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ABSTRACT
Studies of Aspect-Oriented Programming (AOP) usually focus on
a language in which a specific aspect extension is integrated with
a base language. Languages specified in this manner have a fixed,
non-extensible AOP functionality. This paper argues the need for
AOP to support the integration and use of multiple domain-specific
aspect extensions together. We study the more general case of in-
tegrating a base language with a set of third-party aspect exten-
sions for that language. We present a general mixin-based seman-
tic framework for implementing dynamic aspect extensions in such
a way that multiple, independently developed aspect mechanisms
can be subject to third-party composition and work collaboratively.
Principles governing the design of a collaborative aspect mecha-
nism are aspectual effect exposure and implementation hiding.
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1. INTRODUCTION
A current trend in Aspect-Oriented Programming (AOP [27]) is the
usage of general-purpose AOP languages (AOPLs). However, a
general-purpose AOPL lacks the expressiveness to tackle all cases
of crosscutting. A solution to unanticipated crosscutting concerns
is to create and combine different domain-specific aspect exten-
sions to form new AOP functionality. As of yet, there is no method-
ology to facilitate this process [43].

Studies of AOP typically consider the semantics for an AOPL that
integrates a certain aspect extension, Ext1, with a base language,
Base. For example, Ext1 might be (a simplified version of) As-
pectJ [26] and Base (a simplified version of) Java [1]. The se-
mantics for the integration Base × Ext1 is achieved by amend-
ing the semantics for the base language. Given a pair of programs
〈base , aspect 1〉 ∈ Base × Ext1, the amended semantics explains
the meaning of base in the presence of aspect 1.

Unfortunately, the semantics for the aspect extension and that for
the base language become tangled in the process of integration.
Consequently, it is difficult to reuse or combine aspect extensions.
For each newly introduced aspect extension, say Ext2, the seman-
tics for Base × Ext2 needs to be reworked. Moreover, given the
semantics for Base×Ext1 and the semantics for Base×Ext2, the
semantics for Base × Ext1 × Ext2 is undefined even though Ext1
and Ext2 are both aspect extensions to the same base language.

In this paper we resolve this difficulty by considering a more gen-
eral open question:

THE ASPECT EXTENSION COMPOSITION QUESTION: Given a base
language, Base, and a set {Ext1, . . . , Extn} of independent as-
pect extensions to Base, what is the meaning of a program base ∈
Base in the base language in the presence of n aspect programs
〈aspect 1, . . . , aspectn〉 ∈ Ext1 × · · · × Extn written in the n dif-
ferent aspect extensions?

Ability to compose distinct aspect extensions offers first and mostly
great practical benefits. In Section 2 we discuss these benefits
and illustrate that, unfortunately, prevalent implementations are not
composable. Addressing the general composition question also
provides in the special case where n = 1 a better encapsulation
of the semantics for a single aspect extension.

1.1 Combining Two Aspect Extensions
Answering the aspect extension composition question is difficult
even for n = 2. Let MyBase be a procedural language, and con-



sider two independent, third-party aspect extensions to MyBase.
The first, HisExt1, capable of intercepting procedure calls and sim-
ilar in flavor to AspectJ. The other, HerExt2, an aspect extension
to MyBase capable of intercepting calls to the primitive division
operator for catching a division by zero before it even happens (as
opposed to catching a division by zero exception after it occurs),
a capability that AspectJ lacks.1 Both call interception (e.g., [28])
and checking if a divisor is zero (e.g., [3, 29, 17]) are benchmarks
often used in connection with aspects.

W.l.o.g., assume HisExt1 is created before HerExt2 is even con-
ceived. If HisExt1 is to eventually work collaboratively with an-
other aspect extension, e.g., HerExt2, the implementation of His-
Ext1 must take special care to expose its AOP effect, and only its
effect, in terms of MyBase. This is because an aspect 2 program
written in HerExt2 would need to intercept divisions by zero not
only in the base program base but also in advice introduced by an
aspect 1 program written in HisExt1.

Failing to reify a division by zero in aspect 1 might cause a false-
negative effect in HerExt2. Meanwhile, aspect 2 must not intercept
divisions by zero, if any, in the implementation mechanism of either
HisExt1 or HerExt2. Reifying a division by zero in the implemen-
tation mechanism might cause a false-positive effect in HerExt2.

Similarly, aspect 1 must intercept not only procedure calls in base

but also any matching procedure call introduced by aspect 2. aspect 1

must not, however, intercept internal procedure calls that are a part
of the implementation mechanism of either HisExt1 or HerExt2.

Note that generally aspect extensions present incompatible levels of
AOP granularity [31]. In our example, aspect 1 is not expressible
in HerExt2, and aspect 2 is not expressible in HisExt1. Therefore
the problem of integrating the two cannot be reduced to translating
aspect 1 to HerExt2 or translating aspect 2 to HisExt1 and using
just one aspect extension. This distinguishes our objective from the
purpose of frameworks (like XAspects [39]) that rely on the use of
a general-purpose AOPL (like AspectJ).

In the sequel, a base mechanism denotes an implementation of a
base language semantics, an aspect mechanism denotes an imple-
mentation of an aspect extension semantics, and a multi mechanism
denotes an implementation of a multi-extension AOPL.

1.2 Objective and Contribution
We describe a general method for implementing the base mecha-
nism and the aspect mechanisms in such a way that multiple, inde-
pendent aspect mechanisms can be subject to third-party composi-
tion and work collaboratively. By third-party composition of aspect
mechanisms we mean a semantical framework in which distinct as-
pect mechanisms can be assembled with the base mechanism into
a meaningful multi mechanism without modifying the individual
mechanisms. The mechanisms are said to be collaborative units
of composition if the semantics of the composed multi mechanism
can be derived from the semantics of the mechanisms that comprise
it.

More precisely, let B denote the base mechanism for Base. Let
M1, . . . , Mn denote the aspect mechanisms for Ext1, . . . , Extn,
respectively. The aspect mechanism composition problem is to
enable the third-party composition of M1, . . . , Mn with B into a

1AspectJ can neither advise primitives nor arguments.

multi mechanism A, in a manner similar to the assembly of soft-
ware components:2

• Units of independent production. The aspect mechanisms
M1, . . . , Mn are independently defined. The base mecha-
nism B is defined independently from M1, . . . , Mn. To en-
able the composition, M1, . . . , Mn rely only on B and have
an explicit context dependency only on A.

• Units of composition. The mechanisms are subject to third-
party composition. The multi mechanism A for the com-
bined AOP language is constructed (denoted by a � com-
binator) by composing the base mechanism with the aspect
mechanisms without altering them: A = �〈B, M1, . . . , Mn〉

• Units of collaboration. The semantics for the composed
multi mechanism A is the “sum” of the semantics provided
by all the mechanisms.

Independence enables third-party development of individual aspect
mechanisms; composability enables third-party composition of as-
pect mechanisms; and collaboration enables the desired behavior
in the constructed AOP language.

Specifically, our approach enables third-party composition of dy-
namic aspect mechanism. We illustrate our solution for expression
evaluation semantics. We model each aspect mechanism as a trans-
formation function that revises the evaluation semantics for expres-
sions.

1.3 Outline
In the rest of this paper, we demonstrate our solution to the as-
pect mechanism composition problem concretely through the im-
plementation of interpreters. The next section motivates the need
for composing multiple aspect extensions and demonstrates the lack
of integration support in current aspect mechanisms. Section 3
presents a concrete instance of the problem: a base language My-
Base with two aspect extensions, HisExt1 and HerExt2. We present
their syntax and analyze a runnable programming example imple-
mented in our framework. In Section 4 we present our approach
for the general case of integrating n aspect mechanisms. In Sec-
tion 5 we revisit the example shown in Section 3 and formally
demonstrate our approach by constructing the semantics for My-
Base, HisExt1, and HerExt2.

2. MOTIVATION
There is a growing need for the simultaneous use of multiple domain-
specific aspect extensions. The need steams mainly from the favor-
able trade-offs that a domain-specific aspect extension can offer
over a general-purpose AOPL:

• Abstraction. A general-purpose AOPL offers low-level ab-
stractions for covering a wide range of crosscutting concerns.
Domain-specific aspect extensions, in contrast, can offer ab-
stractions more appropriate for the crosscutting cases in the
domain at hand, letting the programmer concentrate on the
problem, rather than on low-level details.

2A software component is a unit of composition with contractually
specified interfaces and explicit context dependencies only. A soft-
ware component can be deployed independently and is subject to
third-party composition [41].



• Granularity. The granularity of an aspect extension dictates
all possible concern effect points within an application. Com-
bining domain-specific aspect extensions allows to overcome
the fixed granularity limitation of general-purpose AOPLs [31].

• Expressiveness vs. Complexity. The granularity of a general-
purpose AOPL exposes a non-linear relationship between the
language expressiveness and complexity. An increase in the
language granularity significantly increases the language com-
plexity while achieving a relatively small increase in expres-
siveness. Domain-specific aspect extensions, in contrast, can
offer independent diverse ontologies [49].

The need also arises from the sheer abundance of available aspect
extensions (and their evolving aspect libraries). For the Java pro-
gramming language alone there are numerous aspect extensions
that are being used in a variety of commercial and research projects.
These include: AspectJ (ajc [10] and abc [2]), AspectWerkz [4],
COOL [30], JBoss-AOP [25], JAsCo [44], Object Teams [20], Com-
poseJ [51], to name just a few.3 Ability to use these aspect ex-
tensions together will allow to reuse existing (and future) aspect
libraries written for the different aspect extensions.

Unfortunately, little support is provided for the integration of dis-
tinct aspect mechanisms. Each aspect mechanism creates its own
unique program representation which often excludes foreign as-
pects. Consequently, interaction between multiple aspect mecha-
nisms operating on a single program can produce unexpected or
incoherent results.

2.1 Example
Consider a bounded buffer example implemented in Java (List-
ing 1). Suppose you have three aspect extensions at your disposal:

• COOL [30]—a domain-specific aspect extension for express-
ing coordination of threads;

• AspectWerkz [4]—a general-purpose lightweight AOP frame-
work for Java;

• AspectJ—a general-purpose aspect extension;

and two concerns to address, namely, a synchronization concern
and a tracing concern (e.g., logging or auditing).

2.1.1 COOL versus AspectJ
The synchronization concern can be expressed as a coordinator as-
pect in COOL (e.g., Listing 2) or alternatively as an aspect in As-
pectJ (e.g., Listing 3).

The COOL aspect (Listing 2) provides an elegant declarative de-
scription of the desired synchronization. The mutex exclusion set
{add, remove} specifies that addmay not be executed by a thread
while remove is being executed by a different thread, and vice
versa. In addition, the selfex exclusion set prohibits different
threads from simultaneously executing either add or remove.4

3For a complete list of commercial and research aspect extensions
see http://www.aosd.net/technology/
4However, the same thread is not prohibited from entering both
add and remove.

Listing 1: A non-synchronized bounded buffer

1 public class BoundedBuffer {
2

3 private Object[] buffer;
4 private int usedSlots = 0;
5 private int writePos = 0;
6 private int readPos = 0;
7 private static BoundedBuffer singltn = null;
8

9 public static BoundedBuffer getInstance() {
10 return singltn;
11 }
12

13 public BoundedBuffer (int capacity) {
14 this.buffer = new Object[capacity];
15 singltn = this;
16 }
17

18 public Object remove() {
19 if (usedSlots == 0) {return null;}
20 Object result = buffer[readPos];
21 buffer[readPos] = null;
22 usedSlots--; readPos++;
23 if (readPos==buffer.length) readPos=0;
24 return result;
25 }
26

27 public void add(Object obj) throws Exception {
28 if (usedSlots==buffer.length)
29 throw new Exception("buffer is full");
30 buffer[writePos] = obj;
31 usedSlots++;
32 writePos++;
33 if (writePos==buffer.length) writePos=0;
34 }
35 }

The COOL code is expressive, concise, readable, and easy to un-
derstand. It provides the right abstractions. Studies [34, 47, 33, 48]
have shown that “participants could look at COOL code and under-
stand its effect without having to analyze vast parts of the rest of
the code,” and that “COOL as a synchronization aspect language
eased the debugging of multi-threaded programs, compared to the
ability to debug the same program written in Java” [46].

While it is possible to express the same concern in AspectJ, the
code will be much longer. In comparison to the COOL code, the
AspectJ implementation (Listing 3) requires 10 times more lines of
code. It is also harder to explain and understand. The aspect imple-
ments a monitor using two condition variables remove_thread

and add_thread. Using two pieces of around execution ad-
vice, the aspect obtains locks (remove_thread and add_thread)
for the duration of executing proceed (execution of remove and
add, respectively). This guaranties that no more than one thread
operates on the buffer at a time. If remove_thread or add_thread
are locked by some other thread, the advice waits. When the thread
has a lock, it runs proceed and afterwards releases the lock by
signaling notifyAll(), which in turn wakes up other waiting
threads.

2.1.2 AspectWerkz + AspectJ
Semantically, the underlying mechanisms of AspectWerkz and As-
pectJ are essentially equivalent. Yet, their syntactical differences
present programmers with a useful choice of alternatives. Recently
it was announced that AspectWerkz has joined the AspectJ project



Listing 2: Synchronization aspect in COOL

1 coordinator BoundedBuffer {
2 selfex {add, remove},
3 mutex {add, remove};
4 }

Listing 3: Synchronization aspect in AspectJ

1 public aspect BufferSyncAspect {
2 private Object remove_thread=null;
3 private Object add_thread=null;
4

5 Object around():
6 execution(Object BoundedBuffer.remove()) {
7 Object this_thread = Thread.currentThread();
8 synchronized(this) {
9 while ((remove_thread!=null &&

10 remove_thread!=this_thread) ||
11 (add_thread!=null &&
12 add_thread!=this_thread))
13 try {wait();
14 } catch (InterruptedException e) {}
15 remove_thread = this_thread;
16 }
17 Object result = proceed();
18 synchronized(this) {
19 remove_thread = null;
20 notifyAll();
21 }
22 return result;
23 }
24

25 void around() throws Exception:
26 execution(void BoundedBuffer.add(Object)) {
27 Object this_thread = Thread.currentThread();
28 synchronized(this) {
29 while ((remove_thread!=null &&
30 remove_thread!=this_thread) ||
31 (add_thread!=null &&
32 add_thread!=this_thread))
33 try {wait();
34 } catch (InterruptedException e) {}
35 add_thread = this_thread;
36 }
37 try{proceed();}
38 finally {
39 synchronized(this) {
40 add_thread = null;
41 notifyAll();
42 }
43 }
44 }
45 }

to bring the key features of AspectWerkz to the AspectJ 5 plat-
form [5]. This merger will allow aspects like those in Listing 4 and
Listing 5 to run side by side.

Listing 4 is a simple logging aspect in AspectWerkz. The anno-
tation @Aspect(”perJVM”) specifies that the AWLogger class is ac-
tually a singleton aspect. The annotation @Before call(* *.*(..)) &&
!cflow(within(AWLogger)) specifies that the log method is to be called
for every method call not in the dynamic control flow of methods
in AWLogger.

Listing 5 is an auditing aspect in AspectJ. The toLog() pointcut
specifies that every method call should be recorded. The before,

Listing 4: Logging aspect in AspectWerkz

1 /∗∗ @Aspect(”perJVM”) ∗/
2 public class AWLogger {
3 /∗∗@Before call(∗ ∗.∗(..))&&!cflow(within(AWLogger))∗/
4 public void log(JoinPoint jp) {
5 System.out.println("AW:"+jp.getSignature());
6 }
7 }

Listing 5: Auditing aspect in AspectJ

1 public aspect AJAuditor {
2

3 pointcut toLog():
4 call(* *.*(..)) && !cflow(within(AJAuditor));
5

6 before(): toLog() {
7 log("ENTER",thisJoinPoint);
8 }
9 after() returning: toLog() {

10 log("EXIT",thisJoinPoint);
11 }
12 after() throwing: toLog() {
13 log("THROW",thisJoinPoint);
14 }
15

16 protected void log(String aType,JoinPoint jp) {
17 BoundedBuffer buf=BoundedBuffer.getInstance();
18 if (buf==null) return;
19 try{buf.add(jp);} catch (Exception e) {
20 System.out.println(e.getMessage());
21 }
22 }
23 }

after()returning, and after()throwing advice add log mes-
sages to the buffer.

Arguably, if AspectWerkz and AspectJ were designed to be com-
posable third-party aspect mechanisms, building AspectJ 5 would
have been much easier. Moreover, third-party composition of as-
pect mechanisms would have made other domain-specific combi-
nations possible, like combining COOL with AspectWerkz and As-
pectJ.

2.2 Lack of Integration Support
Unfortunately, current aspect mechanisms fail to compose correctly.
We demonstrate this failure on the bounded buffer example for two
commonly used approaches:

• Translation. Aspect programs in different aspect extensions
can be translated to a common target aspect extension.

• Instrumentation. Aspect mechanisms can be implemented by
means of program instrumentation. Such multiple indepen-
dent aspect mechanisms can be trivially composed by pass-
ing the output of one aspect mechanism as the input to an-
other aspect mechanism.

2.2.1 No Behavior-Preserving Translation
The translation approach requires the expressiveness of the target
aspect extension to support arbitrary granularity. Even when gran-
ularity does not pose a problem, a translation from one aspect lan-
guage to another will not generally preserve the behavior of the



source aspect program in the presence of other aspects. Consider
the synchronization concern implementation in COOL (Listing 2).
Translating it to AspectJ (Listing 3) results in an aspect that seems
to be a correct substitution for the COOL coordination aspect, but
in the presence of the auditing aspect (Listing 5) is actually not.

A property of the COOL synchronization concern is transparency
with respect to the AspectJ auditing concerns. There should not
be any interference between the two. The COOL aspect does not
contain any join points that should be visible to the AspectJ mech-
anism. This property is not preserved in the translation. Calls to
wait (Listing 3, lines 13 and 33) and notifyAll (Listing 3, lines
20 and 41), which do not exist in the COOL code, will nonetheless
be unexpectedly reflected by the auditor.5

Worse yet, the unexpected join points in the target program may
break existing invariants, resulting in our case in a deadlock. An
implicit invariant of the COOL aspect is that if both add and remove
are not currently executed by some other thread, then the thread can
enter and execute them. The AspectJ synchronization aspect, how-
ever, violates this invariant. Assume that two threads concurrently
access the buffer. The first thread acquires the lock, while the sec-
ond invokes wait on the BufferSyncAspect object. However,
before wait is invoked, the AJAuditor aspect calls Bounded-
Buffer.add (Listing 5, line 19). The latter call causes the second
thread to enter the guarded code again and trigger a second call
to wait.6 Since the second wait call is in the cflow of the au-
ditor, it is not advised, and the thread finally suspends. When the
first thread releases the lock, the second thread wakes up after the
second wait. It acquires the lock, completes the advice execution,
releases the lock, and proceeds to the first wait invocation. At
this point, the buffer is not locked; the second thread waits on the
BufferSyncAspect object monitor; and if no other thread ever
accesses the buffer, the second thread waits for ever—deadlock!

2.2.2 No Correct Sequential Instrumentation
One would expect the two aspects written in AspectWerkz (List-
ing 4) and AspectJ (Listing 5) to interact as if they were two aspects
written in a single aspect extension (e.g., the future AspectJ 5 plat-
form). On the one hand, the AspectJ auditor should log all method
calls within the AWLogger aspect. On the other hand, the As-
pectWerkz logger should log all method calls within AJAuditor.
(And both should log all method calls in the base program as well.)

However, applying the AspectJ and AspectWerkz instrumentation
mechanisms sequentially, in any order, produces an unexpected re-
sult. The mechanism that is run first may not be able to interpret the
second extension’s aspect program. Specifically, the AspectWerkz
mechanism does not understand AspectJ’s syntax. It can be applied
to the bounded buffer code but not to the AJAuditor aspect. Thus,
when AspectWerkz is run first, some expected log messages will
be missing.

The mechanism that is run last logs method calls that are not sup-
posed to be logged. For example, when AspectWerkz is run sec-
ond, the following unexpected log message is generated by the
AWLogger aspect:

AW:public void AJAuditor.ajc$afterReturning$-
AJAuditor$2$ba1fbd8a(org.aspectj.lang.JoinPoint)

5Note that calls to wait and notifyAll cannot be avoided.
6Assuming that the first thread still owns the lock.

3. PROBLEM INSTANCE
We now return to MyBase, HisExt1, and HerExt2 in order to an-
alyze the problem and illustrate our approach concretely. After a
brief introduction to the syntax, we informally explain MyBase,
HisExt1, and HerExt2 through a programming example. The code
fragments are actual running code in our implementation, and their
semantics is formally presented in Section 5.

3.1 Syntax
3.1.1 MyBase Syntax

The syntax of MyBase is given in Figure 1. MyBase is a procedu-
ral language. Procedures are mutually-recursive with call-by-value
semantics. The set of procedures is immutable at run-time. Ex-
pressed values are either booleans or numbers (but not procedures).
The execution of a program starts by evaluating the body of a pro-
cedure named main.

3.1.2 HisExt1 Syntax
The syntax for HisExt1 is given in Figure 2. HisExt1 is a simple
AspectJ-like aspect extension to MyBase. HisExt1 allows one to
impose advice around procedure calls and procedure executions.
Advice code is declared in a manner similar to procedures. Like in
AspectJ, the set of advice is immutable at run-time. Each advice
has two parts: a pointcut designator and an advice body expres-
sion. Atomic pointcuts are pcall-pcd, pexecution-pcd,
cflow-pcd, and args-pcd. The and-pcd and or-pcd al-
lows one to combine several pointcuts under conjunction and dis-
junction, respectively. Unlike AspectJ, around is the only advice
kind in HisExt1. There is no support for patterns in pointcut desig-
nators.

HisExt1 introduces a new proceed-exp expression. The nota-
tion:

Exps ::= ... | proceed-exp
redefines Exps within the aspect extension syntax only, without
propagating the change to the syntax of MyBase expressions. In
particular, proceed-exp expressions are valid only within a His-
Ext1 advice-body expression.

3.1.3 HerExt2 Syntax
HerExt2 allows one to declare a set of exception handlers in My-
Base for catching and handling division by zero before an excep-
tion occurs. Advice code in HerExt2 specifies an exception handler
expression. A guard clause allows one to specify a dynamic scope
for the handler. HerExt2 introduces a new expression, namely
raise-exp, which is allowed within a handler. It passes the
exception handling to the next handler (in a manner, similar to
proceed-exp of HisExt1). The syntax of the language is given
in Figure 3.

The semantics for HerExt2 is straightforward. Whenever the sec-
ond argument to the division primitive evaluates to zero, the advice
handler (if one exits) is invoked. The handler is evaluated and the
result value substitutes the offending zero in the second argument
to the division primitive, and the program execution resumes.

Listing 8 shows an aspect we can write in HerExt2. This aspect
resumes the execution with the value of Precision(1) whenever
the second argument of a division primitive evaluates to 0 within
the control flow of the SQRT procedure.



Program ::= Declaration Program
Declaration ::= “program” “{” Procedure∗ “}” Declaration
Procedure ::= “procedure” PName “(” Id∗ “)” Exps Procedure
Exps ::= lit-exp | true-exp | false-exp |

var-exp | app-exp | begin-exp | if-exp |
assign-exp | let-exp | primapp-exp Expressions

lit-exp ::= Number Numbers
true-exp ::= “true” True
false-exp ::= “false” False
var-exp ::= Id Id meaning
app-exp ::= “call” PName “(” Exps∗ “)” Procedure call
begin-exp ::= “{” Exps ( “;” Exps )∗ “}” Block
if-exp ::= “if” Exps “then” Exps “else” Exps Conditional
assign-exp ::= “set” Id “=” Exps Assignment
let-exp ::= “let” ( Id “=” Exps )∗ “in” Exps Let
primapp-exp ::= Prim “(” Exps∗ “)” Primitive application
Prim ::= “+” | “-” | “*” | “/” | “lt?” | “eq?” Primitives
Id Identifier
PName Procedure name
Number Numbers

Figure 1: MyBase syntax

AOP1-Program ::= AOP1-Declaration HisExt1 program
AOP1-Declaration ::= “aop1” “{” Advice∗ “}” HisExt1 declaration
Advice ::= “around” “:” Pointcut Exps Advice
Pointcut ::= call-pcd | exec-pcd | cflow-pcd |

args-pcd | and-pcd | or-pcd Pointcut designators
call-pcd ::= “pcall” “(” PName “)” Procedure call pcd
exec-pcd ::= “pexecution” “(” PName “)” Procedure execution pcd
cflow-pcd ::= “cflow” “(” PName “)” Control flow pcd
args-pcd ::= “args” “(” Id∗ “)” Argument pcd
and-pcd ::= “and” “(” Pointcut∗ “)” Conjunction pcd
or-pcd ::= “or” “(” Pointcut∗ “)” Disjunction pcd
Exps ::= ... | proceed-exp Advice expressions
proceed-exp ::= “proceed” Proceed exp

Figure 2: HisExt1 syntax

AOP2-Program ::= AOP2-Declaration HerExt2 program
AOP2-Declaration ::= “aop2” “{” Handler∗ “}” HerExt2 declaration
Handler ::= “guard cflow” PName “resume with” Exps Handlers
Exps ::= ... | raise-exp Handler expressions
raise-exp ::= “raise” Raise expressions

Figure 3: HerExt2 syntax



Listing 6: A naive program in MyBase for computing
√

x

101 program {
102 procedure SQRT(radicand) {
103 call SqrtIter(0,radicand,call Precision(radicand

))
104 }
105 procedure SqrtIter(approximation,radicand,

precision) {
106 let
107 bid = call Improve(approximation,radicand,

precision)
108 in
109 if call IsPreciseEnough?(bid,radicand)
110 then bid
111 else call SqrtIter(bid,radicand,precision)
112 }
113 procedure Improve(approximation,radicand,

precision) {
114 +(approximation,precision)
115 }
116 procedure Precision(x) {1}
117 procedure IsPreciseEnough?(root,square) {
118 lt?(square,call Square(root))
119 }
120 procedure Square(x) {*(x,x)}
121 procedure Abs(x) {if lt?(x,0) then -(0,x) else x}
122 procedure main() {call SQRT(5)}
123 }

Listing 7: Advice in HisExt1 for using Newton’s method

201 aop1 {
202 around: and(pexecution(Improve) args(an,x,epsilon)) {
203 /(+(an,/(x,an)),2)
204 }
205 around: and(pexecution(IsPreciseEnough?) args(root,x)

) {
206 lt? (call Abs(-(x,call Square(root))),call

Precision(x))
207 }
208 around : pcall(Precision) {
209 /(proceed,1000)
210 }
211 }

Listing 8: Advice in HerExt2 for preventing an exception

301 aop2 { guard cflow SQRT resume with call Precision(1) }

3.2 A Programming Example
The semantics for the base procedural language MyBase and the
aspect extensions HisExt1 and HerExt2 are implemented as inter-
preters [18]. The example presented here is a simple executable
arithmetic program in MyBase for computing the square root of a
given number. While simple, the example is representative in terms
of illustrating the complexity of achieving collaboration among as-
pect extensions, and its semantics serves as a proof of concept.

The procedure SQRT in Listing 6 implements in MyBase a simple
approximation algorithm using a sequence generated by a recur-
rence relation:

a0=approximation ; repeat an=f(an−1) until precise

By default, it sets a0 = 0, and calls SqrtIter to generate the

recurrence sequence:

an = an−1 + ε

until (an)2 > x. The procedure Improve generates the next ele-
ment in the sequence; IsPreciseEnough? checks the termina-
tion condition; and the value ε = ε(x) is computed as a function of
x by the procedure Precision.

The resulted computation of
√

x is inaccurate and extremely ineffi-
cient. However, it serves our purpose well. We will non-intrusively
improve its efficiency using an aspect in HisExt1. We will correct
its behavior for the singular point x = 0 using HerExt2.

The code in Listing 7, written in HisExt1, advises the base code
for drastically improving its efficiency and accuracy. Four pieces
of advice are used. The first around advice (lines 202–204) inter-
cepts executions of the procedure Improve and instead applies
Newton’s method:

an+1 =
1

2

„

an +
x

an

«

The second around advice (lines 205–207) intercepts IsPrecise-
Enough? executions and checks instead whether or not

˛
˛(an)2 − x

˛
˛ < ε

where ε = 1
1000

is set in the third around advice (lines 208–211).
The successive approximations now converge quadratically.

Running main and calling

call SQRT(5)

returns 7

(num-val 161/72)

meaning 161

72
= 2.2361111 =

√
5.0001929

.
=

√
5.

The improved program works well for all non-negative inputs to
SQRT, except for when the radicand is 0. In this case, Improve
is called with the first argument an set to 0. The execution of
Improve triggers the advice around Improve execution which
divides x by an. Since the value of an is 0 an exception occurs.

3.3 Third-party Composition
The main point of this example is that HisExt1 and HerExt2 are
subject to third-party composition with MyBase and work collab-
oratively:

• Units of independent production. HisExt1 and HerExt2
are independently constructed.

• Units of composition. MyBase, HisExt1, and HerExt2 are
units of composition. MyBase can be used by itself (running
only Listing 6). MyBase can be used with HisExt1 alone
(omitting Listing 8). MyBase can be used with HerExt2
alone (omitting Listing 7). MyBase can be used with both
HisExt1 and HerExt2.

7The result shown is the actual value returned by the Scheme [37]
implementation.



• Units of collaboration. When HisExt1 and HerExt2 are
both used they collaborate. In the absence of HerExt2, call-
ing

call SQRT(0)

results in

Error in /: undefined for 0.

However, when HerExt2 with the advice code in Listing 8
are present, the correct value 0 is returned. The violating
primitive division application is introduced by the advice of
HisExt1, yet intercepted by the advice of HerExt2. This de-
sired behavior is non-trivial because HisExt1 was constructed
without any prior knowledge of HerExt2.

3.4 Analysis
In order to achieve a correct collaboration:

• The aspectual effect of all extension programs needs to be
exposed to all the collaborating aspect mechanisms.

• Each individual aspect mechanism must hide its implemen-
tation from other aspect mechanisms.

3.4.1 Effect Exposure
In the context of multiple distinct aspect mechanisms, certain ele-
ments of the aspect program should be exposed to all collaborating
aspect mechanisms. We call these elements the aspectual effect.
The aspectual effect of an aspect program generally specifies the
implementation of a crosscutting concern. We assume that the as-
pectual effect is expressed in the base language.

In our example, the aspectual effect of an aspect 1 ∈ HisExt1 is
specified by advice-body expressions; the aspectual effect of an
aspect 2 ∈ HerExt2 is specified by handler expressions. When His-
Ext1 and HerExt2 are composed together, their mechanisms must
reflect each other’s effect. Specifically, HisExt1 aspects must be
able to advise procedure calls made from the HerExt2 handler ex-
pressions; and HerExt2 handlers must be able to intercept excep-
tions introduced by the HisExt1 pieces of advice.

3.4.2 Implementation Hiding
An aspect extension extends the base language with new function-
ality. For example, HisExt1 adds advice binding, and HerExt2 adds
exception handling to the base language. An aspect mechanism
that implements the new functionality must hide its internal opera-
tions from the other aspect mechanisms. In our example, pointcut
matching and advice selection operations of the HisExt1 mecha-
nism must be hidden from the HerExt2 mechanism. Conversely,
testing whether the second division primitive argument evaluates
to zero and the exception handler selection of HerExt2 should be
invisible to the HisExt1 mechanism.

4. OUR APPROACH
Now that we have illustrated a desired behavior, we explain our
solution to the aspect mechanism composition problem in general.

4.1 Aspect Mechanisms as Mixins
The primary idea is to view an aspect mechanism that extends a
base mechanism as a mixin [11] that is applied to the base mech-
anism description. A description of a mechanism is an encoding

(a)

(b)

(c)

evaluate

A = B

A = �〈B, Mi〉

A = �〈B, M1, . . . , Mn〉

Mn

delegate-eval

M1

self-eval

B

evaluate

self-evalself-eval

delegate-eval

self-eval

delegate-eval

B

self-eval

evaluate

self-eval

Mi B

Figure 4: Mixin-like composition of aspect mechanisms: (a) design of a
base mechanism; (b) design of an aspect mechanism; (c) third-party com-
position of aspect mechanisms.

of its implementation (e.g., a configuration of an abstract machine
or its semantics). An aspect mixin mechanism transforms some
of the base mechanism description and introduces some additional
description.8

By keeping a clean separation between the descriptions of the base
and aspect mechanisms, the aspect mixin mechanism may be com-
posed with other mechanisms that extend the same base language.
The particular composition strategy may differ. In the next section,
we show a concrete instance of this general approach.

4.2 Solution Instance
We illustrate the approach specifically for expression evaluation se-
mantics. In our solution, the base mechanism B and the aspect
mechanisms M1, . . . , Mn compose into an AOP interpreter A (Fig-
ure 4). When the set of aspect mechanisms is empty, A behaves as
a base interpreter (Figure 4(a)).

Each aspect mechanism Mi is designed as a wrapper around the
base mechanism (Figure 4(b)). In the composition, Mi overrides
the base functionality gracefully: the mechanism delegates all base
operations to B; it implements only its respective aspectual func-
tionality.

To build a multi mechanism A, the aspect mechanisms are sub-
ject to third-party composition (Figure 4(c)). The composed mech-
anisms are organized in a chain-of-responsibility [19], pipe-and-
filter architecture [38]. Each aspect mechanism performs some part
of the evaluation and forwards other parts of the evaluation to the
next mechanism using delegation semantics (“super”-like calls) [6].
If an expression is delegated by all mechanisms then it is eventually
evaluated in B. All the mechanisms defer to A for the evaluation
of recursive and other “self”-calls.
8We generally assume that a granularity requirement of an aspect
mechanism can always be satisfied by either taking the most fine-
grained description form (e.g., small-step operational semantics),
or refining the current description (e.g., via annotations).



A subtlety in designing a collaborative aspect mechanism is decid-
ing what to hide, what to delegate, and what to expose. A mech-
anism may hide its effect by reducing an expression internally. A
mechanism may refine the next mechanism’s semantics by delegat-
ing the evaluation. A mechanism may expose its effect by evaluat-
ing expressions in A. The latter allows what is known as “weav-
ing.” The exposed expressions are then evaluated collaboratively by
all the mechanisms. As a result, an effect of an aspect mechanism is
made visible to all the other mechanisms. Hence, the mechanisms
reflect one another’s effect. Overall, a mechanism is considered a
collaborative unit provided it properly hides, delegates, or exposes
the evaluation.

Notation. The following notations are pertinent. We express func-
tions in Curried form. The Curried function definition

fn pat1 pat2 . . . patn ⇒ exp

is the same as the lambda expression λ pat1.λ pat2. . . . λ patn.exp.
Correspondingly, we write a list of function arguments with no
parentheses or commas to express a function application that takes
the first argument as its single parameter, which could be a tuple,
constructs and returns a new function, which then takes the next
argument as its single parameter, and so on. In function types, ‘→’
associates to the right.

We use the form (id as pat) in a formal argument to bind an iden-
tifier id to a value and match the value with a pattern pat. Vari-
ables in the pattern bind to their corresponding values. We use
val pat = val to split apart a value. The symbol ‘ ’ stands for an
anonymous variable (don’t care). The symbol ‘�’ denotes an empty
mapping and ‘[] ’ denotes an empty list.

4.2.1 Expressions
The Base grammar introduces a set of expression productions;
Exp0 is the set of base expressions whose pattern matches one
of these productions. Each of the extensions Ext1, Ext2, . . . , Extn
may extend Base with its own respective set of additional expres-
sions Exp1, Exp2, . . . , Expn.9 The set ExpA of AOP expres-
sions is hence a union of pairwise disjointed expression sets defined
by:

ExpA = Exp0 + Exp1 + Exp2 + · · · + Expn

Note that in an extended grammar, an expression in Exp0 may
contain subexpressions not in Exp0. For example, in the case of
MyBase and HisExt1, the expression

*(2,proceed)

is a base expression (because its pattern matches the production
primapp-exp in MyBase) but proceed is not.

4.2.2 Overall Semantics
Let A �

exp � denote the meaning of an AOP expression exp. Our
goal is to be able to build the multi mechanism A by compos-
ing the base mechanism B and the mutually independent aspect
mechanisms M1, . . . , Mn. We use the term AOP configuration to
denote the state of a multi mechanism A. An AOP configuration
cfg ∈ CfgA is a vector of configurations of the composed mecha-
nisms:

CfgA = Cfg0 × Cfg1 × Cfg2 × · · · ×Cfgn

9We assume that Expi ∩ Expj = φ for all 0 ≤ i < j ≤ n.

where Cfg0 denotes a domain of the base mechanism states, and
Cfgi, 1 ≤ i ≤ n, denotes a domain of the aspect mechanism
Mi states. For example, a MyBase mechanism configuration com-
prises a procedure environment, a variable environment, and a store.
A HisExt1 mechanism configuration comprises a list of advice, a
“current” join point, and a “current” proceed computation.

The effect of evaluating an expression exp ∈ ExpA is to change
the AOP configuration. The meaning of an expression exp ∈ ExpA,
denoted A �

exp � , is defined to be a partial function on configura-
tions:

A : ExpA → (

ContA
z }| {

CfgA ↪→ CfgA)

We denote by ContA the set of partial functions on CfgA.

4.2.3 Design Guidelines for the Base Mechanism
B provides semantics for expressions in Base. The meaning of an
expression exp ∈ Exp0 in Base, denoted B

�
exp � , is expected to

be defined as:

B : Exp0 → ContA

The semantical function B should adhere to the following design
principles:

• All sub-reductions within a B-reduction are reduced by call-
ing A instead of B.

• B only accesses and updates the head Cfg0-element of the
cfg ∈ CfgA configuration list, and carries the tail through
the computation.

Note that the fact that B is defined in terms of CfgA does not mean
that A or n are known at the time of writing B. At the time of
writing the base mechanism, A is assumed to delegate everything
to B:

A �
exp � =


B �

exp � exp ∈ Exp0

⊥ otherwise

where ⊥ stands for “undefined.” Let B̂ : Exp0 → Cfg0 ↪→ Cfg0

denote the evaluation semantics for Base with its standard signa-
ture. B has a different signature than B̂ but the same behavior as B̂.
∀exp ∈ Exp0, ∀cfg = cfg0 ::cfg∗ ∈ CfgA :

B �
exp � cfg =


cfg ′

0 ::cfg∗ B̂ �
exp � cfg0 = cfg ′

0

⊥ B̂ �
exp � cfg0 = ⊥

4.2.4 Design Guidelines for an Aspect Mechanism
We construct the aspect mechanism Mi for an aspect extension Exti
as the override combination10 of a semantics transformer T i and a
semantical function Ei:

val Mi = fn eval ⇒ (T i eval ) ⊕ Ei

Semantics for the Exti’s newly introduced expressions Expi is de-
fined by:

Ei : Expi → ContA

10For two partial functions g and h, their override combination g⊕h
(h overrides g), is defined by:

(g ⊕ h)(x) =


h(x) x ∈ dom h
g(x) otherwise



The introduction of Exti into the base language also requires a
change to the evaluation semantics for a non-empty11 subset of the
existing base language expressions Expi

0 ⊆ Exp0. We define this
part of the semantics for Exti as a language semantics transformer:

T i :

Eval0
z }| {

(Exp0 → ContA) →

Evali0
z }| {

(Exp
i
0 → ContA)

The semantics transformer T i should adhere to the following de-
sign principles:

• T i defines the semantics for Exti and nothing more. Let B′

denote a semantical function with the same signature as B or
an extended signature.12 T i(B′) delegates the evaluation to
B′ whenever the base language semantics is required.

• T i(B′) accesses only the Cfg0- and Cfgi-elements in a
cfg ∈ CfgA configuration, while the rest are carried through
the computation.

Note that allowing the aspect mechanism access to the Cfg0 ele-
ment is needed for modeling interesting cases of aspect mechanism
interactions.

4.2.5 Third-party Construction of an AOP Language
Let K = {ki}l

i=1
be an ordered index set, and let Mk1

, . . . , Mkl

denote the l ≤ n aspect mechanisms to be composed. Let B denote
the Base mechanism, and let AK denote the multi mechanism be-
ing constructed.

We construct the multi mechanism AK as the composition:

AK = Al = �〈B, Mk1
, . . . , Mkl

〉
where the composition semantics for � is defined as follows. The
meaning of exp ∈ ExpA, denoted Al

�
exp � , is given by the recur-

rence relation:

A0 = B
Al = Al−1 ⊕ (Mkl

Al−1)

By construction,

Al :
`
Exp0 + Exp

k1
+ · · · + Exp

kl

´
→ ContA

is of the right signature and obeys the composition principle. To il-
lustrate the construction, we conclude by elaborating the first three
instances:

• For l = 0, we have that ExpA = Exp0, and the meaning
of exp ∈ ExpA is the same as the meaning of exp in Base:

Aφ : Exp0 → ContA

Aφ �
exp � = B �

exp �
• For l = 1 and the singleton index set {i} for some 1 ≤ i ≤

n, we have that ExpA = Exp0 + Expi. The meaning of
exp ∈ ExpA is

A{i} : (Exp0 + Expi) → ContA

11W.l.o.g., assume Expi
0 6= φ.

12An extended B may have a signature B′ : Exp′
0 → ContA,

where Exp′
0 ⊇ Exp0.

Exp0

Expi

Expj

Expi
0Base

Exti

Exp
j
0

Extj

Figure 5: Expression domains for l = 2

We construct:

A{i} = B ⊕
Mi B

z }| {

(T i B) ⊕ Ei

A{i} �
exp � =

8

<

:

Ei

�
exp� exp ∈ Expi

(T i B)
�
exp � exp ∈ Expi

0

B �
exp � otherwise

• For l = 2 and the ordered index set {i, j} for some 1 ≤
i, j ≤ n, we have that ExpA = Exp0 + Expi + Expj

(Figure 5). The meaning of exp ∈ ExpA is

A{i,j} : (Exp0 + Expi + Expj) → ContA

We construct:

A{i,j} = A{i} ⊕

Mj A{i}

z }| {

(T j A{i}) ⊕ Ej

A{i,j} �
exp � =

8

>>>>>><

>>>>>>:

Ej

�
exp � exp ∈ Expj

Ei

�
exp � exp ∈ Expi

(T j B)
�
exp � exp ∈ Exp

j
0 − Expi

0

(T i B)
�
exp � exp ∈ Expi

0 − Exp
j
0

(T j (T i B))
�
exp � exp ∈ Expi

0 ∩ Exp
j
0

B �
exp � otherwise

5. IMPLEMENTATION
As a proof of concept we have implemented MyBase, HisExt1, and
HerExt2 for the example presented in Section 3. This section pro-
vides the implementation details more formally to the so-inclined
reader.

5.1 Base Mechanism Implementation
The domain ExpA of AOP expressions includes MyBase, His-
Ext1, and HerExt2 expressions. We define Exp0 by extending
the MyBase expression grammar Exps (Figure 1) with a set of
annotated expression annotated-exp (Figure 6).

Exp0 = Exps + annotated-exp

Annotated expressions extend the interface of the base mechanism
to satisfy granularity needs of the HisExt1 and HerExt2 mecha-
nisms. In the extended grammar, a complex expression (Figure 7)
includes annotated expressions as subexpressions.

The base configuration domain Cfg0 consist of a procedure en-
vironment domain EnvP , a variable environment domain EnvV ,



annotated-exp = procbody-exp |procarg-exp |primarg-exp |
assignrhs-exp |block-exp |letbody-exp |
letrhs-exp |if-exp |then-exp |else-exp

procbody-exp = Exps ×PNm Procedure body
procarg-exp = Exps × (PNm ×Var) Procedure arg
primarg-exp = Exps × (Prim × Int) Primitive arg
assignrhs-exp = Exps ×Var Assignment RHS
block-exp = Exps × Int Block element
letbody-exp = Exps ×Var∗ Let body
letrhs-exp = Exps × (Var × Int) Let env RHS
if-exp = Exps × {if} If exp
then-exp = Exps × {then} Then exp
else-exp = Exps × {else} Else exp

Figure 6: Annotated expressions

app-exp = PNm × procarg-exp∗ Procedure call
begin-exp = block-exp∗ Block
cond-exp = if-exp × then-exp × else-exp Conditional exp
assign-exp = Var × assignrhs-exp Assignment
let-exp = Var∗ × letrhs-exp∗×

letbody-exp Let
primapp-exp = Prim × primarg-exp∗ Primitive app

Figure 7: Complex expressions

cfg0 ∈ Cfg0 = EnvP × EnvV× Base
Store configuration

envV ∈ EnvV = Var → Loc Variable envs
sto ∈ Store = Loc → Val Value Stores
envP ∈ EnvP = PNm → Proc Procedure envs
θ ∈ Proc = Var∗ × procbody-exp Procedures

Figure 8: MyBase domains

and a value store domain Store (Figure 8). A procedure is repre-
sented as a closure that contains argument names and a procedure
body expression. The other definitions are omitted.

The evaluation semantics B (Figure 9) for Exp0 expressions sat-
isfies the design principles for the base mechanisms: (1) all ex-
pression evaluations in B are exposed to A (highlighted in the
figure); (2) it accesses and updates only the Cfg0-element of the
configuration; (3) the other configurations are carried through the
computation.

5.2 Aspect Mechanism Implementation
The semantics for Exti is specified using three constructor func-
tions:

• build- Ei constructs an evaluator for Expi expressions:

build- Ei : Int → (Expi → ContA)

• build- T i constructs the semantics transformer for the Exti:

build- T i : Int →

Eval0→Evali0
z }| {

(Exp0 → ContA) → (Exp
i
0 → ContA)

val B : Exp0 → ContA

= fn (lit-exp 〈num〉) 〈 , , sto 〉 ::cfg∗ ⇒
〈�, �, sto [0 7→ (num-val num)]〉 ::cfg∗

| fn (true-exp 〈〉) 〈 , , sto 〉 ::cfg∗ ⇒
〈�, �, sto [0 7→ (bool-val #t)]〉 ::cfg∗

| fn (false-exp 〈〉) 〈 , , sto 〉 ::cfg∗ ⇒
〈�, �, sto [0 7→ (bool-val #f)]〉 ::cfg∗

| fn (app-exp 〈pname, [exp1, . . . , expn]〉) cfg0 ::cfg∗

let
val 〈envP , envV , sto 〉 = cfg0

val 〈[id1, . . . , idn] , expproc〉 = envP pname
val 〈 , , sto1〉 ::cfg∗

1 =

A exp1 〈envP , envV , sto 〉 ::cfg∗

val υ1 = sto1 0
. . .
val 〈 , , ston〉 ::cfg∗

n =

A expn 〈envP , envV , ston−1〉 ::cfg∗
n−1

val υn = ston 0
val ston+1 = ston[l1 7→ υ1], l1 /∈ dom ston

. . .
val sto2n = sto2n−1[ln 7→ υn], ln /∈ dom sto2n−1

in
A expproc 〈envP , �[id1 7→ l1, . . . , idn 7→ ln], sto2n〉 ::cfg∗

n

end
| . . .

| fn (annotated-exp 〈exp, 〉) cfg ⇒ A exp cfg

Figure 9: MyBase semantical function

• build- Mi constructs the aspect mixin mechanism Mi for Exti:

val build- Mi : Int → Eval0 → (Expi
0 + Expi) → ContA

= fn pos eval ⇒ (build- T i pos eval ) ⊕ (build- Ei pos)

The Int arguments provides the position of the extension’s config-
uration domain Cfgi within CfgA.

Intuitively, the aspect mechanisms are implemented as mixins to
the base mechanism (Figure 10). The HisExt1 mechanism M1 re-
fines the semantics for app-exp and procbody-exp and in-
troduces semantics for proceed-exp. The HerExt2 mechanism
M2 refines primarg-exp and procbody-exp and introduces
semantics for raise-exp.

M2

+eval(exp)

−Cfg2

#procbody-exp(expb, pname)
#primarg-exp(exparg , prim, pos)

−raise-exp()
#procbody-exp(expb, pname)

−Cfg1

#app-exp(pname, [exp1, ..., expn])

−proceed-exp()

M1

+eval(exp)

#Cfg0

+eval(exp)

#procbody-exp(expb, pname)
#primarg-exp(exparg , prim, pos)
. . .

B

#app-exp(pname, [exp1, ..., expn])

Figure 10: Aspect mechanisms as mixins



exp ∈ Expadv = Exp0 + Exp1 Advice exps
cfg1 ∈ Cfg1 = Adv∗ × JP × ContA Configuration
adv ∈ Adv = PCD ×Expadv Advice
jp ∈ JP = {call,exec} × PNm×

Var∗ × Val∗ × JP + Unit Join points
pcd ∈ PCD Pointcuts
effect ∈ Effect = Bnd∗ ×Expadv Effects
bnd ∈ Bnd = Var × Val Binding

Figure 11: HisExt1 domains

5.2.1 HisExt1 Mechanism
The aspect mechanism M1 transforms the semantics for procedure
calls and executions, and supplies semantics for Exp1’s new pro-
ceed expression:

Exp1
0 = {app-exp, procbody-exp}

Exp1 = {proceed-exp}

A configuration cfg1 ∈ Cfg1 for HisExt1 (Figure 11) comprises a
set of advice, a “current” join point, and a “current” proceed contin-
uation. An advice adv ∈ Adv is derived directly from HisExt1’s
syntax. A join point jp ∈ JP is an abstraction of the procedure
call stack. It stores the name and formal and actual arguments of
a corresponding procedure. The third element provides a meaning
for proceed expressions. The effect and binding domains are in-
ternal to the mechanism. An effect carries a set of bindings and
an advice body expression. The bindings provide an appropriate
variable environment for evaluating the advice body expression.

The interesting part of the aspect mechanism M1 implementation
is given by build- T 1 (Figure 12). build- T 1 defines a transformer
of the semantics for procedure calls and procedure executions. The
new semantics creates a join point, matches it against an advice
list, and applies selected advice effects in app-eff . The function
ensures that the mechanism’s configuration properly reflects a “cur-
rent” join point by setting it before and after an effect application.

app-eff has two general behaviors. If the effect list is empty then
the expression evaluation is delegated . Otherwise, the function
exposes the effect by evaluating the advice expression expadv

in A. expadv is evaluated in a properly constructed variable en-
vironment envV

′ and a proceed continuation procd′.

app-eff ensures that the mechanism configuration always stores a
proper proceed continuation in the same manner as build- T 1 re-
flects a “current” join point. This makes build- E1 straightforward
(Figure 13). The meaning of a proceed-exp expression is given
by the proceed continuation obtained from the configuration. The
continuation then runs app-eff on the rest of the effect list. In other
words, a proceed-exp expression either evaluates the next ad-
vice in A or delegates the evaluation to eval if there is no advice
left.

Due to space considerations, we omit the HisExt1 functions match-jp,
build-jp and build-adv-env, which do not affect the mechanism com-
position semantics.

local
val app-eff : Int → Effect∗ → Eval0 → Eval0

= fn [] eval exp cfg ⇒ eval exp cfg

| fn i 〈bnd∗
adv, expadv〉 ::effect∗ eval ⇒

fn exp 〈envP , envV , sto 〉 ::cfg∗ ⇒
let
val 〈adv∗, jp, procd〉 = πi(cfg

∗)
val procd′ : ContA

= fn 〈 , , sto′〉 ::cfg∗′ ⇒
app-eff i effect∗ eval exp 〈envP , envV , sto′〉 ::cfg∗′

val 〈envV
′, sto′〉 = build-adv-env bnd∗

adv sto

val cfg∗′ = cfg∗[i 7→ 〈adv∗, jp, procd′〉]
val cfg ′

0 ::cfg∗′′ = A expadv 〈envP , envV
′, sto′〉 ::cfg∗′

in
cfg ′

0 ::cfg∗′′[i 7→ 〈adv∗, jp, procd〉]
end

. . .
in

val build- T 1 : Int → Eval0 → Eval10
= fn i eval exp cfg0 ::cfg∗ ⇒
let
val 〈adv∗, jpenc, procd〉 = πi(cfg

∗)
val jp = build-jp exp jpenc cfg0

val effect∗ = match-jp jp adv∗

val cfg∗′ = cfg∗[i 7→ 〈adv∗, jp, procd〉]
val cfg ′

0 ::cfg∗′′ = app-eff i effect∗ eval exp cfg0 ::cfg∗′

in
cfg ′

0 ::cfg∗′′[i 7→ 〈adv∗, jpenc, procd〉]
end

end

Figure 12: build- T 1

val build-E1 : Int → Exp1 → ContA

= fn i (proceed-exp 〈〉) (cfg as ::cfg∗) ⇒
let

val 〈 , , procd〉 = πi (cfg
∗)

in
procd cfg

end

Figure 13: build- E1

5.2.2 HerExt2 Mechanism
The M2 mechanism for HerExt2 transforms the semantics for a
primitive argument and procedure execution expressions, and sup-
plies semantics for Exp2’s new raise expression:

Exp2
0 = {primarg-exp, procbody-exp}

Exp2 = {raise-exp}

A configuration cfg2 ∈ Cfg2 (Figure 14) stores a list of handlers, a
stack of currently executing procedures (a list of procedure names),
and a “current” raise continuation. A handler hnd ∈ Handler

is derived from the syntax of HerExt2. It contains a name of a
guarded procedure and a handler expression. A handler expression
may contain a raise-exp expression.



exp ∈ Exphnd = Exp0 + Exp2 Handler exps
cfg2 ∈ Cfg2 = Handler∗ × PNm∗×

ContA Configuration
hnd ∈ Handler = PNm × Exphnd Handlers

Figure 14: HerExt2 domains

local
val app-handler : Int → Exp∗

hnd → ContA

= fn [] cfg ⇒ cfg

| fn i exp ::exp∗ 〈envP , , sto 〉 ::cfg∗ ⇒
let
val 〈hnd∗, stack, raise〉 = πi (cfg

∗)
val υ = sto 0
val raise′ : ContA

= fn 〈envP , envV , sto 〉 ::cfg∗ ⇒
app-handler exp∗ 〈envP , envV , sto [0 7→ υ]〉 ::cfg∗

val cfg∗′ = cfg∗[i 7→ 〈hnd∗, stack, raise′〉]
val cfg ′

0 ::cfg∗′′ = A exp 〈envP , �, sto 〉 ::cfg∗′

in
cfg ′

0 ::cfg∗′′[i 7→ 〈hnd∗, stack, raise〉]
end

. . .
in
val build- T 2 : Int → Eval0 → Eval20
= fn i eval (primarg-exp 〈 , prim, pos〉 as exp) cfg ⇒

let
val 〈envP , envV , 〉 :: = cfg

val (cfg ′ as 〈 , , sto 〉 ::cfg∗) = eval exp cfg

in
if (sto 0 = (num-val 0) ∧ prim = “/” ∧ pos = 2)
then
let

val 〈hnd∗, stack, 〉 = πi (cfg
∗)

val exp∗
hnd = match-handler hnd∗ stack

in
app-handler i exp∗

hnd 〈envP , envV , sto 〉 ::cfg∗

end
else cfg ′

end
| fn i eval (procbody-exp 〈 , pname〉 as exp) cfg ⇒

let
val cfg0 ::cfg∗ = cfg

val 〈hnd∗, stack, raise〉 = πi(cfg
∗)

val cfg∗′ = cfg∗[i 7→ 〈hnd∗, pname ::stack, raise〉]
val cfg ′

0 ::cfg∗′′ = eval exp cfg0 ::cfg∗′

in
cfg ′

0 ::cfg∗′′[i 7→ 〈hnd∗, stack, raise〉]
end

end

Figure 15: build- T 2

The new semantics for primarg-exp enables the invocation of
a handler in an exceptional situation when the second argument of
a division primitive evaluates to zero. In this case, build- T 2 (Fig-
ure 15) selects a list of handler expressions using match-handler
and invokes them using app-handler . If no exception occurs, the
original semantics is used.

val build-E2 : Int → Exp2 → ContA

= fn i (raise-exp 〈〉) (cfg as ::cfg∗) ⇒
let

val 〈 , , raise〉 = πi(cfg
∗)

in
raise cfg

end

Figure 16: build- E2

The mechanism reflects the execution stack in its configuration by
transforming the semantics for procbody-exp expressions. The
new semantics simply pushes the stack before and pops it after ap-
plying eval .

app-handler produces a configuration transformer from a list of
handler expressions. If the list is empty then the transformer is
the identity function. Otherwise, the configuration is constructed
by evaluating in A the first handler expression. The function also
constructs and reflects a raise continuation in the mechanism con-
figuration. The continuation simply applies app-handler to the rest
of the handlers.

The build- E2 function (Figure 16) is similar to build- E1. The
meaning of a raise-exp expression is provided by the raise con-
tinuation drawn from the configuration.

Due to space considerations, we omit the match-handler function
of HerExt2. This function bars no affect on the mechanism com-
position semantics.

5.3 Constructing an AOP Language
We construct the semantical function for the composed AOP lan-
guage as follows:

A = � 〈B, M1, M2〉
where

M1 = build- M1 1

and

M2 = build- M2 2

The meaning of a program

p = 〈base , aspect 1, aspect 2〉

in the composed AOP language is defined as:

M
�
p � = A expmain 〈cfg0, cfg1, cfg2〉

such that

expmain = (app-exp 〈‘main, [] 〉)
cfg0 = 〈envP , �, �〉 envP = D0

�
base �

cfg1 = 〈adv∗, 〈〉, �〉 adv∗ = D1

�
aspect 1 �

cfg2 = 〈hnd∗, [] , �〉 hnd∗ = D2

�
aspect 2 �



6. DISCUSSION AND FUTURE WORK
Our study of constructing an AOP language with multiple aspect
extensions opens interesting research questions.

6.1 Alternative Collaboration Semantics
The co-existence of multiple aspect extensions raises a question
concerning the desired policy of collaboration. The solution in-
stance we presented in Section 4.2 defines the combinator � to
“wrap” aspect mechanisms around the original meaning and around
each other. We call this a composition with wrapping semantics.

Composition with wrapping semantics allows to compose arbitrary
aspect mechanisms as long as the mechanisms can be defined as
semantics transformers. However, wrapping semantics limits the
ability of the multi mechanism to observe and affect the program
execution. In this section we elaborate on the restrictions, and dis-
cuss how alternative solution instances can be constructed.

6.1.1 Observed Execution
Wrapping semantics grants the aspect mechanism with complete
control over the original meaning and with the option to override
the semantics. For example, the HisExt1 mechanism might disable
the original semantics of app-exp and procbody-exp expressions.
A mechanism can either delegate the expression evaluation to the
next mechanism or evaluate the expression itself. In the latter case,
the evaluated expression is “filtered” out (hidden) from the aspect
mechanisms downstream. However, when delegating is semanti-
cally not the right thing to do, hiding is unavoidable. For example,
the HisExt1 mechanism must filter out procedure calls and execu-
tions that are advised with no proceed.

Collaboration with wrapping semantics is therefore sensitive to the
order of composition. The program example in Listing 9 illustrates
a collaboration of HisExt1 and HerExt2 with wrapping semantics.

Listing 9: Collaboration with wrapping semantics

1 program {procedure main() { 1 } }
2 aop1 { around(): pexecution(main) {/(1,0)} }
3 aop2 { guard cflow main resume with 2 }

If the AOP language is constructed as

A = � 〈B, M2, M1〉

M1 applies first and replaces the procbody-exp of main with the
advice body expression. Consequently, the execution of main is
not reflected in M2’s execution stack and M2 would not guard the
division. The program would therefore throws a divide-by-zero ex-
ception. On the other hand, if the language is constructed as

A = � 〈B, M1, M2〉

the exception is caught.

Generally, with wrapping semantics the various mechanisms ob-
serve a program execution differently. Only the first mechanism in
A has a complete view of the execution. Downstream mechanisms
view less of the execution than upstream ones.

Alternatively, one can provide a collaboration semantics where all
the mechanisms share a complete, coherent view of the execution.
This can be achieved by decoupling the reification and reflection
processes in a mechanism. With such a semantics, every expression

evaluated in A is reified by all the mechanisms. The evaluation se-
mantics is then constructed by all the mechanisms collaboratively
with respect to the ordering. Given this alternative semantics, the
program example in Listing 9 would produce no exception inde-
pendently of the ordering of M1 and M2.

6.1.2 Complex Compositions
Wrapping semantics does not support complex compositions of as-
pectual effects. The aspectual effects in different extensions “wrap”
around each other when they apply to the same join point. The
resulted behavior is similar to the application of multiple around
advice pieces in AspectJ. Unfortunately, this behavior is not always
desirable. For example, a reasonable composition of AspectJ and
AspectWerkz might require that, at each join point, before advice,
in both AspectJ and AspectWerkz aspects, are executed before any
around advice, and finally followed by after advice. However,
such an AspectJ/AspectWerkz composition is not achievable with
wrapping semantics.

Our approach is not limited to the pipe-and-filter composition ar-
chitecture. More complex composition semantics can be provided
by imposing additional requirements on the aspect mechanism de-
sign. For example, one possibility is to specify types of aspectual
effect that a mechanism can produce. With such a semantics, the
overall aspectual effect can be constructed from aspectual effects
of the collaborating mechanisms with regard to those effect types.

6.2 Other Mechanism Descriptions
Our choice of the mechanism’s description style restricts access to
the context data. Specifically, a mechanism can only access ele-
ments of the current or parent expression, environment, and stores.
While this data can be sufficient for implementing the HisExt1 and
HerExt2 aspect extensions for MyBase, real-world aspect exten-
sions may generally require more information. For example, As-
pectJ needs access to callee and caller objects to construct a method
call join point. Instantiating the approach for a description style that
uses an explicit representation of the evaluation context (e.g., using
a CEKS machine [14, 15]) would produce a more general solution.

In our solution we used annotated expressions to meet the granu-
larity requirement of HisExt1 and HerExt2. The same result can
be achieved by using small-step operational semantics for describ-
ing the mechanisms. In that case, each aspect mechanism would
transform and extend certain base operational semantics rules.

7. RELATED WORK
7.1 Composing Aspect Extensions
Several authors point out the expressiveness drawback in using a
single general-purpose AOP language, and emphasize the useful-
ness of combining modular domain-specific aspect extensions [12,
13, 21, 49, 39, 31]. However, the problem of composition has not
received a thorough study.

7.1.1 XAspects
Shonle et al. [39] present a framework for aspect compilation that
allows to combine multiple domain-specific aspect extensions. The
framework’s composition semantics is to reduce all extensions to
a single general-purpose aspect extension (AspectJ). Specifically,
given a set of programs written in different aspect extensions, XAs-
pects produces a single program in AspectJ. An aspect extension
program is translated to one or more AspectJ aspects. In XAspects,



collaboration between the aspect extensions is realized as a collab-
oration between the translated AspectJ’s aspects.

The XAspects framework uses a translation-based approach. Specif-
ically, XAspects translates programs in domain-specific aspect ex-
tensions to AspectJ. Unfortunately, in the presence of other aspects,
this approach does not preserve the behavior of the domain-specific
aspects, and therefore the XAspects approach does not guarantee a
correct result.

Moreover, extensions in XAspects must be reducible to AspectJ.
Since only a subset of aspect extensions is expressible in AspectJ,
XAspects does not achieve composition in general. Our approach
to composition and collaboration is not based on translation. In
comparison to XAspects our approach is more general.

7.1.2 Concern Manipulation Environment
IBM’s Concern Manipulation Environment provides developers with
an extensible platform for concern separation: “The CME provides
a common platform in which different AOSD tools can interoper-
ate and integrate” [22]. CME would be a natural environment for a
large scale application of our approach.

7.2 AOP Semantics
Existing works in AOP semantics explain existing aspect exten-
sions and model AOP in general. We base some of our work on
these studies. Unfortunately, they do not address the problem of
aspect mechanism composition directly.

7.2.1 Semantics for Existing AOP Languages
Wand et al.’s [50] semantics for advice and dynamic join points
explains a simplified dynamic AspectJ. They provide denotational
semantics for a small procedural language, similar to ours. The lan-
guage embodies key features of dynamic join points, pointcuts and
advice. Their work, however, does not separate the AOP semantics
from the base. Nevertheless, advice weaving is defined there as a
procedure transformer. This is a special case of a language seman-
tics transformer as we choose to define an aspect mechanism.

Method-Call Interception [28] is another semantical model that pro-
vides semantics for advising method calls. Similar to the previously
discussed work, it highlights a very specific piece of AOP expres-
siveness (similar to AspectJ).

7.2.2 Semantical Models of AOP
Several studies of AOP semantics provide a general model of AOP
functionality. Walker et al. [45] defines aspects through explicitly
labeled program points and first-class dynamic advice. Jagadeesan
et al. [24] uses similar abstractions (pointcuts and advice). Clifton
et al. [8, 9] provides parameterized aspect calculus for modeling
AOP semantics. In their model, AOP functionality can be applied
to any reduction step in a base language semantics. This is similar
to the definition of an aspect mechanism we use.

In comparison to our semantics, these models define AOP function-
ality using low-level language semantics abstractions. Using these
more formal approaches for describing our method is left for future
work.

7.2.3 Modular Semantics for AOP
We define an aspect mechanism separately from the base language
and require it to specify only the AOP transformation functionality.
This approach leads to the construction of modular AOP seman-
tics. Exploring the application of other approaches for modular
language semantics (e.g., modular SOS [32] and monad-based de-
notational semantics) to describing aspect mechanism is another
area for further research.

8. CONCLUSION
In this paper, we address the open problem of integrating and using
a base language Base with a set of third-party aspect extensions
Ext1, . . . ,Extn for that language. We present a semantical frame-
work in which independently developed, dynamic aspect mecha-
nisms can be subject to third-party composition and work collabo-
ratively.

We instantiate our approach for aspect mechanisms defined as ex-
pression evaluation transformers. The mechanisms can be com-
posed like mixin layers [40, 35, 36] in a pipe-and-filter architecture
with delegation semantics. Each mechanism collaborates by dele-
gating or exposing the evaluation of expressions. The base mech-
anism serves as a terminator and does not delegate the evaluation
further.

We applied our approach in the implementation of a concrete base
language MyBase and two concrete aspect extensions to that lan-
guage, HisExt1 and HerExt2. The implementation illustrates the
construction steps. It provides semantics for third-party composi-
tion of aspect mechanisms.

The semantics for HisExt1 resembles that for AspectJ. Indeed, our
approach can be applied to implementing the pointcut and advice
mechanism of AspectJ as an aspect extension to Java. This would
provide a practical way to compose AspectJ with new domain-
specific aspect extensions as they become available.

Acknowledgment
We thank Gene Cooperman, Darren Ng, Mitchell Wand, and the
anonymous reviewers for their feedback and comments.

9. REFERENCES
[1] K. Arnold and J. Gosling. The Java Programming Language.

The Java Series. Addison–Wesley Publishing Company,
1996.

[2] P. Avgustinov, A. S. Christensen, L. Hendren, S. Kuzins,
J. Lhoták, O. Lhoták, O. de Moor, D. Sereni,
G. Sittampalam, and J. Tibble. abc: An extensible AspectJ
compiler. In Tarr [42], pages 87–98.

[3] D. Balzarotti and M. Monga. Using program slicing to
analyze aspect-oriented composition. In C. Clifton,
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