different costs to each of the involved agents [Grin- 142

shpoun et al., 2013]. However, here we focus on the frame- 143

work as defined above, which already introduces the main 144

challenges of DCOPs. 145

Léauté and Faltings [2013] distinguished between four no- 146

tions of privacy: agent privacy (who are the agents in the 147

problem setting), topology privacy (hiding information on the 148

constraint graph), constraint privacy (hiding information on 149

the costs in the constraints), and assignment/decision privacy 150

(protecting the intermediate/final assignments). 151

2.1 The Distributed Stochastic Algorithm 152

Here we describe the classic local search DCOP algorithm 153

that was presented by Zhang et al. [2005] – the Distributed 154

Stochastic Algorithm (DSA). We start by introducing a key 155

notion in local search algorithms: 156

Definition 1 (Neighborhood). The neighborhood of agent Ai 157

is the set of all agents that are constrained with Ai, i.e., 158

N(Ai) := {Aj ∈ A : ∃Ci,j ∈ R}. The complete neigh- 159

borhood of Ai is N+(Ai) := N(Ai) ∪ {Ai}. 160

Algorithm 1: The DSA algorithm
1 forall i ∈ [n] do
2 Ai selects at random xi ∈ Di

3 forall ℓ = 1, . . . , L do
4 forall i ∈ [n] do
5 Ai sends xi to all Aj ∈ N(Ai)
6 forall i ∈ [n] do
7 Ai samples uniformly at random a real

x ∈ [0, 1]
8 if x ≤ p then
9 Ai chooses yi ∈ Di that minimizes∑

Aj∈N(Ai)
Ci,j(yi, xj)

10 Ai updates xi ← yi



Algorithm 1 describes DSA. The algorithm starts by gener-161

ating an initial random assignment a ∈ D (Lines 1-2).2 It then162

keeps updating that assignment by performing a preset num-163

ber of iterations L (Lines 3-10). The assignment in the final164

iteration is the algorithm’s output. Each iteration starts with165

each agent updating its neighbors on its current assignment166

(Lines 4-5). Then, each agent is allowed, with probability167

p, to change its local assignment to the best possible value168

(Lines 6-10).169

The utilization of the stochastic factor p enables DSA to170

escape local minima and avoid infinite loops. However, it171

renders DSA non-monotone in the sense that the cost of the172

solution in one iteration is not necessarily smaller than the173

cost of the solution in the previous iteration. It is possible to174

enhance DSA with a so-called anytime mechanism [Zivan et175

al., 2014]. Such a mechanism finds the best solution visited176

throughout the run of the algorithm. In general, in order to re-177

port the best solution visited, the algorithm needs to compute178

the overall cost after each iteration, and if that overall cost is179

the minimum so far, record that cost and the corresponding180

assignment.181

3 Cryptographic background182

Here, we briefly describe the cryptographic machinery we use183

in our protocols. In Section 3.1 we discuss threshold secret184

sharing, and then, in Section 3.2, we describe secure compu-185

tations over secret-shared values.186

3.1 Shamir’s secret sharing187

Secret sharing schemes [Shamir, 1979] are protocols that en-188

able distributing a secret scalar s among a set of agents,189

A1, . . . , An. Each agent, Ah, h ∈ [n], gets a random value190

[[s]]h, called a share, so that some subsets of those shares en-191

able the reconstruction of s, while each of the other subsets192

of shares reveals no information on s. In its most basic form,193

called Threshold Secret Sharing, there is a threshold value194

t ≤ n, and then a subset of shares enables the reconstruction195

of s iff its size is at least t.196

Shamir’s t-out-of-n threshold secret sharing scheme197

[Shamir, 1979] operates over a finite field Zq , where q > n is198

a prime sufficiently large so that all possible secrets may be199

represented in Zq . It has two procedures: Share and Recon-200

struct:201

• Sharet,n(s). The procedure samples a uniformly random202

polynomial f(·) over Zq , of degree at most t − 1, where the203

free coefficient is the secret s. That is, f(x) = s + a1x +204

a2x
2+ . . .+at−1x

t−1, where aj , 1 ≤ j ≤ t−1, are selected205

independently and uniformly at random from Zq . The proce-206

dure outputs n values, [[s]]h = f(h), h ∈ [n], where [[s]]h207

is the share given to Ah. The entire set of sheares, denoted208

[[s]] := {[[s]]h : h ∈ [n]}, is called a (t, n)-sharing of s.209

• Reconstructt([[s]]). The procedure is given any selection210

of t shares out of the (t, n)-sharing of s. It then interpolates a211

polynomial f(·) of degree at most t−1 using the given points212

and outputs s = f(0). Any selection of t shares will yield the213

secret s, as t points determine a unique polynomial of degree214

2Throughout this paper, for any integer n, [n] := {1, . . . , n}.

at most t−1. On the other hand, any selection of t−1 shares 215

or less reveals nothing about the secret s. 216

Hereinafter, we set the secret sharing threshold to be 217

t := ⌊(n+ 1)/2⌋ . (1)

Namely, to reconstruct the secret, at least half of the agents 218

must collaborate. Hence, if the set of n agents has an honest 219

majority (in the sense that more than n/2 agents would not 220

try to combine their shares in order to recover secret values), 221

all shared values will remain fully protected. 222

In what follows, we shall use the following terminology 223

and notations. Let s be a secret known to some agent Ai, 224

i ∈ [n]. Then if Ai performs the procedure Sharet,n(s), we 225

will simply say that Ai distributes a (t, n)-sharing of s. 226

If the agents have a (t, n)-sharing [[s]] in some secret s and 227

they wish to let one of them, say Ai, reconstruct the secret 228

s, then at least t − 1 agents would send their shares to Ai 229

who will proceed to apply the Reconstruct procedure on the 230

t shares it has. We will describe this procedure shortly by 231

writing s← Reconstruct([[s]];Ai). 232

If s = (s1, . . . , sm) ∈ Zm
q is a vector of secrets held by 233

Ai, then by saying that Ai distributes a (t, n)-sharing of s we 234

mean that Ai distributes a (t, n)-sharing of each of the entries 235

of s, independently. 236

Let a ∈ Zq be any value that is publicly known to 237

all agents. Then by [[a]] we mean the set of (t, n)-shares 238

{[[a]]h = a : h ∈ [n]}. It is easy to see that this set of 239

shares indeed defines a unique polynomial of degree at most 240

t − 1, which is the constant polynomial f(·) ≡ a, and there- 241

fore it is a proper (t, n)-sharing of the value a. Such a sharing 242

does not require any communication between the agents nor 243

any polynomial computations, since a is publicly known. 244

Let a, b, c ∈ Zq be three values publicly known to all, and 245

let s and s′ be two secrets in which the agents already hold 246

(t, n)-sharings, denoted [[s]] and [[s′]]. Then 247

a+ b[[s]] + c[[s′]] := {a+ b[[s]]h + c[[s′]]h : h ∈ [n]} (2)

is a proper (t, n)-sharing of ŝ := a+ bs+ cs′, and its compu-
tation needs no interaction between the agents, thanks to the
affinity of secret sharing. By writing

[[ŝ]]← a+ b[[s]] + c[[s′]]

we mean that each agent Ah, h ∈ [n], sets [[ŝ]]h ← a + 248

b[[s]]h + c[[s′]]h, so that now the agents hold a (t, n)-sharing 249

of ŝ = a + bs + cs′ without needing to interact or perform 250

any further polynomial computations. 251

3.2 Secure computations over secret sharings 252

Let a and b be two secret values in the field Zq , and assume 253

that A1, . . . , An hold (t, n)-sharings in them, denoted [[a]] = 254

{[[a]]h : h ∈ [n]} and [[b]] = {[[b]]h : h ∈ [n]}. A secure 255

multiplication protocol is a protocol of the form 256

[[c]]← SecureMult([[a]], [[b]]) , (3)

that takes the (t, n)-sharings of a and b and computes from 257

them a (t, n)-sharing of c = a · b in a secure manner, namely, 258

without revealing to the agents any information on a, b, or 259

c = ab. Damgård and Nielsen [2007] designed such a secure 260



multiplication protocol. In our experiments, we used that pro-261

tocol with the performance improvements that were proposed262

by Chida et al. [2018].263

Another computation on secret shares that we will need is264

secure comparison. Under the same assumptions as above, a265

secure comparison protocol is a protocol of the form266

[[c]]← SecureCompare([[a]], [[b]]) , (4)

that takes the (t, n)-sharings of a and b and computes from267

them a (t, n)-sharing of c = 1a<b, where hereinafter if P is268

a predicate then 1P is a bit that equals 1 if the predicate P269

holds and equals 0 otherwise. As before, such a protocol is270

secure in the sense that it does not reveal to the agents any271

information on a, b, or c = 1a<b. Nishide and Ohta [2007]272

proposed such a secure comparison protocol.273

4 Private DSA274

In this section, we describe Private DSA (P-DSA), an im-275

plementation of DSA that preserves topology, constraint, and276

decision privacy. In order to achieve those privacy goals, P-277

DSA employs the following principles:278

(1) To achieve topology privacy, every pair of agents that279

are not constrained creates a zero constraint matrix between280

themselves, and, subsequently, the algorithm acts on a com-281

plete constraint graph. None of the other agents is able to dis-282

tinguish between fake constraint matrices (i.e., zero matrices)283

and genuine ones due to the next principle in P-DSA’s design,284

which distinguishes its operation from that of the basic DSA.285

(2) To achieve constraint privacy, all constraint matrices286

are secret-shared among all agents, and all computations that287

rely on those matrices use the shares rather than the actual288

constraint matrices.289

(3) To achieve decision privacy, in each iteration of the al-290

gorithm whenever an agent selects an assignment to its vari-291

able, it does not send that assignment to its neighbors; instead,292

it secret shares information on the costs that such an assign-293

ment incurs vis-a-vis each of the other agents.294

The latter principle raises a considerable computational295

challenge: how can each of the agents perform the compu-296

tations that DSA mandates when it does not know the current297

assignments of its neighboring agents? We tackle that chal-298

lenge by designing multi-party sub-protocols to be run jointly299

by all agents. In those collaborative sub-protocols, all agents300

use the secret shares they hold in order to enable each agent301

to compute the next assignment from its domain. In doing so,302

none of the agents get any wiser about that assignment or any303

other private information.304

We assume hereinafter that all agents know the sizes of all305

domains, namely, mi := |Di| for all i ∈ [n]. Moreover, each306

agent Ai, i ∈ [n], generates an ordering of the values in its307

domain, Di = {ai1, . . . , aimi
}, and publishes that ordering to308

each of its neighbors, Aj ∈ N(Ai). Therefore, each con-309

straint Ci,j can be described as a matrix of mi rows and mj310

columns, where Ci,j(r, s) equals the value of the constraint311

when Xi = air and Xj = ajs. In what follows, we will think312

of Ci,j as a matrix rather than a function over Di ×Dj .313

Protocol 2 describes P-DSA — a private implementation of314

DSA. First, each agent Ai selects a random assignment to its315

variable. Ai does that by selecting a random index ri ∈ [mi], 316

and then the corresponding assignment to Xi is airi , i ∈ [n] 317

(Lines 1-2). 318

The main loop takes place in Lines 3-15. First, each agent 319

Ai, i ∈ [n], secretly shares its current assignment, airi , with 320

all agents. To do that, Ai distributes to all agents (t, n)-shares 321

in the ri-th row in each of the constraint matrices that it has 322

vis-a-vis each of the other n − 1 agents (namely, also with 323

agents outside its neighborhood). Let wi,j denote the ri-th 324

row in the constraint matrix Ci,j , for some j ∈ [n] \ {i}, i.e., 325

wi,j = (wi,j(u) : u ∈ [mj ]) ,

where wi,j(u) = Ci,j(ri, u) , u ∈ [mj ] .
(5)

Ai distributes (t, n)-shares in each of the mj entries of that 326

vector, where the sharing of wi,j(u) is denoted [[wi,j(u)]] = 327

{[[wi,j(u)]]h : h ∈ [n]}, while the sharing of the entire vec- 328

tor is denoted [[wi,j ]]. The overall number of scalars that Ai 329

shares at this stage (Lines 4-6) is
∑

j∈[n]\{i} mj . 330

We would like to clarify that the secret sharing done in 331

Lines 4-6 is excessive. Indeed, if a ̸= b ∈ [n] then the scalar 332

Ca,b(ra, rb) is shared when i = a and j = b, as it is in the ra- 333

th row of the matrix Ca,b, but also when i = b and j = a, as 334

it is in the rb-th row of the matrix Cb,a which is the transpose 335

of Ca,b. However, this excessive secret sharing will pay off 336

later on in the computation. 337

Before moving on, let us fix i ∈ [n] and j ∈ [n] \ {i}. 338

Then for any u ∈ [mi], wj,i(u) is the cost that Ai would pay 339

if it sets Xi = aiu, given the current assignment of Aj to its 340

variable, Xj = ajrj . Therefore, if we define 341

wi(u) :=
∑

j∈[n]\{i}

wj,i(u) , u ∈ [mi] , (6)

we have by Eq. (5) and the symmetry of the constraints (in 342

the sense that Ci,j = CT
j,i), 343

wi(u) =
∑

j∈[n]\{i}

Cj,i(rj , u) =
∑

j∈[n]\{i}

Ci,j(u, rj) , u ∈ [mi] . (7)

Hence, wi(u) is the overall cost for Ai if it sets Xi = aiu, 344

given the current assignments that all other agents have for 345

their variables. In Lines 7-9 all agents compute (t, n)-shares 346

in wi(u) for all i ∈ [n] and for all u ∈ [mi]. Note that 347

it is a local computation that does not require the agents to 348

communicate. 349

Next, the main task of each agent Ai is to find the best 350

assignment to its variable given the current assignments of 351

all neighboring variables (as encoded in the secret shares that 352

all agents have distributed in Lines 4-6) and storing the in- 353

dex of that assignment in ri. However, we recall that such 354

a computation takes place only in probability p, while oth- 355

erwise, in probability 1 − p, Ai retains its current assign- 356

ment. Hence, Ai starts by generating a uniformly random 357

real number x ∈ [0, 1] (Line 11), and only if x ≤ p it pro- 358

ceeds to the computational task of finding the best assignment 359

for its variable, given the current assignments of its neigh- 360

boring agents. That computation is carried out in the sub- 361

protocol FindBestAssignment (Line 13). In that sub-protocol, 362

the agents jointly and securely compute a (t, n)-sharing of the 363



index ki ∈ [mi] of the currently best assignment to Xi from364

Di. After its completion, all agents send to Ai their shares in365

ki, and Ai proceeds to recover ki (Line 14) and store it in ri366

(Line 15).367

After performing L such iterations (Lines 3-15), each of368

the agents stores the last assignment to its variable (Lines 16-369

17).370

Protocol 2: P-DSA – Private DSA
1 forall i ∈ [n] do
2 Ai selects at random ri ∈ [mi]
3 forall ℓ = 1, . . . , L do
4 forall i ∈ [n] do
5 forall j ∈ [n] \ {i} do
6 Ai distributes a (t, n)-sharing of [[wi,j ]]
7 forall i ∈ [n] do
8 forall u ∈ [mi] do
9 [[wi(u)]]←

∑
j∈[n]\{i}[[wj,i(u)]]

10 forall i ∈ [n] do
11 Ai samples uniformly at random x ∈ [0, 1]
12 if x ≤ p then
13 FindBestAssignment(i; [[ki]])
14 ki ← Reconstruct([[ki]];Ai)
15 Ai sets ri ← ki
16 forall i ∈ [n] do
17 Ai sets Xi ← airi

4.1 The sub-protocol FindBestAssignment371

Here, we describe Sub-protocol 3, called FindBestAssign-372

ment. The sub-protocol, which is executed by all agents,373

scans the values in Xi’s domain, Di = {aiu : u ∈ [mi]},374

and computes a (t, n)-sharing [[ki]] in the index ki ∈ [mi]375

that issues the currently minimal aggregated cost for Ai.376

Before describing the computations in the sub-protocol, we377

make the following observations. Let ci and cj be two in-378

dexed scalars, where i < j. Then379

min(ci, cj) = ci + 1cj<ci · (cj − ci) (8)
and380

argmin(ci, cj) = i+ 1cj<ci · (j − i) (9)
(by argmin we mean the smallest index in which the min-
imum is attained). Hence, if the agents hold (t, n)-shares
in ci and in cj , they can jointly compute (t, n)-shares in
min(ci, cj) and in argmin(ci, cj), without learning any in-
formation on ci and cj , by invoking the secure comparison
and multiplication protocols from Section 3.2. Specifically,
they will first run

[[β]]← SecureCompare([[cj ]], [[ci]])
(see Eq. (4)) so that they will hold (t, n)-shares in the bit
β := 1cj<ci . Then they will run the secure multiplication
protocol (see Eq. (3)),

[[γ]]← SecureMult([[β]], [[cj ]]− [[ci]])

to get (t, n)-shares in γ := 1cj<ci · (cj − ci). Finally, each
agent Ah, h ∈ [n], will compute

[[w]]h ← [[ci]]h + [[γ]]h .

In view of Eq. (8), the set [[w]] = {[[w]]h : h ∈ [n]} is a 381

(t, n)-sharing of w := min(ci, cj). In the process of com- 382

puting those shares, the agents remain completely oblivious 383

to the values of ci, cj , and w. A similar course of action can 384

issue to the agents a (t, n)-sharing of argmin(ci, cj), using 385

Eq. (9). 386

We now turn to Sub-protocol 3. Its input is the index i 387

of the agent who looks for the currently best assignment to 388

its variable. Recall that FindBestAssignment is invoked from 389

Protocol 2 in Line 13. At that stage in Protocol 2, all agents 390

hold (t, n)-shares in wi(u) for all i ∈ [n] and all u ∈ [mi], 391

being the aggregated cost for Ai if it sets Xi ← aiu, given the 392

current assignments to the variables held by its neighbors. 393

The sub-protocol scans Ai’s domain, Di, and updates two 394

values: ki that will hold the index of the currently best assign- 395

ment and wi that will hold the corresponding cost. Those two 396

values will not be computed explicitly; instead, the agents 397

will hold secret shares in them. 398

Initially (Lines 1-2), the agents set ki = 1 and wi = wi(1). 399

Since the agents already hold a secret sharing of the latter 400

value, they simply set [[wi]]h = [[wi(1)]]h, h ∈ [n]. As for 401

ki = 1, since it is a publicly known value, then, in view of our 402

discussion in Section 3.1, each agent sets [[ki]]h = 1, h ∈ [n]. 403

Next, the agents scan the remaining values in Di (Lines 404

3-8). First, they compute shares in β := 1wi(u)<wi
, using 405

SecureCompare (see Eq. (4)), in order to compare wi, the 406

minimum found so far, to the cost of the next assignment, 407

wi(u) (Line 4). Then, they use SecureMult (see Eq. (3)) to 408

compute shares in γ := β·(wi(u)−wi) and in δ := β·(u−ki) 409

(Lines 5-6). (Recall that since u is a publicly known value, 410

each agent Ah, h ∈ [n], sets locally [[u]]h = u.) Finally, 411

they update the shares in wi and ki using Eqs. (8) and (9), 412

respectively (Lines 7-8). At the end of the loop, ki equals the 413

index of the best assignment, and wi equals the associated 414

cost. Since P-DSA needs only [[ki]], the sub-protocol issues 415

that sharing as its output. 416

Comment. The computation of wi (Lines 5+7) is needed 417

for the computation of β (Line 4) in the subsequent iteration, 418

a value that is used in updating ki (Lines 6+8). Hence, since 419

wi is not a desired output of the sub-protocol, it is possible to 420

skip Lines 5+7 in the last iteration (u = mi). 421

Sub-protocol 3: FindBestAssignment – Computing a
(t, n)-sharing of the index ki of the currently best as-
signment for Xi.

Input: i – the index of agent Ai

1 forall h ∈ [n] do
2 Ah sets [[ki]]h ← 1 and [[wi]]h ← [[wi(1)]]h
3 forall u = 2, . . . ,mi do
4 [[β]]← SecureCompare([[wi(u)]], [[wi]])
5 [[γ]]← SecureMult([[β]], [[wi(u)]]− [[wi]])
6 [[δ]]← SecureMult([[β]], [[u]]− [[ki]])
7 [[wi]]← [[wi]] + [[γ]]
8 [[ki]]← [[ki]] + [[δ]]

Output: A (t, n)-sharing of [[ki]]



4.2 Privacy422

Protocol 2 preserves topology, constraint, and assign-423

ment/decision privacy, owing to the cryptographic machinery424

that we use – see Theorem 1. It does not respect agent privacy425

since it requires all n agents to have a full communication net-426

work between them.427

Theorem 1. Under the assumption of honest majority, Proto-428

col 2 preserves topology, constraint, and assignment/decision429

privacy.430

Proof. The honest majority assumption means that if there431

exist agents that will try combining their shares in attempt432

to recover some of the secret-shared values, their number433

will be smaller than the threshold t = ⌊(n + 1)/2⌋, see434

Eq. (1). Shamir’s secret sharing scheme is perfect, in the435

sense that any number of shares smaller than the threshold ex-436

poses zero information on the shared secret [Shamir, 1979].437

Therefore, the secret shares in each of the private values438

that are secret-shared during P-DSA reveal no information439

on the underlying private value. Apart from secret sharing,440

the agents engage also in multi-party protocols for perform-441

ing secure multiplication and secure comparison, see Eqs. (3)442

and (4). The protocols that we use are information-theoretic443

secure, see [Damgård and Nielsen, 2007; Chida et al., 2018;444

Nishide and Ohta, 2007]. Given all of the above, it follows445

the P-DSA fully preserves all constraint information under446

the honest majority assumption; hence, it offers constraint447

privacy.448

P-DSA operates over a complete constraint graph, in which449

every pair of agents has a constraint matrix between them.450

Since all matrices are secret-shared using the threshold t in451

Eq. (1), which guarantees perfect privacy under the assump-452

tion of honest majority, zero matrices are indistinguishable453

from matrices that represent actual constraints. Therefore, P-454

DSA offers also topology privacy.455

As also all indices of all assignments are encoded through456

secret shares, we infer that all assignment information, as457

well as the final decisions, remain fully protected. Hence,458

P-DSA offers also assignment/decision privacy.459

460

Note that while Protocol 2 hides from each agent the se-461

quence of assignments of other agents, it does reveal to each462

agent its own sequence of assignments. Protocol 2 can be463

further enhanced to also hide from each agent the sequence464

of value assignments to its own variable, including the initial465

random value assignment. Due to space limitations, we omit466

the details of this enhancement.467

5 Experiments468

We implemented P-DSA and compared its performance to P-469

Max-Sum [Tassa et al., 2017], which is a privacy-preserving470

implementation of an incomplete DCOP algorithm (Max-471

Sum [Farinelli et al., 2008]).472

Experiments were conducted on a machine equipped473

with an Intel i5-10400 CPU @ 2.90GHz, 2904 Mhz,474

6 Core(s), 12 Logical Processor(s), 16GB DDR4 RAM.475

The system ran Microsoft Windows 10 Pro, and the476

code was written in Java 1.8.0 using the SinAlgo sim-477

ulation framework. The source code is available on 478

https://github.com/dcop2025/dcop-sim/tree/main. 479

P-DSA was implemented over Zq with q = 231 − 1. P- 480

Max-Sum was implemented with 512-bit homomorphic en- 481

cryption. 482

In our experiments, we compared the quality of the solu- 483

tions issued by each of those two algorithms within a given 484

time frame. We used the following settings of the main pa- 485

rameters that affect the algorithms’ runtimes: 486

• Number of agents n ∈ {10, 20,30, 40, . . . , 100}. 487

• Domains’ size m ∈ {5,10, 15, 20, 25}. For simplicity, 488

we assumed that all domains have the same size m. 489

• Constraint density, d ∈ {0.2,0.4, 0.6, 0.8, 1.0} — the 490

fraction of constrained pairs of variables out of all
(
n
2

)
491

pairs. 492

To test the effect of each of those three parameters, we set the 493

other two to the value that is underlined in their respective set 494

of tested values and varied the value of the tested parameter. 495

For example, in testing the effect of the number of agents, we 496

set all domain sizes to be m = 10 and used constraint density 497

of d = 0.4 and then ran experiments with n ∈ {10, . . . , 100}. 498

We refer to each triple ⟨n,m, d⟩ as a configuration. In each 499

tested configuration, we evaluated both algorithms in the fol- 500

lowing manner: We selected a new random problem (where 501

a problem consists of the constraint graph as well as the con- 502

straint matrices), ran both algorithms on the same problem, 503

and evaluated the cost of their output after T = 1, 2, 3 min- 504

utes of execution. We repeated that experiment 20 times, and 505

we report the average of the costs obtained by each of the two 506

algorithms within each of the prescribed time frames. 507

In one set of experiments we used random constraint 508

graphs, where each graph is a random graph of n nodes in 509

which each pair of nodes is connected by an edge in probabil- 510

ity d. In another set of experiments we generated scale-free 511

random graphs [Barabási and Albert, 1999] with an initial 512

clique of size 5, and 4 backward edges for each additional 513

node. In all experiments, each constraint matrix was a ran- 514

dom m ×m matrix with entries that distribute uniformly on 515

the interval [0, 10]. 516

Number of agents in random graphs. We compared the av- 517

erage cost of solutions issued by each of the two algorithms 518

within each of the three prescribed time frames for a varying 519

number of agents n (where in all problems, the domain size 520

was m = 10 and the network density was d = 0.4). Ta- 521

ble 1 shows the average costs issued by the two algorithms 522

(rounded to the nearest integer). The symbol ⊥ indicates that 523

the algorithm did not manage to complete even one iteration 524

within the time frame. 525

We see the overwhelming advantages of P-DSA over P- 526

Max-Sum in terms of scalability and quality of solutions. In- 527

deed, while P-Max-Sum could not produce a solution within 528

1 minute already for n = 40 and could not produce a solu- 529

tion within 3 minutes for n ≥ 60, P-DSA was able to pro- 530

duce solutions within 1 minute for all n ≤ 60 and managed 531

to produce a solution within 3 minutes for all tested values 532

of n. Furthermore, the solutions produced by P-DSA were 533

better than those issued by P-Max-Sum by more than 50% 534



T n = 10 20 30 40 50 60 70 80 90 100
1 27|66 207|330 591|783 1280|⊥ 2197|⊥ 3127|⊥ ⊥|⊥ ⊥|⊥ ⊥|⊥ ⊥|⊥
2 27|63 186|333 526|733 1121|1433 1944|⊥ 3023|⊥ 4361|⊥ 5796|⊥ ⊥|⊥ ⊥|⊥
3 27|59 178|318 494|763 1058|1362 1822|2299 2902|⊥ 4112|⊥ 5752|⊥ 7354|⊥ 9087|⊥

Table 1: Average costs obtained by P-DSA (left in each table cell) and P-Max-Sum (right) for problems in random graphs over a varying
number n of agents, within time frames of T = 1, 2, 3 minutes. The symbol ⊥ indicates that the algorithm did not manage to complete even
a single iteration within the time frame.

T n = 10 20 30 40 50 60 70 80 90 100
1 55|101 503|661 1496|⊥ 3083|⊥ 5211|⊥ 7732|⊥ ⊥|⊥ ⊥|⊥ ⊥|⊥ ⊥|⊥
2 53|118 467|683 1386|1671 2836|⊥ 4897|⊥ 7482|⊥ 10717|⊥ 14100|⊥ ⊥|⊥ ⊥|⊥
3 53|106 463|677 1325|1671 2740|⊥ 4652|⊥ 7260|⊥ 10321|⊥ 14069|⊥ 18095|⊥ ⊥|⊥

Table 2: Similar to Table 1 but with scale-free graphs.

for n = 10 and by 20% for the largest problem in which P-535

Max-Sum issued a solution. In addition, we see that P-DSA536

always improves the quality of its output when allowed to run537

for more time, while P-Max-Sum sometimes fluctuates (see,538

e.g., its outputs when n = 30). That is why it is sometimes539

executed with the anytime mechanism [Zivan et al., 2014]540

that outputs the best solution visited throughout the run of541

the algorithm. Such a mechanism has its overhead, and in542

P-DSA, it appears that there is less need to apply it. (It is im-543

portant to stress that P-DSA and P-Max-Sum issue the very544

same intermediate and final assignments as DSA and Max-545

Sum, respectively. Namely, the cryptographic layer protects546

the underlying private information but does not alter it.)547

T m = 5 10 15 20 25
1 560|714 591|783 669|⊥ 662|⊥ 715|⊥
2 550|722 526|733 570|830 587|⊥ 619|⊥
3 550|689 494|763 516|830 527|834 550|⊥

Table 3: Average costs obtained by P-DSA (left in each table cell)
and P-Max-Sum (right) for problems in random graphs over a vary-
ing domain size m, within time frames of T = 1, 2, 3 minutes.

T d = 0.2 0.4 0.6 0.8 1.0
1 254|316 591|783 980|⊥ 1353|⊥ 1784|⊥
2 198|317 526|733 889|1212 1244|1641 1645|2053
3 174|327 494|763 843|1179 1197|1588 1575|2023

Table 4: Average costs obtained by P-DSA (left in each table cell)
and P-Max-Sum (right) for problems in random graphs over a vary-
ing constraint density d, within time frames of T = 1, 2, 3 minutes.

Number of agents in scale-free graphs. We repeated the548

previous experiment, but this time with scale-free graphs.549

The results are given in Table 2. Here, too, we see that P-550

DSA is more scalable and issues better solutions.551

Domain size in random graphs. Here we fixed n = 30 and552

d = 0.4 and varied the domain size m. The results are given553

in Table 3. As already demonstrated, P-DSA is more scalable554

than P-Max-Sum and managed to issue outputs to problems555

in which P-Max-Sum failed to complete even one iteration556

within the same time frame. Moreover, when both algorithms557

issued outputs, those of P-DSA had costs lower than those of 558

P-Max-Sum, with improvements ranging from 22% to 38%. 559

Constraint density in random graphs. Here we fixed n = 560

30 and m = 10 and varied the constraint density d. The 561

results are given in Table 4. As before, P-DSA issues so- 562

lutions with costs that are significantly lower than P-Max- 563

Sum’s (where in one configuration, the improvement was as 564

high as 47%). As for scalability, P-DSA’s runtime does not 565

depend on the network density since it operates on the com- 566

plete graph, where non-constrained pairs of agents are con- 567

nected by an edge with a zero constraint matrix. P-Max-Sum, 568

on the other hand, works on the original constraint graph, 569

and therefore, its runtime does depend on the network den- 570

sity. Hence, it failed to issue an output on dense networks for 571

which P-DSA did issue an output. 572

Due to lack of space we omit description of experiments 573

that compare the runtimes of P-DSA and the basic DSA, in 574

order to illustrate the price of privacy. We intend to include 575

such experiments in the full version of this study. 576

6 Conclusion 577

We presented here P-DSA – the first privacy-preserving im- 578

plementation of a DCOP algorithm that is based on lo- 579

cal search. It offers topology, constraint, and assign- 580

ment/decision privacy. The algorithm is much more scal- 581

able than P-Max-Sum, a privacy-preserving implementation 582

of another incomplete DCOP algorithm. It also offers so- 583

lutions with much better costs than those issued by P-Max- 584

Sum. Since P-DSA was able to solve in short time (3 min- 585

utes) problems involving as high as 100 agents, while all prior 586

studies on privacy-preserving DCOP algorithms report exper- 587

iments of much smaller scale and runtimes that are signifi- 588

cantly higher, P-DSA emerges as a suitable choice for solving 589

large-scale DCOPs in a privacy-preserving manner. 590

Our approach can also be extended to develop a privacy- 591

preserving version of MGM [Maheswaran et al., 2004], an- 592

other local search algorithm for DCOPs. Even though the 593

“basic plot” in MGM is similar to DSA’s, it is more involved 594

as the decision to update local assignments is taken based on a 595

competition among agents and not by a coin-toss. Implement- 596

ing the more intricate logic of MGM in a privacy-preserving 597

manner is a challenge that we intend to undertake in a future 598

research. 599
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