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Abstract

We describe a financial market as a noncooperative game in strate-
gic form. Agents may borrow or deposit money at a central bank
and use the cash available to them in order to purchase a com-
modity for immediate consumption. They derive positive utility
from consumption and from having cash reserves at the end of the
day, whereas being bankrupt entails negative utility. The bank
fixes interest rates. The existence of Nash equilibria (both mixed
and pure) of the ensuing is proved under various assumptions. In
particular, no agent is bankrupt at equilibrium.

∗The authors are grateful to the Minerva Foundation, Germany, the support of which
was essential in the genesis of this paper.
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1 Introduction

The problem of modeling an exchange economy with money and credit as a
non-cooperative game has been investigated for more than three decades (see
e.g. [13] for an early contribution, and [7] for a survey and introduction to a
recent issue of the Journal of Mathematical Economics devoted exclusively
to strategic market games). While this substantial literature led to a deeper
understanding of many issues, it is fair to observe that several key difficulties
still need to be resolved.

Thus, it would be desirable to have a model for an exchange economy in
which i) there exists money, serving both as a mean of exchange and as
a store of value; ii) agents are price makers (and not just price takers); iii)
there exists a central bank who issues money, accepts deposits, and lends; iv)
bankruptcy is not ruled out, but is penalized. To the best of our knowledge,
no model encompassing all these desiderata is available as yet. The early
paper [13] does not discuss credit.

Most papers that seem to deal with strategic behavior on financial markets do
not quite do that (of the rather substantial body of literatur, let us mention
e.g. [1] [3] [4] [2] [8] [9]). This is particularly true for several of the contri-
butions to the above mentioned special issue (see e.g. [3] [7] [14] ). While
strategic behavior is mentioned in the title of the special issue, an inspec-
tion of the models reveals immediately that economic agents regard prices
as given in advance, and all models belong to General Equilibrium Theory.
Consequently, the equilibrium concept appearing in those contributions is
Walrasian or competitive, i.e., a price equilibrium and not a Nash equilib-
rium. Thus, agents are optimizing price takers and do not play strategically
a non-cooperative n-person game.

We won’t enter here an extensive discussion of this claim for obvious reasons
of space and of readers’ interest. Rather, we concentrate on three quite
representative examples.

Consider the contribution by Dubey and Geanakolpos [3]. On p. 413, the
authors define the choices of an agent α to be certain quadruples which
depend on an interest rate and a price vector. Accordingly, in the definition
of monetary equilibrium on p. 417, each agent acts so as to optimize, and the
money market clears. One has to read very carefully p. 412, where it says
that ”Both (the interest rate) θ and (the price) p are taken by (agent) α as
exogenously fixed”. This statement, along with proper understanding of the
(slightly ambiguous) statement (ii) on page 417 (correct anticipation of the
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macrovariables), would convince the attentive reader that there is no Nash
equilibrium in sight. The agents are price takers and do not play a game.

For another example we turn to Tsomocos [14]. This author offers an equilib-
rium analysis that superficially appears to be dealing with a strategic game,
as in our present model. Once again, one has to pay close attention to the
statement on page 629 (at the beginning of section 2.8). It is seen that com-
modity prices psl are regarded as fixed by the agents. A similar statement
appears at the beginning of section 3.1 (page 631). With some effort, the
reader would understand that MEBCD (section 4, p. 635) is not what we
are looking for here: it is not a Nash equilibrium of a noncooperative game
which models strategic behavior.

Finally, the more recent study [6] deserves a close look. Authors consider a
stochastic game with a continuum of players. However, the payoff functions
as well as the transition functions of the Markovian game are entwined via
the price only. Hence, with fixed prices, the players solve an optimization
problem. Now, as there is an atomless player space involved, it turns out
that the deviation of a single player does not change the global amount of
bids of the other players. The combined effect of these features is the fact
that deviating from equilibrium will not improve a players’ payoff. Yet,
this consideration reveals that (contrary to the title) players do not behave
strategically. Rather, the Nash equilibrium constructed is of special nature
(a stationary Markov equilibrium) which allows every player to follow an
optimization procedure, given the (equilibrium) price.

There is no way around: this is not strategic behavior but pricetaking.

Besides, games with a continuum of players (and in particular the above one)
have to face a common calamity: how do players (do the rules of the game)
cause an (independent and strategically chosen) set of strategies to become a
measurable function? While this is a common feature of many models ( e.g.,
Dubey–Shapley [5] have taken great care to justify it), we believe that it
may be innocent if players behave in a pricetaking way but severe if they act
strategically.

We wish to stress that our present model, while it is close in some sense to the
one in [6], is really different. We do consider strategic behavior, we present a
noncooperative game and the Nash equilibrium cannot be regarded as a price
equilibrium. Thus, the result of choosing a set of strategies is well defined
off the equilibrium and at equilibrium the deviation of a player causes no
benefits despite the intricate impact of his deviation on bidding and asking
for loans.
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Analysis of such an equilibrium as suggested here is not entirely obvious (even
though the existence proof is based – as usual – on a fixed point argument). In
particular, the method of ’backwards induction’ which allows for a temporal
extension of the equilibrium concept, is not well defined here. The proper
concept is that of subgame perfectnes which (other than, say, in [6]) cannot
be pursued by standard dynamic programming procedures.

This (somewhat detailed) discussion of the literature should convince the
reader that a model including the elements i) through iv) described above is
still desirable and has not been treated so far.

In the model proposed here we consider a finite set of agents engaged in
trade of a Shapley-Shubik type ([11], [12]), and a central bank which may
issue money, distribute it as loans, and accept deposits. The central bank has
the authority to determine the various interest rates. Agents would derive
a negative utility from being bankrupt, whereas positive cash holdings at
the end of the period have positive utility, the latter presumably deriving
from subsequent use of money at a later period. We suggest here a one-shot
model; we plan to construct a multi-period extension in subsequent work.

Our model is described in detail in Section 2. Each agent is endowed with
positive amounts of a consumer nondurable commodity and money. Agents
issue bids in terms of money towards purchasing a quantity of the consump-
tion good. (Agents cannot consume directly their commodity endowment in
whole or parts.) Agents may exceed their endowment (and thus take a loan
from the bank), or else they may bid less than their endowment, their money
surplus going to the bank as a deposit. There is a central bank in the mar-
ket which controls the interest rates for deposits and loans and increases the
total amount of money, if the books cannot be balanced otherwise. As soon
as bids are announced, the price of the commodity is given by the equation
(5) as the ratio of the aggregate bid to the aggregate supply of the good.
Each agent then receives for consumption the good bought by his bid and
the money proceeds of the selling of his commodity endowment. In addition,
our agent receives returns from her bank deposit or has to pay the loan (with
interest).

At the end of the day, each agent has 1) consumed an amount of the com-
modity (deriving from it a positive amount of utility), 2) is unable to repay
his loan with the prescribed interest, so that he is bankrupt and derives a
negative utility from this fact, or else 3) has a positive amount of cash left,
from which she derives positive utility. These three components of the to-
tal utility are given in (3) of Definition 2.1. Besides the usual monotonicity
and concavity assumptions we also require that the penalty for bankruptcy



Section 1: ? Introduction ? 5

be sufficiently large so as to offset the positive utility of high consumption,
and impose on the utility functions several technical assumptions in order to
facilitate certain existence proofs. We do not try to optimize the bankruptcy
rule. We trace the flow of cash in the economy and show that the bank never
has to withdraw funds out of the economy.

The bank announces a policy concerning interest rates on deposits and loans.
Formally, this policy is a (vector-valued) function of the agents’ bids. The
agents, in turn, may take into account the bank’s policy. In this manner a
well defined game (the financial market game) is specified. (As usual in this
literature, bids play the role of strategies). The bank may try to achieve cer-
tain objectives through its policies. One such objective could be the wish to
eliminate unnecessary bankruptcies. Another might be the desire to combat
inflation. We exhibit a policy which leads to certain desirable outcomes.

In Section 3 we establish the existence of a Nash equilibrium for the financial
market game. (An essential element of the proof is the construction of a
compact set of strategies which is mapped into itself by the best response
correspondence.) Under certain regularity conditions we demonstrate the
existence of a (Nash) equilibrium in mixed strategies. For a specific policy
we prove existence of an equilibrium in pure strategies.

Our original goal was to put forward a multi-period model where the utility
for holding cash reserves at the end of the j-th period is derived from the
utility of having this reserve as an endowment for the j + 1-st period, and
obtaining (using backward induction) a subgame-perfect equilibrium in pure
strategies. We plan to achieve this goal in a sequel to this paper.
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2 The Model

We consider an economy with a financial market. There is a central bank
which is responsible for the supply of money and which has to support eco-
nomic growth as well as to prevent inflationary development. The economic
agents or players issue bids for consumption and are allowed to ask for loans
from the bank. At the end of each period, the bank has to balance its books.
In this section we restrict the discussion to one period.

Definition 2.1. A financial market (with one commodity and money) is
a triple

(1) M := (I,A, U)

with the following specifications and interpretations:

1. I = {1, . . . , n} is a finite set, the set of players or agents.

2. The n× 2-matrix

A = (a1,a2) > 0

reflects the initial assignments of commodities and money to the
agents. In particular, the i−th coordinate of the vector a1 = (a1

1, . . . , a
n
1 )∈

Rn
+, written as ai

1, denotes the initial endowment of player i ∈ I with
the consumption good. Similarly, the vector a2 ∈ Rn

+ indicates the
initial allocation of money to the agents.

3. Finally, U = (U i)i∈I denotes the family of utility functions of the
players; each one of them is a mapping

(2) U i =: R3
+ → R.

The utilities are separable. That is, there are functions ui : R+ → R+,
wi : R+ → R+, and V i : R+ → R+ such that the utilities can be written
in the form

(3) U i(α1, α2, α3) = ui(α1)− wi(α2) + V i(α3) (α1, α2, α3) ∈ R3
+.

The functions ui,−wi, and V i are continuous and strictly monotone
(hence almost surely differentiable), moreover ui and −wi are concave
and second derivatives exist up to finitely many points.
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The a.s. derivative of V i satisfies the following conditions: There is
t0 > 0 and ε0 > 0 such that

(4)
V ι′(t) ≥ ε0 (t ≤ t0) ,

V i′(t) ≥ ε0

t
(t ≥ t0)

holds true. Moreover, we require ui(0) = wi(0) = 0, (ui)′ < (wi)′ (i ∈
I), so that −wi is negative for all arguments (“debts”).

The agents derive utility from consuming the good as well as from having a
cash balance. The consumption utility is represented by the functions ui.

On the other hand, the agents derive utility from money in a two-fold fashion.
On one hand, they may be punished for leaving the game being unable to
pay their debts. This is is expressed by the functions wi, which reflect the
“bad reputation” or uneasiness of a player for being broke. Furthermore, the
agents appreciate acquiring a large fortune. This component of the overall
utility is taken care of by the functions V i.

Thus, the monetary part V i reflects future possibilities resulting from holding
money with the purpose of spending it in later periods. In a more complete
(multi-period) model, the function V i would be determined by backward
induction. We leave this development to a subsequent publication

Basically, the agents are allowed to act strategically in a very simple way.
They issue bids in terms of money towards acquiring a quantity of the con-
sumption good. Thus, at this stage, the action space of each agent is R+

and an action is denoted by bi ∈ R+ for agent i ∈ I. (There is at present
no difference between actions and strategies of the players or agents.) The
bids are nonnegative. Agents may exceed their endowment (and thus take a
loan from the bank) in which case they are called debtors . Or else agents
may also bid less than their endowment, their money surplus then goes to
the bank as a deposit and we call the corresponding agent a depositor .

There is a central bank in the market which is required to take two types of
actions (not independently): controlling the interest rates and increasing the
total amount of money in order to balance its books.

The price generating mechanism is modelled in a rather straightforward fash-
ion. Given that all agents made their bids, the price of the commodity is set
to be

(5) p :=

∑
i∈I bi

∑
i∈I ai

1

.
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Introducing abbreviations

(6) ā1 :=
∑
i∈I

ai
1, ā2 :=

∑
i∈I

ai
2, b̄ :=

∑
i∈I

bi, etc.

the equation (5) is shortened to

(7) p =
b̄

ā1

.

Now, if the bank has determined the interest rates to be r1 = ρ1 + 1 ≥ 1 for
loans taken by the agents and r2 = ρ2 + 1 ≥ 1 for deposits from the agents,
then agent i’s income is determined by

(8) ci := pai
1 − r1(b

i − ai
2)

+ + r2(a
i
2 − bi)+ .

This should be interpreted as each agent selling his share of the consumption
good, receiving the appropriate monetary proceeds, while spending his bid
entirely. He also receives the yield of his deposit with the bank or repays his
loan with interest.

Note that each agent’s income may be negative. He will feel these debts in
his utility function but, at the end of the period, his debts will be cancelled.

On the other hand, each agent consumes his share of the consumption good
determined by his bid and the prevailing price, that is, assuming a positive
price, agent i receives

(9)
bi

p

units for consumption.The total utility derived is now

(10) U i(
bi

p
,−(ci)−

p
, (ci)+) = ui(

bi

p
)− wi(−(ci)−

p
) + V i((ci)+)

One of the main tasks of the bank is to balance the books in order to control
the total amount of money available in the economy. Inevitably, this may
require to add a certain amount of money, say π ≥ 0. Thus the balancing
equation is now

(11)
∑
i∈I

(
pai

1

∧
r1(b

i − ai
2)

+
)

+ π =
∑
i∈I

(bi − ai
2)

+ + ρ2

∑
i∈I

(
ai

2 − bi
)+

,

which formally defines a nonnegative number π.
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This relation equates the input and output of the money flow as viewed by the
bank. On the left hand side each term reflects the cash influx from a player
who either pays his debts or, if he is unable to do so, leaves his total fortune
acquired from turning in his commodities and receiving the corresponding
payment given the prices.

On the right hand side we observe the money outflux: the bank issues loans
to those agents with bids exceeding their initial money endowment. Agents
who did not use up their initial money endowments receive the interest paid
for the remainder.

It is now a simple exercise to verify that we have a law of conservation of
money for our economy. This is expressed by the following lemma.

Lemma 2.2. The balancing equation (11) is satisfied if and only if

(12)
∑
i∈I

(ci)
+

=
∑
i∈I

ai
2 + π

is satisfied.

Proof: For any pair (p, b) ∈ R+×Rn
+ and for any interest rate r1 ≥ 1 denote

by

(13) Br1 :=
{
i ∈ I | pai

1 < r1(b
i − ai

2)
+
}

the set of agents who are bankrupt in the situation reflected by these data.
Now, the total sum of surviving capital is

(14)
∑
i∈I

(ci)+ =
∑

i/∈Br1

pai
1 − r1

∑

i/∈Br1

(bi − ai
2)

+ + r2

∑
i∈I

(ai
2 − bi)+ .

The balancing equation (11) in turn can be written

(15)

∑
i∈I

(bi − ai
2)

+ + ρ2

∑
i∈I

(ai
2 − bi)+ =

∑

i∈Br1

pai
1 + r1

∑

i/∈Br1

(bi − ai
2)

+ + π .

Adding up both equations and observing that r2 = 1 + ρ2 we obtain

(16)
∑
i∈I

(ci)+ =
∑
i∈I

pai
1 +

∑
i∈I

(ai
2 − bi)+ −

∑
i∈I

(bi − ai
2)

+ + π ,
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or

(17)
∑
i∈I

(ci)+ = pā1 + ā2 − b̄ + π .

Comparing the price setting equation (7) we obtain the desired result. q.e.d.

It is an essential feature of the model that the total amount of money within
the economy has been increased by just the monetary corrections the bank
issued in terms of paper money in order to balance its books.

At this stage it should be explained how the bank achieves the various goals
that are assigned to it. The additional amount of paper money injected into
the market for balancing will eventually have an inflationary effect. Interest
rates should be determined so as to keep inflation low on one hand and to
avoid unnecessary bankruptcy of agents on the other hand. It is not obvious
a priori that these goals are achievable simultaneously.

Observe that balancing the influx and outflux of money cannot always be
achieved just by manipulating the interest rates, without an inflationary
input of money. One might conjecture that, for π = 0, interest rates could
be determined by the balancing equation (11). However, it is easy to see
that this may fail, as the left side of (11) may be strictly smaller then the
right side. We will come back to this problem below (Remark 2.4). Also, the
interest rates may not be uniquely determined by (11), assuming that π = 0.
Thus, it will be necessary to adjust the additional money input of the bank
in view of the reactions of the players to the interest rates.

To this end the bank should take the strategically motivated bids of the
agents into account. Hence, its behavior should be expressed as a reaction
function defined on action n−tuples. Consequently, as prices depend on
bids, there are some obvious coupling effects to be observed (and formulated)
between the actions of the players and the bank’s policy.

Therefore, let us now present a precise description of the bank’s advance
planning, resulting in announcements concerning its reactive policy, ahead of
the players bidding.

To this end, we consider n−tuples b ∈ Rn
+ of actions of the players and

hypothetical price levels denoted by p ∈ R+.

Recall definition (13) of Br1 . For any ρ2 ≥ 0, it is obvious that

(18)
∑
i∈I

(
pai

1

∧
(bi − ai

2)
+
)
≤

∑
i∈I

(bi − ai
2)

+ + ρ2

∑
i∈I

(
ai

2 − bi
)+
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holds true. Hence, we may define the quantity
(19)

1 ≤ r̄1 = r̄1(p, b, ρ2) := sup



 r1 ∈ R+ Br1 = B1,

∑
i∈I

(
pai

1

∧
r1(b

i − ai
2)

+
)

≤
∑
i∈I

(bi − ai
2)

+ + ρ2

∑
i∈I

(
ai

2 − bi
)+

}
,

where the value ∞ is permitted, e.g., if bi ≤ ai
2 holds for all agents i ∈ I,

that is, if no one’s bid exceeds his endowment.

Consider the lowest possible interest rate r1 = 1. Then r̄1 is the largest
rate the bank could choose without increasing the set of bankrupt agents,
subject to balancing the books with a possibly positive amount of added
paper money.

Let us collect a few simple relations concerning interest rates and the financial
situation of agents.

Lemma 2.3. Let (p, b) ∈ R+ × Rn
+ be such that

(20) pā1 ≥ b̄

and let r1 ≥ 1 be an interest rate such that the balancing equation (11) is
satisfied with some π ≥ 0. Then, not all players are bankrupt, i.e.,

(21) Br1 6= I .

Proof: Assume, on the contrary, that

(22) 0 ≤ pai
1 < r1(b

i − ai
2)

is valid for all i ∈ I. Then the balancing equation (11) reads

(23)
∑
i∈I

pai
1 + π =

∑
i∈I

(bi − ai
2).

In view of (20) , it is clear that

(24)
∑
i∈I

bi ≤ p
∑
i∈I

ai
1 + π =

∑
i∈I

(bi − ai
2) <

∑
i∈I

bi
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yields a contradiction. q.e.d.

Next, given b ∈ Rn
+, we denote by

(25) E :=
{
i ∈ I bi > ai

2

}

the set of those players whose bids exceed their endowments. Then we have

Remark 2.4. Let (p, b, r2) ∈ R+ ×Rn
+ × [1,∞) be arbitrary. Then the following

statements hold true:

1. B1 ⊆ E.

2. If E = I and B1 = ∅ (i.e., E−B1 = I), then r̄1 = 1.

3. If E−B1 = ∅, then r̄1 = ∞.

4. If ∅ 6= E−B1 6= I, then r̄1 can be written in the form
(26)

r̄1 = r̄1(p, b, ρ2) := sup



 r1 ∈ R+

∑

i∈B1

pai
1 +

∑

i∈E−B1

r1(bi − ai
2)

≤
∑

i∈E

(bi − ai
2) + ρ2

∑

i∈I−E

(
ai

2 − bi
)

,

r1(bi − ai
2) ≤ pai

1 (i ∈ E−B1)



 .

From this it follows that r̄1 can be expressed by a closed formula as follows:

(27)

ρ̄1 =
∑

i∈B1

((
bi − ai

2

)− pai
1

)
+ ρ2

∑
i∈I−E

(
ai

2 − bi
)

∑
i∈E−B1

(
bi − ai

2

)

∧




∧

i∈E−B1

pai
1 − (bi − ai

2)
bi − ai

2



 .

5. In particular, if all agents have excess demand (E = I) and n−1 of them are
bankrupt at interest rate 1 (i.e., |B1| = n − 1), then the remaining player,
say i0 ∈ E − B1 cannot be broke at any r1; this follows from Lemma 2.3.
Therefore the

∧
-term in formula (27) vanishes and as a result we obtain a

simpler formula for r̄1 which is

(28) ρ̄1 =

∑
i∈I−i0

(bi − ai
2)− pai

1

bi0 − ai0
.
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The last formula reflects a situation in which the bank may be forced to set
an arbitrarily large interest rate if it wishes to balance its books without
adding inflationary money. In view of item 3 it is clear, however, that the
situation may deteriorate to the case in which no balancing is possible at all
without inflation.

Now, the bank’s decision will be reached as follows. Given the data (p, b, ρ2)
the bank considers how much the interest rate r1 should be raised and con-
sequently how much additional paper money should be issued in order to
balance the economy.

However, the interest rate r2 = 1 + ρ2 is also controlled by the bank. Thus
we come up with a first definition concerning the bank’s behavior:

Definition 2.5. A policy of the bank is a pair of continuous functions
(R1, R2) such that

(29) R1 : R1
+ × Rn

+ × R1
+ → [1,∞], R2 : R1

+ × Rn
+ → [1,∞],

(30) 1 ≤ R1(p, b, ρ) ≤ r̄1(p, b, ρ),
(
(p, b, ρ) ∈ R1

+ × Rn
+ × R1

+

)
.

Both functions have nonnegative partial derivatives outside a closed set which
is the union of finitely many polyhedra of lower dimension.

With some abuse of notation we denote R2 − 1 by ρ2.

It follows from (19) that the two components of the banks policy, taken
together, satisfy

(31)

∑
i∈I

(
pai

1

∧
R1(p, b, ρ2(p, b))(bi − ai

2)
+
)

≤
∑
i∈I

(bi − ai
2)

+ + ρ2(p, b)
∑
i∈I

(
ai − bi

)+
.

The interest rate for depositors can be chosen arbitrarily. Thereafter the
bank may formulate a policy concerning interest charged from borrowers.
Then, finally, it may still be necessary to fill a gap in the balancing equation
by adding a certain amount of money.

We now consider p not as a free variable but as a function of agents’ bids as
given by (5) or (7). Thus, we define a function

(32) P : Rn
+ → R+,
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by

(33) P (b) :=
b̄

ā1

.

We may then define the relevant policy functions of the bank in terms of
decisions of the players. The procedure permits the bank to determine, for
any action n−tuple b ∈ Rn

+ of the agents, the necessary increase in money
supply, provided its policy has been specified. Formally,

Definition 2.6. Let (R1, R2) be a policy of the bank. Then the resulting
banks’ monetary strategy is a triple S = (r1, r2,Π), given as follows:
The domains and ranges are described by

(34)
r1 : Rn

+ → [1,∞), r2 : Rn
+ → [1,∞),

Π : Rn
+ → R+ ,

and the first two functions are defined by the compositions

(35)
r2(b) := R2(P (b), b),

r1(b) := R1(P (b), b, r2(b)),

where P is given by formula (33). The function Π is given for every b ∈ Rn
+

as the unique money supply

(36) π = Π(b)

satisfying

(37)

∑
i∈I

(
P (b)ai

1

∧
r1(b)(bi − ai

2)
+
)

+ π

=
∑
i∈I

(bi − ai
2)

+ + ρ2(b)
∑
i∈I

(
ai − bi

)+
.

Thus, the bank (on its own) fixes a policy and then computes the functions
describing how it sets interest rates and increases the money supply. These
functions depend on the bids of the agents and will be announced publicly.

Hence, agents are made aware of consequences of their actions: they can
compute the increase in money supply, the prices and the various interest
rates, given everybody else’s decision. In this manner, n−person game is
defined and agents may reason strategically. So may the bank.
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Remark 2.7. Given a policy of the bank, the income of an agent

is a function of the actions of all agents. We denote this function by

(38) Ci : Rn
+ → Rn

and compute it by inserting the action-dependent prices and interest rates, i.e.,
the functions Π, r1, and r2 into formula (8). More explicitely, we have

(39) Ci(b) := P (b)ai
1 − r1(b)(bi − ai

2)
+ + r2(b)(ai

2 − bi)+ (b ∈ Rn
+).

Similarly, we obtain the utility functions of the players depending on bids by
composing the functions U i introduced in Definition 2.1, 3 with the functions
defined above, and get
(40)

U i : Rn
+ → R+

U i(b) := U i(
bi

P
,−(Ci)−

P
, (Ci)+) = ui(

bi

P
)− wi(−(Ci)−

P
) + V i((Ci)+),

(omitting the argument b in P and Ci).

Definition 2.8. Let M be a financial market and let R = (R1, R2) be a policy
of the bank. Then

(41) Γ = ΓM = ΓR
M := (Rn

+; U 1, . . . , Un)

is the financial market game (the one-shot game) generated by M and R.

Remark 2.9. We would like to specify policies of the bank that result in monetary
strategies with certain desirable properties. For this purpose it may be useful to
study properties of the function r̄1 which is defined by (19) and computed in some
special cases in Remark 2.4.

Consider first two disjoint subsets J, L ⊆ I, none of which is the full set.

Then, regarding prices and bids as independent variables as in Remark 2.4, we
consider the convex polyhedron
(42){

(p, b) ∈ R1
+ × Rn

+ | bi − ai
2 > pai

1 (i ∈ J), 0 < bi − ai
2 < pai

1 (i ∈ L),

bi − ai
2 ≤ 0 (i ∈ I − J − L)

}

If p and b are in this polyhedron, then the sets B1 and E are obviously the same
as J and J ∪ L, so that the function r̄1 is given by formula (27). The polyhedron
has a nonempty interior in which r̄1 is a linear fractional function of bi and p (in
fact a linear function if i ∈ B1). If L = I, then r̄1 = 1, and if J = I then r̄1 = ∞.

When varying the index sets J, L, we observe that there is a decomposition of R1
+×

Rn
+ into finitely many convex polyhedra with a nonempty interior, together with
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lower dimensional polyhedra (common boundaries). In each of these polyhedra
the function r̄1 is given by a formula of type (27) or else r̄1 equals 1 or ∞.

Hence the function r̄1 has easily computable partial derivatives outside a set of
measure zero which consists of finitely many closed lower dimensional polyhedra.

Let us now exhibit two “nice” policies of the bank such that the interest rate
r1 is monotone and has nonnegative partial derivatives with the exception
of finitely many points.

Remark 2.10. Let R2 = r2 be a constant and define R1 = RM
1 by

(43) R1(p, b, ρ) := r̄1(p, b, ρ) ∧M
(
(p, b, ρ) ∈ R1

+ × Rn
+ × R1

+

)

where M is large constant. This policy reflects the bank’s intent to avoid infla-
tionary generation of money as long as possible, that is, as long as the demand for
money does not exceed some huge amount. If this amount is exceeded, then the
interest rate will be bounded by M and the necessary amount of paper money will
be supplied.

Consider now the function r1 resulting from this policy via Definition 2.6. Let
b ∈ Rn

+ be an n−tuple of bids such that some agent i ∈ I is bankrupt. We want to

demonstrate that the partial derivative ∂r1
∂bi

exists, given the bids b−i of the other
players, with the exception of finitely many points.

Indeed, fix p = P (b) and r1 = r1(b) and consider the sets B1 and E. If E = B1,
then the same equation holds true in a small neighborhood of bi as well. Within
this neighborhood, the function r1 equals the large constant M and hence the
required partial derivative exists and equals zero.

Also, if B1 ⊆ E, B1 6= E, then the same relations are valid in a neighborhood
of bi and hence the derivative can be computed with the aid of formula (27),
substituting p by P (b) and applying the chain rule. This involves computing the
partial derivative with respect to bi of a function of the form

(44)
bi − P (b)ai

1

A
=

bi − b̄
ā1

ai
1

A
,

where A is a positive constant independent of bi as long as B and E do not vary.
Hence

(45)
∂r1

∂bi
=

(
1− ai

1

ā1

)
1
A

> 0 .

The constancy of b−i implies that the sets B and E change at most at finitely many
values of bi. As long as E − B is nonempty, formula (27) is valid, the constant
A changes when passing a boundary. The only other case occurs when we pass
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from the region where E = B1 to the region where B1 ⊆ E. However, at this point
the right hand partial derivative exists and equals 0, while the left hand derivative
exists and is positive.

Remark 2.11. Let us assume that the bank varies the interest rate for depositors
in proportion to the demand for loans. Hence, we set

(46) R2(p, b) := 1 + C0

∑

j∈E

(bj − aj
2)

(
(p, b) ∈ R1

+ × Rn
+

)
.

where C0 is a positive constant.

The banks policy with respect to loan interest is the same as in (43). That is,
the function R1 is adapted until the interest rate exceeds a certain large and fixed
amount M , after which the rate is equal to this constant. The arguments con-
cerning regularity of the functions involved are not affected, hence all statements
concerning differentiability of the (composite) functions remain true.
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3 Financial Market Equilibrium

In this section we establish the existence of a Nash equilibrium of the financial
market game ΓR

M under rather mild conditions concerning the policy R of the
bank. Let M be a financial market as defined in Definition 2.1 The following
conditions are imposed upon the policy of the bank.

Definition 3.1.

1. We call the bank’s policy regular if for the resulting monetary strategy,
the function r1 is monotone and has nonnegative partial derivatives up
to finitely many points.

2. The bank’s policy is strictly regular if it is regular and:

(a) there exists b0 > 0 such that if bi ≥ b0 for some i ∈ I, then

(1)
(ui)′(0)ai

1

r1(b)− ai
1

ā1

< ε0

where ε0 is the constant appearing in formula (4);

(b) the function r1 is bounded by some constant M > 0;

(c) there is a neighborhood of 0 ∈ Rn
+ such that for b within this

neighborhood

(2) ρ2(b) <
ai

1

ā1

(i ∈ I)

is valid.

Theorem 3.2. Let M be a financial market and let R be a regular policy.
Then, a bankrupt player has a negative marginal utility of bids and no player
is bankrupt in a Nash equilibrium of ΓR

M.

Proof:

The utility of a bankrupt player is computed by adding his reward for con-
sumption and the punishment for being bankrupt; there is no capital left.
Note that the price is positive. Therefore, the utility of a bankrupt player
i ∈ I is given by

(3) ui(
bi

P
)− wi(−(Ci)−

P
),
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where we assume, w.l.o.g., that V i(0) = 0.

It suffices to show that

(4) (ui)′
(

bi

P

)
∂

∂bi

[
bi

P

]
< (wi)′

(
−(Ci)−

P

)
∂

∂bi

[
−(Ci)−

P

]

holds. It follows from Definition 2.1. item 3 that

(5) (ui)′
(

bi

P

)
< (wi)′

(
−(Ci)−

P

)

is always valid. Hence, it is enough to verify that the relation

(6) 0 ≤ ∂

∂bi

[
bi

P

]
<

∂

∂bi

[
−(Ci)−

P

]
,

is true.

In the sequel we denote the partial derivative ∂
∂bi by ′. Using this notation,

the middle term of (6) is

(7)

[
bi

P

]′
=

1

P
+ bi

(
1

P

)′
,

and the definition

(8) P =
b̄

ā1

=

∑
j∈I bj

ā1

implies that

(9)

(
1

P

)′
= − 1

P b̄

is true. Hence, (6) is

(10)

[
bi

P

]′
=

1

P
− 1

P

bi

b̄
=

1

P

(
1 − bi

b̄

)

so that the middle term of (6) is nonnegative.

Next we consider the rightmost term of (6). Observe that

(11)

(
−(Ci)−

P

)
=

r1

P

(
bi − ai

2

)− ai
1
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and a simple computation yields the formula

(12)

[
−(Ci)−

P

]′
=

r′1
P

(
bi − ai

2

)
+

r1

P
+ r1

(
1

P

)′ (
bi − ai

2

)

for the derivative. Inserting
(

1
P

)′
from (9), we obtain

(13)

[
−(Ci)−

P

]′
=

r′1
P

(
bi − ai

2

)
+

r1

P

(
1− bi − ai

2

b̄

)
.

Now (6) is verified if the right hand side of (13) exceeds the rightmost term
of (10). However, r′1 ≥ 0 and r1 ≥ 1 follows from our assumptions and
bi > bi − ai

2 is obvious.

q.e.d.

Theorem 3.3. Let M be a financial market. Suppose the policy of the bank
is strictly regular. Then there exists b1 > 0 such that, for any i ∈ I satisfying
bi > b1, player i′s marginal utility of bids is negative.

Proof: If player i is not bankrupt (but is demanding a loan), then the price
is positive and this player’s utility is given by

(14) U i(b) = ui(
bi

P
) + V i(Ci)

with

(15) Ci(b) = P (b)ai
1 − r1(b)(bi − ai

2) (b ∈ Rn
+).

Using ′ for ∂
∂bi we compute

(16) (Ci)′ =
ai

1

ā1

− r1 − r′1(b
i − ai

2) ≤
ai

1

ā1

− r1 .

Applying also (10) we can estimate player i’s marginal utility, so as to obtain

(17)

(U i)′ = (ui)′
(

bi

P

)(
bi

P

)′
+ (V i)′

(
Ci

)
(Ci)′

≤ (ui)′
(

bi

P

)
1

P

(
1 − bi

b̄

)
+ (V i)′

(
Ci

) (
ai

1

ā1

− r1

)
.

In order to show that
(
U i

)′
is negative it suffices, therefore, to verify the

inequality

(18) (ui)′ (0)
1

P
< (V i)′

(
Ci

) (
r1 − ai

1

ā1

)
.
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To this end we put t := Ci. Now choose b1 ≥ b0 such that for all bi > b1

the inequality

(19)
(ui)′(0)

P
< ε0

(
r1(b)− ai

1

ā1

)

is satisfied (strict regularity). Now, if we have t ≤ t0 (cf. (4)), then we have

(20) V i′(t) ≥ ε0

and (18) follows from (19). If, on the other hand, we have t > t0, then we
use Ci ≤ Pai

1 and by means of (1) we obtain the estimate

(21)

(V i)′(Ci) = (V i)′(t) >
ε0

t

≥ ε0

Pai
1

>
1

Pai
1

(ui)′(0)ai
1

r1(b)− ai
1

ā1

,

which is (18).

q.e.d.

Theorem 3.4. Let M be a financial market. Let (V i)′ be bounded on compact
subsets of R++. Then there exists a neighborhood of b = 0 ∈ Rn

+ within which
the marginal utility of at least n− 1 players is positive.

Proof: The utility of a player bidding a small amount is the same as in
equation (14), however, the function Ci for small b is

(22) Ci(b) = P (b)ai
1 + r2(a

i
2 − bi).

In analogy to (17) we get

(23) (U i)′ = (ui)′
(

bi

P

)
1

P

(
1 − bi

b̄

)
+ (V i)′

(
Ci

)
(Ci)′

It follows from (22) that Ci is bounded and is bounded away from 0 for small
b, hence the derivative of V i is bounded. So is

(Ci)′ =
ai

1

ā1

− r2 + r′2(b
i − ai

2).

Thus, it suffices to show that the first term in (23) is arbitrarily large for at
least one player in a neighborhood of 0.
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Because of
∑

i∈I bi = b̄ there is, for every b ∈ Rn, at most one k ∈ I such

that bk ≥ (1− 1
n
)b̄ holds true. For all the others i 6= k we have

1− bi

b̄
≥ 1

n
.

Now an inspection of (23) shows that indeed the marginal utility of these
players is large whenever b̄ and P are small.

q.e.d.

For convenience, let us summarize the results obtained by the previous the-
orems as follows.

Corollary 3.5. Let M be a financial market and let the policy of the bank be
strictly regular. Then there exists a compact convex set of strategies B ⊆ Rn

+

with the following properties:

1. There is ε > 0 and β̄ ∈ Rn such that

(24) B =
{
b ∈ Rn

+ b̄ ≥ ε, b ≤ β̄
}

,

(and hence prices are positive for b ∈ B.)

2. For any b ∈ B, no player is bankrupt.

3. For any b /∈ B with bi > b̄ for some i ∈ I, the partial derivative of U i

is negative.

4. For any b /∈ B with 0 < b̄ < ε, the marginal utilities of at least n − 1
players are positive.

5. For any b /∈ B with 0 < b̄ < ε, the best responses of at least n − 1
players exceed ε.

6. The best response correspondence maps points on the lower boundary

{
b ∈ Rn

+ b̄ = ε
}

,

into the interior of B. The same holds true for points close to the lower
boundary.

In view of the Corollary 3.5 it is clear that existence of Nash equilibria can be
verified. We consider the compact set specified by the corollary and observe
the behavior of the best response correspondence.
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Theorem 3.6. Let M be a financial market and let R be a strictly regular
policy of the bank. Then the corresponding one shot game ΓR

M has a Nash
equilibrium in mixed strategies.

Proof:

According to Corollary 3.5 there exists a compact convex domain B of strate-
gies such that for any strategy n-tuple within B, no player is bankrupt. The
marginal utility outside this domain is positive for smaller bids and negative
for larger ones. Also, zero bids are avoided so prices are well defined.

For every b ∈ B, consider the best response correspondence which necessar-
ily yields vectors in B. Introducing mixed strategies we find that the best
response correspondence necessarily yields probabilities with carriers inside
of B. This correspondence is now convex valued as a mapping from proba-
bilities on B into subsets of probabilities on B. A fixed point obtained by the
Kakutani Theorem yields the equilibrium. q.e.d.

For some policies of the bank we can establish an equilibrium in pure strate-
gies. Consider the policy established in Remark 2.10. Assume that, accord-
ingly, we have r2 = 1 while R1 = RM

1 is given by formula (43), i.e.,

(25) R1(p, b, ρ) := r̄1(p, b, ρ) ∧M
(
(p, b, ρ) ∈ R1

+ × Rn
+ × R1

+

)
.

Here, r̄1(p, b, ρ) is given by (27).

Theorem 3.7. Let M be a financial market. Assume that V i is concave for
all i ∈ I. If the bank adopts a strictly regular policy (R1, R2) given by (25),
then the game ΓR

M possesses a Nash equilibrium in pure strategies. The same
is true if the bank choses a strictly regular policy with constant interest rates
r2 ≤ r1.

Proof:

We prove that the second derivatives of the players’ utilities within the com-
pact set of strategies established by Corollary 3.5 are nonpositive. Within
this set no one is bankrupt, therefore we have to consider the functions

(26) ui

(
bi

P

)
+ V i

(
Ci

)
.
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The second derivative of this expression is given by

(27)

ui ′′
(

bi

P

) [(
bi

P

)′]2

+ V i ′′ (Ci
) [(

Ci
)′]2

+ ui ′
(

bi

P

)[
bi

P

]′′
+ V i ′ (Ci

) [
Ci

]′′
.

We know that the second derivatives of ui and V i are negative, hence the
first line in (27) is negative. Therefore, in order to obtain concave utilities,
it is sufficient to show that

(28) ui ′
(

bi

P

)[
bi

P

]′′
+ V i ′ (Ci)

) [
Ci

]′′

is nonpositive.

Now, the first derivatives of both utilitiy functions that appear in (28) are
nonnegative (positive for positive arguments). Also, the second derivative
within the left term is

(29)

[
bi

P

]′′
= − 2ā1

(b̄)3
(b̄− bi) < 0,

Hence, the first term in (28) is actually negative. In order to finish the proof
it suffices, therefore, to show that Ci ′′ is nonpositive.

Recall that we have

(30) Ci = Pai
1 − r1(b

i − ai
2)

+ + r2(a
i
2 − bi)+.

Now consider formula (27) which defines ρ̄1. It turns out that ρ̄1 = 0 as no
player is bankrupt and ρ2 = 0. Hence, in the case described by (25), we have
r̄1 = r̄2 = 1 within the critical domain described by Corollary 3.5. Therefore,
we have to treat the second case of our theorem, i.e., the one in which both
interest rates are constant and r2 does not exceed r1. In this case we se from
(30) that Ci is a piecewise linear function of bi with a possible kink at ai

2.

The first derivative is
ai

1

ā1
− r2 for bi ≤ ai

2 and
ai

1

ā1
− r1 for bi > ai

2. This
function is concave exactly if r1 ≥ r2 holds true.

Thus, we have completed the proof that players utilities are concave.

We now finish the existence proof for a Nash equilibrium in a standard way.
According to Remark 3.5 there exists a compact convex domain B of strate-
gies such that for any strategy n-tuple within B, no player is bankrupt and
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the marginal utility outside this domain negative for large bids. Also, zero
bids are avoided and for bids with a small total sum the marginal utility is
positive for at least n− 1 players. Hence, prices within B are well defined.

For every b ∈ B, consider the best response correspondence, say D : Rn →
P(Rn). Setting e := (1, . . . , 1) ∈ Rn, we define a function F := Rn → Rn

by

(31) F (b′) := b′ +
(ε− b̄

′
)+

n
e (b′ ∈ Rn

+).

This function projects all bids with total sum less than ε on the plane of all
bids with total sum equal to ε. The composition, say D? := F ◦D, is an
upper hemi continuous mapping from B to B.

This correspondence is convex valued. A fixed point of D? is obtained by the
Kakutani Theorem. This fixed point cannot be located on the lower boundary
of B, i.e., on {b ∈ Rn

+ eb = ε}, as all of the points on this boundary are
mapped into the interior of B. Hence the fixed point is actually a fixed point
of D, so that it yields an equilibrium.

q.e.d.
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