
A Case for Statically Executable Advice:
Checking the Law of Demeter with AspectJ

�

Karl Lieberherr David H. Lorenz Pengcheng Wu
College of Computer & Information Science

Northeastern University
360 Huntington Avenue 161 CN

Boston, Massachusetts 02115 USA�
lieber,lorenz,wupc � @ccs.neu.edu

ABSTRACT
We define a generic join point model for checking the Law of
Demeter (LoD). Join points are trees, pointcuts are predicates over
join points, and advice is checked statically similar to how declare
warning is checked in AspectJ. We illustrate how the joint point

form is mapped to the object and class forms of LoD, and pro-
vide an implementation in AspectJ that approximates LoD’s class
form by dynamically checking a particular execution using only
the join points’ static part. The paper proposes two ways to ex-
tend AspectJ to provide access to lexical join points directly. The
first proposes statically executable advice and pointcut designators
over lexical join points. The second proposes statically executable
meta-advice over the exposed abstract syntax tree of the program
and using Demeter style traversals to mirror AspectJ pointcuts.

1. INTRODUCTION
The Law of Demeter (LoD) [9] is a style rule that improves the
quality of object-oriented (OO) code [10]. Call sites and message
sends in OO programs constitutes coupling between classes. LoD
states which couplings are acceptable and which are best avoided.
Informally, LoD states that an object should only talk to “closely
related” objects, thus leading to less coupled OO systems [7].

There are three good reasons why one would want to check LoD
using aspect-oriented programming (AOP):

1. Detecting violations is a cross-module concern [17].

2. LoD is easy to express in a join point model.

3. Detecting LoD violations is an interesting, non-trivial appli-
cation of aspect technology helping to drive it further.�

This work was supported in part by the National Science Founda-
tion (NSF) under Grants No. CCR-0098643 and CCR-0204432, by
DARPA and BBN under agreement F33615-00-C-1694, and by an
Eclipse Grant from OTI.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, to republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.

AOSD 2003 Boston, MA USA
c
�

ACM 2003 1-58113-660-9/03/002...$5.00

In this paper we define LoD in terms of predicates over join points,
and we use the general purpose programming language AspectJ [11,
8] to check for violations. It is natural to dynamically check LoD
with AspectJ. Checking LoD’s dynamic forms is useful but the set
of violations detected depends on the input. We identify statically
executable advice as a small improvement that could make AspectJ
capable of checking also LoD’s static forms.

In a nutshell, we wish we were able to express LoD as an abstract
pointcut designator named LoD, which is made concrete in a sub-
aspect, and declare !LoD to be a violation:

Listing 1: LoD violation aspect
abstract aspect Violation {
abstract pointcut LoD;
declare warning: !LoD: "LoD Violation";

}

Not surprisingly, this attempt is futile in the current implementation
of AspectJ. 1 The logic required to detect LoD violations cannot be
associated with the pointcut declared by the Violation aspect in
Listing 1, not even for LoD forms which are statically checkable.
AspectJ lets you only check statically whether or not a statically
determinable pointcut designator is the empty set.

What is missing in AspectJ to make the Violation aspect work is
a more expressive statically determinable pointcut designator and
statically executable advice language that supports arbitrarily com-
plex logic at compile time as long as only statically available infor-
mation is accessed.

To show that AspectJ’s join point model is expressive enough to
describe lexical forms of LoD, we present an implementation of a
statically checkable form of LoD in AspectJ, which uses dynamic
checking but with the following restrictions:

� The advice is defined only on statically determinable point-
cuts.� The advice accesses only the static part of the join points.

Although we use advice for this implementation, we argue that it
can be transformed to statically executable advice, which can be
applied at compile time.�
We are referring to version 1.0.6 of AspectJ.

40

Outline. The rest of the paper is organized as follows. In Section
2 we describe background on LoD. In Section 3 we formulate LoD
using join point trees. Section 4 introduces an AspectJ program
for checking LoD’s object form, and Section 5 gives a dynamic
version of the checker for the class form. In section 6, we propose
two extensions to AspectJ. Section 7 concludes.

2. BACKGROUND
LoD has had many different formulations, but the common denom-
inator is that in order to reduce dependencies between objects (or
classes), an object should only send messages to a certain set of
“closely related” objects; the motto is “don’t talk to strangers.”

Checking LoD violations is a cross-cutting concern: it involves
checking all method calls in a program. LoD has a class form (CF)
and an object form (OF). CF states that the code of a class’s method
must rely only on the class’s other methods or methods of the classes
of its arguments, instance variables (data members), classes used to
locally instantiate instances, and the classes that are return types
of methods in the class. Validating CF can be done statically by
parsing the source code.

OF states that an object can only send messages to itself, its ar-
guments, its instance variables, a locally constructed object, or a
returned object from a message sent to itself. OF is intended to be
more restrictive than CF in the sense that OF cares about particular
objects while CF only cares about types. Therefore, an OF violation
is not necessarily a CF violation. However, a CF violation is not
necessarily an OF violation either (e.g., typecasting might violate
CF without violating OF.) Even when the static type of an object
is a static LoD violation, the dynamic type might not be a dynamic
LoD violation.

Other researchers have written LoD checkers. Naftaly Minsky and
his team, working on law-governed systems, used their Darwin-E
environment to check different relaxed versions of CF [14]. We il-
lustrate that behavior similar to what can be expressed in Darwin-E
for building law-governed systems can be achieved by using As-
pectJ. This both creates a set of new applications for AspectJ and it
makes the work on law-governed systems more accessible through
a general purpose language.

Basili et al. analyze several object-oriented design metrics as qual-
ity indicators of a program [3]. One of the design metrics they ana-
lyze is coupling between object classes (CBO). A class A is said to
be coupled to another class B if A uses B’s member functions and/or
instance variables. The CBO of a class is the number of classes to
which the class is coupled. One of their hypotheses is that highly
coupled classes are more fault-prone than weakly coupled classes
and they find through statistical analysis of many programs that
CBO-related hypothesis is significant. LoD, as a style rule, limits
CBO. Therefore we conclude that programs that violate LoD are
more fault-prone than programs that follow LoD.

ArchJava [1] enforces architectures on Java programs detects com-
munication integrity violations. The architecture language of Arch-
Java defines components and connections and the implementation
must conform to the architecture. Aldrich et al. postulate [1, Hy-
pothesis 5]: “It will be relatively easy to use ArchJava to express the
software architecture of an object-oriented program whose source
code obeys the LoD.” We believe that AspectJ, with the additions
proposed in this paper, could become an excellent language to en-
force software architectures.

In another related work, Deters [4] presents a solution to uses As-
pectJ to harvest runtime information for subsequent off-line anal-
ysis. The aspects that collect information are concerned with ref-
erences between objects, constructor calls and field references and
therefore use similar pointcuts as our LoD checkers.

3. JOIN POINT PREDICATES
In this paper we show that LoD can be expressed as a predicate
on join point trees. There are two kinds of join points. A lexical
join point is a site in the program text. A dynamic join point is an
event in the execution of the program. Shadow is a function from
dynamic to lexical join points, which maps a dynamic join point to
its lexical shadow [13].

3.1 Predicates over join points
Let ��� denote the set of lexical join points in a program 	 . Let
��

denote the set of dynamic join points in an execution of 	 . A
dynamic join point contains both static and dynamic information.
For a dynamic join point ���
��

, we define � ��� ��� to be the static
part of � (which is also the shadow of � .)

We define an equivalence relation over the dynamic join points in
 �
as � ��� ��� iff ��� � � � ������� � ����� , and denote by � � � the equiv-

alence class of � . We shall assume � � to be 2 the set of equivalence
classes of � . That is, each lexical join point is considered to be the
set of dynamic join points it shadows, and the equivalence class of
a dynamic join point � is considered to be the lexical join point � � � .
Given a predicate !#"%$ ���'&)(+*,*.- on lexical join points in 	 , we
can construct a predicate !�/0$
 � &)(+*,*.- on dynamic join points
in an execution:

! /1� ���2��! "2� � � �3� (1)

An execution of a program 	 satisfies the dynamic predicate !4/ ,
if all dynamic join points in satisfy ! / :

5 / � 6�7�98:<; � !=/ � ��� (2)

A program 	 satisfies the dynamic predicate ! / , if all executions
of 	 satisfy 5 / :

5 " � 	>���?8�A@ �7B 5 / � 6� (3)

Given a dynamically checkable predicate 5 / , it is desirable to have5 " statically checkable. We can approximate 5 " in AspectJ for
a dynamic predicate !�/ � �����C!�/ � �=� � ���D� that only accesses the
static part of the join point. The paper makes the observation that
advice defined over the equivalence classes of statically determinable
join points can be statically executed at compile time.

For a program 	 and input E we construct the dynamic join points
of the execution of 	 on E and the lexical join points produced from
the shadow of the dynamic ones. We derive from LoD: LCF (Lex-
ical Class Form), DCF (Dynamic Class Form), CF (Class Form),
DOF (Dynamic Object Form), LOF (Lexical Object Form) and OF
(Object Form). Let ! / be class form predicate of LoD, then by
Eq. (2) we derive 5 / to be DCF and by Eq (3) we derive 5 " to
be CF. Similarly, let !�/ be object form predicate of LoD, then by
Eq. (2) we derive 5 / to be DOF and by Eq. (3) we derive 5 " to be� For simplicity, we ignore lexical join points that don’t shadow any
dynamic join point.

41

OF. LCF and LOF are respectively class and object form LoD predi-
cates, applying static checking. The difference between DOF (DCF)
and OF (CF) is that DOF (DCF) only guarantees that the program 	
doesn’t violate the object (class) form in the execution on a given
input E . One difference between LOF (LCF) and OF (CF) is that LOF
(LCF) also checks lexical join points in dead code that might not be
reached by any dynamic join point.

Figure 1 shows the relationships between the violation reports by
different forms of LoD predicates for a program 	 and input E .

DOF
DCF

LCF

JP

LOF

CF OF

DOF:

CF

DCF:

OF

JP:

LOF:
LCF:

Violations reported by dynamic checking the object form

Class form violations
Object form violations

All call sites

Violations reported by dynamic checking the class form
Violations reported by static checking the object form
Violations reported by static checking the class form

Figure 1: The relationship between different LoD predicates.

3.2 Law of Demeter over Join Points
The key abstract data type to formulate a generalized LoD checker
is an abstract join point (tree). An abstract join point consists of a
target, a list of args, a result, and a list of abstract join points.

JP ::= F target: G=H args:{ G } IJF result: G=H children:{JP} I ;
We define a Join Point Form (JPF) of LoD:

DEFINITION 1 (JPF). The Join Point Form of LoD requires
that for each join point K , the target of K must be a potential pre-
ferred supplier to K .

DEFINITION 2 (POTENTIAL PREFERRED SUPPLIER). The set
of potential preferred suppliers to a join point K , child of the en-
closing the join point L , is the union of the following sets:

� Argument Rule: the argument list of the enclosing join pointL , parent to K ;� Associated Rule: the results of the siblings of K which do not
have a target or whose target is the target of the enclosing
join point L , parent to K .

More formally, the signature of an abstract join point is:

datatype G jp = jp of G * G list * G * G jp list;

This signature is parameterized by the type M , where M can stand
for an object (for modeling a dynamic join point) or a class (for
modeling a lexical join point) or any other type (for other unex-
plored forms of LoD).

The basic constructor of the M jp abstract data type is:

jp: G * G list * G * G jp list NOG jp

with accessors:

getTarget: G jp NPG
getArgs: G jp NPG list
getResult: G jp NPG
getChildren: G jp NQG jp list

and predicates:

contains: RSG list * RSGTN bool
isChildOf: R G jp * R G jp N bool
hasSelfishChild: R G jp * R GUN bool

The algebraic specification is given in Listing 2, accounting also
for the possibility that the optional target and result are missing.

Using an AspectJ-like syntax and the abstract data type, JPF can be
expressed as a pointcut over a traversal of the abstract join point
tree [5]. In Listing 3, thisJoinPoint denotes the current join
point, and thisEnclosingJoinPoint denotes its parent, such
that isChildOf(thisJoinPoint,thisEnclosingJoinPoint)
is always true. The OO syntax VXWZY\[�]�V_^ ` � WZY<[�_a ^b^�^c� is used instead
of ` � VXWZY<[�],V a WZY<[� a ^�^�^_� .

Listing 3: LoD aspect

aspect LoD extends Violation {
pointcut LoD(): //LoD definition
ArgumentRule()
|| AssociatedRule();

pointcut ArgumentRule():
if(thisEnclosingJoinPoint.getArgs()
.contains(thisJoinPoint.getTarget()));

pointcut AssociatedRule():
if(thisEnclosingJoinPoint

.hasSelfishChild(thisJoinPoint.getTarget()));
}

The pseudo aspect in Listing 3 formulates LoD as a predicate on
join point trees consisting of only one parameterized kind of join
point (which we instantiate later to become an object-based or a
class-based join point). The LoD aspect extends the Violation
aspect (Listing 1) by giving the definition of the LoD pointcut

in terms of Argument Rule and Associated Rule, which in turn
are implemented as pointcuts. The declare warning defined in
Violation provides a notification of a violation if !LoD() is non-
empty.

LoD is a “pseudo” aspect because it cannot run in the current im-
plementation of AspectJ, which doesn’t allow declare warning
to be defined on a pointcut with an if expression. The point-

cut ArgumentRule and AssociatedRule select the “good” join
points in the entire join point tree. ArgumentRule selects those
join points whose target is one of the arguments of the enclos-
ing join point; AssociatedRule selects those join points whose
target is in the set of locally returned M ’s, the result M ’s of the
method call on the enclosing join point target, and the M ’s cre-
ated in the enclosing method body. 3 A concrete implementation
of AssociatedRule should account for the direct part M ’s of the
enclosing join point target, and the presence of aliasing.

Definition 1 (JPF) is consistent with OF for a multi-dispatch (actu-
ally, predicate-dispatch) language called Fred [15]. The JPF formu-d
There is no target for constructor calls.

42

Listing 2: Algebraic specification of the join point abstract data type

datatype ’a optional = empty | data of ’a;
datatype ’a jp = jp of ’a optional * ’a list * ’a optional * ’a jp list
fun getTarget (thisJoinPoint as jp(target,_,_,_)) = target;
fun getArgs (thisJoinPoint as jp(_,args,_,_)) = args;
fun getResult (thisJoinPoint as jp(_,_,result,_)) = result;
fun getChildren (thisJoinPoint as jp(_,_,_,children)) = children;
fun contains([],_) = false

| contains(head::tail,element)= head=element orelse contains(tail,element);
fun isChildOf (thisJoinPoint,(parent as jp(_,_,_,[]))) = false

| isChildOf (thisJoinPoint,(parent as jp(target,args,result,child::children))) =
thisJoinPoint=child
orelse isChildOf(thisJoinPoint,jp(target,args,result,children));

fun hasSelfishChild ((parent as jp(_,_,_,[])),_) = false
| hasSelfishChild ((parent as jp(target,args,result,

(child as jp(childtarget,_,childresult,_))::children)),receiver) =
receiver=childresult andalso (target=childtarget orelse target=empty)
orelse hasSelfishChild(jp(target,args,result,children),receiver);

datatype ’a optional
con data : ’a -> ’a optional
con empty : ’a optional

datatype ’a jp
con jp : ’a optional * ’a list * ’a optional * ’a jp list -> ’a jp

val getTarget = fn : ’a jp -> ’a optional
val getArgs = fn : ’a jp -> ’a list
val getResult = fn : ’a jp -> ’a optional
val getChildren = fn : ’a jp -> ’a jp list
val contains = fn : ’’a list * ’’a -> bool
val isChildOf = fn : ’’a jp * ’’a jp -> bool
val hasSelfishChild = fn : ’’a jp * ’’a optional -> bool

lation, moreover, does not just check OF, but can also check CF.

The motivation for a generic join point model is not just the formu-
lation of LoD but also to gain a better insight into the connection
between dynamic and lexical join point models. We use the gen-
eralized checker to identify potential imbalances in AspectJ which
can handle DOF elegantly but which has difficulties with LCF.

3.2.1 Mapping OF and CF to JPF

We use JPF to check DOF as follows. Given a dynamic join point
model, an execution trace can be expressed as a sequence of ab-
stract join points in JPF, M being object ID. Join points are method
invocations. The enclosing join point is the parent in the control
flow; we apply the LoD pointcut to get DOF.

We use JPF to check LCF as follows. Given a lexical join point
model, part of the abstract syntax tree of the program can be mod-
eled as an abstract join point tree in JPF, M being class name. Join
points are signatures of call sites. The enclosing join point is the
signature of the method in which the call site resides. To run the
aspect, a suitable ordering has to be given to the elements of chil-
dren: all constructor calls, followed by local method calls, followed
by the other join points; we apply the LoD pointcut to get LCF.

JPF is mapped into our implementations as follows. Argument Rule
is mapped into the context sensitive category, in which M ’s are po-
tential preferred suppliers only if they are in the context of the cur-
rent method execution. For the Associated Rule, we map the resultM ’s of local method calls and created M ’s in the current method
execution (we call them Locally Constructed) to the context sen-
sitive category for the same reason as the Argument Rule’s, while
the direct part M ’s of the target of the current method execution are
mapped to the context insensitive category, since those direct partM ’s are potential preferred in any method execution of their con-

taining target.

3.3 Complexity of LoD checking
LCF and DOF predicates can be checked polynomially in the length
of the programs and the length of the executions (number of join
points in the dynamic call graph). LOF can be shown to be unde-
cidable by a simple reduction to the halting problem. See Table 1
for a summary.

class object
lexical LCF(polynomial) LOF(undecidable)
dynamic DCF(polynomial) DOF(polynomial)

Table 1: Complexity of LoD predicates.

We wished we could check LoD using aspects similar to the the
ones shown in Listings 1 and 3, which use the static declare
warning mechanism of AspectJ. It is reasonable to expect that we
cannot implement DOF in that way, since DOF needs to be checked
dynamically. However, we can’t implement LCF either, even though
it is polynomial and can be checked statically.

The next two sections present our dynamic checkers in AspectJ for
the object form (DOF) and the class form (DCF), respectively. Our
DCF checker illustrates our argument about how AspectJ should be
extended to provide more power for static checking.

4. CHECKING THE OBJECT FORM
There are some subtle differences between DOF and DCF. Before
we describe our DOF and DCF implementations, we mention some
general issues affecting the implementation.

� When checking whether an object is a potential preferred

43

supplier, we can use either reference semantics or value se-
mantics. For DOF we use reference semantics.� In DOF the state of the object is important, DOF is sensitive to
the order of assignments to instance variables, since we want
to always capture the most recently updated “direct parts” of
“this” objects. In DCF, the order of assignments is irrelevant,
since we only care about the types.� In DOF we distinguish between static and non-static methods
since the target objects are different, while in DCF this issue
is irrelevant.

To keep our implementation as concise as possible, we relax the
requirements as follows:

� We only check message-sends.� We don’t check the legality of any method calls residing in a
static method definition, neither do we check the legality of
the calls to a static method.� We don’t view objects contained in a Collection instance
variable as “direct parts.”

Listing 4 is a utility abstract class that defines all the pointcuts
needed in this implementation (some of them are needed later in the
class form checker). Those pointcuts pervasively touch programs
and make extensive use of property-based pointcuts. The scope()
pointcut prevents the aspects from advising the LoD checker code,
which is generally desired to avoid circular advice. The SelfCall
pointcut captures the method calls sent to this in a method or

constructor execution. Other pointcuts are self-explanatory.

4.1 Implementation
The implementation uses three concrete aspects with one or two
short advice each and a few auxiliary methods. The design of the
implementation is clean and easy to understand due to the use of a
dynamic join point model. Figure 2 shows the UML diagram of the
object form checker.

ObjectSupplier

<<aspect>>
Percflow

 Any
 Check

 <<aspect>> <<aspect>>

<<aspect>>
Pertarget

<<uses pointcut>>

<<uses pointcut>>

<<uses pointcut>>

Figure 2: The UML diagram of the object form checker

There are two tasks that need to be performed. One is to collect all
of the preferred supplier objects on which methods can be called
from an object/context. The other is to verify that each method call
makes valid calls on a preferred supplier object of the correspond-
ing “this” object. There are two categories of preferred supplier

Listing 4: Any.java

package lawOfDemeter;
public abstract class Any {
public pointcut scope(): !within(lawOfDemeter..*)
&& !cflow(withincode(* lawOfDemeter..*(..)));

public pointcut StaticInitialization(): scope()
&& staticinitialization(*);

public pointcut MethodCallSite(): scope()
&& call(* *(..));

public pointcut ConstructorCall(): scope()
&& call(*.new (..));

public pointcut MethodExecution(): scope()
&& execution(* *(..));

public pointcut ConstructorExecution(): scope()
&& execution(*.new (..));

public pointcut Execution():
ConstructorExecution() || MethodExecution();

public pointcut MethodCall(Object thiz,
Object target): MethodCallSite()
&& this(thiz)
&& target(target);

public pointcut SelfCall(Object thiz,
Object target): MethodCall(thiz,target)
&& if(thiz == target);

public pointcut StaticCall(): scope()
&& call(static * *(..));

public pointcut Set(Object value): scope()
&& set(* *.*) && args(value);

public pointcut Initialization(): scope()
&& initialization(*.new(..));

}

objects for an object. The first category is context-insensitive: in a
method execution on an object, it is legal to call a method on any
instance variable of that object. The second category is context-
sensitive in that some objects are only preferred in the scope of a
method, for example, the method call on an argument object is only
legal within the method body of the enclosing method.

Listing 5: ObjectSupplier.java

abstract class ObjectSupplier {
protected boolean containsValue(Object supplier){
return targets.containsValue(supplier);

}
protected void add(Object key,Object value){
targets.put(key,value);

}
protected void addValue(Object supplier) {
add(supplier,supplier);

}
protected void addAll(Object[] suppliers) {
for(int i=0; i< suppliers.length; i++)
addValue(suppliers[i]);

}
private IdentityHashMap targets =
new IdentityHashMap();

}

The class ObjectSupplier defines a repository and a set of sup-
porting methods for looking up and adding preferred supplier ob-
jects to an object so that its two subaspects can access them. Note
that we use java.util.IdentityHashMap 4 class to implement
the repository, since we use reference semantics to compare two
objects.e
java.util.IdentityHashMap is a class available since

JDK f.^ g .

44

The aspect Pertarget implements the only context-insensitive pre-
ferred objects situation, i.e., instance variables of an object, by
advising the set join point. It is declared as pertarget(Any.
Initialization()) so that once a new object h is initialized, an
aspect instance of Pertarget will be created and associated withh , and each aspect instance can correctly maintain the direct part
relationship between the instance variables and their hosting objecth . The before-advice on the set join point handles that logic, in
which the fieldIdentity method is used so that if an object h �
has been set as a direct part of an object h � through a field ` , then
later h � ’s ` is set to another object h d , we can replace h � with h d
and always maintain the correct direct part relationships.

Listing 6: Pertarget.java
public aspect Pertarget
extends ObjectSupplier
pertarget(Any.Initialization()) {
before(Object value): Any.Set(value) {
add(fieldIdentity(thisJoinPointStaticPart),
value);

}
public boolean contains(Object target) {
return super.containsValue(target) ||
Percflow.aspectOf().containsValue(target);

}
private String fieldIdentity(JoinPoint.StaticPart
sp) {
String fieldName = sp.getSignature().
getDeclaringType().getName() + ":" +
sp.getSignature().getName();

if(fieldNames.containsKey(fieldName))
fieldName=(String)fieldNames.get(fieldName);

else
fieldNames.put(fieldName,fieldName);

return fieldName;
}
private static HashMap fieldNames =
new HashMap();

}

The aspect Percflow implements all the context-sensitive preferred
objects situations, by advising Any.Execution() and examining
results of Any.SelfCall(Object,Object), Any.StaticCall
(), or Any.ConstructorCall() to collect the corresponding pre-
ferred supplier objects. Percflow is declared as percflow(Any
. Execution()|| Any. Initialization()) to simulate the
execution scope of a method, instead of requiring manual stack op-
erations. Note that here Any.Initialization() is necessary be-
cause in AspectJ an instance variable initialization defined outside
any constructor definition is not in the execution of any constructor.

Listing 7: Percflow.java
aspect Percflow extends ObjectSupplier
percflow(Any.Execution()|| Any.Initialization()){
before(): Any.Execution() {

addValue(thisJoinPoint.getThis());
addAll(thisJoinPoint.getArgs());

}
after() returning (Object result):
Any.SelfCall(Object,Object) || Any.StaticCall()
|| Any.ConstructorCall() {
addValue(result);

}
}

The checking logic happens in the Check aspect, which defines the
after-advice on method call join points and checks whether a target
is a preferred supplier according to LoD.

Any style rule has exceptions, including LoD. To make the checker
be practically useful, the method calls on some specific objects
should be allowed in any situation, e.g., System.out.println(. . .) should
be allowed to be called anywhere. The IgnoreTargets pointcut
defines this logic by capturing all those kinds of objects, whose do-
main currently includes all the public static variables declared in
the classes in the packages beginning with java. We don’t want to
check method calls on some stable types either, so we use pointcut
IgnoreCalls to list those method calls. The Check aspect uses
the two pointcuts to ignore checking in those two situations. Users
can always change those domains by customizing the pointcuts.

Listing 8: Check.java

aspect Check {
private pointcut IgnoreCalls():
call(* java..*.*(..));

private pointcut IgnoreTargets():
get(static * java..*.*);

after() returning(Object o):IgnoreTargets() {
ignoredTargets.put(o,o);

}
after(Object thiz,Object target):
Any.MethodCall(thiz,target)
&& !IgnoreCalls() {
if (!ignoredTargets.containsKey(target) &&
!Pertarget.aspectOf(thiz).contains(target))
System.out.println(
" !! LoD Object Violation !! "
+ thisJoinPointStaticPart);

}
private IdentityHashMap
ignoredTargets = new IdentityHashMap();

}

5. CHECKING THE CLASS FORM
The class form checker has the same functional architecture as the
object form checker in that both of them use suppliers and a checker
that acts as the client of the suppliers. But from the design point of
view, our class form checker uses a different AOP framework from
the object form checker’s, in which, for each subrule, we have cor-
responding advice. In the class form checker, we have used ab-
stract aspects to specify that when some interesting scenario hap-
pens some advice will be executed. The concrete subaspects reuse
the advice defined in the superaspect by concretizing the interest-
ing scenario. Of course, the concrete subaspects can customize the
process logic for their scenarios by overriding abstract methods.
Figure 3 shows the UML diagram of the class form checker.

Listing 9: ClassSupplier.java
abstract class ClassSupplier {
protected abstract List
getSuppliers(JoinPoint.StaticPart enclosingjsp,
JoinPoint.StaticPart jsp);

}

The classes and aspects: ClassSupplier, Pertype, Perscope,
and Check make up an aspect-oriented framework which defines
the generic checking behavior. This is a reusable aspect framework
and for different versions of LoD we can add different sets of sub-
aspects.

We have implemented Pertype and Perscope as abstract aspects,
each of which defines an abstract pointcut (with the same name as
the aspect) which is used to collect preferred supplier types. Simi-
lar to the situations in the object form checker, the two abstract as-

45

<<uses pointcut>>

<<uses pointcut>>

<<uses pointcut>>
<<uses pointcut>>

<<uses pointcut>>

 Check
 <<aspect>>

 Any

 <<aspect>> <<aspect>>
 Arguments

Perscope

ReturnTypes

ClassSupplier

 <<aspect>>
DirectPart

<<uses pointcut>>

 <<aspect>>

Pertype

 <<aspect>>

 <<aspect>>
LocallyConstructed

<<aspect>>

Figure 3: The UML diagram of the class form checker

Listing 10: Pertype.java

abstract aspect Pertype extends ClassSupplier {
abstract pointcut Pertype();
before(): Pertype() {
targets.put(thisJoinPointStaticPart.
getSignature().getDeclaringType(),
getSuppliers(thisEnclosingJoinPointStaticPart,
thisJoinPointStaticPart));

}
protected static boolean contains(Class thisType,
Class targetType) {
if(targets.containsKey(thisType)) {
List alloweds = (List)targets.get(thisType);
Iterator it=alloweds.iterator();
while(it.hasNext()) {
if(targetType==it.next())
return true;

}
}
return Perscope.contains(targetType);

}
private static HashMap targets = new HashMap();

}

pects correspond to the two different situations in which the types
are preferred. Table 2 lists the correspondences between the two
checkers.

aspect object class
context-insensitive Pertarget Pertype and subaspect
context-sensitive Percflow Perscope and subaspects

Table 2: The correspondences between object/class form checkers.

The first situation is the context-insensitive situation as defined by
Pertype, in which some types are always preferred for a given
type. The only context-insensitive situation is the direct part situa-
tion, where the types of the instance variables (including inherited
instance variables) of a class are always preferred in any methods of
the class. The second situation is the context-sensitive situation as
defined by Perscope, in which the types are only preferred when
the call sites are in the stack of a particular method execution. (An

Listing 11: Perscope.java

abstract aspect Perscope extends ClassSupplier {
abstract pointcut Perscope();
before() : Any.Execution() {
st.push(new HashSet());

}
before() : Perscope() {
HashSet aSet = (HashSet) st.peek();
aSet.addAll(getSuppliers(
thisEnclosingJoinPointStaticPart,
thisJoinPointStaticPart));

}
after(): Any.Execution() {
st.pop();

}
static boolean contains(Class targetType) {
HashSet innermost = (HashSet)Perscope.st.peek();
return innermost.contains(targetType);

}
private static Stack st = new Stack();

}

example of that situation is the arguments situation, where the types
of arguments are only legal for the scope of the method body.) All
of the concrete aspects extending any of the abstract aspects are
supposed to give:

Listing 12: Check.java

aspect Check {
private pointcut IgnoreCalls():
call(* java..*.*(..));

after(): Any.MethodCallSite() && !IgnoreCalls() {
Class targetType = thisJoinPointStaticPart.

getSignature().getDeclaringType();
Class thisType =
thisEnclosingJoinPointStaticPart.
getSignature().getDeclaringType();

if(!Pertype.contains(thisType,targetType)
&& !targetType.isAssignableFrom(thisType))
System.out.println(
" !! LoD Class Violation !! "
+ thisJoinPointStaticPart);

}

46

Listing 13: DirectPart.java

aspect DirectPart extends Pertype {
public pointcut Pertype():
Any.StaticInitialization();

protected List getSuppliers(JoinPoint.StaticPart
ejsp,JoinPoint.StaticPart jsp) {
List suppliers=new ArrayList();
Class currentClass =
jsp.getSignature().getDeclaringType();

while(currentClass != null) {
Field[] fields =
currentClass.getDeclaredFields();

for(int i=0; i<fields.length; i++)
suppliers.add(fields[i].getType());

currentClass=currentClass.getSuperclass();
}
return suppliers;

}
}

Listing 14: Arguments.java

aspect Arguments extends Perscope {
pointcut Perscope(): Any.MethodExecution()
|| Any.ConstructorExecution();

protected List
getSuppliers(JoinPoint.StaticPart ejsp,
JoinPoint.StaticPart jsp) {
Class thisClass =
jsp.getSignature().getDeclaringType();

List parameterTypes = new ArrayList();
parameterTypes.add(thisClass);
parameterTypes.addAll(
Arrays.asList(((CodeSignature)jsp.
getSignature()).getParameterTypes()));

return parameterTypes;
}

}

Listing 15: LocallyConstructed.java

aspect LocallyConstructed extends Perscope {
pointcut Perscope():
Any.ConstructorCall();

protected List getSuppliers(JoinPoint.StaticPart
ejsp,JoinPoint.StaticPart jsp) {
List supplier = new ArrayList();
supplier.add(jsp.getSignature().
getDeclaringType());

return supplier;
}

}

Listing 16: ReturnTypes.java

aspect ReturnTypes extends Perscope {
pointcut Perscope(): Any.MethodCallSite();
protected List
getSuppliers(JoinPoint.StaticPart ejsp,
JoinPoint.StaticPart jsp) {
List supplier = new ArrayList();
if(ejsp.getSignature().getDeclaringType()!=
jsp.getSignature().getDeclaringType())
return supplier;
supplier.add(((MethodSignature)jsp.
getSignature()).getReturnType());

return supplier;
}

}

� a definition of the corresponding abstract pointcut to con-
cretize where the advice defined in the superaspect should
happen;� an implementation of the abstract method getSuppliers
declared in class ClassSupplier to expose the preferred

types for its particular scenario.

There are four concrete aspects extending Pertype or Perscope
aspect, which correspond to the four rules of LoD (we view the as-
sociated rule to be three rules) respectively. To make our checker
practically useful, we allow method calls on super types in the
method execution of their subtypes and as in the object form checker,
we also allow exceptions to the class form of the LoD, which is de-
fined and configurable by pointcut Check.IgnoreCalls(). The
Check aspect does the straightforward checking logic.

This implementation is a dynamic checker for LCF. However, in
Listings 9 through 16, we only use static type information of classes
or methods (we use Java Reflection [6] to get the types of the in-
stance variables of a class, but this information can also be easily
available at compile time [12]) and all the advice are defined on
statically determinable pointcuts, hence it is natural to argue that
AspectJ should have been able to support static checking for LCF.
What is missing is some sort of statically executable mechanism
that would permit these advice to be part of declare statements,
which can be defined by users and executed at compile time so that
users can write more complex logic than that of declare error
or declare warning.

In the next section, we propose two possible extensions to AspectJ
to make the above scenario a reality.

6. EXTENDING ASPECTJ
As discussed earlier, the checking of the class form of the LoD
would be possible if AspectJ supported a mechanism for defining
some logic that is more complex than that of declare error or
declare warning, but is still statically executable. Here is our
argument why one would expect this kind of feature from AspectJ.

1. The declare mechanism is a very useful feature of AspectJ
for supporting simple checking at compile time. It would be
a natural extension for AspectJ to support advice on those
statically determinable pointcuts and get those advice exe-
cuted at compile time.

2. AspectJ already makes rich static information about the pro-
gram available through thisJoinPointStaticPart, but
currently this information is only accessible to regular run
time advice. Making this static information accessible to ad-
vice executed at compile time, would allow many interest-
ing properties about a program (like LCF) to be checked at
compile-time.

3. AspectJ is expressive enough to capture interesting join points
in the base program structure. We would like to make use of
the expressiveness of the pointcut language by lifting some
of the current restrictions on statically determinable pointcut
definitions.

The following two sections describe our two visions about how As-
pectJ can be extended to better support static checking approach.

47

6.1 Statically Executable Advice
Statically executable advice is a feature that would allow AspectJ to
support advice on statically determinable pointcuts and to execute
the advice at compile-time. Here is our proposed architecture.

First, a new interface StaticallyExecutableAdvice needs to
be added to AspectJ’s API, so that users who want to use this fea-
ture can define their computation by implementing this interface
(Listing 17).

Listing 17: StaticallyExecutableAdvice.java

public interface StaticallyExecutableAdvice {
void beforeCall(StaticJoinPoint sjp);
void afterCall(StaticJoinPoint sjp);
void beforeExecution(StaticJoinPoint sjp);
void afterExecution(StaticJoinPoint sjp);
void beforeGet(StaticJoinPoint sjp);
void afterGet(StaticJoinPoint sjp);
//There will be more for other join points ...

}

The type StaticJoinPoint will be added into AspectJ’s API to
provide static information collected during the compilation pro-
cess, similar to thisJoinPointStaticPart in the current im-
plementation of AspectJ.

One can use the statically executable advice feature by implement-
ing the StaticallyExecutableAdvice interface, which can ac-
cess the static information about the join point through the argu-
ment StaticJoinPoint and do the static analysis. Users can
associate their statically executable advice only with the statically
determinable pointcuts in aspects through a new special declare
mechanism called declare advice.

Listing 18 shows how statically executable advice would be used,
where StaticallyExecutableAdviceImpl is the name of an
exemplar class implementing the StaticallyExecutableAdvice
interface.

Listing 18: Foo.java

aspect Foo {
declare advice: execution(* A.test(..)) ||
call(* B.foo()):
StaticallyExecutableAdviceImpl;

}

When AspectJ’s compiler compiles aspect Foo and reaches the dec-
laration, the StaticallyExecutableAdviceImpl class is dy-
namically loaded and is used to create an instance (for each of
such classes, there is typically only one singleton instance). Then
when AspectJ’s compiler reaches any join point that matches the
pointcut definitions, the compiler can construct the corresponding
StaticJoinPoint object sjp and call the corresponding methods
specified by StaticallyExecutableAdvice interface on that in-
stance of StaticallyExecutableAdviceImpl with sjp bound
to the argument. Those statically executable advice get executed at
compile time. The before and after prefixes in the interface meth-
ods have the same semantics as before and after advice except now
it is happening at compile time.

6.2 Meta-Level Advice
Compile-time analysis can also be achieved by another, more gen-
eral approach, which uses meta level advice.

AspectJ uses a dynamic join point model where the join points are
points in the execution of a program. AspectJ has excellent sup-
port for the dynamic join point model, but only limited support for
the corresponding lexical join point model. Through the dynamic
join points we can access the corresponding lexical join points. For
example, in the dynamic join point model we can easily talk about
all method calls happening during the execution of a program by
writing call(* *(..)). However, we cannot easily express in
AspectJ the set of all call-site signatures contained in a given pro-
gram by using a notation like: Shadow(call(* *(..))).

An alternative to extending AspectJ with statically executable ad-
vice is to expose the meta model of an AspectJ program in the form
of a class graph and an abstract syntax tree and to offer navigational
capabilities in the meta model commensurate with the navigational
capabilities in the dynamic model.

One justification why AspectJ should not expose the meta model is
that we could just use Java to parse an AspectJ program and process
the abstract syntax tree to check something like LCF. But a parser
for AspectJ is already available in the AspectJ’s compiler ready to
be reused. Another justification why AspectJ should not expose the
meta model is that the static join points don’t need enhancement
(advice) as opposed to the dynamic join points that need checking
logic to be added. But the meta-level advice can be viewed as a
base-level advice and we would like to use all the capabilities of
AspectJ to process the meta-level objects (abstract syntax trees).

We propose that AspectJ expose its meta-level objects and add nav-
igational support on those objects so that users can easily imple-
ment static checking like LCF checking by just traversing the AST.
The Demeter traversal specifications [16] would be useful as nav-
igational support. For example, we could then write “from Pro-
gram to CallSite” instead of Shadow(call(* *(..)). This kind
of navigational support is also very useful at the base level [18].

7. CONCLUSION
The paper makes the following contributions:

1. We define a generic join point model for checking LoD generi-
cally. The join points are join point trees, the pointcuts are predi-
cates over the join points, and advice is statically checked as in the
declare warning mechanism in AspectJ.

2. We show how the generic LoD checker is used to check DOF,
and we provide an elegant implementation in AspectJ.

3. We show how the generic LoD checker is used to check LCF, and
we note that we cannot provide an elegant implementation in As-
pectJ. We can only provide an approximation to LCF which checks
DCF (per a particular execution).

4. AspectJ provides lexical join point information through dynamic
join points. The paper proposes two ways to extend AspectJ to
provide access to lexical join points directly.

� The first proposes statically executable advice and pointcut
designators over lexical join points.� The second proposes statically executable meta-advice over
the exposed abstract syntax tree of the program, and applies
aspect-oriented programming (including Demeter style sup-
port for traversal-related concerns) to the abstract syntax tree.

48

This paper concludes a line of research in aspect-oriented explo-
ration. The Law of Demeter, postulated some 15 years ago, re-
duces coupling in OO programs at the expense of an increase in
scattering and tangling. Adaptive and AOP techniques have been
explored to deal with this inherent crosscutting resulting from fol-
lowing LoD. In this paper we go back and use a general-purpose
AOP language to implement LoD style checkers in a non-intrusive,
extensible, convenient way.

Acknowledgments
We are grateful to Sergei Kojarski for evaluating the different LoD
checkers and for helping integrate the different versions. Many
thanks to Paul Freeman for developing an industrial quality LoD
checking tool, and for his feedback on our LoD checkers.5 We
thank Doug Orleans, Johan Ovlinger, Yi Qian, Fabio Rojas, Theo
Skotiniotis and the anonymous reviewers for their valuable feed-
back.

8. REFERENCES
[1] J. Aldrich, C. Chambers, and D. Notkin. Architectural

reasoning in ArchJava. In B. Magnusson, editor, Proceedings
of the 16 ikj European Conference on Object-Oriented
Programming, number 2374 in Lecture Notes in Computer
Science, pages 334–367, Málaga, Spain, June10-14 2002.
ECOOP 2002, Springer Verlag.

[2] AOSD 2002. Proceedings of the 1 l i international conference
on Aspect-Oriented Software Development, Enschede, The
Netherlands, Apr. 2002. ACM Press.

[3] V. R. Basili, L. C. Briand, and W. L. Melo. A validation of
object-oriented design metrics as quality indicators. IEEE
Transactions on Software Engineering, 22(10):751–761,
1996.

[4] M. Deters and R. K. Cytron. Introduction of program
instrumentation using aspects. In Proceedings of the
OOPSLA 2001 Workshop on Advanced Separation of
Concerns in Object-Oriented Systems, Tampa, FL, Oct.
2001. ACM.

[5] P. Freeman, S. Kojarski, K. Lieberherr, D. Lorenz, and
P. Wu. Aspect-Oriented Design and Implementation of a
Law of Demeter Checking Tool. Technical Report
NU-CCS-03-01, Northeastern University, Jan. 2003.

[6] J. Gosling, B. Joy, G. Steele, and G. Bracha. Java Language
Specification. Addison-Wesley, 2 edition, 2000.

[7] A. Hunt and D. Thomas. The Pragmatic Programmer.
Addison-Wesley, 2000.

[8] G. Kiczales, E. Hilsdale, J. Hugunin, M. Kersten, J. Palm,
and W. G. Griswold. An overview of AspectJ. In J. L.
Knudsen, editor, Proceedings of the 15 ikj European
Conference on Object-Oriented Programming, number 2072
in Lecture Notes in Computer Science, pages 327–353,
Budapest, Hungary, June 18-22 2001. ECOOP 2001,
Springer Verlag.m

The source code for the checkers is available from the
Demeter home page: http://www.ccs.neu.edu/-
research/demeter/, in the directory demeter-method/-
LawOfDemeter/AspectJCheckers/.

[9] K. J. Lieberherr and I. Holland. Assuring good style for
object-oriented programs. IEEE Software, pages 38–48,
September 1989.

[10] K. J. Lieberherr and I. Holland. Formulations and Benefits of
the Law of Demeter. SIGPLAN Notices, 24(3):67–78, March
1989.

[11] C. V. Lopes and G. Kiczales. Recent developments in
AspectJ. In S. Demeyer and J. Bosch, editors,
Object-Oriented Technology. ECOOP’98 Workshop Reader,
number 1543 in Lecture Notes in Computer Science, pages
398–401. Workshop Proceedings, Brussels, Belgium,
Springer Verlag, July 20-24 1998.

[12] D. H. Lorenz and J. Vlissides. Pluggable reflection:
Decoupling meta-interface and implementation. Technical
Report NU-CCS-02-10, College of Computer and
Information Science, Northeastern University, Boston, MA
02115, Sept. 2002. To appear in International Conference on
Software Engineering, 2003.

[13] H. Masuhara, G. Kiczales, and C. Dutchyn. Compilation
semantics of aspect-oriented programs. In R. Cytron and
G. Leavens, editors, Foundations of Aspect-Oriented
Languages Workshop, pages 17–26, Enschede, Netherlands,
2002.

[14] N. Minsky and P. Pal. Imposing The Law of Demeter and Its
Variations. In TOOLS Conference, Santa Barbara, CA, 1996.

[15] D. Orleans. Incremental programming with extensible
decisions. In AOSD 2002 [2].

[16] J. Palsberg, B. Patt-Shamir, and K. Lieberherr. A new
approach to compiling adaptive programs. Science of
Computer Programming, 29(3):303–326, 1997.

[17] M. Shomrat and A. Yehudai. Obvious or not?: regulating
architectural decisions using aspect-oriented programming.
In AOSD 2002 [2], pages 3–9.

[18] J. Sung. Aspectual Concepts. Master’s thesis, Northeastern
University, June 2002. Technical Report NU-CCS-02-06.

49

