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ABSTRACT
A good object-oriented design does not necessarily
make a good component-based design, and vice versa.
What design principles do components introduce?
This paper examines component-based programming
and how it expands the design space in the context
of an event-based component architecture. We present
a conceptual model for addressing new design issues
these components afford, and we identify fundamen-
tal design decisions in this model that are not a con-
cern in conventional object-oriented design. We use
JavaBeans-based examples to illustrate concretely how
expertise in component-based design, as embodied in
a component taxonomy and implementation space, im-
pacts both design and the process of design. The results
are not exclusive to JavaBeans—they can apply to any
comparable component architecture.

Keywords
Component-based software engineering, component-
based design, classification, taxonomy, JavaBeans.

1 INTRODUCTION
Components are “units of independent production, ac-
quisition, and deployment that interact to form a func-
tioning system” [16]. The decoupling of software pro-
duction and deployment (as exemplified by markets
for third-party components) and the centrality of large-
scale composition are largely why component-based
programming (CBP) lies “beyond object-oriented pro-
gramming (OOP).” These attributes bring with them
many new and largely unexplored issues in software
design.

In this paper we characterize the fundamental
design decisions in CBP and the design space
of component-based design (CBD) beyond object-
oriented design (OOD). We illustrate how a good

object-oriented (OO) design is not necessarily a good
component-based (CB) design, and we identify com-
ponent design decisions that are not a concern in OOD.
We don’t try to list all component design decisions and
their solutions. Rather, this work underscores the im-
portance of design, particularly in CBP, through a con-
ceptual model for addressing new design issues that
CBP affords.

For concreteness, we do this in the context of a specific
component architecture, JavaBeans (JB). By ground-
ing our discussion in a working component system—
implementation warts and all—we are forced to con-
front real issues in CBD, lending credibility to the re-
sults. While these results are not exclusive to JB, their
application to substantially different component mod-
els is left for future work.

There are many design decisions to consider as you de-
compose a system into components. We illustrate the
unique characteristics of CBD through three key deci-
sions:

1. Identifying the components and connectors. What do
components model in the problem domain, and
what does their communication model?

2. Designing the components and connectors. What are
the dimensions of the components (i.e., fan-in, fan-
out, event types, etc.)?

3. Implementing the components and connectors. How
do you trade off space, time, and safety to op-
timize performance, reusability, maintainability,
and cost?

We characterize component design by showing how
each of these decisions requires expertise in CBD as
embodied in a component taxonomy and implemen-
tation space. A series of related JB examples illus-
trates how this expertise impacts both design and the
process of design. The next three sections consider
these decisions in the context of implementing implicit
method invocation [4] within increasingly complex ex-
amples. Section 2 describes component-event parti-
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tioning through a single class example, Section 3 de-
scribes component-event design through an example
involving multiple classes from the same package, and
Section 4 describes component-event implementation
through a multiple-package, multiple-class example.

The examples address issues in component partition-
ing, design, and implementation in light of analogous
issues in a corresponding object-oriented design. In-
deed, we discuss CBD almost exclusively through di-
rect comparisons to OOD, going so far as to consider
the canonical problem in CBD to be how to map object-
oriented designs to component-based designs.

2 COMPONENT-EVENT PARTITIONING
Consider the task of simulating Boolean logic using
JB, which has an event-based, implicit invocation ar-
chitecture. What logical concept(s) should compo-
nents and events model? Recall that nand comprises
a complete set—that is, not(x) = nand(x; x)—and
by applying DeMorgan’s laws, any boolean function
can be formulated solely in terms of nand operations.
For example, or(x; y) = nand(nand(x; x); nand(y; y)).
Even so, implementing not as a separate gate can
cut down on wiring: nor, for example, simplifies to
not(nand(not(x); not(y))), eliminating the need to wire
together nand inputs.

In a conventional OO design, one is likely to define an
interface such as Bool (Figure 1) for objects of Boolean
type. Bool contains only two methods, not and nand.
Classes True and False would implement these opera-
tions differently.

What should a CB version of this design look like?

Bool nand(Bool arg) f
return arg.not();

return new False();
Bool not() f

g

g

g
return this.not();

Bool nand(Bool arg) f
g
return new True();

Bool not() f

Bool

Bool not();
Bool nand(Bool arg);

FalseTrue

Figure 1: The Boolean class hierarchy

A Naive Component-Based Design
Basic OO principles do not give us much insight into
a good CB design, at least not for the Bool example.
A naive CB design mimics the OO design by mapping
methods to events, and objects to components. The re-
sulting component hierarchy, shown in Figure 2, leaves
much to be desired.

The components TrueBean and FalseBean in Figure 2
(corresponding to the classes True and False in Fig-
ure 1) carry fixed behaviors akin to the objects true and

false, respectively, in Smalltalk [5]. Events NotEvent
and NandEvent, which implement the InvokeEvent in-
terface shown in Figure 3, correspond to the meth-
ods not and nand in the OO design. Two other
events are NewEvent and ReturnEvent for construct-
ing and returning a value, respectively. The incom-
ing arrows NewEvent, NotEvent, and NandEvent in
Figure 2 indicate that BoolBean subclasses implement
the NewEventListener, NotEventListener, and NandE-
ventListener interfaces. The outgoing ReturnEvent ar-
row means that instances can broadcast the result to
potential ReturnEventListeners.

NotEvent

NewEvent

NandEvent
BoolBean

TrueBean FalseBean

ReturnEvent

Figure 2: Class-to-component mapping

NotEvent NandEvent

InvokeEvent

Figure 3: Method-to-event mapping

This decomposition is effective in an OO design,
wherein objects can send messages and serve as re-
turn values, but it makes a poor CB design, rendering
simple things like constructing a function with argu-
ments (e.g., nor) a challenge. On receipt of a Return-
Event, moreover, it is difficult for the receiver to tell
whether the event resulted from a not operation or a
nand operation. One might consider splitting the Re-
turnEvent into two events, such as NotReturnEvent and
NandReturnEvent. But that has the detrimental side-
effect of creating a parallel set of components solely for
return values, which complicates maintenance. The de-
composition also complicates parameter passing, de-
manding enough settable properties to accommodate
the method with the maximum number of arguments
in the OO design. Adding an operation (say, nor) re-
quires changing BoolBean, further complicating main-
tenance. When a component’s class changes, every
instance of the component must be updated—unless
you’re willing and able to manage multiple component
versions.

An Improved Component-Based Design
Figure 4 illustrates a different CB design, wherein each
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method in the OO design becomes a component and
each class becomes an event. Compared to the earlier
design, the resulting components Nand and Not in Fig-
ure 4 reflect a dataflow factoring rather than the origi-
nal’s data-oriented factoring. The data (that is, the re-
ceiver o and the result of the operation o0) travels in
the input and output events rather than lying in fixed
structures. The components thus become far more con-
venient building blocks for a JB-based Boolean toolkit.

BoolEvent(o)

o0=o.nand(b)

o0=o.not()

BoolEvent0(o0)

BoolEvent0(o0)

b: Bool

BoolEvent(o)

Nand

Not

Figure 4: Method-to-component mapping

In this method-to-component design, returning a value
simply corresponds to firing an event. Adding a new
nor operation is also simple: just add another kind of
component. For example, Figure 5 shows how a Nor
component can be constructed. The resemblance to
hardware components is intentional.

Event
Bool

Event
Bool

NandNot Not

BoolReceiver

NotBool BoolTransmitter

Figure 5: nor(x; y) = not(nand(not(x); not(y)))

Note that the receiver of nand is supplied within
BoolEvent, while the argument of nand is supplied to
the component Nand by binding its property (denoted
by small circles). This is in keeping with CBD because it
avoids races and generally simplifies synchronization.

Also note that the components in Figure 4 are not al-
ways convenient enough by themselves. Additional
components are desirable that have no direct analog in
a pure OO design, such as the adapters shown in Fig-
ure 6 (and used in Figure 5) for converting a property
to an event and vice versa. These adapters make the
event-based architecture more flexible. Moreover, they
let the nor interface mimic nand’s—that is, one input is
bound as a property and the second is received as an
event. The CB design should take such adapters into
account as well as the trade-off between using proper-

ties versus events as inputs.

BoolEvent(b)

BoolEvent(b)

BoolReceiver

BoolTransmitterb: Bool

b: Bool

Figure 6: Event-Property adapters

3 COMPONENT DESIGN
Now consider the more complex task of designing a
toolkit of REFLECTIONBEANS with which to construct
tools that compute simple OO metrics or that find de-
pendencies among classes [11]. Such a toolkit can be
helpful in many ways:

� Obtaining program information through reflection
instead of parsing source code affords the benefit
of working with compiled .class files in JAVA.
Thus the metrics can be applied to third-party
components whose source code is unavailable.

� Reflection allows simple dynamic checks in lieu
of complicated static analysis, as we demonstrate
later.

� Assembling components in a builder is usually
easier than writing reflection code. REFLECTION-
BEANS allow quick, graphical construction of a
variety of analyses, making it easy to experiment
with different metrics.

How would one design such a REFLECTIONBEANS
toolkit? We could apply the method-to-component ap-
proach of Figure 4 to the JAVA Core Reflection design
(rather than just the Bool interface). That is, we can
produce a system of components for expressing reflec-
tive computations just as we produced the Nand and
Not components for Boolean expressions. Consider the
metaclass java.lang.Class in JAVA. Instead of a
getSuperclass method, we would define a compo-
nent that receives a ClassEvent (carrying a class object)
and then fires a ClassEvent (carrying the correspond-
ing superclass object).

Whereas the Bool design involved just one interface,
the REFLECTIONBEANS design is the CB equivalent of
a package of classes in the OO design. That means
a component class exists for every method of every
class in java.lang.reflect—which raises new is-
sues. Choosing the method-to-component mapping,
(i.e., identifying the components and events) is merely
the first of many decisions in any nontrivial CB design.

When every method gives rise to a component, the re-
sulting number of component types can become un-
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wieldy. As an alternative, a single, parameterized com-
ponent may serve similar methods (e.g., all inspectors
or all mutators), thus reducing the number of different
components but also potentially incurring drawbacks,
such as reducing reusability (the component becomes
monolithic), type safety, or efficiency. Then again, ab-
stract components and subcomponents might also in-
crease efficiency and reusability if, for example, the CB
design suffers code duplication across components.

How can one make informed decisions in the design
of a component system? Should a single component
carry out several duties? Should components share an
implementation by sharing subcomponents or by in-
heriting from more abstract components? How do you
structure a potentially large number of components in
a way that’s easy to navigate and maintain?

Dimensions of Components
The components we create depend on the target com-
ponent architecture. Despite the preponderance of OO
languages, they all adhere closely enough to a com-
mon object model that a designer can reason about an
OO design largely independent of implementation lan-
guage. In contrast, the commonalities among compo-
nent architectures are less apparent and agreed upon,
and so the underlying technology must be taken into
greater consideration than in OOD.

To reach a more systematic approach to component
design in general, we examine JB design in particu-
lar, especially the degrees of freedom JB offers. By
limiting ourselves to the JB component framework for
simplicity—and only a subset of JB static semantics—
we can focus on five dimensions:

1. Bias—that is, the ability to accept/produce events.
The bias of a JB component is fixed. Like conven-
tional GUI components, certain events can come
in, and certain events go out. Hence bias must be
chosen statically.

NEUTRAL

IN

OUT

IN-OUT

Figure 7: Component bias

We distinguish between four kinds of biases as
shown in Figure 7: IN, OUT, IN-OUT, and NEU-
TRAL. An IN component listens to events but
never fires them. An OUT component fires events
but never listens to any. An IN-OUT component
both receives and fires events. A component that
neither listens nor fires events is a NEUTRAL com-
ponent.

2. Number of externally accessible properties. We
distinguish components by their number of prop-
erties: �0 denotes a component that has no prop-
erties, �1 denotes one property, and so on (see Fig-
ure 8). �� denotes a component with at least one
property.

�n

� � �

� � �

�1�0 � � �

Figure 8: Component properties

3. Type relationships among connectors—that is,
type relationships between IN and OUT connec-
tors. Events in JAVA are strongly typed: you can’t
connect an output of one component to the input
of another unless the output event class conforms
to the input event class.

We distinguish two kinds of IN-OUT components,
as shown in Figures 9 and 10. �= denotes a com-
ponent whose output event class is the same as the
input event class. �6= denotes a component whose
output event class is different from the input event
class. There are two cases of �6= components. �2 in-
dicates that the output event class is part of the
system’s events; �62 says the output event class is
external to the system.

e� e
0
� 0

e� e
0
� 0

�6=; �2

�6=; �=2

Figure 9: Event types

4. Payload identity between IN and OUT events.
Among the components whose OUT-event type is
the same as the IN-event type, we further distin-
guish between components that replace the mes-
sage (or event payload) and those that do not. There
are two cases of �= components. �= means pre-
cisely the same payload is sent out. �6= indicates
that the OUT-event payload is different from the

256



IN-event payload (although both payloads belong
to the same type of event.)

e� (�) e
0
� (�)

e� (�) e
0
� (�

0)

�=; �=

�=; �6=

Figure 10: Event payload

5. Payload mutability—that is, the relationship be-
tween IN and OUT payloads. We further dis-
tinguish between �=-components that change the
payload’s state (but preserve its ID) and those that
treat the payload as immutable.

Having identified and chosen the component dimen-
sions, we can chart the meaningful combinations and
give them names, thereby producing a classification of
JB components by dimension.

A TRANSMITTER is an OUT component—a source of
events. A RECEIVER is an IN component—a sink of
events. A component that is both a TRANSMITTER
and RECEIVER is a TRANSCEIVER. Most beans are
TRANSCEIVERs. An ISLAND has NEUTRAL bias.

A CONDUIT is a (�0; �=; �=)-TRANSCEIVER that passes
the incoming event through unchanged. CONDUITs
have no functional effect, only side-effects. An exam-
ple is a tracer, which logs messages for debugging pur-
poses but otherwise has no effect on the computation.
A TRANSMUTER, on the other hand, is a (�0; �=; �=)-
TRANSCEIVER that alters the payload’s state but pre-
serves its ID.

A TRANSFORMER is a (�0; �=; �6=)-TRANSCEIVER that
fires the same type of event as it received but with
different payload. A TRANSDUCER is a (�0; �6=; �6=)-
TRANSCEIVER that fires an event whose type is dif-
ferent than the type of the incoming event—that is,
the bean changes the event type, not just the pay-
load. A TRANSLATOR is a TRANSDUCER to an external
type, used to connect to other systems. A (�0; � 6=; �=)-
TRANSCEIVER is a CONVERTER, which changes the
event type without changing the payload.

An ASSOCIATOR is a qualifier to any of the above that
also has at least one property, i.e., the �� equivalent.
An ASSOCIATOR takes an event whose properties serve
as indices or arguments that affect what is sent out.

These classifications give rise to a taxonomy of com-
ponents that can help designers navigate large compo-
nent collections. In OOP, there is accepted terminol-
ogy for common kinds of messages in an object’s inter-
face; the resulting taxonomy helps not only in locating

a method but also in understanding its intent and the
design of the class. Figure 11 depicts the existing taxon-
omy of features in a typical OO language. For example,
an inspector never changes the receiver, whereas a muta-
tor modifies the object but does not return a value, and
a revealer is an inspector-mutator whose return type is
a reference to an instance variable. Good design rules-
of-thumb include separating inspectors from mutators,
and avoiding revealers.

Similarly, the classification of methods to components
yields a new taxonomy for components. Figure 12
shows an initial terminology for this taxonomy. Corre-
sponding design rules for components are needed too,
but they await further research.

Continuing the REFLECTIONBEANS Example
To illustrate the taxonomy, consider the problem of ver-
ifying the instantiability of JB.

Statically ensuring instantiability is difficult. Many
things can be wrong: the bean class’ constructor might
be private, the superclass’ constructor might be pri-
vate, one of the arguments to the constructor might be
private—any one of which will render the class unin-
stantiatiable. Meanwhile, if a default constructor is
missing, the bean cannot be added to a builder. Static
analysis isn’t even an option unless the source code is
available, and even a simple analysis for instantiability
remains a complex task, if for no other reason than the
complexity of parsing.

But one can use reflection instead of parsing. Apply-
ing reflection to analyze .class files and report po-
tential problems is more flexible and less tedious than
parsing: You have the flexibility of analyzing classes
without their source code. In fact, BeanLint [8, 9] uses
this approach to identify potential problems with JB
classes. Some problems that are normally flagged by
the compiler—the visibility of superclass constructors,
for example—may be assumed correct (although inde-
pendent verification is always possible).

Another alternative to static checking uses reflection
to instantiate the class, catching any exceptions aris-
ing from uninstantiability (or any other problem). In-
deed, this can be done at component assembly time
using REFLECTIONBEANS components. DIN (depth
of inheritance [10]) is a useful metric that illustrates
the approach. Computing a hierarchy’s DIN involves
nothing more than going up the superclass chain and
counting the classes. Extending DIN to simultaneously
check whether or not an ancestor class can be instanti-
ated is a reliable way of ensuring fulfillment of the ab-
stract superclass rule [7].

In previous work [11], we implemented such a system
of REFLECTIONBEANS. In Figure 13, we connect For-
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Revealer

Method

Updator

#arg = 0

Mutator

Setter

#arg > 0

Constructor

Default

#arg = 0

Destructor

Convertor
from other form
#arg = 1

Constructor
Convertor

to other form
#arg = 0

Inspector

Getter Copy
from same form
#arg = 1

Figure 11: Existing taxonomy of explicit invocation

Payload preserved,
event type preserved

RECEIVERTRANSCEIVER ISLAND

CONVERTER

(event cast)
CONDUIT

(only side effect)
#arg = 0;

event type changed
Payload preserved,

retValue(m) = self

Payload replaced,
event type preserved

TRANSLATOR

to an external event type
#arg = 0;

retType(m) 62 pkg(m)retType(m) 2 pkg(m)

TRANSDUCER

to an internal event type
#arg = 0;

Payload replaced,
event type changed

to same event type

event type preserved
Payload mutated,

to same event type
#arg = 0;

TRANSMUTER

retValue(m) = self retValue(m) = self

Component

TRANSMITTER

retType(m) = class(m)

TRANSFORMER

#arg = 0;

Figure 12: Suggested taxonomy of implicit invocation

Counter

Event
Class

Event
ObjectClass

Event

InstantiationExceptionEvent
IllegalAccessExceptionEventEvent

NewInstance CounterGetSuperclass

Class

ForName

String

Figure 13: To bean or not to bean?

Name to GetSuperclass, and GetSuperclass to NewIn-
stance, returning the event to GetSuperclass using a
feedback loop. Counters are connected to the output
and to exception events. The reported total tells you
how many superclasses are concrete, and the number
of exceptions tells you how many superclasses are non-
instantiatable and hence abstract de facto.

ForName is an example of a ClassEvent-
TRANSMITTER. Generally, static functions and
constructors would also be modeled as TRANSMIT-
TERs, and those that return or create a class object
would be ClassEvent-TRANSMITTERs. A design that
defines support classes (e.g., Transmitter) promotes
reuse. Moreover, a customizable ClassEventTrans-
mitter can replace several component types, thereby
reducing the overall number of classes.

GetSuperclass is a ClassEvent-TRANSFORMER—that
is, a TRANSCEIVER that receives and fires that same
kind of event (ClassEvent). NewInstance is a ClassEv-
ent-to-ObjectEvent TRANSDUCER—a TRANSCEIVER
whose outgoing event type (ObjectEvent) is different
from its incoming event type (ClassEvent).

4 COMPONENT IMPLEMENTATION
In CBP, component compilation is decoupled from
component assembly. Such decoupling introduces a
new degree of freedom over OOD: A designer must
consider not just a component’s core functionality but
also its behavior at assembly-time. Thus a trade-off
emerges between component flexibility and robustness
during assembly, prompting new design decisions.

The ideal component is, of course, both flexible and ro-
bust. Unfortunately, the two tend toward mutual ex-
clusion. The more specialized the component, the more
robust the assembly activity becomes by precluding il-
legal compositions, but also the more likely it is to pre-
clude some legal ones. Making the component more
generic by relaxing static type safety promotes flexi-
bility but brings an increased risk of ill-formed assem-
blies. A good CBD balances these forces, requiring the
component designer to make informed decisions re-
garding the safety/flexibility trade-off.

So far we have made two design decisions in our exam-
ples. The first is that components should model meth-
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Package Name Applet Awt Beans Io Lang Math Net Rmi Security Sql Text Util total avg
by

#
of

I/
O

ev
en

ts TRANSMITTER 2 445 54 108 322 13 61 107 106 32 73 180 1503 125.25
RECEIVER 17 991 98 280 100 0 40 34 78 141 71 160 2010 167.50

TRANSCEIVER 21 1810 130 251 304 68 109 87 297 386 201 502 4166 347.17
ISLAND 0 8 7 0 29 0 9 9 4 6 0 45 117 9.75

by
ty

pe
of

I/
O TRANSFORMER 0 58 1 6 44 38 0 0 0 2 0 7 156 13.00

TRANSDUCER 21 1752 129 245 260 30 109 87 297 384 201 495 4010 334.17

by
#

of
pr

op
er

ti
es ASSOCIATOR 21 1810 149 298 427 45 83 114 217 292 173 482 4111 342.58

non-ASSOCIATOR 19 1444 140 341 328 36 136 123 268 273 172 405 3685 307.08
Total number 40 3254 289 639 755 81 219 237 485 565 345 887 7796 649.7

Table 1: Distribution of components implementing JDK 1.2 packages

ods. The second determined which component cate-
gory models which method signature, based on the re-
spective taxonomies.1 Given these decisions, we can
concentrate on implementation trade-offs.

Before we do, though, we will expand the scale of
application to highlight the consequences of the deci-
sions. In the Bool example, we had just a few compo-
nents; REFLECTIONBEANS had a package-full of com-
ponents, covering the functionality in the JAVA Core
Reflection package. To that we now add all the other
JDK packages.

Suppose we wish to create JDKBEANS, letting us treat
any method in JAVA as a component. Table 1 gives the
distribution of components needed to model JDK 1.2.

There are a few subtleties to consider:

� Method signature. Concerning inherited methods:
Should each implementation of a method signa-
ture yield a new component? Should abstract
classes be mapped to components, or just concrete
classes? Should interfaces be ignored? Overrid-
ing raises another question: Should a method that
overrides another yield a new component?

� Component category. Should methods with differ-
ent signatures but belonging to the same taxo-
nomic category (Figure 11) be modeled as a sin-
gle component from the corresponding category
in the CB taxonomy (Figure 12)? Consider in-
spector methods with different names but match-
ing receiver and return types. Should they be im-
plemented as a single TRANSCEIVER, even though
their signatures are different? How can the im-
plementation of a taxonomic category be reused in
components across packages?

Four designs points characterize the design possibili-
ties for these components:

1The precise mapping of method signatures to component cate-
gories appears elsewhere [12].

1. A custom, hard-wired component for every
method signature (the Bool example).

2. A set of custom, hard-wired components per pack-
age for every taxonomic category of component
(the REFLECTIONBEANS example repeated for ev-
ery package).

3. A single, parameterized component per category
(the REFLECTIONBEANS example with typing re-
laxed to allow the same set of components to work
across packages).

4. A single, highly parameterized component cover-
ing all methods in all packages.

Each of these design points represent a different set of
trade-offs and consequences, as summarized in Table 2.

A Custom, Hard-Wired Component Per Method
In this design, every method in every class is trans-
formed to a new component class, just like nand and
not were in the Bool example. It turns out that the
components can be generated from abstract classes or
even from interfaces. To see how, examine again the
Bool interface in Figure 2. When the signature Bool
not() is introduced, the Not component shown in Fig-
ure 4 can be created without examining the classes
True and False. That’s because the component encap-
sulates the call to not. When a concrete object obj
arrives via a BoolEvent evt, the Not component will
invoke evt.obj.not(). Java’s dynamic binding will
choose the correct implementation of the specialized
not method at run-time according to the actual type
of obj.

Now suppose you override the not operation with an
alternative implementation. Do you need to generate
another Not component?

Recall that the component’s polymorphic code makes
a new component unnecessary, even if Not originated
from an interface. But there’s still a difficulty: Not can-
not work with components of more specialized types
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Hard-wired
(point 1)

Semi-generic
(points 2 & 3)

Highly parameterized
(point 4)

class granularity finest adjustable coarsest
static safety full full for structure; adjustable for data none
object granularity fine fine fine
run-time overhead low adjustable high

Table 2: The design space for components

without adapters. It’s all right to connect a component
that models a specialized method to one that models an
interface method. But sending an event the other way
requires an adapter, because the event types in JAVA
must match, independent of payload. Fortunately, the
adapter’s downcast always succeeds, as the original
types are compatible.

This is the most naive transformation from OOD to
CBD, and the least maintainable. It is however suitable
for a component generator, since maintenance cost is
less of an issue if the components are generated auto-
matically. Indeed, we used such a generator to imple-
ment the Bool and the REFLECTIONBEANS transforma-
tions automatically [12], as well as other JDK 1.2 pack-
ages (see Table 1). However, there are negative con-
sequences in the long run—namely, an overabundance
of components. Over 7000 beans are needed to imple-
ment the JAVA core packages plus adapters to circum-
vent type strictness during assembly. The bright side is
that distinct event types preclude ill-formed composi-
tions.

The proliferation of generated components is the
main limitation of the naive method-to-component
mapping. Traditionally, components are coarse-
grained [15], but the transformation does not reflect
this view: an entire object-oriented design is decom-
posed into many simple components. Whereas the
coarse granularity of traditional components admits
considerable overhead per component, that same over-
head becomes prohibitive at finer granularities.

A Set of Custom, Hard-Wired Components Per Pack-
age Per Taxonomic Category
This design point follows the REFLECTIONBEANS ex-
ample but applies it to all packages. Each package
ends up with its own set of hard-wired TRANSMIT-
TERs, TRANSCEIVERs, etc., for all IN-OUT event combi-
nations. For example, given the Reflection package and
the TRANSFORMER category, there will be a ClassEv-
ent-TRANSFORMER, a MethodEvent-TRANSFORMER,
and so on. Each component is customized to execute
only methods in the corresponding package and classi-
fication. For example, the ClassEvent-TRANSFORMER
can be set to execute getSuperclass.

This approach reduces the number of components
without affecting type safety, although it does incur
run-time overhead. Whatever else is true of design
point 1 is also true here.

A Single, Parameterized Component Per Taxonomic
Category
This design point reduces the number of components
drastically, to one per taxonomic category. How-
ever, because a TRANSFORMER must now play the role
of a ClassEvent-TRANSFORMER and a MethodEvent-
TRANSFORMER, as well as all other packages’ TRANS-
FORMERs, the flexibility comes at a price in type safety.
One can connect, for example, GetSuperclass to Get-
ParameterTypes even though their event types do not
match. Other attributes, like bias, are preserved; noth-
ing can be broadcast to ForName, for example, because
it is a TRANSMITTER.

A Single, Highly Parameterized Component
This design point represents the opposite extreme
from the first: a single, totally generic compo-
nent is customized to execute any method—the all-
purpose MethodInvocation component. Its implemen-
tation is straightforward. It has a property of type
java.lang.Method, and it implements a method-
property customizer to allow executing any method in
JAVA.

This setup eradicates the problem of too many com-
ponent types, at least in theory: just one polymorphic
component type covers all cases. It doesn’t work so
easily in practice, however. One reason is the static na-
ture of JB bias. MethodInvocation needs both input and
output events to cover all possible biases, even if some
components are not really IN-OUT. Moreover, one can
now connect an output to the (inactive) input of a com-
ponent that models a constructor, or to the (inactive)
output of a component that models a method with no
return value.

In sum, this design is statically simplest by class count
but least efficient, since methods must be invoked us-
ing reflection at run-time. It also offers the least static
type safety: all methods are mapped to a single com-
ponent, and so all classes are mapped to a single event
type. Component compositions representing mistyped
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method invocations are thus permitted.

Lessons
On the one hand, a single, highly parameterized com-
ponent constitutes the most maintainable design, but
it removes all measures of static type safety. Cus-
tom, hard-wired components, on the other hand, pro-
vide full static safety, but scalability concerns make
them useful only for simple object-oriented designs
like the Boolean example or possibly high-function
classes with small interfaces. But clearly, the first de-
sign point is not practical for most real-world class
libraries—there are simply too many methods, giving
rise to too many components. A generator can create
them easily enough, but managing them will be te-
dious.

Partitioning components into packages mitigates the
problem somewhat, as do abstract components. But
the real solution will come from using a family of
generic components rather than customized ones or a
single, highly parameterized one. The component tax-
onomy can come to the rescue here—if we use it to
produce a convenient number of reasonably efficient
generic components (that is, a suitably parameterized
component for judiciously chosen points in the space).

5 RELATED WORK
Discussing JB-based design in terms of components
and connectors reflects the terminology of software ar-
chitecture [13], particularly architectural styles as char-
acterized by Shaw and Garlan [15]. An architectural
style is a set of constraints that defines a family of de-
signs. As such it does not articulate design or imple-
mentation trade-offs.

Another tack on CBD comes from the object-oriented
methodology community as exemplified by Cataly-
sis [3]. This approach uses two basic constructs, objects
and actions, to model components and events. The no-
tion of styles in Catalysis is particularly relevant to our
work. For example, a specification adhering to the JB
style can make automatic implementation feasible [2].
To date, nothing has been published on realizing this
possibility.

Meanwhile, many programming environments offer
wizards that can generate sets of features within a com-
ponent. They alleviate the tedium of writing get, set,
and notification methods on bean classes as opposed to
creating systems of beans from more abstract represen-
tations or to reasoning about their design.

Compared to commercial CBP environments, we have
widened our focus to consider the design of complete
systems of components. Compared to the architectural
community, we have narrowed our focus to design de-
cisions that are close to the implementation level. The

mapping to JB forced us to consider implementation
issues and their impact on design—and to put them to
the test:

� Component/connector partitioning. By its nature,
software architecture concentrates on abstraction
mechanisms. These answer questions regarding
whether a single abstraction is sufficient to model
both components and connectors, whether two ab-
stractions are equally powerful (e.g., Is “connec-
tor” a first-class abstraction? [6]), and so on. In
contrast, this work takes the component and con-
nector abstractions as givens and considers their
impact on CBD.

� Component/connector design. Few taxonomies of
components and connectors even mention design
decisions and trade-offs. An exception is the work
of Mehta, Medvidovic, and Phadke [14]. They
too are motivated by the need for better design
guidance, but they defer its implications for de-
sign decision-making to future work. We feel that
design and implementation guidelines make a tax-
onomy even more useful.
Still, though we emphasize design choices, the
scope here is not as broad as Mehta, et al.’s, given
the focus on implicit invocation in the context of
JB. Our work falls into the “invocation” dimension
of their taxonomy.

� Component/connector implementation. Component
assembly introduces trade-offs unique to CBD, as
we have seen. In JB, the visual builder governs
component interactions. The same design and im-
plementation issues apply to components whose
interaction is governed by middleware instead of
a builder. The taxonomy and the principles behind
it transcend the medium of assembly.

6 CONCLUSION
Much has been written about OOD, with few practical
advances in automating the process. In CBP the op-
posite seems true: A high degree of automation exists,
but little attention is paid to CBD. Most JB books, for
example, focus on what beans are, rather than on how
to build software that takes advantage of the JB archi-
tecture.

We set out to advance the state of the art in design-
ing and implementing components. To that end, we
demonstrated how to adjust and supplement OOD
principles to suit CBD. We also devised a taxonomy of
design for a particular style of interconnection, namely
event-based composition, by considering component
classes and events and classifying their roles in real ap-
plications. Finally, we characterized a range of imple-
mentations of this event-based, dataflow style, taking
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into account the assembly activity and the safety, per-
formance, and maintenance trade-offs it engenders.

This work is also a modest attempt to bridge the gap
between architectural descriptions and actual develop-
ment practice. The architectural perspective tends to be
too abstract to be practical, while JB tools are too prac-
tical to offer the leverage of architectural abstraction.
As a result, working programmers have little to guide
them in the design of JB systems.

Implicit invocation is gaining ground as an implemen-
tation technique. We characterized the explicit invo-
cation taxonomy and proposed a corresponding tax-
onomy of implicit invocation, which extends the vo-
cabulary of JB. Together, the two taxonomies can aid
not only in comprehension of the design space for new
designs—using either explicit or implicit invocation—
but also in migrating existing systems to implicit invo-
cation [12].

There are at least two logical follow-ups to this work.
Documenting design decisions in terms of the pro-
posed taxonomies would promote collection and dis-
semination of OOD and CBD expertise alike. It would
also invite tool and language support for the exper-
tise so obtained, especially as it regards visual builders.
We envision a component generator with knobs that
let a user choose among design decisions, akin to sim-
ilar work for code generation from design patterns [1].
Such a tool is sufficiently parameterized to generate
any combination of implementation trade-offs on the
spectrum from fully static to fully dynamic compo-
nents. The components that result can thus exhibit
just the right combination of flexibility, maintainabil-
ity, and performance, with a minimum of specification
and hackery on the developer’s part.
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