
Correctness of Model-based Component Composition
without State Explosion

�

Paul C. Attie David H. Lorenz

Northeastern University
College of Computer & Information Science

Boston, Massachusetts 02115 USA�
attie,lorenz � @ccs.neu.edu

Abstract. We present a methodology for designing component-based systems
and verifying their temporal behavior properties. Our verification method is mostly
automatic, and is not susceptible to the well-known state-explosion problem,
which has hitherto severely limited the practical applicability of automatic ver-
ification methods. Our method specifies the externally visible behavior of each
component � as several behavioral interface automaton (BIA), one for each of
the other components which � interacts directly with. A BIA is a finite-state
automaton whose transitions can be labeled with method calls. For each pair of
directly interacting components, we compute the product of the BIA. These “pair
machines” are then verified mechanically. The verified “pair properties” are then
combined deductively to deduce global properties. Since the pair-machines are
the product of only two components, they are small, and so their mechanical veri-
fication, e.g., by model checking, does not run up against state-explosion. The use
of several BIA per component enables a clean separation between interfaces, so
that the interactions of a component � with several other components are cleanly
separated, and can be inspected in isolation. This in itself promotes the under-
standability of a design. Our method also enhances extensibility. If a component
is modified, only the pairs in which that component is involved are affected. The
rest of the system is undisturbed. To our knowledge, our method is the first ap-
proach to behavioral compatibility that does not suffer from state-explosion.

1 Introduction

Software components [17] are supposed to make software less fragile and more reliable.
In practice, however, part of the fragility is merely shifted from the component artifacts
to the connectors and the composition process. When the composition is unreliable,
component systems are just as fragile and unreliable as monolithic software. Improving
the theoretical and practical foundation of third-party composition techniques [21] is
thus essential to improving overall component software reliability.

In this paper, we make initial steps toward a new component model which supports
behavioral interoperability and is based on the use of temporal logic and automata to
�

This work was supported in part by the National Science Foundation (NSF) under Grant No.
CCR-0204432, and by the Institute for Complex Scientific Software (www.icss.neu.edu)
at Northeastern University. An extended version of this paper is available as [3].

specify and reason about concurrent component systems. Unlike other temporal logic
and automata-based methods for software components, our work avoids using exhaus-
tive state-space enumeration, which quickly runs up against the state-explosion problem
where the number of global states of a system is exponential in the number of its com-
ponents.

We present formal analysis and synthesis techniques that address issues of behav-
ioral compatibility amongst components, and enable reasoning about the global behav-
ior (including temporal behavior, i.e., safety and liveness) of an assembly of compo-
nents. By avoiding state-explosion, our technique is not restricted to small, unrealistic
applications.

1.1 Component interoperability

Components are “units of independent production, acquisition, and deployment” [17].
In component-based software engineering (CBSE) [10], software development is de-
coupled from assembly and deployment. Third party composition (assembly) is the ac-
tivity of connecting components, which originate from different third party component
providers in binary format and without their source code. During assembly, the appli-
cation (or component) is assembled from other (compiled) components. The activity
takes place after the compilation of the components and before the deployment of the
application (which might be itself a compound component).

For two components, which were independently developed, to be deployed and
work together, third-party composition must allow the flexibility of assembling even
dissimilar, heterogeneous, precompiled third-party components. In achieving this flexi-
bility, a delicate balance is preserved between prohibiting the connecting of incompat-
ible components (avoiding false positive), while permitting the connecting of “almost
compatible” components through adaptation (avoiding false negative). This is achieved
during assembly through introspection, compatibility checks, and adaptability.

1.2 Interface compatibility

Parnas’s principles [16] of information hiding for modules emphasize the separation
of interface from implementation: components providing different implementations of
the same interface can be swapped without having a functional affect on clients; two
components need to agree on the interface in order to communicate. This works well
in object-oriented programming where the design is centralized, but is not practical in
component-based designs [14]. Agreement beforehand is possible only if third-party
component providers were coordinated.

Extending Parnas’s principles to component-based programming (CBP), the com-
ponent clients (i.e., other components) must be provided with composition information
and nothing more. Even agreement on the interface is no longer an accepted level of
exported information. Components gathered from third parties are unlikely and cannot
be expected to agree on interfaces beforehand. For third-party composition to work,
components need to agree on how to agree rather then agree on the interface.

Indeed, CBP builder environments typically apply two mechanisms to overcome
this difficulty and support third-party composition [13]. First, to check for interface

compatibility, builders use introspection. Introspection is a means for discovering the
component interface. Second, builders support adaptability by generating adapters to
overcome differences in the interface. Adapters are a means of fixing small mismatches
when the interfaces are not syntactically identical.

1.3 Behavioral compatibility

The goal of work in behavioral compatibility for components is to develop support in
CBP for behavioral introspection and behavioral adaptability that can be scaled up
for constructing large complex component systems. While there is progress in address-
ing behavioral introspection and adaptability [22, 20, 23, 19, 18] there is no progress in
dealing with the state explosion problem. The main focus of this work is in addressing
the latter in a manner that can be applied to event-based components.

Currently, the introspector reveals only the interface, and adapters are used in an
ad-hoc manner relying on names and types only. There are emerging proposals for han-
dling richer interface mechanisms that express contractible constraints on the interface,
e.g., the order in which the functions should be called, or the result of a sequence of
calls. These methods typically rely on defining finite-state “behavioral” automata that
express state changes. When two components are connected, the two automata can be
tested for compatibility by producing their automata-theoretic product. This fails to pro-
vide a practical foundation for software growth, because of sate explosion; computation
of the product of � behavioral automata, each with ���
	�� states, generates a product
automaton of size ���
	�
�� . We address the challenge of avoiding state explosion. Else-
where [3, 4] we present a pairwise design of an elevator system which, when scaled up
to ����� floors, requires an upper bound of only ����������������� states, instead of the ������� �
that an approach which computes the product of all components would require. This is
well within the reach of current model checkers.

2 Formal methods for components and composition correctness

Our interest is in large systems of concurrently executing components. A crucial aspect
of the correctness of such systems is their temporal behavior. Behavioral properties
can be classified as follows [12]: (1) Safety properties: “nothing bad happens” — for
example, when an elevator is moving up, it does not attempt to move down without
stopping first, and (2) Liveness properties: “progress occurs in the system” — for ex-
ample, if a button inside an elevator is pressed, then the elevator eventually arrives at
the corresponding floor. The required behavioral properties are given by a specification,
which precisely documents what the system must achieve. Formal methods are those
that provide a rigorous mathematical guarantee that a large software system conforms
to a specification. Formal methods can be roughly classified as (1) Proof-theoretic: a
suitable deductive system is used, and correctness proofs are built manually, or using
a theorem prover, and (2) Model-theoretic: a model of the run-time behavior of the
software is built, and this model is checked (usually mechanically) for the required
properties. In our work, we emphasize model-theoretic methods, due to their greater
potential for automation.

Interface
compatibility

Automaton (BIA)
compatibility

Behavioral
compatibility

Export interface interface + automaton complete code
Reuse black box adjustable white box
Encapsulation highest adjustable lowest
Interoperability unsafe adjustable safe
time complexity linear polynomial for finite state undecidable
Assembly properties none provable from pair

properties
complete but
impractical

Assembly behavior none synthesizable from
pairwise behavior

complete but
impractical

Table 1. The interoperability space for components

3 The interoperability space for components

A behavioral interface automaton (BIA) of a component expresses some aspects of
that components run-time (i.e., temporal) behavior. Depending on how much informa-
tion about temporal behavior is included in the automaton, there is a spectrum of state
information ranging from a maximal BIA for the component (which includes every
transition the component makes, even internal ones), to a trivial automaton consisting of
a single state. Thus, any BIA for a component can be regarded as a homomorphic image
of the maximal automaton. This spectrum refines the traditional white-box/black-box
spectrum of component reuse, ranging from exporting the complete source code (max-
imal automaton) of the component—white-box, and exporting just the interface (trivial
automaton)—black box. Table 1 displays this spectrum.

In practice, it is unrealistic to expect the programmer to provide the maximal BIA,
just as precisely specified semantics are rarely part of programming practices. As long
as the most important behavioral properties (e.g., the safety-critical ones) can be ex-
pressed and established, a homomorphic image of the maximal automaton (which omits
some information on the components behavior) is sufficient (Table 1 middle column).

The BIA can be provided by the component designer and verified by the compiler
(just like typed interfaces are) using techniques such as abstraction mappings and model
checking. Verification is necessary to ensure the correctness of the BIA, i.e., that it is
truly a homomorphic image of the maximal automaton. Alternatively, the component
compiler can generate a BIA from the code, using, for example, abstract interpretation
or machine learning [15]. In this case, the BIA will be correct by construction. We
assume the first option for third party components, and will explore the second option
for components assembled in our builder.

4 Avoiding state-explosion by pairwise composition

In [1, 2], we present a method for the synthesis of finite-state concurrent programs from
specifications expressed in the branching-time propositional temporal logic CTL [8].

This method avoids exhaustive state-space search. Rather than deal with the behav-
ior of the program as a whole, the method instead generates the interactions between
processes one pair at a time. Thus, for every pair of processes that interact, a pair-
machine is constructed that gives their interaction. Since the pair-machines are small
(���!	#"��), they can be built using exhaustive methods. A pair-program can then be ex-
tracted from the pair-machine. This extraction operation takes every transition of the
pair-machine and realizes it as a piece of code in the pair-program [2, 9]. The final syn-
thesized program is generated by a syntactic composition of all the pair-programs. This
composition has a conjunctive nature: a process $&% can execute a transition if and only
if that transition is permitted by every pair-program in which $'% participates. Thus, two
pair-programs which have no processes in common do not interact directly. Two pair-
programs that do have a process $(% in common will interact via $(% : the pair-programs
in effect must synchronize whenever $(% makes a transition, so that the transition is ex-
ecuted in both pair-programs simultaneously. For example, if $ �

) $ " , $ "
) $+* , and

$ �
) $+* are three pair-programs which all implement a two-process mutual exclusion

algorithm, then they can be composed as discussed above into a single program which
implements three-process mutual exclusion. In this program, when $ � wishes to ac-
cess the critical section, it must be permitted to do so by both $ " (as per the $ �

) $ "
pair-program) and by $ * (as per the $ �

) $ * pair-program).
Due to the complexity of the synthesis and verification problems for finite-state con-

current programs, any efficient synthesis method is necessarily incomplete: it may fail
to produce a program that satisfies a given specification even though such a program ex-
ists. In the synthesis method of [1, 2], the incompleteness takes the form of two technical
assumptions that the pair-programs must satisfy in order for the synthesized program to
be correct. One technical assumption requires that after a process $&% executes, either it
can execute again (i.e., is enabled), or it does not block any other process. This prevents
deadlock. The other technical assumption requires that a process cannot forever block
another process if the second process must make progress in order to satisfy a liveness
property in the specification. This guarantees liveness.

We refer the reader to [1, 2] for examples of synthesis of solutions to the following
problems, all for an arbitrarily large number of processes: , -process mutual exclusion,
dining philosophers, drinking philosophers [5], - -out-of- , mutual exclusion, and two-
phase commit.

4.1 Applying pairwise composition to component assembly

To apply the pairwise method to components, we must be able to define the pairwise
interaction amongst components. We do this by extending the component model so
that each component . is accompanied by several BIA [7, 20], one for each of the
other components that . interacts directly with. The BIA provides information about
the externally observable temporal behavior of the component. For example, such an
automaton could provide information on the order in which a component makes certain
method calls to other components.

Given two components and their BIA, we construct the pair-machine for their inter-
action by simply taking the automata-theoretic product of the BIA. We can then model

check the pair-machine for the desired behavioral compatibility among the two compo-
nents. If successful, we can then use this pair-machine as input to the pairwise method,
as discussed above.

4.2 Discussion

The pairwise architecture enables a clean separation between interfaces. In the usual
approach, a component has a single interface, through which it interacts with all other
components. Thus, different interactions with different components are all mediated
through the same interface. This results in an “entangling” of the run-time behaviors
of various components, and makes reasoning (both mechanical and manual) about the
temporal behavior of a system difficult. By contrast, our architecture “disentangles” the
interactions of the components, so that the interaction of two components is mediated
by a pair of interfaces, one in each component, that are designed expressly for only
that purpose, and which are not involved in any other interaction. Thus, our architec-
ture provides a clean separation of the run-time interaction behaviors of the various
component-pairs. This simplifies both mechanical and manual reasoning, and results in
a design and verification methodology that scales up.

Our architecture also facilitates extensibility: if a new component is added to the
system, all that is required is to design new interfaces for interaction with that com-
ponent. The interfaces between all pre-existing pairs of components need not be mod-
ified. Furthermore, all verification already performed of the behavior of pre-existing
component-pairs does not need to be redone. Thus, both design and verification are
extensible in our methodology. We can also apply our approach at varying degrees of
granularity, depending on how much functionality is built into each component.

Vanderperren and Wydaeghe [22, 20, 23, 19, 18] have developed a component com-
position tool (PascoWire) for JavaBeans that employs automata-theoretic techniques to
verify behavioral automata. They acknowledge that the practicality of their method is
limited by state-explosion. Incorporating our technique with their system is an avenue
for future work.

DeAlfaro and Henzinger [7] have defined a notion of interface automaton, and
have developed a method for mechanically verifying temporal behavior properties of
component-based systems expressed in their formalism. Unfortunately, their method
computes the automata-theoretic product of all of the interface automata in the system,
and is thus subject to state-explosion.

5 Conclusion

We have presented a methodology for designing components so that they can be com-
posed in a pairwise manner, and their temporal behavior properties verified without
state-explosion. Our method specifies the externally visible behavior of each compo-
nent . as several behavioral interface automaton, one for each of the other components
which . interacts directly with. Finite-state automata are widely used as a specification
formalism, and so our work in compatible with the mainstream of component-based
software engineering.

Ensuring the correct behavior of large complex systems is the key challenge of soft-
ware engineering. Due to the ineffectiveness of testing, formal verification has been
regarded as a possible approach, but has been problematic due to the expense of carry-
ing out large proofs by hand, or with the aid of theorem provers. One proposed approach
to making formal methods economical is that of automatic model checking [6]: the state
space of the system is mechanically generated and then exhaustively explored to verify
the desired behavioral properties. Unfortunately, the number of global states is exponen-
tial in the number of components. This state-explosion problem is the main impediment
to the successful application of automatic methods such as model-checking and reach-
ability analysis. Our approach is a promising direction in overcoming state-explosion.
In addition to the elevator problem, the pairwise approach has been applied success-
fully to the two-phase commit problem [1] and the dining and drinking philosophers
problems [2].

Large scale component-based systems are widely acknowledged as a promising ap-
proach to constructing large-scale complex software systems. A key requirement of an
successful methodology for assembling such systems is to ensure the behavioral com-
patibility of the components with each other. This paper presents a first step towards a
practical method for achieving this.

References

1. P. C. Attie. Synthesis of large concurrent programs via pairwise composition. In CON-
CUR’99: 10th International Conference on Concurrency Theory, number 1664 in LNCS.
Springer-Verlag, Aug. 1999.

2. P. C. Attie and E. A. Emerson. Synthesis of concurrent systems with many similar processes.
ACM Trans. Program. Lang. Syst., 20(1):51–115, Jan. 1998.

3. P. C. Attie and D. H. Lorenz. Establishing behavioral compatibility of software components
without state explosion. Technical Report NU-CCIS-03-02, College of Computer and Infor-
mation Science, Northeastern University, Boston, MA 02115, Mar. 2003. http://www.
ccs.neu.edu/home/lorenz/papers/reports/NU-CCIS-03-02.html.

4. O. Aytar, P. C. Attie, and D. H. Lorenz. An implementation of an elevator system in the ioa
language and toolset. Technical Report NU-CCIS-03-04, College of Computer and Infor-
mation Science, Northeastern University, Boston, MA 02115, Mar. 2003. http://www.
ccs.neu.edu/home/lorenz/papers/reports/NU-CCIS-03-04.html.

5. K. M. Chandy and J. Misra. Parallel Program Design. Addison-Wesley, Reading, Mass.,
1988.

6. E. M. Clarke, E. A. Emerson, and P. Sistla. Automatic verification of finite-state concurrent
systems using temporal logic specifications. ACM Trans. Program. Lang. Syst., 8(2):244–
263, Apr. 1986.

7. L. de Alfaro and T. A. Henzinger. Interface automata. In Proceedings of the Ninth Annual
Symposium on Foundations of Software Engineering (FSE), pages 109–120. ACM, 2001.

8. E. A. Emerson. Temporal and modal logic. In J. V. Leeuwen, editor, Handbook of Theoret-
ical Computer Science, volume B, Formal Models and Semantics. The MIT Press/Elsevier,
Cambridge, Mass., 1990.

9. E. A. Emerson and E. M. Clarke. Using branching time temporal logic to synthesize syn-
chronization skeletons. Science of Computer Programming, 2:241–266, 1982.

10. G. T. Heineman and W. T. Councill, editors. Component-Based Software Engineering:
Putting the Pieces Together. Addison-Wesley, 2001.

11. ICSE 2001. Proceedings of the 23rd International Conference on Software Engineering,
Toronto, Canada, May 12-19 2001. IEEE Computer Society.

12. L. Lamport. Proving the correctness of multiprocess programs. IEEE Transactions on Soft-
ware Engineering, SE-3(2):125–143, Mar. 1977.

13. D. H. Lorenz and P. Petkovic. Design-time assembly of runtime containment components.
In Q. Li, D. Firesmith, R. Riehle, G. Pour, and B. Meyer, editors, Proceedings of the 34th

International Conference on Technology of Object-Oriented Languages and Systems, pages
195–204, Santa Barbara, CA, July 30-Aug. 4 2000. TOOLS 34 USA Conference, IEEE
Computer Society.

14. D. H. Lorenz and J. Vlissides. Designing components versus objects: A transformational
approach. In ICSE 2001 [11], pages 253–262.

15. E. Mäkinen and T. Systä. MAS - an interactive synthesizer to support behavioral modeling
in uml. In ICSE 2001 [11], pages 15–24.

16. D. L. Parnas. On the criteria to be used in decomposing systems into modules. Communica-
tion of the ACM, 15(12):1059–1062, 1972.

17. C. Szyperski. Component-Oriented Software, Beyond Object-Oriented Programming.
Addison-Wesley, 1997.

18. W. Vanderperren. A pattern based approach to separate tangled concerns in component
based development. In Y. Coady, editor, Proceedings of the First AOSD Workshop on As-
pects, Components, and Patterns for Infrastructure Software, pages 71–75, Enschede, The
Netherlands, Apr. 2002.

19. W. Vanderperren and B. Wydaeghe. Separating concerns in a high-level component-based
context. In EasyComp Workshop at ETAPS 2002, April 2002.

20. W. Vanderperren and B. Wydaeghe. Towards a new component composition process. In
Proceedings of ECBS 2001, April 2001.

21. K. C. Wallnau, S. Hissam, and R. Seacord. Building Systems from Commercial Components.
Software Engineering. Addison-Wesley, 2001.

22. B. Wydaeghe. PACOSUITE: Component composition based on composition patterns and
usage scenarios. PhD Thesis.

23. B. Wydaeghe and W. Vandeperren. Visual component composition using composition pat-
terns. In Proceedings of Tools 2001, July 2001.

