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Thermally emitting, radiative, Newtonian shocks exhibit a global oscillatory instability.
The luminosity variations that accompany such oscillations raise the possibility that, if
relativistic shocks that emit nonthermal (synchrotron and inverse-Compton) radiation
are also subject to such an instability, this could be relevant to the interpretation of
certain flares observed in relativistic jet sources associated with AGNs and GRBs. A lin-
ear stability analysis, using the equations of special-relativistic MHD and accounting for
both the energy and the momentum carried by the radiation, has, however, revealed no
unstable modes for physically plausible parameter values. The likely explanation is that,
even though synchrotron cooling gives rise to a local radiative instability, the dependence
on the magnetic field amplitude is not strong enough to counter the stabilizing effect of
enhanced magnetic pressure, due to cooling-induced compression, on the global behav-
ior of the shock. Numerical simulations are under way to ascertain that this conclusion
continues to hold also in the nonlinear regime.

Keywords: Relativistic shocks; radiative instability; magnetohydrodynamics; active
galactic nuclei; gamma-ray bursts.

1. Introduction

The concept of a radiative instabilitya has played an important role in astrophysics
for over five decades now.1 It was originally considered in the context of the Sun, the
interstellar medium (ISM), and galaxy formation. It was reasoned that, if a diffuse
gas is in thermal equilibrium as a result of temperature-independent heating and
temperature-dependent radiative cooling, then, if near equilibrium the radiative

aThe equivalent designation as a thermal instability is avoided here to prevent confusion, since
the radiation processes under consideration are purely nonthermal.
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losses increase with decreasing temperature, a perturbation would lead to a thermal
runaway in which a cooler-than-average region would cool more effectively than
its surroundings. The instability is likely to proceed at constant pressure, so the
instability criterion for a perfect gas is2(

∂L
∂T

)
p

=
(
∂L
∂T

)
n

− n0

T0

(
∂L
∂n

)
T

< 0 , (1)

where L is the cooling rate per unit volume, p, n, and T are the pressure, number
density, and temperature, respectively, and the subscript “0” denotes the equilib-
rium state. For a diffuse gas one typically has L ∝ n2Λ(T ), with Λ(T ) ∝ Tα, in
which case instability occurs for α < 2. Numerical simulations have verified that
the nonlinear evolution of this instability leads to the formation of condensations
(often termed “clouds” or “knots”), which in the presence of an ordered magnetic
field take the shape of filaments.

The phenomenon described in the preceding paragraph represents a local insta-
bility. However, about 30 years after it was first identified, numerical simulations of
accretion onto a stellar surface3 indicated that the instability can also have a global
realization in radiative shocks where the postshock fluid is in the unstable regime of
the cooling curve Λ(T ).b Nearly planar radiative shocks often lead to the formation
of a cold dense layer of accumulated shocked gas at the end of the postshock cooling
zone, which has motivated the common formulation of the problem in terms of a
shock standing off a wall even in cases that do not involve accretion (see Fig. 1).
This layer acts effectively as a “piston head,” and the standoff distance of the shock
front from it is of the order of the size of the cooling zone, xs ∼ vps (e/L) (where
vps is the velocity of the postshock flow and e is the internal energy density).

The physical origin of the global radiative instability can be understood by
considering a perturbation of the shock (or, equivalently, “piston”) speed. If the
perturbation is to a larger (resp., smaller) value, the postshock temperature will
become correspondingly higher (resp., lower), which in the unstable cooling regime
will lead to weaker (resp., stronger) cooling, requiring a longer (resp., shorter)
cooling length and hence a further increase (resp., decrease) in the shock speed. In
the nonlinear regime this instability results in global oscillations of the shock front
with respect to the cold dense layer on a time scale ∼ tcool, which in extreme cases
can involve the complete collapse of the cooling region (“catastrophic” cooling4).
The proposed astrophysical applications of this mechanism in the case of thermally
emitting Newtonian shocks have included accretion flows onto compact objects,
supernova remnants, interstellar (wind) bubbles, colliding winds, and Herbig-Haro
objects (the heads of jets from newly born stars).

bA shock is radiative if the following two conditions are met: (1) it is in the fast-cooling regime, i.e.
the cooling time tcool of the radiating component (which in relativistic shocks is typically electrons
and positrons) is shorter than the dynamical time tdynamical of the shock, and (2) the radiating
component contains most, if not all, of the thermal energy behind the shock (or, equivalently, the
parameter εe defined below is not � 1).
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This contribution considers the possibility that a global radiative instability
applies also to nonthermally emitting relativistic shocks. Such shocks evidently
occur in relativistic jet sources, particularly those associated with active galactic
nuclei (AGNs) and gamma-ray bursts (GRBs). These sources exhibit variable non-
thermal emission that is often characterized as “flares.” Some of the observed flares
show a pronounced oscillatory behavior, and in certain cases it can be argued that
the associated shocks are radiative. Such shocks would be prime candidates for this
mechanism if indeed it could be shown to operate in these systems.

Previous work on thermally emitting Newtonian shocks (including the effect of
a transverse magnetic field) and on local radiative instability of a nonthermally
emitting gas is summarized in Secs. 2 and 3, respectively. Section 4 presents and
explains the results of a linear stability analysis, which indicate that nonthermal rel-
ativistic shocks are not susceptible to a global instability of this type, and describes
a numerical scheme that is being utilized to simulate such shocks.

2. Global Instability of Thermal Newtonian Shocks

The linear stability analysis for this case was first performed by Chevalier and Ima-
mura,5 who considered a plane-parallel shock with L ∝ n2Tα and stationary-wall
boundary conditions. They found that the shock is overstable (i.e. the shock-front
position oscillates with exponentially growing amplitude) in the fundamental mode
for α � 0.4 and in the first and second overtone modes for α � 0.8, with an oscilla-
tion frequency 0.3 (vs/xs0) for the fundamental mode and 0.6− 1.0 (vs/xs0) for the
first overtone mode for α between −1 and 2 (where vs is the upstream fluid velocity
with respect to the wall). It was subsequently demonstrated that the results are
not qualitatively modified when more realistic cooling functions and unequal elec-
tron and ion temperatures are taken into account, or when different downstream
boundary conditions are employed. The inclusion of transverse perturbations (i.e.
perpendicular to the shock normal) does not introduce new modes, but it desta-
bilizes the parallel fundamental and first-overtone modes already for α � 1.0.6

The linear analysis also indicated that transverse perturbations could modify the
luminosity behavior of the shock.7

The nonlinear evolution of the instability has been investigated numerically by
various groups. For example, Walder and Folini8 carried out 1D simulations and
found a variety of behaviors, ranging from smooth, sinusoidal oscillations in shock
position and integrated luminosity with O(1) amplitudes to abrupt, large-amplitude
(up to 2 orders of magnitude) variations associated with catastrophic cooling and
accompanied by the formation of secondary shocks. The manifested behavior is
evidently determined by the form of the cooling curve Λ(T ) that corresponds to the
postshock temperature of the stationary shock solution. Mignone9 also performed
1D simulations and found that the saturated oscillatory phase is characterized by a
“main sequence” of overtones but that these modes also exhibit complex nonlinear
interactions. Sutherland et al.10 did both 1D and 2D simulations and found evidence
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that the amplitudes of the second and subsequent shock bounces in the 2D case
are reduced by a factor of ∼ 2 compared to the 1D results, likely because more
dynamical modes are available to siphon away the shock kinetic energy.

The presence of a transverse magnetic field of amplitude B has a purely stabi-
lizing influence on thermal shocks. In this case B ∝ n, so, as cooling increases the
compression and n goes up, so does also the magnetic pressure B2/8π, which resists
further compression and provides a “cushioning” effect that opposes the shock-front
collapse. The strength of the magnetic field is parameterized in the Newtonian limit
by the Alfvén Mach number MA = vs/vA, where vA is the upstream Alfvén speed.
Linear and nonlinear calculations11–13 have determined that all modes can be sta-
bilized by a comparatively weak field (MA < 8) when α > 0 and by an even weaker
field (MA < 33) when α > 0.5, but that a typical interstellar field may not be strong
enough to stabilize a sufficiently fast shock that produces a negative postshock value
of α.

3. Local Instability of Nonthermally Emitting Gas

The Newtonian system of equations for a gas composed of nonrelativistic protons
(which dominate the inertia) and relativistic electrons (with a Maxwellian or a
power-law energy distribution) that emit synchrotron and inverse-Compton radia-
tion was linearized by a number of authors.14–16 The parameters of the problem are
the magnetic-to-thermal and the photon-to-magnetic energy density ratios, which
measure, respectively, the dynamical importance of the magnetic field and the rel-
ative contribution of the synchrotron and inverse-Compton radiation processes. It
was found that synchrotron-emitting gas can become unstable to perturbations with
wavevectors that are perpendicular to the magnetic field if the magnetic-to-thermal
pressure ratio is < 1/4 and that inverse-Compton losses (for a given external radi-
ation field) are stabilizing. The instability condition is again the isobaric criterion
given by the analog of Eq. (1), but with p replaced by the total pressure p+B2/8π.

The physical basis of the instability can be understood from the dependence
of the synchrotron emissivity on the magnetic field amplitude.17 For the case of a
monoenergetic relativistic electron distribution with a (random) Lorentz factor γe

and number density ne, Lsynch is given by

Lsynch =
cσT

6π
γ2
eneB

2 , (2)

where c is the speed of light and σT is the Thomson cross section. Under ideal MHD
conditions, the magnetic field amplitude increases with density. Thus, a perturba-
tion that increases B enhances the cooling, which in turn induces compression that
further increases B.

Numerical studies of the nonlinear evolution of the instability have verified that
it could potentially account for the formation of bright knots and filaments in
pulsar-wind nebulae and in extragalactic radio sources.18,19
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4. Global Stability of Nonthermal Relativistic Shocks

The occurrence of a local radiative instability in a synchrotron-emitting gas raises
the possibility that, as in the thermal emission case, a shock cooling by nonthermal
radiation might be subject to a global oscillatory instability. On the other hand,
the “cushioning” effect of a transverse magnetic field, which was found to stabilize
purely thermal shocks, should apply (and, in fact, be inherently present) in this case
as well. Furthermore, although inverse-Compton cooling by an external radiation
field was shown to have a purely stabilizing influence on a local instability, it might
have a more complex influence on a global instability of a hydromagnetic shock in
that it would increase (through induced compression and resultant field amplifica-
tion) the relative contribution of synchrotron radiation cooling as the shocked gas
moved downstream in the cooling zone.c The outcome of these potentially compet-
ing effects, which determines whether a global instability indeed exists in this case
and the range of its properties if it does, must be investigated by explicit calcu-
lations. Since the astrophysical circumstances under which this instability might
arise likely involve relativistic motions, a fully covariant special-relativistic treat-
ment that allows for large bulk and random Lorentz factors is required in this
study.

4.1. Linear stability analysis

This analysis has been carried out by Granot and Königl, and full details are given in
Ref. 21. It is patterned after the Newtonian treatment of thermally emitting shocks
in Ref. 5 but specializes to the ultrarelativistic limit (preshock bulk Lorentz factor
and postshock random Lorentz factors � 1), which leads to a distinct formulation
that cannot be simply reduced to the Newtonian case.

4.1.1. Formulation

The setup is as shown in Fig. 1: a planar shock is located at a distance xs from
a “wall” (or “piston”) that is fixed at x = 0. The position of the perturbed shock
oscillates about xs0, the equilibrium shock–piston separation, which is assumed not
to vary on the time scale of the oscillations. All velocities are measured in the rest-
frame of the piston. In this frame, the ambient gas (subscript “a”) flows in with a
4-speed ua � 1. The shock is assumed to be strong, with effectively infinite thermal
and Alfvén Mach numbers. In this case the fluid 4-velocity u2 = γ2β2 immediately
behind the shock transition (subscript “2”) can be expressed as a function only of
the magnetization parameter σa (defined below), independent of the shock speed.
The gas is composed of protons and neutralizing electrons and/or electron-positron
pairs (parameterized by χ ≡ ne+/ne−). Both the proton and the e± components are

cBoth of these effects, which arise from cooling-induced postshock field amplification, were explic-
itly demonstrated in the nonthermal hydromagnetic shock models of Granot and Königl.20
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Fig. 1. Sketch of a radiative relativistic shock standing off a “wall.” The equilibrium 4-velocity
profiles for several combinations of the model parameters are superposed. The notation and further
details are given in the text.

taken to have an ultrarelativistic equation of state behind the shock (w = 4p, where
w is the enthalpy density). The upstream gas is assumed to be cold (wa ≈ ρac

2,
where ρ is the rest-mass density).

The shock is assumed to be transversely magnetized and to obey ideal MHD.
In this case one can show that B/n = const in both the steady and the perturbed
flow. The field strength is determined by the upstream magnetization parameter
σa ≡ u2

Aa, where u2
Aa = B2

a/4πwa ≈ B2
a/4πρac

2 is the square of the upstream
Alfvén 4-velocity. An alternative parameterization is in terms of εB, the magnetic-
to-internal energy ratio immediately behind the shock transition, which can be
expressed as a function of σa.

The shock emission is assumed to be purely nonthermal and to involve syn-
chrotron radiation and inverse-Compton scattering of the synchrotron photons
(SSC) and possibly also of an external radiation field (ERC) by locally monoener-
getic electrons and positrons. (The protons are assumed to evolve adiabatically with
an adiabatic index of 4/3.) Thus, L = (1+Y )Lsynch, where Lsynch is given by Eq. (2)
and Y is the Compton-y parameter. The energy available for radiation is determined
by the parameter εe, the fraction of the internal energy in e± immediately behind
the shock transition, and the relative contribution of the inverse-Compton process
is fixed by Y2, the value of Y at that location. One can write

Y2 = b+
(1 + b)

2

(√
1 +

4a
(1 + b)2

− 1

)
(3)

(see Ref. 20), where a ≡ k2u
2
2(β

−1
2 − 1)εe/εB (with k2 being a numerical coefficient

O(1)) and b ≡ eext
ph2/eB2 (the ratio of the external-photon and the magnetic energy
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densities behind the shock transition). Equation (3) (with k2 ≈ 1) demonstrates
that the SSC radiation component is determined directly by the parameters εe and
εB. Hence Y2 can effectively be replaced by the parameter b that measures the
relative strength of the external radiation field (which, when present, is taken to be
isotropic in the upstream rest frame).

The particle density n, rest-mass density ρ, magnetic field amplitude B, as well
as w, p, and L are measured in the local rest frame of the fluid. The shock is analyzed
using the covariant conservation equations for particle number, momentum, and
energy:

∂

∂t
(γn) + c

∂

∂x
(γβn) = 0 , (4)

∂

∂t

(
γ2βwtot

)
+ c

∂

∂x
(γ2β2wtot + ptot) = −γβL, (5)

∂

∂t
(γ2wtot − ptot) + c

∂

∂x
(γ2βwtot) = −γL , (6)

where wtot ≡ w + (B2/4π) and ptot ≡ p + (B2/8π). The appearance of radia-
tive cooling terms of comparable magnitudes on the right-hand sides of Eqs. (5)
and (6) indicates that, in contrast with the Newtonian case, both the energy and the
momentum of the emitted radiation can play an important role in highly relativistic
shocks.

The shock equations have been linearized (setting u(ξ, t) = u0(ξ) + u1(ξ)eωt,
etc., where ξ ≡ x/xs) with respect to the equilibrium solution derived in Ref. 20. In
this solution, the “wall” is identified with the location where the internal energy of
the e± component completely vanishes, which formally only occurs asymptotically.
This requires the introduction of another numerical parameter (δ � 1) that allows
an effective postshock cooling distance xs0 to be defined. Altogether, the parameters
of the problem are thus εe, σa (or εB), Y2 (or b), and δ. (The composition parameter
χ is not included in this list since it only affects the value of the equilibrium cooling
length xs0 and hence just the normalization of x.)

Several equilibrium velocity curves, corresponding to different values of σa (with
the other parameters held fixed) are plotted in Fig. 1.

One obtains six ODEs for the real and imaginary parts of the dimensionless
perturbations of the velocity (η), pressure (Π), and number density (ζ), and uses
the boundary conditions at ξ = 0d to determine (iteratively) the dimensionless
complex frequency ψ = ψR + iψI as the eigenvalue of the problem (with ψR > 0,
|ψI| > 0 and ψR < 0, |ψI| > 0 indicating an overstability and decaying oscillations,
respectively).

dSo far only the standard “wall” BC u1(ξ = 0) = 0 has been considered.
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Fig. 2. Normalized complex frequencies of the global modes obtained by linearizing about the
equilibrium shock solutions shown in Fig. 1.

4.1.2. Results

Although the investigation is not yet complete and only a limited number of param-
eter combinations have been examined, the indications so far are that the model
shock under consideration is linearly stable to global oscillations. Figure 2 shows
the derived eigenvalues in the complex frequency plane for the equilibrium solu-
tions exhibited in Fig. 1. The successive modes for each 4-parameter combination
are clearly seen, and all are located in the stable region to the left of the ψR = 0
line.

These results are not entirely surprising. If the magnetization parameter σa is
� 1 then the pressure immediately behind the shock is thermally dominated.e For
the adopted monoenergetic particle distribution the constant pressure constraint
then implies ne ∝ 1/γe. Using also B ∝ ne, one infers from Eq. (2) that Lsynch ∝
1/γe.f Treating γe as the temperature T in the expression L ∝ Tα−2 considered
in Sec. 1, we infer that, heuristically, the synchrotron emission case corresponds
to an effective temperature power-law index α = 1. As summarized in Sec. 2, for
this value of α a thermal Newtonian shock is already stable to global oscillations
in the fundamental and first overtone modes even before any magnetic field effects
further stabilize it. When a magnetic field is present, all modes are stabilized for
M−2

A � 9 × 10−4 when α > 0.5, and for an even smaller (in fact, much smaller)
value of M−2

A when α increases to 1 (see Fig. 3 in Ref. 11 and Fig. 4 in Ref. 13).

eIndeed, in this case the postshock magnetic and thermal pressures are ∼ 8(B2
au2

a/8π) and ∼
(2/3)ρau2

ac2, respectively, so the ratio between them is ∼ σa.
fUnder similar assumptions, one infers L ∝ γ0

e and ∝ γe when the SSC and ERC components,
respectively, dominate, indicating neutral and stabilizing local responses, respectively, to enhanced
cooling.
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The relativistic analog of M−2
A is σa (which, as noted above, similarly fixes the

postshock magnetic-to-thermal pressure ratio). This correspondence indicates that
it is indeed plausible that all modes shown in Fig. 2 remain stable even for the
lowest plotted value (10−3) of σa.

Values of σa much smaller than ∼ 10−3 are not often inferred in the relativistic
astrophysical shocks (such as the GRB afterglow shocks22,23) to which this mecha-
nism could potentially apply. Furthermore, in the limit when σa (or, equivalently,
εB) is � 1 but εe remains ∼ 1 (as required for efficient cooling), the postshock
Compton-y parameter is Y2 ≈ (εe/εB)1/2 � 1 (see Eq. (3)), implying that the SSC
radiation component, rather than the synchrotron component that drives the insta-
bility, dominates the emission. It thus appears that, under realistic circumstances,
nonthermally emitting relativistic shocks will remain linearly stable to global oscil-
lations. Given, however, the finding in the thermal Newtonian case that the various
modes exhibit complex interactions in the nonlinear regime,9 it is of interest to
check the above conclusion with numerical simulations. The numerical scheme that
is being utilized for this purpose is described in the following subsection.

4.2. Numerical simulations

This study is carried out in collaboration with A. Mignone. The relativistic MHD
(RMHD) equations are solved using the PLUTO code.24 PLUTO is a modular code
offering a multi-physics, multi-algorithm environment specifically oriented toward
the treatment of astrophysical flows in the presence of discontinuities. The modular
structure exploits a general framework for integrating a system of conservation laws,
built on modern Godunov-type shock-capturing schemes. Equations are solved in
a conservative way using a finite-volume formulation, whereby volume averages are
evolved in time by solving Riemann problems at cell interfaces. Denoting with un

i

the vector of conserved variables at time t = tn in cell i, the integral average ūn
i is

advanced in time according to

ūn+1
i = ūn

i − ∆t
∆x

(
f

n+ 1
2

i+ 1
2
− f

n+ 1
2

i− 1
2

)
, (7)

where fluxes f
n+ 1

2
i±1/2 are computed as time averages at cell edges. Flux computation

requires solving (in an exact or approximate way) a Riemann problem, that is, the
decay of an arbitrary discontinuity separating two adjacent states to the left and
to the right of a given cell interface.

Second-order accuracy in space is achieved using limited slopes to prevent
unwanted spurious numerical oscillations in the vicinity of strong gradients.
Predictor-corrector methods can be used to gain second-order accuracy in time.

For the present application, we employ the RMHD module together with the
relativistic HLLC Riemann solver developed in Ref. 25 for the case of transversely
magnetized flows. The equation of state can be chosen to be either a constant-Γ
law (Γ = 4/3 or Γ = 5/3 for a hot or a cold gas, respectively) or the approximation
to the Synge gas discussed in Ref. 26.
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Source terms are included using operator splitting, that is, by alternately solving
the homogeneous set of equations (i.e. without the source term) followed by a source
step, where only the effect of the source term is considered.

Work on these simulations has already commenced and the results will be
reported elsewhere.
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