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Abstract 

The paper concerns synergy between science education, complex systems and, 
computational thinking (CT) through constructing computational models using 
Much.Matter.in.Motion (MMM) platform. It focuses on transferability of 
complexity-based structure, which underlies MMM, across different domains. The 
complexity-based structure suggests that a system can be described and modeled by 
defining entities, their actions, and interactions. We compared learning of seventh-
grade students using MMM with students’ learning following a normative 
curriculum using textbooks. Results show: the experimental group successfully 
promoted their conceptual learning, systems understanding, and CT; they showed 
relatively high degrees of near and far transfer, with a medium effect size for far 
transfer; Independent contributions of learning CT and learning systems on learning 
transfer; conceptual understanding indirectly impacts transfer.  

 
Keywords: Complex Systems, Computational Thinking, Modelling, Transfer. 

Background 
The paper focuses on how the synergy between science education, complexity and, computational 
thinking (CT) may impact learning transfer.  

In this research, middle school students modeled systemic phenomena with the 
Much.Matter.in.Motion (MMM) platform (Levy, Saba, Hel-Or, 2019). MMM (Figure 1) is a block-
based modeling platform that enables students to learn chemistry and physics through 
constructing a wide range of computational models in these domains. It targets learning science 
and developing CT through the lens of complex systems (Saba et al., 2021).  One of MMM's 
distinct innovations is the common complexity-based structure expressed in the coding interface. 
Modeling based on complexity-based structure allows separating the code for different 
populations and decomposing the code for each population into three components: properties of 
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population’s entities, their actions, and their interactions with each other and with macro-level 
boundaries and fields. 

 

 

Figure 1. The Much.Matter.in.Motion (MMM) interface: left half - NetLogo MMM; right-half- 
coding block. 

Learning transfer is a central construct in this study. It is the ability to use knowledge learned in 
one context within a new context (Bransford, Brown & Cocking, 2000 p. 51). Several studies 
have demonstrated the difficulties in achieving transfer of learning (Thorndike, 1906), a deep 
understanding of the source problem is required before transferring to the target domain, which 
in educational settings does not usually happen within short durations as the source domain has 
just been learned (Lobato, 2006; Marton, 2006; Chi & VanLehn, 2012).  

The topic of learning transfer in the context of schools is rarely researched (Fuchs et al., 2003; 
Terwel et al., 2009; Rosholm et al., 2017). Moreover, only scant research has explored transfer 
through the perspective of complex systems (e.g. Goldstone& Son, 2005).  

In this study, near and far transfer is explored in schools, in the context of students’ 
computational modeling in science.  

This paper aims to explore how learning by constructing models with MMM contributes to 
promoting CT, conceptual understanding of the knowledge domain, and systems understanding; 
and how these processes, in turn, support the transfer of the complexity-based structure across 
different domains. 

Computational thinking  

Computational Thinking (CT) encompasses the ability to solve problems, design systems, and 
understand human behavior in ways that are related to the ideas behind computation. It includes 
decomposing difficult problems into smaller and easier ones that can be solved, the use of 
recursive thinking, pattern finding, and abstraction (Wing, 2006). One conventional view of 
teaching CT is based on having students learn programming skills through using computer-based 
platforms (e.g. Scratch, Resnick, et al., 2009). However, several studies in educational STEM 
address the impact of integrating CT into learning within the STEM domains. The learning 
process focuses on enhancing both CT and conceptual understanding through introducing 
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computational modeling tools for complex systems (e.g CTSiM, Basu et al., 2014; DeltaTick, 
Wilkerson-Jerde et al., 2015). 

Complex systems are composed of many elements, which interactively self-organize in 
coherent global patterns (Epstein & Axtell, 1996; Holland, 1998; Bar-Yam, 2003). Although these 
studies use modeling tools for enhancing both CT competences and conceptual understanding 
through the lens of complex systems, the computational modeling tools are restricted to a specific 
science-content.  

Construction of models  

Model construction simplifies the phenomenon of interest based on the future use or the goal of 
the model; and can serve as an explanatory tool (Gobert & Buckley, 2000). In this study we adopt 
the agent-based modeling approach (ABM) for construction models of complex systems which 
relies on complexity theory (Bar-Yam, 2003). The ABM approach represents systems through 
their participating entities, assigning them behaviors and interactions. Running the simulation has 
these entities act and interact. As a result, an emergent collective pattern can arise bottom-up. We 
selected this viewpoint in the present research because of its generativity both in science and in 
helping students relate micro and macro levels (Wilensky & Resnick, 1999; Levy & Wilensky, 
2009). 

Transfer of learning  

In this study, we explore near and far transfer. Near transfer occurs between two similar contexts. 
However far transfer occurs between two superficially dissimilar contexts but abstractly related 
(Barnett & Ceci, 2002); Gentner, 1983; Hummel & Holyoak, 2003; Klahr & Chen, 2011; Day & 
Goldstone, 2012).  

The failure to transfer learning is a well-known problem. Some researchers go so far as to deny 
the existence of far transfer (Barnett & Ceci, 2002; Denning, 2017), other researchers find a very 
limited degree of far transfer (Sala and Gobet, 2017). Chi &VanLehn (2012) have in fact defined 
this problem by using two terms: (1) surface features which refer to the perceived concepts, or 
entities that have an explicit description in a problem; so that transfer by surface similarity is 
based on reminding and knowledge application; (2) deep structure that also indicates the 
procedures for solving a problem which often cannot be directly recognized. Transfer fails when 
the two problems have dissimilar surface features but a similar deep structure (Gick & Holyoak, 
1983; Chi &VanLehn, 2012). Transfer by structural similarity takes place by matching between 
the relations within systems in two dissimilar contexts, which involved different objects and 
features (Gentner, 1983; Hummel & Holyoak, 2003; Klahr & Chen, 2011; Day & Goldstone, 
2012). 

With respect to transfer of learning about complex systems, distinct advantages have been 
found when using an agent-based approach (ABM) to complex systems.  ABM approach can 
increase learning transfer by having students interpret the entities and relationships in computer 
simulations. Especially when these interpretations are idealized, the set of relations in one setting 
can be used in dissimilar situations, thus promoting the transfer of deep principles of complex 
systems across domains (Goldstone & Wilensky, 2008; Goldstone & Sakamoto, 2003).  
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Research question 
This study presents research conducted on learning the topic of gases in chemistry through 
constructing computational models. The following research questions guide this exploration. 

RQ1: Learning through constructing models.  

How does constructing models of complex systems on the topic of gases with MMM promote 
students’ conceptual learning, systems understanding, and computational thinking compared 
with normative instruction of the subject? 

RQ2: Learning transfer. 

How does near transfer and far transfer of learning compare between students who model gas 
behavior with MMM and students who experience normative instruction of the same subject? 

What aspects of the complexity-based structure are associated with students’ knowledge 
transfer when comparing near transfer with far transfer? 

RQ3: Path analysis.  

How do conceptual learning, systems understanding, and computational thinking contribute to 
knowledge transfer when engaging in learning using MMM? 

Methods 
The study is a quasi-experimental, pretest-intervention-posttest-control comparison group design. 
We compared the conceptual learning, systems understanding, and CT by 26 seventh-grade 
students using the MMM platform with 24 students’ learning following a normative curriculum 
using textbooks. In addition, near and far transfer are quantitatively and qualitatively compared 
between both groups. The study extended over four 1.5-hour sessions.    

Data sources  

Both groups answered two identical pre-and post-test questionnaires:  

(1) Gases questionnaire tests for conceptual learning, systems understanding. It consists of 18 
multiple-choice items. Systems understanding is analyzed with the same items testing both 
macro-level and micro-level explanations.  

(2) Computational Thinking questionnaire consists of six items (two multiple-choice, four open-
ended). It includes a pseudocode of MMM-constructed models.  

 
Both groups answered the post-test far transfer questionnaire. Questionnaire items require a far 
transfer of the complexity-based structure learned in the context of gas particles to the collective 
behavior of ants inside an ant-hill (Figure 2).  

Regarding near transfer, the "aquarium problem" from the CT questionnaire was selected, and 
pseudocode for an MMM-constructed model is presented. It requires transfer of the complexity-
based structure when learning about gas particles inside a container to solving a computational 
problem related to the collective behavior of fish inside an aquarium (Figure 2). Effect size was 
manually computed: squared Z-value of Mann Whitney, divided by (N – 1).    
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Near 
transfer 
question: 
the 
"aquarium 
problem" 

The following 
model describes 
an aquarium that 
contains 13 fish 
of the same type 
and size. In this 
model each ball 
is a fish that 
lives inside the 
aquarium. 

A computer 
program that 
describes the 
properties of the 
fish and how 
each fish moves 
within the 
aquarium is 
displayed on the 
left. 

 

 
1. When you click the "Play" button, what do you think will happen? 
2. Toxic material was poured into the aquarium and covered the internal walls. As a 

result, any fish that comes to the wall will die and stop its movement.  
3. When you click the "Play" button, what do you think will happen? 
4. What would you change the program in Section 3.2, to allow fish to stay alive for a 

longer period? 
Far 
transfer 
question:  
the "ants 
problem"  

The world of ants 
Inside an ant nest, there are rooms of different sizes, as in 
the figure. Ants walk in random paths for food. 
When an ant collides with another ant, it slows down its 
speed. 
 
1. Ant 1 enters the room, Describe a possible trajectory 

of the ant in the room. 
2. Another 100 ants enter the same room. Describe in 

words a possible trajectory of Ant 1 trajectory. What 
will happen to its speed? 

3. Describe what has changed since the entrance of 100 
ants into the room? 

4. All the 111 ants move to a neighbor room which is 
twice larger. Describe what is changing due to 
moving all ants to a larger room? 

 

 
Figure 2. Near transfer question from the CT questionnaire, and far transfer question from the 
far transfer questionnaire. 

Findings 

Conceptual knowledge, Systems understanding and computational thinking.  

Table 1 summarizes the quantitative analysis of conceptual knowledge, systems understanding of 
the gases questionnaire and CT of the CT questionnaire.  
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Conceptual Knowledge. Results show that both groups displayed learning, however, a higher 
score was obtained by the experimental group. Repeated Measure ANOVA shows a significant 
time effect (F(1,48)=74 ,p<0.01) from pre- to post-test. The interaction between time and group 
(F(1,48)=0.13 ,p<0.05) shows the superior learning of the experimental group.  

Systems Understanding. Results shows that both groups have significantly enhanced their 
understanding of the different systems components (Micro, Macro, Micro/Macro). Repeated 
Measure ANOVA shows a significant time effect (Micro: F(1,48)=15.92,p<0.01; Macro: 
F(1,48)=19.56,p<0.01; Micro/Macro: F(1,48)=45.85 ,p<0.01) from pre- to post-test. The specific 
component that contributes to this result is the micro-level reasoning regarding the systems. The 
interaction between time and group at the micro-level (F(1,48)=6.47 ,p<0.05) shows the superior 
learning of the experimental group.  

Computational thinking. Findings reveal that both groups increased their CT score from pre-
test to post-test, however the experimental group showed a much greater increase than the 
comparison group. Repeated Measure ANOVA shows a significant time effect (F(1,48)=50.70, 
p<0.01) for both groups. The interaction between time and group is significant (F (1, 48) = 23.10, 
p<0.01) favoring the experimental group. 

Table 1. Conceptual understanding before and after experiencing either the MMM learning 
unit or the normative learning unit (comparison N = 24, experimental N = 26). 

  Statistical tests3 Post-test 
(%) 

Pretest (%) 
 

 (time x group)  Time 
ηp2 

 
p F(1,48) ηp2 

 
p F(1,48) 

 
Exp 
M 

(SD) 

Comp 
M 

(SD) 

Exp2 
M 

(SD) 

Comp1 
M 

(SD) 

Number 
of items 

Component  

0.13 0.011 0.13 0.61 0.000 75 
 

80 
(11) 

63 
(13) 

53 
(14) 

49 
(13) 

18 Overall Science 
concepts 

0.12 0.014 6.47 0.25 0.000 15.92 
 

71 
(15) 

45 
(17) 

49 
(20) 

40 
(19) 

6 Micro Systems 
components 

0.04 0.196 1.72 0.29 0.000 19.56 83 
(24) 

71 
(28) 

53 
(27) 

54 
(32) 

3 Macro 

0.05 0.117 2.55 0.49 0.000 45.85 85 
(14) 

72 
(21) 

58 
(26) 

55 
(18) 

9 Micro/ 
Macro 

0.32 0.000 23.10 0.51 0.000 50.01 56 
( 62 ) 

20 
(21) 

24 
( 22 ) 

14 
(18) 

6 Overall  Computational  
Thinking  

 
1 Comparison group 
2 Experimental group 
3 Repeated Measure ANOVA 

 

Transfer of learning  

The quantitative analysis of near and far transfer (Table 2) reveals a significant high degree of 
transfer for the experimental group in both near and far transfer with respect to the comparison 
group. However greater effect size was found for the far transfer compared with near transfer.  
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Table 2. Quantitative analysis of near and far transfer items of the experimental group versus 
the comparison group. 

 Number of 
items  

Comparison 
group 
Mdn 

Experimental 
group 
Mdn 

U P-value Effect 
size 
η2 

Near 
transfer 

3 11 62 95.5 0.00 0.23 

Far transfer  4 31 50 161 0.003 0.36 

 
For the qualitative comparison, students’ responses were coded according to the complexity-
based structure used in MMM. Table 3 describes our coding table based on the complexity-based 
structure and examples of students' responses to the two transfer problems. Table 4 illustrated the 
number of students who used each variable within their responses to the two transfer problems. 

Table 3. Coding students' responses to the two transfer problems based on the complexity-
based structure. The examples are excerpts from the students’ answers to the questionnaires. 

Complexity-based structure Near transfer 
fish problem example 

Far transfer 
ants problem example 

Category   variable   
Properties  Speed I would decrease the initial 

speed of the fish.  
It [Ant 1] can go 

anywhere and its speed will 
remain constant. 

 Heading The fish moves randomly 
until it hits a wall; it will 
collide; and if it hits a fish it 
will turn right and decrease 
speed. 

Ant 1 moves randomly inside 
the room.  

Interactions  Interaction 
with wall  

Mentioned I think the ball collides with a 
ball and turns right and then 
collides with the wall. 

The more ants in the room, 
the greater the density; they 
will collide more with the 
wall and with other ants.  

 Speed Some of the fish will hit the 
wall and stop 

The ant walks randomly and 
collides with the wall as a 
result, it changes direction at 
the same speed. 

 Heading The fish move. When they 
collide with the wall they 
change their direction and 
speed; if a ball hits a ball, it 
will turn right and stay at the 
same speed. 

It [Ant 1] moves until it 
collides with a wall and then 
it changes direction and 
continues on it way.  

 Interaction 
with 
another 
entities 

Mentioned I think the fish first meet each 
other and then, after they 
reach the wall, they die. 

Because the room is larger, it 
[Ant 1] will collide less often 
with other ants. 

 Speed I would change the speed of 
the fish. if they [fish] collide 
with other fish their speed 
will decrease. 

Each time Ant 1 collides with 
the other ants it will slow 
down, and its speed will 
decrease until it stops.  

 Heading They [fish] collide with each 
other so they turn right but in 
all cases their speed does not 
change. 

The ant will collide more 
frequently with other ants 
and as a result its speed will 
become much smaller, and 
change direction. 
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Table 4. Students' responses to the near and far transfer problems based on the complexity-
based structure, comparison of the experimental group and comparison group. 

Comparison group  
(N= 24)  

Experimental group 
(N=26) 

The complexity-based 
Structure Far 

transfer 
(%) 

Near 
Transfer 

(%) 

Far 
transfer2 

(%) 

Near 
transfer1 

(%) 
54 0 54      3 19 Speed 

Properties 
71 51 92 58 Heading 
0 25 54 15 Mentioned  

with other 
entities 

Interactions  

21 29 30 85 Speed 
4 20 8 73 Heading 
0 17 8 19 Mentioned  

with wall 8 20 8 65 Speed 
8 8 15 30 Heading 

 
1 Near transfer problem - the "aquarium problem" 
2Far transfer problem– the "ants problem" 
3Grey shade- represents cells in which more than half of the students mentioned the variable.   

 
Experimental group. Results show that in the near transfer problem, students were based on 

the two main categories of the complexity-based structure. In the properties category, the main 
focus is on the heading of the fish when they moved inside the aquarium. Most of the students 
referred to interaction with another fish in their response expressing changes in both the speed 
and the heading. The interaction of the fish with the edge of the aquarium, the students referred 
only to changes in fish's speed. In the far transfer items, most of students' responses focused on 
the Properties category by referring to heading and speed of the ants. Regarding interactions, 
students only mentioned the interactions with other ants.  

Comparison group. Results show that students' responses relied mainly on describing the 
properties category in both near and far transfer problems. In the near transfer problem, the focus 
is on the heading of the fish. However, in far transfer, students relied in both heading and speed 
of the ants. 

The effect of students' conceptual knowledge, systems understanding and CT on Learning 
Transfer.  

Figure 3 describes the following hypotheses: conceptual knowledge, systems understanding (the 
micro-level for its significant contribution) and CT each affect students' transfer of learning; 
increased CT enhances conceptual knowledge; increased CT and increased conceptual knowledge 
both contribute to systems understanding. Results of path analysis (Figure 4) show the direct 
effect of the two variables - post-test micro-level and post-test CT on the transfer score (𝑅𝑅2 =
0.4,𝐹𝐹(2,23) = 4.86,𝑝𝑝 = 0.01). Significant results were found for both the post-test micro-level 
score (β = 0.64, p = 0.012) and for the post-test CT score (β = 0.41, p = 0.03).  An indirect effect 
of the post-test Gases score on the transfer score was also found (𝑅𝑅2 = 0.5,𝐹𝐹(2,23) = 11.17,𝑝𝑝 =
0.00) by affecting the post-test micro-level score (β = 0.73, p = 0.000. This analysis reveals that 
science conceptual learning, understanding complex systems and CT all have a positive impact 
on learning transfer, when the learning is based on model construction. However, we have found 
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two more important factors. One is that learning CT and learning how to think complex-ly have 
independent contributions to learning transfer. A second effect is that conceptual understanding 
in science impacts transfer only through a particular perspective – whether the students understand 
the micro-level behaviors of the particles, or individual entities in the system. 

 

 
Figure 3. A hypothesis path model 

 

Figure 4. Causal paths with statistically significant direct effects 

Scholarly significance 
The paper addresses a construct that has only rarely been researched in the past decade – transfer 
of learning – especially in schools and among students who learn science. The design of the focal 
learning environment aspired for learning transfer by guiding students’ actions in programming 
towards a complexity-based structure, which can be generalized across many phenomena. The 
research examined students’ conceptual learning, systems learning, learning of CT, and near and 
far transfer of learning. In all categories, the experimental group outperformed the comparison 
group. The main contribution of a complexity perspective is understanding entities and 
interactions at the micro-level of the system. In addition, independent contributions were revealed 
of developing a complex view of scientific phenomena and learning CT on the far transfer of 

Conceptual 
knowledge 

CT skills 

 

Transfer of 
learning  

Systems 
understanding  

β = 0.64* 

Post-test 
Gases score  

Post-test CT 
score 

Transfer 
score  

Post-test 
micro-level score  

 *    p < 0.05 
      **   p < 0.01   
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learning. A central theoretical contribution of this work suggests a method for enhancing far 
transfer:  using visual epistemic scaffolds of the general thinking processes we wish to support 
and incorporating these visual structures into the core problem-solving activities. 
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