
Aspects and Polymorphism in AspectJ

Erik Ernst
Dept. of Computer Science,

University of Aarhus
Åbogade 34, DK-8200 Århus N

Denmark
eernst@daimi.au.dk

David H. Lorenz
�

College of Computer & Information Science,
Northeastern University

360 Huntington Avenue 161 CN
Boston, Massachusetts 02115 USA

lorenz@ccs.neu.edu

ABSTRACT
There are two important points of view on inclusion or subtype
polymorphism in object-oriented programs, namely polymorphic
access and dynamic dispatch. These features are essential for object-
oriented programming, and it is worthwhile to consider whether
they are supported in aspect-oriented programming (AOP). In AOP,
pieces of crosscutting behavior are extracted from the base code
and localized in aspects, losing as a result their polymorphic capa-
bilities while introducing new and unexplored issues. In this paper,
we explore what kinds of polymorphism AOP languages should
support, using AspectJ as the basis for the presentation. The results
are not exclusive to AspectJ—aspectual polymorphism may make
aspects in any comparable AOSD language more expressive and
reusable across programs, while preserving safety.

1. INTRODUCTION
There are two important points of view on inclusion or subtype
polymorphism in object-oriented programs, namely polymorphic
access and dynamic dispatch (Figure 1).

Access
Polymorphic Dynamic

Dispatch

InclusionOverloading

Polymorphism

Universal

ParametricCoercion

Ad hoc

Figure 1: Polymorphism

�
Supported in part by the National Science Foundation (NSF) un-

der Grant No. CCR-0098643 and CCR-0204432, and by the Insti-
tute for Complex Scientific Software at Northeastern University.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, to republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.

AOSD 2003 Boston, MA USA
c
�

ACM 2003 1-58113-660-9/03/002...$5.00

� Polymorphic access: A name denotes an object whose dy-
namic type is known only by an upper bound. For example,
the predefined reference self in a method in a class C de-
notes an instance of C or some subclass of C. The essence is
that the same code can operate on differently shaped objects
because they all satisfy certain constraints (possibly made
explicit in a statically declared type).

� Dynamic dispatch: When accessing an object polymorphi-
cally, a message-send may be resolved by late binding, i.e.,
it may call different method implementations for different
dynamic receiver types. The essence is that the meaning of
a name (the method selector) is determined by dynamically
selecting the “best” definition from a set of different avail-
able definitions, namely all the method implementations in
the dynamic class of the receiver and its superclasses.

In short, inclusion polymorphism is characterized by invariance in
an “early” phase (e.g., a call site contains one particular message
send foo; or an object � contains a known set of features), and
by dynamic variance in a “late” phase (e.g., considering all the
possible implementations of foo for that call site; or all the pos-
sible additional features of �). Late binding of methods provides
the flexibility of executing different behaviors at the same call site,
while preserving the safety of always executing a behavior that is
appropriate for the actual receiver object. For object access, we
get the flexibility of being able to add new features, and the safety
guarantee that known features will indeed be present dynamically.
In this paper, we seek a similar kind of safe flexibility by means of
polymorphism in connection with aspects.

Inclusion polymorphism is a kind of universal polymorphism, which
means that the set of possible forms in the late phase is open-
ended [7]. In contrast, in ad-hoc polymorphism, the set of possible
forms is determined in the early phase, and one specific form is se-
lected. For example, an overloaded operation also simultaneously
denotes more than one function [21]. However, unlike dynamic dis-
patch, overloading is resolved at compile time and hence is a form
of ad-hoc polymorphism.

In AspectJ [27, 25], object-oriented polymorphism is supported in
the sense that the Java [3] programming language supports poly-
morphism, and AspectJ is a superset of Java. Similar connections
would typically exist with other AOSD approaches. The support
for polymorphism in connection with aspects is essentially ad-hoc.

For example, one can write a single implementation of an aspect,
which displays polymorphic behavior in different join points. Con-

150

sider the abstract aspect SimpleTracing in Listing 1. 1

Listing 1: SimpleTracing.java

package aspect;2

import org.aspectj.lang.JoinPoint;
abstract aspect SimpleTracing {
abstract pointcut tracePoints();
before(): !within(aspect..*) && tracePoints() {
trace(thisJoinPoint);

}
protected abstract void trace(JoinPoint jp);

}

The thisJoinPoint pseudo variable (and the related pseudo vari-
able thisJoinPointStaticPart) is bound to an object repre-
senting the current join point, thus providing access to dynamic
(respectively static) information about that join point. This object
can be queried with methods such as

thisJoinPoint.getThis()

or

thisJoinPointStaticPart.getSignature()
.getDeclaringType().getName()

which will give different outcomes depending on the actual join
point. This is because the pointcut (and hence the aspect) is ab-
stract, which means that an actual aspect using the given before-
advice would be a subaspect of SimpleTracing in which the point-
cut tracePoints has been made concrete, and the method trace

has been implemented. Hence, an execution of the before-advice
would happen in context of an aspect instance whose type is only
known by an upper bound, and thisJoinPoint is only known to
be a join point.

Moreover, an aspect can define abstract or concrete methods for
subaspects to redefine or use, e.g.,

Listing 2: ExecutingObjectTracing.java

abstract aspect ExecutingObjectTracing
extends SimpleTracing {
protected void trace(JoinPoint jp) {
System.out.println("Executing object: "
+ jp.getThis());

}
}

Finally, an advice and a pointcut may take arguments such as the
receiver object, e.g.,

after(Point p, int nval): target(p)
&& args(nval)
&& call(void Point.setX(int)) {
System.out.println("x in " + p
+ " is now set to " + nval + ".");

}

1To avoid explaining AspectJ basics we will assume knowledge
of [25] and use some examples similar to the ones in that paper. In
specific discussions about properties of AspectJ we are referring to
version 1.0.6
2For the rest of the paper we will assume that all aspects are defined
in this package.

and this means that the advice code will polymorphically access the
receiver, p, of the intercepted invocation of setX.

However, all these examples of polymorphism are “inherited” from
the base language. Imagine a base language without polymor-
phism, and they would all evaporate.

Even the notion of an abstract pointcut and associated definitions
of concrete pointcuts is not truly polymorphic in the same sense
as object-oriented methods. It is true that advice code such as the
invocation of trace in Listing 1 is executed depending on a point-
cut whose concrete definition is not known in SimpleTracing.
In other words, it is not known in SimpleTracing when this ad-
vice code will be executed. But for each location in the program
where this advice may actually be enabled, it will be considered
in context of a concrete subaspect of SimpleTracing for which
tracePoints can be checked statically—e.g.,

Listing 3: PointTracing.java
aspect PointTracing
extends ExecutingObjectTracing {
pointcut tracePoints():
execution(* Point+.setX(..));

}

—“is this an invocation of C.setX where C is Point or a subclass
thereof?” Note that even with dynamic pointcuts, e.g., cflow, it is
known statically that it is a cflow pointcut, with a known specifi-
cation, and the dynamic part is only determining whether a given
expression is true or not.

2. AD-HOC POLYMORPHISM IN ASPECTJ
There are several points worth noting about polymorphism in As-
pectJ.

2.1 Extending an aspect
It is possible to extend an abstract aspect, but not a concrete one.
The concrete aspect PointTracing (Listing 3) extends the ab-
stract aspect ExecutingObjectTracing (Listing 2). However,
PointTracing cannot be further extended. This is actually a mi-
nor limitation that can be explained as an enforcement of the “ab-
stract superclass rule” [20], i.e., the rule that only the leaves of an
inheritance hierarchy can be concrete. Every aspect hierarchy can
be transformed into one in which all super-aspects are abstract, al-
though this is not typically required by programming languages.3

2.2 Overriding a pointcut designator
It is possible to redefine concrete pointcuts in the subaspect. For
example, the abstract aspect ReturnValueTracing in Listing 4,

Listing 4: ReturnValueTracing.java
abstract public aspect ReturnValueTracing
extends ExecutingObjectTracing {
pointcut tracePoints(): call(*.new (..));
after() returning (Object o): tracePoints() {
System.out.println("Return: " + o);

}
}

3For example, the Sather programming language separates classes
and types strictly, and supports only the ‘insert-new-super’ for
types. However, the treatment of classes in Sather does not en-
force a strict abstract superclass rule. Even in Sather it is possible
to inherit from a concrete class.

151

defines a concrete pointcut tracePoints, which designates con-
structor calls. Its after-returning advice assumes the join points are
constructor calls; and the concrete aspect ConstructorTracing,

Listing 5: ConstructorTracing.java (1)

public aspect ConstructorTracing
extends ReturnValueTracing {}

would trace newly constructed objects. However, it is an error to
put after-returning advice on a join point that does not return a
value or returns a value of an incorrect type. Had the concrete
aspect ConstructorTracing mistakenly redefined the pointcut
tracePoints to be constructor executions rather than calls, e.g.,

Listing 6: ConstructorTracing.java (2)

public aspect ConstructorTracing 4

extends ReturnValueTracing {
pointcut tracePoints(): execution(*.new (..));

}

then there wouldn’t have been a return value. Thus, by overriding a
pointcut designator, a subaspect might break inherited advice code.
Currently in AspectJ, the compiler will complain that the return
value will bind to null, but will ignore a type mismatch.

2.3 Overriding an advice
It is impossible to redefine advice. It is also impossible to advise
an aspect’s advice in order to modify an existing advice, at least
not yet. The before-advice defined in SimpleTracing (Listing 1)
is frozen. Attempting to redefine the before-advice in a subaspect
DoubleTracing (Listing 7), for example,

Listing 7: DoubleTracing.java

aspect DoubleTracing
extends ExecutingObjectTracing {
pointcut tracePoints(): execution(* *(..));
before(): !within(aspect..*) && tracePoints() {
trace(thisJoinPoint);

}
}

will (perhaps somewhat unexpectedly) result in the method trace
being called twice for each join point. The two before-advice dec-
larations in Listings 1 and 7 are identical, but in AspectJ they are
considered unrelated and will be applied independently.

These examples indicate the sense in which aspects in AspectJ are
not polymorphic. More can be learned by compiling the code with
the -preprocess option. The abstract aspect SimpleTracing
in Listing 1 is preprocessed into the abstract class SimpleTracing
(Listing 8). Note that the method is final.

The concrete aspect PointTracing in Listing 3 is preprocessed
into the concrete class PointTracing (Listing 9). Note that this
is a non-polymorphic implementation of a Singleton design pat-
tern [12].

4Compiling this aspect generates the warning message: “on tar-
get constructor-execution(SimpleTracing()) return value will bind
to null, use ’this’ pointcut to bind executing object. . . behavior
change to fix compiler bug in 1.0.3 and earlier (warning). . . ”

Listing 8: Preprocessed SimpleTracing class

abstract class SimpleTracing {
public final
void before0$ajc(JoinPoint thisJoinPoint) {
this.trace(thisJoinPoint);

}
protected abstract void trace(JoinPoint jp);

}

Listing 9: Preprocessed PointTracing class

public class PointTracing
extends ExecutingObjectTracing {
public static PointTracing aspectInstance;
public static PointTracing aspectOf() {
return PointTracing.aspectInstance;

}
static {
PointTracing.aspectInstance =
new PointTracing();

}
}

2.4 Run-time pointcut designators and run-
time aspect instances

To complete the picture we must also consider run-time pointcut
designators such as this, target, cflow, cflowbelow, args,
and if, as well as run-time aspect instance specifications such as
perthis, pertarget, percflow, and percflowbelow.

Run-time pointcuts would seem to introduce the dynamism that is
otherwise missing in the invocation of advice code, but they are in
fact only capable of enabling or disabling the given advice. Since
dynamic dispatch is concerned with a dynamic selection of which
piece of code to execute, not just whether to invoke a given piece
of code or not, even these kinds of pointcuts do not introduce full
polymorphism into AspectJ, apart from the situations where the
polymorphism is inherited from the base language.

Aspect instances also introduce a level of dynamism. However, se-
lecting which aspect instance to use is not the same as dynamically
selecting which piece of code to execute: the choice is whether
or not to execute a piece of code that is fully determined by the
aspect instance, not which piece of code to execute, based on the
type of the object to which the advice is applied. Non-polymorphic
aspectual code is a step back from OOP. In this paper, we revisit
the AOP model and discuss the potential for supporting aspectual
polymorphism.

3. LATE BINDING OF ADVICE
An interesting extension is introducing polymorphism in connec-
tion with advice. The advice language element can be extended
so that the advice which is possibly applied at a given point in the
execution of the program is chosen dynamically from a set of appli-
cable advice declarations, similarly to dynamic dispatch where one
method implementation is chosen from a set of applicable ones. We
use the term late binding of advice to denote such a mechanism.

Consider the IncrTracking aspect in Listing 10. Today, the two
5The classes such as FigureElement and Point are assumed to
be defined as in [25].

152

Listing 10: IncrTracking.java

aspect IncrTracking 5 {
after(FigureElement fe): target(fe)
&& call(void FigureElement.incrXY(int,int)) {
System.out.println("IncrTracking: "
+ "Moving the figure element " + fe);

}
after(Point p): target(p)
&& call(void Point.incrXY(int,int)) {
System.out.println("IncrTracking: "
+ "Moving the point at ("
+ p.getX() + "," + p.getY() + ")");

}
}

advice declarations in IncrTracking, and indeed any two advice
declarations, would be invoked independently of each other. For
each point in the execution of the program where an advice might
be enabled it is determined whether or not that advice should be
invoked, without considering any other advice. In fact, putting the
two advice declarations in two separate aspects (Listings 11 and 12)
would give the same behavior as the code in Listing 10. They only
differ in the identity and number of aspect instances, which is im-
material for stateless aspects, and the ordering of advice code exe-
cution, which can be controlled using aspect domination: 6

Listing 11: IncrTrackingFigureElement.java

aspect IncrTrackingFigureElement {
after(FigureElement fe): target(fe)
&& call(void FigureElement.incrXY(int,int)) {
System.out.println("IncrTrackingFigureElement:"
+ " Moving the figure element " + fe);

}
}

Listing 12: IncrTrackingPoint.java

aspect IncrTrackingPoint
dominates IncrTrackingFigureElement {
after(Point p): target(p)
&& call(void Point.incrXY(int,int)) {
System.out.println("IncrTrackingPoint: "
+ "Moving the point at ("
+ p.getX() + "," + p.getY() + ")");

}
}

As a result we might invoke zero, one, or two of the above advice
declarations. This is true both when the answer is known statically,
and also when a dynamic check is required.

To avoid the case of invoking both of the above advice declarations,
it is possible to use around-advice without calling proceed (List-
ings 13 and 14). By doing so, the around-advice that is invoked
first will prevent the other around-advice from being invoked. This
is perhaps closer to late binding of advice, and can be used in a Vis-
itor [12] design pattern style [29]. However, it is not quite the same
as late binding, because it does not cover kinds of advice other than
around-advice; it does not allow the base method to be invoked;
6An aspect � may declare that the advice in it dominates the advice
in some other aspect � . This only affects the order of execution
when advice declarations from both � and � are enabled at the
same point.

Listing 13: IncrTrackingFigureElement2.java

aspect IncrTrackingFigureElement2 {
void around(FigureElement fe): target(fe)
&& call(void FigureElement.incrXY(int,int)) {
System.out.println("IncrTrackingFigureElement2"
+ ": Moving the figure element " + fe);

// do not invoke proceed(fe);
}

}

Listing 14: IncrTrackingPoint2.java

aspect IncrTrackingPoint2
dominates IncrTrackingFigureElement2 {
void around(Point p): target(p)
&& call(void Point.incrXY(int,int)) {
System.out.println("IncrTrackingPoint2: "
+ "Moving the point at ("
+ p.getX() + "," + p.getY() + ")");

// do not invoke proceed(p);
}

}

and it lets one advice override all other advice declarations includ-
ing, e.g., an unrelated before-advice with different arguments. The
latter demonstrates the need for advice grouping.

3.1 Advice grouping
In order to be able to talk about late binding of advice it is neces-
sary to introduce some kind of device that allows us to establish a
group of related advice declarations. It is not reasonable to assume
that all advice declarations which happen to be enabled at the same
point are logically related such that it makes sense to choose one
and ignore all others. We therefore need to control advice grouping
explicitly. We discuss how to do this in the next sections; for now
we just assume that it has been done. After having determined that
an advice group as such is enabled, we choose exactly one most
specific advice and invoke it, ignoring all the others in the group
(they are being overridden). Advice declarations outside the group
are being processed independently. In Listing 10 we would choose
to invoke the second advice for p being an instance of Point or a
subclass thereof, and we would invoke the first advice for instances
of FigureElement or a subclass thereof except Point and its sub-
classes.

Finally, invoking the most specific advice and ignoring all others in
the group is just one possible semantics for late binding of advice.
With reference to the CLOS [5, 24] method combination frame-
work we could also envision composing an effective advice out of
several applicable advice declarations in the group.

3.2 Congruent arguments
One possible way to establish a group of advice declarations is to
compare argument lists. Any two advice declarations with congru-
ent argument lists would be in the same group, for some suitable
definition of ‘congruent.’ This would probably be a poor idea; just
consider how hard it would be to express that two advice declara-
tions should actually be independent of each other even though they
might be enabled at the same program point and they do have con-
gruent argument lists. In particular, it would be hard to avoid unin-
tended grouping of advice from different aspects, possibly written

153

by programmers in different organizations.

3.3 Advice selectors
A better way is to give names to advice. This is similar to the
mechanism commonly used with methods: When a given method
implementation is selected during late binding, the set of potential
implementations will all have the same name (and, in languages
with static overloading, also ‘sufficiently similar’ types of argu-
ments). So we might introduce syntax to give names to advice, and
then use it as follows:

Listing 15: IncrTracking (1)

aspect IncrTracking {
after trackIncr(FigureElement fe): target(fe)
&& call(void FigureElement.incrXY(int,int)) {
System.out.println("IncrTracking: "
+ "Moving the figure element " + fe);

}
after trackIncr(Point p): target(p)
&& call(void Point.incrXY(int,int)) {
System.out.println("IncrTracking: "
+ "Moving the point at ("
+ p.getX() + "," + p.getY() + ")");

}
after(Point p): call(void p.incrXY(int,int) {
p.x++;

}
}

Note that the two named advice declarations (named trackIncr)
are in the same group, but the third (traditional, unnamed) advice is
in a group of its own, and advice declarations with other names than
trackIncr are of course also in different groups. With this rule
we might have trackIncr advice in one or more aspects having
an argument of type FigureElement or a subclass thereof.

3.4 Advice signature
In order to make the intended common properties explicit, it would
probably be useful to introduce the notion of an advice group sig-
nature:

Listing 16: IncrTracking (2)

aspect IncrTracking {
advicegroup trackIncr(FigureElement);
after trackIncr(FigureElement fe):
... // as in Listing 15

}

This declares explicitly that all advice declarations which belong
to the trackIncr group must have an argument list congruent
with ‘(FigureElement)’. It is necessary to consider the notion
of congruence carefully, but as a first approximation we could just
assume that the first argument must be the receiver where the given
type must be a subtype of the one in the signature. A congruent
argument list would then have a subtype in the first argument posi-
tion, and it would have identical argument types in the remaining
argument positions. There is a lot of room for expansion in this
area, and an obvious extension would be to dispatch on several ar-
guments, possibly modeled after CLOS, Dylan [33] or some other
language where multiple dispatch is already available.

Another interesting extension would be to use predicate dispatch.
Indeed, the Fred [30] AOP language, which is based on Chambers’

predicate classes [8] and Ernst et al.’s predicate dispatch [11], ex-
hibits a higher degree of polymorphism by unifying the method
and advice concepts to a single concept of ‘branch.’ For this pa-
per we just assume that there is some definition of congruence, and
that there is some run-time criterion which will allow us to select
a single advice from the given group as the most specific one, or
to compose an effective advice from one or more of the applicable
advice declarations.

3.5 No Need for Ordinary Late Binding
The notion of late binding of advice introduces genuine polymor-
phism into the aspect part of the language, and it even enables us
to achieve the effect of late binding of methods in a base language
that does not support late binding of methods. Assume that the
base language always select method implementations statically, but
supports late binding of advice. Now consider the following defi-
nitions:

Listing 17: AddIncrXY
aspect addIncrXY {
after incrXY(FigureElement fe, int x, int y):
target(fe)
&& args(x,y)
&& call(void FigureElement.incrXY(int,int)) {
// implementation of incrXY for FigureElement
...

}
after incrXY(Point p, int x, int y):
target(p)
&& args(x,y)
&& call(void Point.incrXY(int x, int y)) {
// implementation of incrXY for Point
...

}
... // implementations for other subclasses

}

Along with these definitions, we would have an empty incrXY

method in the FigureElement class (and no other incrXY meth-
ods in any of the subclasses of FigureElement). This empty
method is bound statically, but the support for late binding of ad-
vice ensures that the appropriate behavior for the actual class of the
receiver is invoked after the execution of the empty method. The
effect is the same as it would have been if the base language had
supported late binding of ordinary methods, and we had used them.

This approach is generally applicable, hence late binding of ordi-
nary methods is subsumed by late binding of advice.

4. ENVIRONMENTAL ADVICE
An aspect displays polymorphic behavior in different aspect in-
stances, not just in different join points. Aspects are by default
issingleton, but they may be declared perthis, pertarget,
percflow, and percflowbelow.

The idea behind environmental advice is that the advice which is
applied depends on the aspect instance that is dynamically available
at the context of a given point in the execution of the program.

Consider the following Percflow aspect:

Listing 18: Percflow.java
abstract aspect Percflow extends SimpleTracing
percflow(tracePoints()) {}

154

and two of its concrete subaspects, PerLine and PerPoint:

Listing 19: PerLine.java

aspect PerLine extends Percflow {
pointcut tracePoints():
call(void Line.incrXY(int,int));
protected void trace(JoinPoint jp) {
System.out.println("PerLine instance: "

+ this);
}

}

Listing 20: PerPoint.java

aspect PerPoint extends Percflow {
pointcut tracePoints():
call(void Point.incrXY(int,int));
protected void trace(JoinPoint jp) {
System.out.println("PerPoint instance: "
+ this);

}
}

At a particular point in the execution, there are now many aspect
instances (stack based) to chose from. An advice can access the
innermost aspect instance by the static method aspectOf(), for
example,

PerPoint.aspectOf().trace(thisJoinPoint);

This allows polymorphic access to an aspect instance, (even with-
out dynamic dispatch on advice). Unfortunately, AspectJ does not
permit you to access the aspect object via the abstract aspect. At-
tempting to write:

Percflow.aspectOf().trace(thisJoinPoint);

would yield a compile time error (saying that no method named
aspectOf defined in Percflow.) Hence, this kind of polymor-
phism is not available today in AspectJ.

Note that the lack of polymorphic support here cannot be worked
around by a simple explicit switch statement. Writing:

if (PerPoint.hasAspect())
PerPoint.aspectOf().trace(thisJoinPoint);

else if (PerLine.hasAspect())
PerLine.aspectOf().trace(thisJoinPoint);

else
System.out.println("no Percflow aspect");

won’t necessarily select the innermost Percflow instance, because
a Line can be nested within the control flow of a Point. One could
also try to write:

Listing 21: PerFigureElement.java

aspect PerFigureElement extends SimpleTracing
percflow(tracePoints()) {

pointcut tracePoints():
call(void Line.incrXY(int,int))
|| call(void Point.incrXY(int,int));
protected void trace(JoinPoint jp) {
System.out.println("PerFigureElement "
+ "instance: " + this);

}
}

but then the polymorphic access is gone, for example,

PerFigureElement.aspectOf().trace(thisJoinPoint);

will always invoke the same trace method.

A mechanism which supports environmental advice should allow
even more flexibility by late association of the aspect instance and
the client trying to access it. Such a mechanism cannot rely on hav-
ing the source code available for preprocessing. (Bytecode weav-
ing, when available, will not solve this problem.7) Instead, advice
should be subjected to environmental polymorphism [13] and as-
pects need to be looked up during the late phase. The client will
thus be parameterized by the environment in which it happens to
run. We use the term environmental advice to denote such a mech-
anism.

Schüpany et al. [32] mention aspectual polymorphism as an inter-
esting research area to explore, which they borrowed from Mi-
nos [31]. They refer to an environmental advice mechanism in
which changes in the aspect context during run-time affects the
code of aspectized methods, similar to mechanisms of component
deployment which allow a container to intercept the methods of its
component [28]. We have used the term aspectual polymorphism
independently in an early draft of this paper [10] in a broader sense:
polymorphism in connection with aspects.

5. OTHER AOSD APPROACHES
In this paper we have focused on AspectJ, in order to be able to an-
alyze the concrete language constructs of a widely known AOSD
language in some detail. However, the concept of polymorphism
deserves consideration also in connection with other AOSD ap-
proaches.

In the composition filters approach [34, 1, 35], it is possible to in-
tercept message-sends and manipulate the receiver (i.e., delegate
to another object), manipulate the selector (i.e., invoke a method
with a different name), and manipulate the arguments. Moreover,
the concept of superposition allows for non-invasive application of
filters to multiple objects. This provides a very general framework,
capable of expressing entities similar to AspectJ aspects, among
other things. We believe that various kinds of polymorphism could
be implemented by means of composition filters, but also that it
would imply a manual encoding of, e.g., a late binding mechanism
for advice. It is not clear to which extent such a mechanism could
be expressed once and for all, as a reusable library, but it would be
very interesting to see such a library if it were implemented.

AspectS [15, 16] is an AOSD framework with AspectJ-like con-
cepts which is based on the Smalltalk [14] dialect Squeak [22,
26]. AspectS supports AOP by means of method interception and
general Smalltalk meta-programming. It non-invasively extends
the Squeak environment [18, 17]. Unlike AspectJ which does not
support run-time weaving [4], AspectS’ aspects can be installed
and uninstalled dynamically. When an aspect is installed or dy-
namically deployed, AspectS replaces the designated methods with
method wrappers [6], which act as around-advice. PerspectiveS [19]
is a management facility on top of AspectS which provides layers
of context-depended behavior that can be activated or deactivated
dynamically.

7From the AspectJ FAQ: “Weaving into bytecodes at both compile
and load-time will definitely be provided in a future release.”

155

Similar to the situation with composition filters, we believe that the
AspectS flexible framework could support a manual encoding of
various kinds of polymorphism in connection with aspects. Again,
expressing aspectual polymorphism as a facility on top of AspectS
and PerspectiveS is a logical follow-up to this work.

6. CONCLUSION
Polymorphism in connection with aspects in AspectJ is generally
inherited from the base language, and the aspectual polymorphism
features that we have identified and discussed are completely re-
solved at compile time. By definition, this makes it ad-hoc poly-
morphism. Moreover, the fledgling support for aspectual polymor-
phism in AspectJ invites further developments because it has some
limitations and irregularities. Based on this analysis, we explore
what kinds of genuine, dynamic aspectual polymorphism AOP lan-
guages could support.

Aspectual polymorphism can make aspects more expressive and
reusable across programs, yet keep them safe. In particular, late
binding of advice would be at least as powerful as ordinary late
binding of methods, in the sense that a base language without late-
bound methods but with late-bound advice would be able to sim-
ulate late-bound methods by a simple, general technique. Advice
subjected to an environmental polymorphism mechanism would be
at least as powerful as the wrapper technology in component sys-
tems (e.g., BeanContext, EJB container, JINI container, and state-
less web services) in the sense that it would allow separation of
nonfunctional requirements and business logic concerns [9], and in
that the behavior of the component is parameterized by the runtime
environment in which it happens to run.

Inclusion polymorphism is key in OOP and environmental poly-
morphism is key in component technology. Aspectual and envi-
ronmental polymorphism would likely play a critical role in many
new and unexplored issues like AOP frameworks, componentized
aspects, aspectual components, and more.

Acknowledgment
We thank the anonymous reviewers for their valuable feedback.

7. REFERENCES
[1] M. Aksit, K. Wakita, J. Bosch, L. Bergmans, and

A. Yonezawa. Abstracting object interactions using
composition filters. In R. Guerraoui, O. Nierstrasz, and
M. Riveill, editors, Proceedings of the ECOOP’93 Workshop
on Object-Based Distributed Programming, number 791 in
Lecture Notes in Computer Science, pages 152–184,
Kaiserslautern, Germany, July 26-30 1994. Springer Verlag.

[2] AOSD 2002. Proceedings of the 1 ��� International
Conference on Aspect-Oriented Software Development,
Enschede, The Netherlands, Apr. 2002. ACM Press.

[3] K. Arnold and J. Gosling. The Java Programming Language.
The Java Series. Addison–Wesley Publishing Company,
1996.

[4] J. Baker and W. Hsieh. Runtime aspect weaving through
metaprogramming. In AOSD 2002 [2], pages 86–95.

[5] B. Bobrow, D. DeMichiel, R. Gabriel, S. Keene, G. Kiczales,
and D. Moon. Common Lisp Object System Specification.
Document 88-002R. X3J13, June 1988.

[6] J. Brant, B. Foote, R. E. Johnson, and D. Roberts. Wrappers
to the rescue. In Jul [23], pages 396–417.

[7] L. Cardelli and P. Wegner. On understanding types, data
abstractions, and polymorphism. ACM Comput. Surv.,
17(4):471–522, 1985.

[8] C. Chambers. Predicate classes. In O. Nierstrasz, editor,
Proceedings ECOOP’93, LNCS 707, pages 268–296,
Kaiserslautern, Germany, July 1993. Springer-Verlag.

[9] F. Duclos, J. Estublier, and P. Morat. Describing and using
non functional aspects in component based applications. In
AOSD 2002 [2], pages 65–75.

[10] E. Ernst and D. H. Lorenz. Aspectual polymorphism.
Technical Report NU-CCS-01-09, College of Computer
Science, Northeastern University, Boston, MA 02115, Oct.
2001.

[11] M. D. Ernst, C. Kaplan, and C. Chambers. Predicate
dispatching: A unified theory of dispatch. In Jul [23], pages
186–211.

[12] E. Gamma, R. Helm, R. Johnson, and J. Vlissides. Design
Patterns – Elements of Reusable Object-Oriented Software.
Addison-Wesley, Reading, MA, USA, 1995.

[13] J. Gil and D. H. Lorenz. Environmental Acquisition – A new
inheritance-like abstraction mechanism. In Proceedings of
the 11 �
	 Annual Conference on Object-Oriented
Programming Systems, Languages, and Applications, pages
214–231, San Jose, California, Oct. 6-10 1996. OOPSLA’96,
ACM SIGPLAN Notices 31(10) Oct. 1996.

[14] A. Goldberg and D. Robson. Smalltalk–80: The Language.
Addison-Wesley, Reading, MA, USA, 1989.

[15] R. Hirschfeld. Aspect-oriented programming with AspectS.
In Proceedings of the 3 �� International Conference
Net.ObjectDays, NODe 2002, pages 219–235, Erfurt,
Germany, Oct. 7-10 2002.

[16] R. Hirschfeld. AspectS—aspect-oriented programming with
Squeak. In M. Aksit, M. Mezini, and R. Unland, editors,
Architectures, Services, and Applications for a Networked
World, number 2591 in Lecture Notes in Computer Science.
Springer Verlag, 2003.

[17] R. Hirschfeld and D. H. Lorenz. Non-invasive on-demand
changes: Using change-sets as aspects. Unpublished, 2003.

[18] R. Hirschfeld and M. Wagner. Metalevel tool support in
AspectS. In Workshop on Tools for Aspect-Oriented Software
Development, OOPSLA’02, Seattle, Washington, 2002.

[19] R. Hirschfeld and M. Wagner. PerspectiveS – AspectS with
context. In Workshop on Engineering Context-Aware
Object-Oriented Systems and Environments, OOPSLA’02,
Seattle, Washington, 2002.

[20] W. L. Hürsch. Should superclasses be abstract? In M. Tokoro
and R. Pareschi, editors, Proceedings of the 8 ��	 European
Conference on Object-Oriented Programming, number 821
in Lecture Notes in Computer Science, pages 12–31,
Bologna, Italy, July 4-8 1994. ECOOP’94, Springer Verlag.

156

[21] J. D. Ichbiah. Rationale for the design of the ada
programming language. Sigplan Notices, 14(6), 1979. Part B
(special issue).

[22] D. Ingalls, T. Kaehler, J. Maloney, S. Wallace, and A. Kay.
Back to the future: The story of squeak, a practical Smalltalk
written in itself. In Proceedings of the 12 �
	 Annual
Conference on Object-Oriented Programming Systems,
Languages, and Applications, pages 318–326, Atlanta,
Georgia, Oct. 5-9 1997. OOPSLA’97, Addison-Wesley.

[23] E. Jul, editor. Proceedings of the 12 �
	 European Conference
on Object-Oriented Programming, number 1445 in Lecture
Notes in Computer Science, Brussels, Belgium, July 20-24
1998. ECOOP’98, Springer Verlag.

[24] S. E. Keene. Object-Oriented Programming in Common
Lisp. Addison-Wesley, Reading, MA, USA, 1989.

[25] G. Kiczales, E. Hilsdale, J. Hugunin, M. Kersten, J. Palm,
and W. G. Griswold. An overview of AspectJ. In J. L.
Knudsen, editor, Proceedings of the 15 �
	 European
Conference on Object-Oriented Programming, number 2072
in Lecture Notes in Computer Science, pages 327–353,
Budapest, Hungary, June 18-22 2001. ECOOP 2001,
Springer Verlag.

[26] G. Korienek, T. Wrensch, and D. Dechow. Squeak - A Quick
Trip to ObjectLand. Addison–Wesley Publishing Company,
2001.

[27] C. V. Lopes and G. Kiczales. Recent developments in
AspectJ. In S. Demeyer and J. Bosch, editors,
Object-Oriented Technology. ECOOP’98 Workshop Reader,
number 1543 in Lecture Notes in Computer Science, pages
398–401. Workshop Proceedings, Brussels, Belgium,
Springer Verlag, July 20-24 1998.

[28] M. Mezini, K. Ostermann, and R. Pichler. Component
models and aspect-oriented programming.
http://www.st.informatik.tu-darmstadt.
de/lehre/ws01/sctoo/materials/aj-aop.pdf,
2001.

[29] M. Nordberg. Polymorphic advice and multimethod advice,
Mar. 2002. AspectJ Users Mailing List. Thu, 7 Mar 2002
18:16:25 PST, and Sat, 9 Mar 2002 04:50:36 PST.

[30] D. Orleans. Incremental programming with extensible
decisions. In AOSD 2002 [2].

[31] K. Ostermann and M. Mezini. Object creation aspects with
flexible aspect deployment. http://www.st.
informatik.tu-darmstadt.de/database/
publications/data/minos.pdf?id=68, 2002.

[32] M. Schüpany, C. Schwanninger, and E. Wuchner.
Aspect-oriented programming for .NET. In Y. Coady, editor,
Proceedings of the First AOSD Workshop on Aspects,
Components, and Patterns for Infrastructure Software, pages
45–50, Enschede, The Netherlands, Apr. 2002.

[33] A. Shalit. The Dylan Reference Manual: The Definitive
Guide to the New Object-Oriented Dynamic Language.
Addison-Wesley, Reading, Mass., 1997.

[34] A. Tripathi, E. Berge, and M. Aksit. An implementation of
the object-oriented concurrent programming language SINA.
Software Practice and Experience, 19(3):235–256, Mar.
1989.

[35] J. C. Wichman. Composej: The development of a
preprocessor to facilitate composition filters in the Java
language. Master’s thesis, Department of Computer Science,
University of Twente, Enschede, the Netherlands, Dec. 1999.

157

