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Abstract

We study private-value auctions with n risk-averse bidders, where n is a large

number. We first use asymptotic techniques to calculate explicit approximations of

the equilibrium bids and of the seller’s revenue in any k-price auction (k = 1, 2, . . . ),

and use these explicit approximations to show that all large k-price auctions with

risk-averse bidders are O(1/n2) revenue equivalent. We then prove that there ex-

ist auction mechanisms for which the limiting revenue as n −→ ∞ in the case of

risk-averse bidders is strictly below the risk-neutral limit. Therefore, these auction

mechanisms are not revenue equivalent to large k-price auctions even in the limit

as n −→ ∞. Finally, we formulate a general condition under which the limiting

revenue with risk-averse bidders is equal to the risk-neutral limit.
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1 Introduction

Since the pioneering work of Vickrey (1961) who established the revenue equivalence of the

classical private-value auctions (first-price, second-price, English, Dutch), a considerable

research effort has been devoted to revenue ranking of different auction mechanisms.

Vickrey’s result was generalized twenty years later by the Revenue Equivalence Theorem

(Riley and Samuelson (1981) and Myerson (1981)), according to which the seller’s revenue

is the same for a large class of private-value auctions with symmetric and risk-neutral

bidders. Private-value auctions are, however, generically not revenue equivalent when

bidders are asymmetric (Marshall et al. (1994), Maskin and Riley (2000)) or risk-averse

(Maskin and Riley (1984), Matthews (1987)).

Many auctions, such as those that appear on the Internet, have a large number of

bidders. The standard approach to study large auctions has been to consider their limit

as n, the number of bidders, approaches infinity. Using this approach, it has been shown

for quite general conditions that as n goes to infinity, the bid approaches the true value,

the seller’s expected revenue approaches the maximal possible value, and the auction be-

comes efficient ( Wilson (1977), Pesendorfer and Swinkels (1997), Kremer (2002), Swinkels

(1999), Swinkels (2001), and Bali and Jackson (2002)). Most of the studies that adopted

this approach, however, do not provide the rate of convergence to the limit, i.e., a bound

on the difference between the limiting value and the value at a finite n. Therefore, it is

not clear how large n should be (5, 10, 100?) in order for the auction “to be large” i.e.,

in order for the limiting results for n = ∞ to be applicable. Results of this type were
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obtained by Satterthwaite and Williams (1989), who showed that the rate of convergence

of the bid to the true value in a double auction is O(1/m), where m is the number of

traders on each side of the market, by Rustichini, Satterthwaite and Williams (1994), who

showed that the rate of convergence of the bid to the true value in a k-double auction is

O(1/m) and the corresponding inefficiency is O(1/m2), and by Hong and Shum (2004),

who calculated the convergence rate in common-value multi-unit first-price auctions.

In the first part of this study we use asymptotic analysis techniques in order to go

beyond rate-of-convergence results. To do that, we utilize the existence of the large

parameter n to calculate explicitly the O(1/n) leading-order deviation from the limiting

value, of the equilibrium bids and of the seller’s revenue in large k-price auctions with

risk-averse bidders. Since our asymptotic approximations include both the limiting value

and the O(1/n) correction, they are O(1/n2) accurate. Hence, the number of bidders at

which they become valid is considerably smaller than the number of bidders at which the

limiting values (which are only O(1/n) accurate) become valid. Roughly speaking, if we

require a 1% accuracy, than our O(1/n2) asymptotic approximations are already valid for

n = 10 bidders, whereas the limiting-value approximations become valid only for n = 100

bidders.

Why should we care whether the asymptotic approximation becomes valid at n = 10

or at n = 100? One practical reason is as follows. Consider, for example, the case where

we want to analyze a specific real-life auction with 10 bidders. If we could utilize the

asymptotic approximations for large auctions, this would lead to a considerable simplifi-

cation in the analysis. For an auction with 10 bidders, this can be done with our O(1/n2)
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approximation, but not with the O(1/n) accurate limiting-value approximation.

The paper is organized as follows. In Section 2, we introduce the model of symmetric

private-value auctions with risk-averse bidders. In Section 3, we calculate asymptotic ap-

proximations of the equilibrium bids and of the seller’s revenue in large first-price auctions

with risk-averse bidders. This calculation shows that the differences in the equilibrium bids

and in the seller’s revenue between risk-neutral and risk-averse bidders are only O(1/n2).

We note that one measure of a ‘good’ asymptotic technique is that it can be used, at

least in theory, to calculate as many terms in the expansion as desired. To show that this

is the case here, we calculate explicitly the next-order, O(1/n2) terms in the expressions

for the equilibrium bids and the revenue. This calculation shows that the O(1/n2) affect

of risk aversion is proportional to the Arrow-Pratt measure of risk aversion at zero. In

addition, this calculation provides an analytic estimate for the value of the constant of

the O(1/n2) error term.

In Section 3.1, we present numerical examples that suggest that the asymptotic ap-

proximations derived in this study are quite accurate even for auctions with as little as

n = 6 bidders. Although we only present a few numerical examples, we note that the

parameters of these examples were chosen “at random”, and that we observed the same

behavior in numerous other examples that we tested.1

In Section 4, we calculate asymptotic approximations of the equilibrium bids and of

1The fact that an expansion for large n is already valid for n = 6 may be surprising to researchers not

familiar with asymptotic expansions. However, quite often, this is the case with asymptotic expansions

(see e.g., Bender and Orszag (1978)).
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the seller’s revenue in large symmetric k-price auctions (k = 3, 4, . . . ) with risk-averse

bidders. As in the case of first-price auctions, this calculation shows that the differences

in the equilibrium bids and in the seller’s revenue between risk-neutral and risk-averse

bidders are only O(1/n2). Since in the risk-neutral case all k-price auctions are revenue

equivalent, we conclude that all large k-price auctions (k = 1, 2, . . . ) with risk-averse or

risk-neutral bidders are O(1/n2) revenue equivalent.

Since the revenue differences among all large k-price auctions with n risk-averse bidders

are O(1/n2), it seems natural to conjecture that this result should extend to all incentive-

compatible and individually-rational mechanisms that deliver efficient allocations. This,

however, is not the case. Indeed, in Section 5 we prove that the limiting revenue as

n −→ ∞ in generalized all-pay auctions2 with risk-averse bidders is strictly below the

risk-neutral limit, and in Section 6 we show that this also occurs for last-price auctions.3

Therefore, unlike k-price auctions where risk-aversion only has an O(1/n2) effect on the

revenue, in the case of all-pay and last price auctions risk-aversion has an O(1) effect on

the revenue. To the best of our knowledge, these are the first examples of private-value

auctions whose limiting revenue is not equal to the risk-neutral limit (i.e. to the maximal

value).

The above results raise the question of whether there is a condition that would imply

that the limiting revenue with risk-averse bidders is equal to the risk-neutral limit. In

2i.e., when the highest bidder wins the object and pays his bid, and the losing bidders pay a fixed

fraction of their bids.
3i.e., when the highest bidder wins the object and pays the lowest bid.
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Section 7 we prove in Theorem 1 that if the equilibrium payment of the winning bidder

approaches his type as n −→ ∞ uniformly for all types, then the limiting revenue with

risk-averse bidders is equal to the risk-neutral limit. We then show that it is sufficient for

this condition to hold only at an O(1/n) neighborhood of the highest type. The Appendix

contains proofs omitted from the main body of the paper.

At a first sight, it may seem that the results for k-price auctions in Section 4 are a

special case of Theorem 1. This is not the case, however, since in order to apply Theorem 1

to k-price auctions, one needs to prove that the equilibrium payment of the winning bidder

in k-price auctions approaches his type as n −→ ∞ uniformly. In addition, the result of

Theorem 1 is weaker, since it only shows that the limiting revenue is unaffected by risk-

aversion, whereas in Section 4 we show that the O(1/n) correction is also unaffected by

risk-aversion.

Finally, we note that this paper differs from our previous studies, in which we used

perturbation analysis techniques to analyze auctions with weakly asymmetric bidders

(Fibich and Gavious (2003), Fibich, Gavious and Sela, (2004)) and with weakly risk-

averse bidders (Fibich, Gavious and Sela, (2006)), in two main aspects:

1. From the economic theory aspect, in those studies we had to assume that the level

of risk-aversion (or asymmetry) is small, in order to be able to expand the solution

in the small risk-aversion (or asymmetry) parameter. The results of this study are

stronger, since we do not make such assumptions.

2. From the mathematical methodology aspect, in our previous studies we used per-
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turbation techniques that “essentially” amounts to Taylor expansions in a small

parameter that lead to convergent sums. In contrast, in this study we use asymp-

totic methods (e.g., Laplace method for evaluation of integrals) which typically lead

to divergent sums if carried out to all orders (see, e.g., Murray, 1984). To the best

of our knowledge, these asymptotic methods have not been used in auction theory

so far. It is quite likely that these and other asymptotic methods (WKB, method

of steepest descent, etc.) will be useful in other economic problems where a large

parameter exist, e.g., multi-unit auctions with many units (Jackson and Kremer,

2004; Jackson and Kremer, 2006).

2 The model

Consider a large number (n � 1) of bidders who are competing for a single object in

an auction mechanism where the highest bidder wins the object. Assume that bidder

i’s valuation vi is a private information, and that bidders are symmetric such that for

any i = 1, . . . , n, vi is independently distributed according to a common distribution

function F (v) on the interval [0, 1]. We denote by f = F ′ the corresponding density

function. We assume that F is twice continuously differentiable and that f > 0 in [0, 1].

We assume that each bidder’s utility is given by a function U(v − b), which is twice

continuously differentiable, monotonically increasing, concave, and normalized to have a

zero utility at zero, i.e.,

U(x) ∈ C2, U(0) = 0, U ′(x) > 0, U ′′(x) < 0. (1)
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3 First-price auctions

Consider a first-price auction with risk-averse bidders, in which the bidder with the highest

bid wins the object and pays his bid. In this case, the inverse equilibrium bids satisfy the

ordinary-differential equation4

v′(b) =
1

n − 1

F (v(b))

f(v(b))

U ′(v(b)− b)

U(v(b) − b)
, v(0) = 0. (2)

Unlike the risk-neutral case, there are no explicit formulae for the equilibrium bids and

for the revenue, except for some special cases. Recently, Fibich, Gavious and Sela (2006)

obtained explicit approximations of the equilibrium bids for the case of weak risk aversion,

by using perturbation methods to expand the solution in the small risk-aversion parameter.

In contrast, here we use different mathematical techniques and expand the solution in the

large parameter n, without making the assumption that risk aversion is weak.5

Proposition 1 Consider a symmetric first-price auction with n bidders with utility func-

tion U(x) that satisfies Assumptions (1). Then, the equilibrium bid for a sufficiently

large n is given by

b(v) = v −
1

n − 1

F (v)

f(v)
+ O

(

1

n2

)

, (3)

4Under the conditions of Section 2, existence of a symmetric equilibrium follows from Maskin and

Riley (1984).
5Caserta and de Vries (2002) used extreme value theory to derive an asymptotic expression for the

revenue which is equivalent to (4). The result of Caserta and de Vries (2002) holds, however, only in the

risk-neutral case, where an explicit expression for the revenue is available.
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and the seller’s expected revenue is given by

R = 1 −
2

n

1

f(1)
+ O

(

1

n2

)

. (4)

Proof. See Appendix B.

Since the utility function U(x) does not appear in the O(1/n) term, Proposition 1

shows that the differences in the equilibrium bids and in the seller’s revenue between

first-price auctions with risk-neutral or with risk-averse bidders are at most O(1/n2). In

other words, risk aversion has (at most) an O(1/n2) effect on the equilibrium bids and on

the revenues in symmetric first-price auctions.

The results of Proposition 1 raise several questions:

1. Is the effect of risk-aversion truly O(1/n2), or is it even smaller?

2. Can we estimate the constants in the O(1/n2) error terms?

We can answer these questions by calculating explicitly the O(1/n2) terms:

Proposition 2 Consider a symmetric first-price auction with n bidders with utility func-

tion U(x) that satisfies Assumptions (1). Then, the equilibrium bid for a sufficiently

large n is given by

b(v) = v −
1

n − 1

F (v)

f(v)
+

1

(n − 1)2

[

F (v)

f(v)
−

F 2(v)f ′(v)

f3(v)
−

F 2(v)

2f2(v)

U ′′(0)

U ′(0)

]

+ O

(

1

n3

)

, (5)

and the seller’s expected revenue is given by

R = 1 −
1

n

2

f(1)
+

1

n2

[

2

f(1)
−

3f ′(1)

f3(1)
−

1

2f2(1)

U ′′(0)

U ′(0)

]

+ O

(

1

n3

)

. (6)
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Proof. See Appendix C.

We thus see that risk-aversion has an O(1/n2) effect on the bid when U ′′(0) 6= 0, but a

smaller effect if U ′′(0) = 0. As expected, the bids and revenue increase (decrease) for risk-

averse (risk-loving) bidders. Note that the magnitude of risk-aversion effect is determined,

to leading-order, by −U ′′(0)/U ′(0), i.e., by the value of the absolute risk-aversion at zero.6

The observation that risk-aversion has a small effect on the revenue in large first-price

auctions has the following intuitive explanation. Since in large first-price auctions the

bids are close to the values, one can approximate U(v − b) ≈ (v − b)U ′(0), which is the

risk-neutral case. Similarly, adding the next term in the Taylor expansion gives

U(v − b) ≈ U ′(0)

[

(v − b) +
(v − b)2

2

U ′′(0)

U ′(0)

]

. (7)

Hence, for large n, the leading-order effect of risk-aversion is proportional to −U ′′(0)/U ′(0).

3.1 Examples

Consider a first-price auction where bidders’ valuations are uniformly distributed on [0, 1],

i.e., F (v) = v. Assume first that each bidder has a CARA utility function U(x) = 1−e−λx

where λ > 0. In Figure 1 we compare the (exact) equilibrium bid7 for λ = 2, with the

equilibrium bid in the risk-neutral case, for n = 2, 4, 6, and 8 bidders.8 Already for

n = 6 bidders, the equilibrium bids in the risk-neutral and risk averse cases are almost

6Note that although we assume in (1) that bidders are risk averse (i.e., U ′′ < 0), the results hold also

for risk loving bidders (i.e., U ′′ > 0).
7i.e., the numerical solution of equation (2).
8Observe that as λ → 0, U(x) ∼ λx, i.e., the utility of risk-neutral bidders. Therefore, λ = 2

corresponds to a significant deviation from risk-neutrality.
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Figure 1: Equilibrium bids in a first-price auction with risk-averse (solid) and risk-neutral

(dashes) bidders.

identical. This observation is consistent with Dyer, Kagel and Levin (1989), who found

in experiments with six bidders that the actual bids in first-price auctions were very close

to the theoretical risk-neutral equilibrium bid.9

Next, we consider the revenue in first-price auctions with n = 6 risk-averse players,

9For n = 3, the highest bid was much higher than the risk neutral case.

U(x) R R−Rrn

Rrn

x − x2/2 0.7220 1.08%

ln(1 + x) 0.7209 0.92%

CARA (λ = 1) 0.7214 0.99%

CARA (λ = 2) 0.7278 1.89%

Table 1: Expected revenue in a symmetric first-price auction with 6 players with a utility function U(x).
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denoted by R. Recall that when F (v) = v, the revenue in the risk-neutral case is equal

to Rrn = (n − 1)/(n + 1). Therefore, in the case of six players, Rrn = 5/7 ≈ 0.7143. In

Table 1 we give the value of R and the relative change in the revenue due to risk-aversion

for four different utility functions. The first thing to note is that in all four cases the effect

of risk-aversion is small (less that 2%), even though the number of players is not really

large, and the utility functions are not close to risk-neutrality. The second thing to notice

is that in the first three cases the effect of risk-aversion on the revenue is nearly the same

(≈ 1%), even though the three utility functions are quite different. The reason for this

is that the difference between the revenue in the risk-averse and risk-neutral case is given

by, see Proposition 2,

R − Rrn ≈ −
1

n2

1

2f2(1)

U ′′(0)

U ′(0)
.

Hence, the effect of risk-aversion is proportional to the value of the absolute risk aversion

−U ′′(0)/U ′(0). In the first three cases −U ′′(0)/U ′(0) is identical (= 1), explaining why

they have “the same” effect on the revenue. In the fourth case −U ′′(0)/U ′(0) = 2, and

indeed, the change in the revenue nearly doubles.

In Table 2, we repeat the simulations of Table 1, but with n = 2 players. In this

case, the revenue in the risk-neutral case is equal to Rrn = 1/3 ≈ 0.3333. As expected,

the relative effect of risk-aversion is much larger than for n = 6 players, showing that

risk-aversion cannot be neglected in small first-price auctions. In addition, as before,

the effect of risk-aversion depends predominantly on −U ′′(0)/U ′(0), which is why the

additional revenues due to risk aversion are roughly the same in the first three cases, but
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U(x) R R−Rrn

Rrn

x − x2/2 0.3592 7.7%

ln(1 + x) 0.3508 5.25%

CARA (λ = 1) 0.3541 6.2%

CARA (λ = 2) 0.3741 12.2%

Table 2: Expected revenue in a symmetric first-price auction with 2 players with a utility

function U(x), obtained from numerical simulations.

roughly double in the fourth case.

4 k-price auctions

Consider k-price auctions in which the bidder with the highest bid wins the auction and

pays the k-th highest bid. The results of Proposition 1 can be generalized to any k-price

auction as follows:10

Proposition 3 Consider a symmetric k-price auction (k = 1, 2, 3, . . . ), with n bidders

with a utility function U(x) that satisfies Assumptions (1). Then, the equilibrium bid for

a sufficiently large n is

b(v) = v +
k − 2

n − k

F (v)

f(v)
+ O

(

1

n2

)

, (8)

and the seller’s expected revenue is given by (4).

Proof. See Appendix D.

10For more details on k-price auctions with risk averse bidders, see Monderer and Tennenholtz (2000).
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Recall that in the risk-neutral case U(x) = x, the equilibrium bids in k-price auctions

(k = 2, 3, . . . ) are given by (Wolfstetter, 1995)

b(v) = v +
k − 2

n − k + 1

F (v)

f(v)
. (9)

Comparison with equation (8) shows that in large symmetric k-price auctions, risk aversion

only has an O(1/n2) effect on the equilibrium bids. Proposition 3 also shows that risk

aversion only has an O(1/n2) effect on the revenue in large symmetric k-price auctions.11

Since all k-price auctions are revenue equivalent in the risk-neutral case, this implies, in

particular, that all large symmetric k-price auctions with risk-averse bidders are O(1/n2)

revenue equivalent.

5 All-pay auctions

In Proposition 3 we saw that all large k-price auctions with risk-averse bidders are O(1/n2)

revenue equivalent. A natural question, is, therefore, whether this asymptotic revenue

equivalence holds for “all” auction mechanisms. To see that this is not the case, let us

consider an all-pay auction with risk-averse bidders in which the highest bidder wins the

object and all bidders pay their bid. In this case, the limiting value of the revenue is

strictly below the risk-neutral limit:

11As in the case of first-price auctions (see Section 3), we can calculate explicitly the O(1/n2) terms

in order to see that the leading-order effect of risk-aversion is truly O(1/n2) and is proportional to

−U ′′(0)/U ′(0). Indeed, since limn→∞ b(v) = v, see equation (8), this conclusion follows from equation (7).
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Proposition 4 Consider a symmetric all-pay auction with n bidders that have a util-

ity function U that satisfies (1), and let R = R(n) be the expected seller’s revenue in

equilibrium. Then,

lim
n→∞

R < lim
n→∞

Rrn.

Proof. This is a special case of Proposition 5.

Therefore, even the limiting revenue of all-pay auctions is not revenue equivalent to

that of k-price auctions with risk-averse bidders.

In (Fibich, Gavious, Sela, 2007) it was shown that in the case of all-pay auctions, risk-

aversion lowers the equilibrium bids of the low types but increases the bids of the high

types, and that, as a result, the seller’s revenue may either increase or decrease due to

risk-aversion. In the case of large all-pay auctions, however, Proposition 5 shows that risk

aversion always lowers the expected revenue.

Example 1 In Figure 2 we present the numerically calculated revenue as a function of n

for an all-pay action with F (v) = v and U(x) = x − 0.5x2. In this case, risk-aversion

increases the expected revenue when the number of bidders is small. As n increases, how-

ever, this trend reverses and risk-aversion decreases the expected revenue. In particular,

as n −→ ∞, the expected revenue in the risk-averse case approaches ≈ 0.74, which is well

below the risk-neutral limit of 1 = limn→∞ Rrn.
12

12In the case of risk-loving bidders the limiting revenue is above the risk-neutral limit. For example,

we find numerically for U(x) = x + 0.5x2 that limn→∞R ≈ 1.26.
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Figure 2: Expected revenue in all-pay auction with risk-averse (solid) and risk-neutral

(dashes) players, as a function of the number of players. Data plotted on a semi-

logarithmic scale.

5.1 Generalized all-pay auctions

In order to show that there are additional auctions mechanisms for which the limiting

revenue is below the risk-neutral limit, let us define generalized all-pay auctions as follows.

The highest bidder wins the object and pays his bid. The other bidders pay α times their

bid, where 0 ≤ α ≤ 1. Thus, α = 1 corresponds to the standard all-pay auction, and

α = 0 to first-price auction. We now prove that the limiting revenue in generalized all-pay

auctions with risk-averse bidders is below the risk-neutral limit:

Proposition 5 Consider a generalized all-pay auction where bidders have a utility func-

tion U that satisfies (1). Then,

lim
n→∞

R < lim
n→∞

Rrn, for 0 < α ≤ 1.

Proof. See Appendix E.
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Example 2 In Figure 3 we present the numerically-calculated limiting value of the ex-

pected revenue for a generalized all-pay auction with F (v) = v and U(x) = x − 0.5x2, as

a function of α. As expected, the limiting revenue is 1 (= limn→∞ Rrn) for α = 0, but less

than 1 for α > 0. Moreover, it decreases smoothly from 1 for first-price auctions (α = 0),

to ≈ 0.74 for “standard” all-pay auctions (α = 1).

6 Last-price auctions

So far, the only case where risk-aversion reduced the limiting revenue was of generalized

all-pay auctions, in which the losing bidders pay a fixed portion of their bid. We therefore

ask whether risk-aversion can reduce the limiting revenue even when only the winner pays.

To see that this is possible, we consider an auction in which the highest-bidder wins the

object and pays the lowest bid, i.e., a last-price auction.

Example 3 Consider a last-price auction with n bidders that are risk averse with the

CARA utility function U(x) = 1 − eλx, where λ > 0. Assume that bidders values are
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distributed uniformly in [0, 1]. Then,

lim
n→∞

R < lim
n→∞

Rrn.

Proof. See Appendix F. �

Although a last-price auction is a k-price auction with k = n, the results of Section 4

do not apply here. Indeed, in a last-price auction k −→ ∞ as n −→ ∞, hence the kth

value approaches 0 as n −→ ∞. In contrast, in the k-price auctions of Section 4, k is held

fixed as n −→ ∞. Hence, the kth value approaches 1 as n −→ ∞.

7 An asymptotic revenue equivalence theorem

We saw that in the case of risk-averse bidders, all large k-price auctions are O(1/n2)

revenue equivalent to each other, but not to large all-pay auctions or last-price auctions.

In particular, the limiting revenue approaches the risk-neutral limit for all k-price auctions,

but not for all-pay auctions or last-price auctions. Therefore, a natural question is under

which condition the limiting revenue would approach the risk-neutral limit. The following

Theorem provides such a condition:

Theorem 1 Consider any symmetric auction where bidders have a utility function U that

satisfies (1). Let βwin(vi,v−i) denote the equilibrium payment of bidder i when he wins

with type vi, and the other bidders have types v−i = (v1, . . . , vi−1, vi+1, . . . , vn). Assume

that βwin(vi,v−i) −→ vi uniformly as n −→ ∞, i.e., that there exists a series {εn},
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independent of vi and v−i, such that limn→∞ εn = 0, and

|vi − βwin(vi,v−i)| ≤ εn, 0 ≤ vi ≤ 1, 0 ≤ v−i ≤ vi. (10)

Then, the limiting revenue approaches the risk-neutral limit, i.e.,

lim
n→∞

R = lim
n→∞

Rrn. (11)

Proof. See Appendix G. �

Remark. The Opposite direction is not necessarily true, see Example 4 below.

Condition (10) says that the equilibrium payment of a player who wins with value vi

approaches vi uniformly as the number of bidders goes to infinity. The motivation for

this condition is as follows. When the bidder wins and Condition (10) is satisfied, then

his utility is U(v − βwin) ∼ (v − βwin)U ′(0). Therefore, the utility function can be

approximated with U(x) ∼ U ′(0)x, the utility of a risk-neutral bidder.

In principle, there should be a second condition in Theorem 1 that would imply that when

the bidder loses, his utility is U(−β lose) ∼ −U ′(0)β lose, i.e., the utility of a risk-neutral

bidder, where β lose is the equilibrium payment of a losing bidder. This second condition

is not needed, however, for the following reason. The seller’s revenue can be written as

R = Rwin + Rlose, (12)

where

Rwin =
∑n

i=1

∫ 1

0
Ev−i

[βwin(vi,v−i)]F
n−1(v)f(v) dv,

Rlose =
∑n

i=1

∫ 1

0
Ev−i

[β lose(vi,v−i)](1 − F n−1(v))f(v) dv,

(13)
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are the revenues due to payments of the winning and losing bidders, respectively. When

Condition (10) is satisfied, then limn→∞ Rlose = 0, see equation (34), or equivalently,

lim
n→∞

R = lim
n→∞

Rwin. (14)

Therefore, even if the payments of the losing bidders are affected by risk-aversion, this

has no effect on the limiting revenue.

¿From the proof of Theorem 1 it immediately follows that the pointwise Condition (10)

can be replaced with the weaker condition that Ev−i
[vi−βwin(vi,v−i)] ≤ εn for 0 ≤ vi ≤ 1.

An even weaker condition ca nbe derived as follows. As noted, the limiting revenue is only

due to the contribution of the payments of the winning bidders. Because Rwin has the

multiplicative term F n−1(v) which is exponentially small except in an O(1/n) region near

the maximal value, Condition (10) can be relaxed to hold only in this shrinking region:

Corollary 1 Theorem 1 remains valid if we replace Condition (10) with the weaker con-

dition that for any C > 0,

|vi − βwin(vi,v−i)| ≤ εn, 1 − C/n ≤ vi ≤ 1, 0 ≤ v−i ≤ vi. (15)

Proof. See Appendix H. �

Example 4 Consider a generalized all-pay auction with F (v) = v, U(x) = x−0.5x2, and

α = 1/n. Although α −→ 0, the equilibrium bids are highly influenced by risk-aversion.

Indeed, the bids are everywhere exponentially small (see Figure 4, left panel), except in an
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O(1/n) region near v = 1 where they approach the first-price bids (Figure 4, right panel).13

Therefore, Condition (10) is not satisfied. Nevertheless, the O(1/n) small region near the

maximal value where Condition (15) holds is sufficient to have the limiting revenue go

to 1, the risk-neutral limit. (Figure 5).14
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Figure 4: Equilibrium bids in generalized all-pay auction with α = 1/n with risk-averse

players (solid line) for n = 100. Also plotted are the equilibrium bids in the first-price

(dots) and all-pay (dashes) auctions. Right panel is a magnification of the O(1/n) region

near the maximal value.

In the case of a generalized all-pay auction with a fixed α, Condition (10) is satisfied at

v = 1, the maximal value, i.e., limn→∞ b(1) = 1, see Lemma 4. However, it is not satisfied

in an O(1/n) neighborhood of 1. Indeed, the heart of the proof of Proposition 5 is the

key observation that

lim
n→∞

b(1 − 1/n) 6= 1,

see equation (29).

13The transition from exponentially-small bids to the first-price bids has nothing to do with risk-

aversion, as it exists also in the risk-neutral case, see equation (37).
14In this case, however risk aversion does affect the O(1/n) correction to the revenue.
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Figure 5: Expected revenue in generalized all-pay auction with α = 1/n with risk-averse

players as a function of the number of players. Data plotted on a semi-logarithmic scale.

An obvious weakness of Theorem 1 is that Condition (10) involves the unknown bidding

strategies. We note, however, that for all the auction mechanisms that we considered in

this study, Condition (10) is satisfied in the risk-averse case if and only if it is satisfied

in the risk-neutral case (see Appendix I). Indeed, generically, if for a given auction

mechanism Condition (10) is not satisfied in the risk-neutral case, there is “ no reason” for

Condition (10) to be satisfied in the risk-averse case, hence it is “likely” that this auction

mechanism will not be asymptotically revenue equivalent to large k-price auctions in the

risk-averse case. Since in the risk-neutral case the bidding strategies are usually known

explicitly, it is easy to check whether they satisfy Condition (10). For example, from

equation (9) it immediately follows that any k-price auction with k = n − 1, k = n − 2,

k = n − 3, . . . , or with k = n/2, k = n/3, . . . , would not satisfy Condition (10) in the

risk-neutral case. This suggests that these auction mechanisms are not asymptotically

revenue equivalent to large k-price auctions in the risk-averse case, as can be confirmed
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by a minor modification of the proof for last-price auctions in Appendix F.
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A Auxiliary Lemmas

Lemma 1 Let n � 1, let b(v) = v + (1/n)B1(v) + (1/n2)B2(v) + O(1/n3), and let

v(b) = b + 1
n
v1(b) + 1

n2 v2(b) + O(1/n3) be the inverse function of b(v). Then,

B1(v) = −v1(v), B2(v) = −B1(v)v′
1(v) − v2(v). (16)

Proof. We substitute the two expansions into the identity v ≡ v(b(v)) and expand

in 1/n:

v = v(b(v)) = b(v) +
1

n
v1(b(v)) +

1

n2
v2(b(v)) + O(1/n3)

= v +
1

n
B1(v) +

1

n2
B2(v) +

1

n
v1

(

v +
1

n
B1(v)

)

+
1

n2
v2(v) + O(1/n3)

= v +
1

n
[B1(v) + v1(v)] +

1

n2
[B2(v) + B1(v)v′

1(v) + v2(v)] + O

(

1

n3

)

.

Balancing the O(1/n) and O(1/n2) terms proves (16). �

In the following we calculate an asymptotic expansion of the integral
∫ v

0
F n(x) dx

using integration by parts (for an introduction to asymptotic evaluation of integrals using

integration by parts, see, e.g., Murray (1984)):
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Lemma 2 Let F (v) be a twice-continuously differentiable, function and let f = F ′ > 0.

Then, for a sufficiently large n,

∫ v

0

F n(x) dx =
1

n

F n+1(v)

f(v)

[

1 + O

(

1

n

)]

. (17)

Proof. Using integration by parts,

∫ v

0

F n(x) dx =

∫ v

0

[F n(x)f(x)]
1

f(x)
dx =

1

n + 1

F n+1(v)

f(v)
+

1

n + 1

∫ v

0

[F n+1(x)f(x)]
f ′(x)

f3(x)
dx

=
1

n + 1

F n+1(v)

f(v)
+

1

n + 1

1

n + 2
F n+2(v)

f ′(v)

f3(v)
−

1

n + 1

1

n + 2

∫ v

0

F n+2(x)

(

f ′(x)

f3(x)

)′

dx.

Therefore, the result follows.

B Proof of Proposition 1

Since limn→∞ v(b) = b, we can look for a solution of (2) of the form

v(b) = b +
1

n − 1
v1(b) + O

(

1

n2

)

.

Substitution in (2) gives

1 + O

(

1

n

)

=
1

n − 1

F (b) + (v1/(n − 1))f(b) + O(n−2)

f(b) + (v1/(n − 1))f ′(b) + O(n−2)
·
U ′(0) + (v1/(n − 1))U ′′(0) + O(n−2)

U(0) + (v1/(n − 1))U ′(0) + O(n−2)
.

Since U(0) = 0 and U ′(0) > 0, the balance of the leading order terms gives

1 =
F (b)

f(b)
·

U ′(0)

v1U ′(0)
.

Therefore, v1(b) = F (b)/f(b) and the inverse equilibrium bids are given by

v(b) = b +
1

n − 1

F (b)

f(b)
+ O

(

1

n2

)

.
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Inverting this relation (see Lemma 1) shows that the equilibrium bids are given by (3).

To calculate the expected revenue, we use (3) to obtain

R =

∫ 1

0

b(v) dF n(v) = b(1) −

∫ 1

0

b′(v)F n(v) dv

= 1 −
1

n

1

f(1)
+ O

(

1

n2

)

−

∫ 1

0

[1 + O(1/n)]F n(v) dv.

Therefore, by (17), the result follows.

C Proof of Proposition 2

Since limn→∞ v(b) = b, we can look for a solution of the form

v(b) = b +
1

n − 1
v1(b) +

1

(n − 1)2v2(b) + O

(

1

n3

)

. (18)

Substituting (18) in (2) and using U(0) = 0 and 0 < U ′(0) < ∞ gives

1 +
1

n − 1
v′

1(b) + O

(

1

n2

)

=
1

n − 1

F (b) + v1

n−1
f(b) + O(n−2)

f(b) + v1

n−1
f ′(b) + O(n−2)

·
U ′(0) + v1

n−1
U ′′(0) + O(n−2)

U(0) + ( v1

n−1
+ v2

(n−1)2
)U ′(0) +

v2

1

2(n−1)2
U ′′(0) + O(n−3)

=
F (b) + v1

n−1
f(b) + O(n−2)

f(b) + v1

n−1
f ′(b) + O(n−2)

·
U ′(0) + v1

n−1
U ′′(0) + O(n−2)

(v1 + v2

(n−1)
)U ′(0) +

v2

1

2(n−1)
U ′′(0) + O(n−2)

=

(

F (b)

f(b)
+

v1

n − 1
+ O(n−2)

) (

1 −
v1

n − 1

f ′(b)

f(b)
+ O(n−2)

)

×

(

1

v1
+

1

n − 1

U ′′(0)

U ′(0)
+ O(n−2)

) (

1 −
1

(n − 1)

v2

v1
−

v1

2(n − 1)

U ′′(0)

U ′(0)
+ O(n−2)

)

=
F (b)

f(b)

1

v1
+

1

n − 1

[

1 −
f ′(b)F (b)

f2(b)
+

F (b)

2f(b)

U ′′(0)

U ′(0)
−

F (b)

f(b)

v2

v2
1

]

+ O(n−2).

Balancing the O(1) terms gives, as before,

v1(b) =
F (b)

f(b)
. (19)
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Balancing the O( 1
n−1

) terms gives

v′
1(b) = 1 −

f ′(b)F (b)

f2(b)
+

F (b)

2f(b)

U ′′(0)

U ′(0)
−

F (b)

f(b)

v2

v2
1

.

Substituting v1(b) = F (b)/f(b) and v′
1(b) = 1 − F (b)f ′(b)

f2(b)
gives

v2(b) =
F 2(b)

2f2(b)

U ′′(0)

U ′(0)
. (20)

Using Lemma 1 and (19,20) to invert the expansion (18) gives

b(v) = v +
1

n − 1
B1(v) +

1

(n − 1)2
B2(v) + O

(

1

n3

)

,

where

B1(v) = −
F (v)

f(v)
, B2(v) =

F (v)

f(v)
−

F 2(v)f ′(v)

f3(v)
−

F 2(v)

2f2(v)

U ′′(0)

U ′(0)
.

This completes the proof of (5).

To calculate the expected revenue, we first use (5) to obtain

R =

∫ 1

0

b(v) dF n(v) = b(1) −

∫ 1

0

b′(v)F n(v) dv

= 1 −
1

n − 1

1

f(1)
+

1

(n − 1)2

[

1

f(1)
−

f ′(1)

f3(1)
−

1

2f2(1)

U ′′(0)

U ′(0)

]

−

∫ 1

0

[

1 −
1

n − 1

(

F (v)

f(v)

)′]

F n(v) dv + O

(

1

n3

)

.

Integration by integration by parts (as in Lemma 2) gives,

∫ 1

0

F n(v) dv =
1

n + 1

1

f(1)
+

1

n + 1

1

n + 2

f ′(1)

f3(1)
+ O

(

1

n3

)

,

and
∫ 1

0

(

F (v)

f(v)

)′

F n(v) dv =
1

n + 1

1

f(1)

(

F (v)

f(v)

)′

v=1

+ O

(

1

n2

)

.
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Therefore,

∫ 1

0

[

1 −
1

n − 1

(

F (v)

f(v)

)′]

F n(v) dv

=
1

n

1

1 + 1
n

1

f(1)
+

1

n2

f ′(1)

f3(1)
−

1

n2

1

f(1)

(

1 −
f ′(1)

f2(1)

)

+ O

(

1

n3

)

=
1

n

1

f(1)
−

1

n2

2

f(1)
+

2

n2

f ′(1)

f3(1)
+ O

(

1

n3

)

.

Substitution in the expression for R proves (6).

D Proof of Proposition 3

The case k = 1 was proved in Proposition 1. When k = 2 the result follows immediately,

since b(v) = v. Therefore, we only need to prove for k ≥ 3. In that case, the equilibrium

strategies in k-price auctions are the solutions of (see Monderer and Tennenholtz (2000))

∫ v

0

U(v − b(t))F n−k(t)(F (v)− F (t))k−3f(t) dt = 0. (21)

Defining m = n − k and t = v − s, we can rewrite equation (21) as

0 =

∫ v

0

U(v − b(t))F m(t)(F (v)− F (t))k−3f(t) dt (22)

=

∫ v

0

em ln(F (t))U(v − b(t))(F (v)− F (t))k−3f(t) dt

= em lnF (v)

∫ v

0

e−m[ln F (v)−lnF (v−s)] U(v − b(v − s))(F (v)− F (v − s))k−3f(v − s) ds.

Since the maximum of ln(F (v − s)) is attained at s = 0, we can calculate an asymptotic

approximation of this integral using Laplace method (see, e.g., Murray (1984)). To do

that, we make the change of variables x(s) = [lnF (v) − lnF (v − s)] and expand all the

terms in the last integral in a Taylor series in s near s = 0.
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Expansion of x(s) near s = 0 gives x = sf(v)/F (v) + O(s2). Therefore,

dx

ds
= f(v)/F (v) + O(s), s = x

F (v)

f(v)
+ O(s2), ds =

dx

f(v)/F (v)
[1 + O(x)]

Let us expand the solution b(v) in a power series in m, i.e.,

b(v) = b0(v) +
1

m
b1(v) + O

(

1

m2

)

.

Therefore, near s = 0,

b(v − s) = b0(v)− sb′0(v) +
1

m
b1(v)−

1

m
sb′1(v) + O(s2) + O

(

1

m2

)

.

In addition,

(F (v)− F (v − s))k−3 = (sf(v) + O(s2))k−3 = sk−3fk−3(v)1 + O(s)],

and

f(v − s) = f(v) + O(s).

Substitution all the above in (22) gives

0 =

∫ v

0

{

e−mx U

[

v −

(

b0(v)− sb′0(v) +
b1(v)

m
−

sb′1(v)

m
+ O(s2) + O

(

1

m2

))]

×

sk−3fk−3(v) [1 + O(s)] [f(v) + O(s)]

}

ds

∼

∫ ∞

0

{

e−mx U

[

v −

(

b0(v)− x
F (v)

f(v)
b′0(v) +

1

m
b1(v) −

x

m

F (v)

f(v)
b′1(v) + O(x2) + O

(

1

m2

))]

×

xk−3F k−3(v) [1 + O(x)] [f(v) + O(x)]
dx

f(v)/F (v)
[1 + O(x)]

}

= F k−2(v)

∫ ∞

0

{

e−mx

[

U(v − b0(v)) + U ′(v − b0(v))

(

x
F (v)

f(v)
b′0(v) −

b1(v)

m
+

x

m

F (v)

f(v)
b′1(v)

)

+O(x2) + O

(

1

m2

)]

xk−3 [1 + O(x)]

}

dx. (23)

28



We recall that for p integer,
∫ ∞

0
e−mxxp dx = p!/mp+1. Therefore, balancing the leading

O(m−(k−2)) terms gives

U(v − b0(v))F k−2(v)

∫ ∞

0

e−mx xk−3 dx = 0.

Since U(z) = 0 only at z = 0, this implies that b0(v) ≡ v. Using this and U ′(0) = 0,

equation (23) reduces to

0 =

∫ ∞

0

{

e−mx

(

x
F (v)

f(v)
−

1

m
b1(v) +

x

m

F (v)

f(v)
b′1(v)

)

[

xk−3 + O(xk−2)
]

}

dx

Therefore, balance of the next-order O(m−(k−1)) terms gives

F (v)

f(v)

∫ ∞

0

e−mxxk−2 dx −
1

m
b1(v)

∫ ∞

0

e−mxxk−3 dx = 0,

or

F (v)

f(v)

(k − 2)!

mk−1
−

(k − 3)!

mk−1
b1(v) = 0.

Therefore,

b1(v) = (k − 2)
F (v)

f(v)
.

Hence, we proved (8).

The seller’s expected revenue in a k-price auction is given by

Rk =

∫ 1

0

b(v)dFk(v),

where b(v) is the equilibrium bid in the k price auction and Fk(v) is the distribution

of the k-th valuation in order (i.e., k-order statistic of the bidders private valuations).

Substituting the asymptotic expansion for the equilibrium bids gives

Rk =

∫ 1

0

[

v +
k − 2

n − k

F (v)

f(v)

]

dFk(v) + O(
1

n2
).
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Since the asymptotic expansion for the equilibrium bid is independent of the utility func-

tion U until order O( 1
n2 ), the revenue in the risk-averse case is the same as in the risk-

neutral case, with O( 1
n2 ) accuracy. By the revenue equivalence theorem, the latter is given

by (4).

E Proof of Proposition 5

We first show that the maximal bid b(1) is monotonically increasing in α:

Lemma 3 Consider a generalized all-pay auction where bidders valuations are distributed

according to F (v) in [0, 1], and bidders have a utility function U that satisfies (1). Then,

∂b(1)

∂α
> 0, 0 ≤ α ≤ 1.

Proof. Let

V (v) = F n−1(v)U(v − b(v)) + (1 − F n−1(v)U(−αb(v)) (24)

be the expected utility of a bidder with value v. By Milgrom and Weber (1982),

V ′n−1(v)U ′(v − b(v)). (25)

In addition, differentiating (24) with respect to α gives

∂V (v)

∂α
= −

∂b

∂α

(

F n−1(v)U ′(v − b(v)) + (1 − F n−1(v))U ′(−αb(v))
)

(26)

−b(v)(1− F n−1(v))U ′(−αb(v)).
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We now prove that ∂V (v)
∂α

< 0 for all 0 < α, v ≤ 1. By negation, assume that ∂V (v)
∂α

≥ 0

for some 0 < v1, α1 ≤ 1. Then, from equation (26) it follows that ∂b
∂α
|v1,α1

< 0. Hence, by

risk aversion and (25),

∂

∂α
V ′(v)

∣

∣

∣

∣

v1,α1

= −
∂b

∂α
F n−1(v)U ′′(v − b(v))

∣

∣

∣

∣

v1,α1

< 0. (27)

Denote y(v) = Vα1+∆α(v) − Vα1
(v), where 0 < ∆α. By the negation assumption, if ∆α

is sufficiently small, then y(v1) ≥ 0. Hence, by (27), y′(v1) = V ′
α+∆(v1) − V ′

α(v1) < 0.

Thus, y(t) = Vα+∆(t)− Vα(t) > 0 for t slightly below v1, and therefore by a continuation

argument for every 0 ≤ t < v1. This contradicts the fact that y(0) = Vα+∆(0)−Vα(0) = 0,

since V (0) = 0 for every α.

We have thus proved that

0 >
∂V (1)

∂α
= −

∂b(1)

∂α
U ′(1 − b(1)).

Therefore, the result follows. �

Therefore, the maximal bid approaches the maximal value:

Lemma 4 Under the conditions of Lemma 3,

lim
n→∞

b(1) = 1, for 0 ≤ α ≤ 1.

Proof. From Lemma 3 we have that b(1) is monotonically increasing in α. Therefore,

b(1; α = 0) < b(1; α) ≤ 1.

Since for α = 0 we have a first price auction, from equation (3) it follows that limn→∞ b(1; α =

0) = 1. Therefore, the result follows. �
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We now turn to the proof of Proposition 5. Let V (v), defined by (24), be the expected

utility of a bidder with value v in equilibrium. Then,

0 ≤ n

∫ 1

0

V (v)f(v) dv = nU ′(0)

∫ 1

0

[vF n−1(v)− αb − (1 − α)F n−1(v)b]f(v) dv − Cn

= U ′(0)An − U ′(0)R − Cn,

where

Cn = nU ′(0)

∫ 1

0

[vF n−1(v)− αb − (1 − α)F n−1(v)b]f(v) dv − n

∫ 1

0

V (v)f(v) dv,

An = n

∫ 1

0

vF n−1(v)f(v) dv,

R = n

∫ 1

0

[bF n−1 + αb(1 − F n−1]f dv.

Therefore,

R ≤ An −
Cn

U ′(0)
.

Since

An =

∫ 1

0

v(F n)′ = 1 −

∫ 1

0

F n = 1 + O(1/n),

see equation (17), then limn→∞ An = 1. Therefore, to finish the proof, we only need to

show that

lim
n→∞

Cn > 0.

Now,

Cn = −n

∫ 1

0

[

F n−1(v) (U(v − b) − (v − b)U ′(0)) + (1 − F n−1(v)) (U(−αb) + αbU ′(0))
]

f(v) dv

= −n

∫ 1

0

[

F n−1(v)
(v − b)2

2
U ′′(θ1(v)) + (1 − F n−1(v))

α2b2

2
U ′′(θ2(v))

]

f(v) dv,
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where 0 < θ1(v) < v − b(v) and −b(v) < θ2(v) < 0. Since −U ′′ ≥ M > 0, we have that

Cn ≥ Mn

∫ 1

0

[

F n−1(v)
(v − b)2

2
+ (1 − F n−1(v))

α2b2

2

]

f(v) dv

≥ Mn

∫ 1

0

F n−1(v)
(v − b)2

2
f(v) dv.

We now show that the limit of the right-hand-side is strictly positive. Indeed,

∫ 1

0

nF n−1(v)f(v)(v − b)2 dv =

∫ 1

0

(F n(v))′ (v − b)2 dv

= F n(v)(v − b)2

∣

∣

∣

∣

1

0

− 2

∫ 1

0

F n(v)(v − b)(1 − b′) dv (28)

= (1 − b(1))2 − 2

∫ 1

0

F n(v)(v − b) dv + 2

∫ 1

0

F n(v)(v − b)b′ dv.

We claim that the first two terms go to zero, but the third term goes to a positive constant.

Indeed, since limn→∞ b(1) = 1, see Lemma 4, the first term in (28) approaches zero. Since

(v− b) is bounded, the second term also goes to zero, see Lemma 2. As for the third term,

∫ 1

0

F n(v)(v − b)b′dv ≥

∫ 1

1−1/n

F n(v)(v − b)b′ dv.

Now, F n(1 − 1/n) ≥ C1 > 0. Indeed,

F

(

1 −
1

n

)

= 1 −
1

n
f(θ), 1 −

1

n
< θ < 1.

Therefore,

F n

(

1 −
1

n

)

≥

(

1 −
max f

n

)n

−→ e−max f .

Therefore,
∫ 1

1−1/n

F n(v)(v − b)b′dv ≥ C1

∫ 1

1−1/n

(v − b)b′dv.
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In addition,

∫ 1

1−1/n

(v − b)b′ dv = vb

∣

∣

∣

∣

∣

1

1−1/n

−

∫ 1

1−1/n

b dv −
b2

2

∣

∣

∣

∣

∣

1

1−1/n

= b(1) − (1 − 1/n)b(1 − 1/n) −

∫ 1

1−1/n

b dv −
b2(1)

2
+

b2(1 − 1/n)

2
.

As n goes to infinity, b(1) → 1 and
∫ 1

1−1/n
b dv → 0. Hence,

lim
n→∞

∫ 1

1−1/n

(v − b)b′ dv =
1

2
(1 − X∞)2,

where

X∞ = lim
n→∞

Xn, Xn = b(1 − 1/n).

We now show that

X∞ < 1, (29)

and this will complete the proof. By Taylor expansion,

1 −Xn = 1 − b(1) +
1

n
b′(θ), 1 − 1/n < θ < 1. (30)

Recall that

b′(v) = (n − 1)F n−2(v)f(v)
U(v − b(v))− U(−αb(v))

F n−1(v)U ′(v − b(v)) + α(1 − F n−1(v))U ′(−αb(v))
.

Now, for v ∈ (1 − 1/n, 1), as n −→ ∞,

F n−2(v) ≥ F n(v) ≥ C1, f(v) ≥ min f(v),

U(v−b(v))−U(−αb(v)) = (v−(1−α)b(v))U ′(θ2) ≥ (v−(1−α)v)U ′(θ2) ≥ α(1−1/n)U ′(1),

and

F n−1(v)U ′(v − b(v)) + α(1 − F n−1(v))U ′(−αb(v)) ≤ U ′(−1).
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Therefore, there exists C2 > 0 such that

b′(v) ≥ (n − 1)C2, 1 − 1/n < v < 1.

Thus, since 1 − b(1) → 0, eq. (30) implies that limn→∞(1 − Xn) ≥ C2 > 0.

F Last-price auctions

The equilibrium strategy in last-price auctions with F (x) = x and a CARA utility U(x) =

1 − e−λx is the solution of, see equation (21),

∫ v

0

[1 − e−λ(v−b(t))](v − t)n−3 dt = 0.

Therefore,
∫ v

0

eλb(t)(v − t)n−3 dt = eλv vn−2

n − 2
.

Differentiating n − 3 times with respect to v gives

(n − 3)!

∫ v

0

eλb(t) dt =
dn−3

dvn−3

(

eλv vn−2

n − 2

)

.

One more differentiation gives

(n − 2)!eλb(v) =
dn−2

dvn−2

(

eλvvn−2
)

.

Therefore,

b(v) =
1

λ
ln

[

1

(n − 2)!

dn−2

dvn−2

(

eλvvn−2
)

]

=
1

λ
ln

[

eλv

n−2
∑

k=0

(

n − 2

k

)

1

k!
λkvk

]

= v +
1

λ
ln

[

n−2
∑

k=0

(

n − 2

k

)

1

k!
λkvk

]

≤ v +
1

λ
ln

[

n−2
∑

k=0

(

n − 2

k

)

λkvk

]

= v +
1

λ
ln

[

(1 + λv)n−2
]

≤ v +
1

λ
ln

[

(eλv)n−2
]

= (n − 1)v = brn(v),
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where brn(v) is the equilibrium strategy in the risk-neutral case, see equation (9). Hence,

λ(brn − b) ≥ ln

[

n−2
∑

k=0

(

n − 2

k

)

λkvk

]

− ln

[

n−2
∑

k=0

(

n − 2

k

)

1

k!
λkvk

]

≥ ln

[

n−2
∑

k=0

(

n − 2

k

)

λkvk

]

− ln

[

−
1

2

(

n − 2

2

)

λ2v2 +
n−2
∑

k=0

(

n − 2

k

)

λkvk

]

= ln
[

(1 + λv)n−2
]

− ln

[

−
1

2

(

n − 2

2

)

λ2v2 + (1 + λv)n−2

]

.

Since ln b − ln a ≥ (b − a)/b for 0 < a < b, we get that

λ(brn − b) ≥
1

2

(

n − 2

2

)

λ2v2 1

(1 + λv)n−2
.

The distribution function of the lowest value is F(n) = 1− (1− v)n, hence the expected

revenue is given by R =
∫ 1

0
b(v) dF(n) = n

∫ 1

0
b(v)(1 − v)n−1 dv. Therefore,

Rrn − R = n

∫ 1

0

[brn(v)− b(v)](1− v)n−1 dv

≥
λ

4
n(n − 2)(n − 3)

∫ 1/n

0

v2 1

(1 + λv)n−2
(1 − v)n−1 dv

≥
λ

4
n(n − 2)(n − 3)

∫ 1/n

0

v2 1

(1 + λ/n)n−2
(1 − 1/n)n−1 dv

=
λ

4
n(n − 2)(n − 3)

1

3n3

1

(1 + λ/n)n−2
(1 − 1/n)n−1.

Taking the limit, we have that

lim
n→∞

(Rrn − R) ≥
λ

12
e−λ−1 > 0.
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G Proof of Theorem 1

Let P (v) = F n−1(v) be the probability of winning of a bidder with value v. Since

n
∫ 1

0
P (v)f(v) dv = 1, from Condition (10) it follows that

n

∫ 1

0

Ev−i
[βwin(vi,v−i) − vi]P (vi)f(vi) dvi = O(εn). (31)

Let

Si(vi) = Ev−i

[

U(vi − β(vi,v−i))
∣

∣

∣
i wins

]

P (vi)+Ev−i

[

U(−β(vi,v−i))
∣

∣

∣
i loses

]

(1−P (vi)),

be the expected surplus of a risk-averse bidder i when his type is vi. From now on, we

suppress the subindex i and the dependence on v−i, and introduce the notations βwin and

β lose for the equilibrium payment when bidder i wins or loses, respectively. Therefore, the

last relation can be rewritten as

S(v) = E
[

U(v − βwin(v))
]

P (v) + E
[

U(−β lose(v))
]

(1 − P (v)). (32)

Similarly, the expected revenue can be written as R = Rwin + Rlose, where

Rwin = n

∫ 1

0

E[βwin(v)]P (v)f(v) dv, Rlose = n

∫ 1

0

E[β lose(v))](1− P (v))f(v) dv.

From equation (31) it follows that

Rwin = n

∫ 1

0

vP (v)f(v) dv + O(εn) = 1 + O(1/n) + O(εn) = Rrn + O(1/n) + O(εn). (33)

We now show that relation (31) implies that

Rlose = O(εn). (34)
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Indeed, from equation (32) and the fact that Si ≥ 0, we have that

−E
[

U(−β lose(v))
]

(1 − P (v)) ≤ E
[

U(v − βwin(v))
]

P (v). (35)

Since U(−x) = −xU ′(0) + x2/2U ′′(θ(−x)) < −xU ′(0), it follows that xU ′(0) ≤ −U(−x).

Therefore, by (35) and the fact that the payments are positive,

0 ≤ U ′(0)E
[

β lose(v)
]

(1 − P (v)) ≤ E
[

U(v − βwin(v))
]

P (v).

Hence,

0 ≤ U ′(0)n

∫ 1

0

E
[

β lose(v))
]

(1 − P (v))f(v) dv

≤ n

∫ 1

0

E
[

U(v − βwin(v))
]

P (v)f(v) dv = O(εn),

where is the last stage we used (31). Therefore, we proved (34).

Combining (33,34) we get that R = Rrn + O(1/n) + O(εn). Therefore, we proved

equation (11).

H Proof of Corollary 1

In the proof of Theorem 1 we used Condition (10) to conclude that

lim
n→∞

n

∫ 1

0

E[βwin(v)− v]P (v)f(v) dv = 0.

Therefore, we need to show that this limit does not change even if (10) holds “only” for

1 − C/n ≤ v ≤ 1. To see that, we note that

n

∫ 1

0

E[βwin(v) − v]P (v)f(v) dv = I1 + I2,
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where

I1 = n

∫ 1−C/n

0

E[βwin(v) − v]P (v)f(v) dv, I2 = n

∫ 1

1−C/n

E[βwin(v)− v]P (v)f(v) dv.

Since 0 ≤ E[βwin(v)] ≤ v ≤ 1,

I1 ≤ n

∫ 1−C/n

0

P (v)f(v) dv = F n(1 − C/n).

Now,

F (1 − C/n) = 1 − C/nf(θn), 1 − C/n < θn < 1.

Therefore, as n −→ ∞,

F n (1 − C/n) =

(

1 −
Cf(θn)

n

)n

−→ e−Cf(1). (36)

Therefore, we can choose C sufficiently large so that |I1| ≤ ε/2. In addition,

|I2| ≤ εnn

∫ 1

1−C/n

P (v)f(v) dv ≤ εnn

∫ 1

0

P (v)f(v) dv = εn.

Therefore, we can choose n sufficiently large so that |I2| ≤ ε/2. Therefore, the result

follows.

I Condition (10) in the risk-neutral case

• The risk-neutral equilibrium bids, hence payments, in the first-price and all-pay

auctions are given by

β1st
rn (v) = b1st

rn (v) = v−
1

F n−1(v)

∫ v

0

F n−1(s) ds, βall
rn (v) = ball

rn(v) = F n−1(v)β1st
rn (v).
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Hence, by Lemma 2, as n −→ ∞,

β1st
rn (v) ∼ v −

1

n

F (v)

f(v)
, βall

rn (v) ∼ F n−1(v)[v −
1

n

F (v)

f(v)
].

Therefore, Condition (10) is satisfied for (risk-neutral) first-price auction, but not

for the all-pay auction.

• In the case of generalized all-pay auctions, the equilibrium bid function is the solu-

tion of

b′(v) = (n−1)F n−2(v)f(v)
U(v − b(v))− U(−αb(v))

F n−1(v)U ′(v − b(v)) + α(1 − F n−1(v))U ′(−αb(v))
, b(0) = 0.

This equation can be explicitly solved in the risk-neutral case, yielding

(βgen−all
rn )win(v) = bgen−all

rn (v) =
vF n−1(v)−

∫ v

0
F n−1(s) ds

α + (1 − α)F n−1(v)
(37)

=
F n−1(v)

α + (1 − α)F n−1(v)
b1st
rn (v).

Hence, (βgen−all
rn )win(v) −→ v provided that Fn−1(v)

α+(1−α)Fn−1(v)
−→ 1. If α is held con-

stant, then Fn−1(v)
α+(1−α)Fn−1(v)

−→ 1 when F n−1(v) −→ 1, i.e., for 1 − v � 1/n but not

for 1−v = O(1/n). Therefore, Condition (10) is not satisfied. If, however, α = α(n)

and limn→∞ α = 0, then by (36) Fn−1(v)
α+(1−α)Fn−1(v)

−→ 1 for 1 − v = O(1/n), but not

for all 0 ≤ v ≤ 1. Therefore, Condition (10) is not satisfied, but its weaker form

(see Corollary 1) is satisfied.

• In the case of k-price auctions, limn→∞ bk−price
rn (v) = v, see equation (9). In addition,

as n −→ ∞, the kth value approach the value of the winning bidder. Therefore,

limn→∞ βk−price
rn (v) = v, so that Condition (10) is satisfied.
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• Finally, in the case of last-price auctions,

(β last
rn )win(vi,v−i) = blast

rn (vmin) = vmin + (n − 2)
F (vmin)

f(vmin)
, vmin = min

j 6=i
vj,

see equation (9). In addition, since blast
rn (vmin) is independent of v, then it is not

converging to v for all v as n −→ ∞. Therefore, Condition (10) is not satisfied.
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