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Abstract 

The class of an object is not necessarily the only deter- 

miner of its runtime behaviour. Often it is necessary 

to have an object behave differently depending upon 

the other objects to which it is connected. However, as 

it currently stands, object-oriented programming pro- 

vides no support for this concept, and little recogni- 

tion of its role in common, practical programming sit- 

uations. This paper investigates a new programming 

paradigm, environmental acquisition in the context of 

object aggregation, in which objects acquire behaviour 

from their current containers at runtime. The key idea 

is that the behaviour of a component may depend upon 

its enclosing composite(s). In particular, we propose a 

form of feature sharing in which an object “inherits” 

features from the classes of objects in its environment. 

By examining the declaration of classes, it is possi- 

ble to determine which kinds of classes may contain a 

component, and which components must be contained 

in a given kind of composite. These relationships are 

the basis for language constructs that supports acquisi- 

tion. We develop the theory of acquisition that includes 

topics such as the kinds of links along which acquisi- 

tion may occur, and the behaviour of routine (meth- 

ods) and attribute features under acquisition. The pro- 

posed model for acquisition as a hierarchical abstrac- 

tion mechanism is a strongly typed model that allows 

static type checking of programs exploiting this mech- 

anism. We compare it to several other mechanisms in- 

cluding inheritance and delegation, and show that it is 

significantly different than these. 
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1 Introduction 

“Nature vs. Nvrture?“1 This long standing question 

obsessed philosophers, psychologists, laymen and even 

physicists [46] for years. The dispute is over the relative 

importance of heredity and environment in determining 

the makeup of an organism. However, for the object- 

orienteer2, it has rarely been a problem: The basic char- 

acter of an object, sometimes called “behaviour” in the 

object-oriented (00) jargon, is determined at birth (in- 

stantiation), and not by the household (the composite 

object) of which it is a part. This simplistic sweeping 

claim is, as are all such claims, false for humans. How 

true is it for objects? How should the “nurturing” of an 

object, affect its manners? Can such influence be dealt 

with in a (type) safe manner? 

In this paper we address these questions. We explain 

what is and what is not “the influencing environment” 

of an object. We show that there are many impor- 

tant cases, both in the problem and program domains, 

in which the need for environmental a$ect naturally 

arises. We then propose a new abstraction mechanism, 

environmental acquisition, and study its possible real- 

ization in a strongly-typed programming language. 

This paper does not provide solutions to all the prob- 

lems it raises. Rather, it presents a framework for ad- 

dressing the issues involved in the many aspects of en- 

vironmental affects. 

1.1 Motivation 

Consider the following example which may occur in an 

automobile industry application: An object of a class 

Car depicted in Figure 1, is a composite which comprises 

components such as objects of class Door. Suppose that 

it is known that a car is coloured red, then we are likely 

’ Also known as the environmental-heredity controversy. 

*or, should we write, object-orientalist? 
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Figure 1: Acquisition in t.he problem space 

to infer that its doors are red as well. However, al- 

though the door “inherits” its colour from the car of 

which it is part, it would be wrong to derive Door from 

Car. This “colour-inheritance” is related to t,he “in-a” 

link which binds doors to cars. 

Consider now the subclasses of Car, say Sedan and 

Hatchback, which are distinguished among other things 

by their number of doors. Class Door “inherits” its 

colour from Sedans and Hatchbacks alike, just as it 

would from another hypothetical class Airplane which 

does not stand in an “is-a” relationship with Car. We 

call this kind of inheritance environmental acquisition 

(acquisition for short) and distinguish it from inheri- 

tance. Observe that since acquisition binds objects and 

not their classes, it does not (indeed it cannot) induce 

any subtype relationship. This is in contrast to the 

common role of inheritance in programming. 

The above example is drawn from the problem 

space. Another example, which belongs in the pro- 

gram space, is that of class objects. In a pure object- 

oriented programming (OOP) model, such as that of 

SMALLTALK [19], 1 c asses are also objects. The concept 

of class objects occurs even in less pure models such 

as Objective-C [la], and SOM [15]. A class object is 

an instance of a meta-class Class.3 It provides a mould 

for the instantiation of objects in the class and defines 

their behaviour. If a class Ci inherits from Cz, then the 

class object of Ci has a “super” link t,o its containing 

class object of Car as shown in Figure 2. Inheritance 

is realized by propagation of features4 of Cz along that 

pointer from Ci. This propagation can be thought of 

as acquisition in the meta-level. Part of the role of the 

meta-class Class is to define and implement the process 

of this propagation. 

The fact that the propagation of features across links 

is not part of the usual object model contributes to the 

3For the purposes of the example, it is sufficient to assume 
that there is only one m&a-class and that abstraction stops at 

Class. That is, there are no meta-meta-class, meta-meta-meta- 

class etc. However, the example becomes even more interesting, 

albeit more complex, if these are allowed. 

411ere, and henceforth, our terminology adheres as much as 

possible to that of EIFFEL [32]. 

complexity of understanding and programming with 

class objects and meta-classes. Assuming a single- 

inheritance scheme, a view which mitigates this diffi- 

culty is that of class objects as representing sets. The 

class object Car models the set of all cars. The class 

objects Sedan and Hatchback model their correspond- 

ing sets, which are part-of the class object of Car. By 

allowing components to acquire attributes from their 

respective composites we put “colour-inheritance” of 

doors from cars, and the acquisition of features of the 

class object Sedan from the class object of Car at at the 

same conceptual level. 

1.2 Acquisition vs. inheritance 

Generally, an 00 system encompasses two hierarchies, 

as depicted in Figure 3: an “is-a”-inheritance hierar- 

chy of classes, and an an “in-a”-composition hierarchy 

of objects where acquisition dwells. The two hierar- 

chies are tied by “instance-of” links between objects 

and classes which are drawn as dotted lines in the figure. 

Despite superficial similarity, there are important dif- 

ferences between inheritance and acquisition. These are 

highlighted by making the distinction between shared 

and particular features of an object. Shared features are 

those which are determined by the object’s class. They 

include behaviour (declaration and definition of meth- 

ods) and structure (declaration of instance variables). 

Particular features may be different in different objects 

of the same class. They include the object’s identity 

and state (current values of instance variables). Inheri- 

tance pertains to classes and therefore serves as a means 

of abstraction over shared features. In cont#rast, acqui- 

sition can be viewed as a means of abstraction over 

particular features.5 

Let al,. , a, be objects of classes Cl,. . , C, respec- 

tively, such that al is an instance variable of az, and so 

on, as depicted in Figure 4. All shared attributes of al 

are determined by Cl. Traditionally, the particular fea- 

tures of al are independent of both the shared and the 

particular features of a2. Environmental affect on al is 

tantamount to the dependence of its particular features 

on the class Cz and its instance ~2. More generally, the 

environment of al consists of the particular features of 

a2,...,an as well as their shared features ((72,. ) Cn). 

The environmental affect on al is the extent t,o which 

its particular attributes depend on the environment. 

Unlike inheritance, acquisition does not impose sub- 

typing: a Door is not a Car just as Clyde the ele- 

phant [13] is not the jungle it resides in. In subtyp- 

‘One may argue that in the case of inheritance an object in- 

herits particular features from its subobjects. With acquisition 

the “subobject” would had inherited from the containing object. 
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ing, the heir could be used wherever the parent is used. an imitation does not match a disciplined use of this 

Hence, all features of the parent musi also exist in the paradigm as enforced by built-in lingual support. This 

heir. With acquisition, this is unexpected, often unde- difference is similar to that of high-level languages to 

sirable, and in some cases impossible: Although the be- assembly language. Although machine code is at least 

haviour of Clyde in the jungle might be different than in as powerful as high-level languages, since it implements 

a zoo, Clyde is not green just because the jungle is. On them all, the availability of high-level promotes better 

a workstation, we may want our windows to acquire the programming practices. For example, as we shall see, 

colour palette, but not the exact colour of their com- it is possible to practice type-safe programming with 

posite window. In word processors, words cannot, be acquisition, a trait which the unharnessed power of del- 

justified, while the paragraphs they are in can. egation excludes. 

Another difference between acquisition and inheri- 

tance is therefore that acquisition is done on a feature 

by feature basis. The acquiring class must enumerate 

all features it needs to acquire. In offering this freedom 

of selection, acquisition is more expressive than inheri- 

tance. The penalty, that comes in the form of long lists 

of such enumerations, can be alleviated with semantic 

grouping of features, or even collect,ing features that are 

acquired together in a compound feature class. 

Our proposal for acquisition is strongly typed; spe- 

cific ways are provided for the programmer of an object 

to cater for all of its potential environments and deal 

in a type safe manner with a concrete environment in 

which it exists. Moreover, a component can be dynam- 

ically moved to a different composit,e, resembling per- 

haps dynamic inheritance. A consequence of this is an 

inclination towards forwarding rather than delegation 

semantics. 

Outline The rest of the paper is organized as fol- 

lows: To give the reader a taste of the motivation for 

this research, we present in Section 2 several important 

application domains in which acquisition ernerges nat- 

urally. Sections 3, 4 and 5 together develop the theory 

of acquisition: Section 3 deals with the channels along 

which acquisition occurs, Section 4 with environmen- 

tal polymorphism, and Section 5 deals with the ques- 

tion of propagating features in these channels in a type 

safe manner. In Section 6 the proposed acquisition is 

compared with few other models, including dynamic in- 

heritance, delegation, genericity, composite object sup- 

port [23] and complex associations [27]. Finally, Sec- 

tion 7 gives the conclusions and possible directions for 

further research. 

Acquisition is also subject to polymorphism. Envi- 

ronmental polymorphism means that there are many 

possible variant behaviours of objects of a given class, 

and that the precise behaviour is dependent on the envi- 

ronmental affect. The terms environmental acquisition 

and environmental polymorphism are complementary, 

just as inheritance and subtype polymorphism [41, 81 

are. Environmental polymorphism is different from 

subtype polymorphism: With subtype polymorphism, 

the code applicable to a certain type (class), be it part 

of that type definition or not, is also applicable to all 

of its subtypes (subclasses). The code’s behaviour is 

therefore parameterized by the actual object it operates 

on. With environmental polymorphism, the object’s 

behaviour is parameterized by its surrounding environ- 

ment 

2 Application Domains 

Containment hierarchy is a ubiquitous concept in pro- 

gramming methodology in general, and specifically in 

the 00 paradigm. The COMPOSITE design pattern [16] 

appears in almost any 00 system. Many of the 00 

analysis and design methods even devote a special nota- 

tion for containment [3, 10, 381. In this section we show 

that there are abundant cases of containment hierar- 

chies where contained objects have different behaviours 

depending on their surrounding environment. We give 

five application domains in which this phenomenon oc- 

curs naturally. 

2.1 GUI Systems 
Acquisition is different from programming with ex- 

emplars [29, 51 in the same way that classical class- 

based languages are different from languages such as 

SELF6 [47]. Although acquisition can be imitated (to 

a known extent) by the delegation mechanism, such 

‘There is no need in a “single-hierarchy” system with only one 

kind of objects, as in SELF, for m&a-classes because objects de- 

scribe themselves. SELF provides, however, dynamic inheritance 

00 graphic user interface (GUI) frameworks typically 

organize screen elements: windows, views, dialog boxes, 

and so on, in a view tree. Systems of this sort are for 

example, Turbo-Vision and its descendent OWL [4, 431, 

Interviews [30], and that of NeXT [45]. Responsibili- 

ties, such as screen drawing and handling input events, 

are distributed down this hierarchical view-tree. A 

screen element to which responsibility is delegated from 

its (environmental) narents. also acauires some of its in the form of delegation. \ I 1 
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parents’ traits. In Turbo Vision [4] for example, we see 

the following acquired traits. 

Origin of the coordinate system. The coordinate sys- 

tem of a screen element is relative to that of its parent. 

Error handling. The routine to call in case an unrec- 

ognized event occurs may be that of the parent. 

Control fiozu. Modal screen elements are subtrees 

which, when activated, disable all elements external to 

them. Examples of modals are yes-no message boxes 

and the application itself. When a modal element 

terminates, it returns control to its nearest enclosing 

modal element. The nearest enclosing modal element is 

implemented as an environmentally-acquired attribute 

which exists in all screen elements. 

Attributes palette. Screen colours (aka attributes) of 

a screen element are given as indices of a palette table 

stored in one of the screen element ancestors. The val- 

ues stored in this table serve in turn as indices to an 

ancestor of this a.ncestor and so on until the application 

global attributes are reached. This acquisition mecha- 

nism is designed for flexibility and power, but it makes 

programming and reasoning with palettes a complex 

task. 

Interviews [30] uses acquisition for computing con- 

straints on an object’s size. Other GUI systems use ac- 

quisition for other purposes e.g., context sensitive help, 

where a screen element acquires its response to a help 

request from its enclosing element but may override it 

to support more specific help. 

These GUI systems are written in languages that do 

not support acquisition as an environmental inheritance 

mechanism. Acquisition must be therefore emulated, 

usually by a complicated web of point,ers and schemes 

for call-back. Beyond unwieldy complexity, this results 

in difficult to understand features (as in the attribute 

palettes example), or in non-safe programming, (e.g., is 

it always guaranteed that an existing modal will find 

an enclosing modal?). 

2.2 Graphic modeling 

The intricacies of Turbo Vision’s attribute palette are 

only multiplied in the realm of high resolution graphics 

modeling 3-D objects. Here it is necessary to address 

issues of acquisition of many more kinds of attributes 

such as line styles, colour, shading, textures, model- 

ing type, and transformation matrix, spread along very 

complex objects. The graphics community recognizes 

that the ensuing questions are difficult [14, Section 9.21. 

However, there is at least one major graphic standard 

which includes acquisition [37]. 

2.3 Text processing 

Emphasized text in I4TEX [28] normally prints in ital- 

ics. However, an emphasized within an emphasized 

block prints in roman (as demonstrated in this sen- 

tence). This is only one of the many examples in 

the domain of desktop publishing systems where the 

behaviour of text elements is strongly dependent on 

their surrounding environment. Systematic approaches 

to document processing, such as SGML [20, 7] and 

RTF (Rich Text Format), use a hierarchical represen- 

tation, and let attributes such as type-face, text-size, 

and bounding boxes be environmentally-inherited by 

elements from their surrounding elements. Some mod- 

ern word-processors (e.g., Dagesh [l]) even explicitly 

use the word “inheritance” to denote what we call ac- 

quisition. 

The usage of acquisition is very evident in the scoping 

model of TEX [25]: the value of all macros, declarations, 

and registers, is acquired at each point from the inner- 

most enclosing scope in which they are defined. Ac- 

quisition and environmental polymorphism are part of 

the reason why programming T&X macros is so notori- 

ously difficult. A macro is a polymorphic object whose 

behaviour depends on the values of the commands and 

on other macros that it calls at t,he time of activation. 

To add to the complication, a macro may change its 

own definition during its execution. Therefore, recur- 

sive calls may amount to something totally different 

than our usual understanding of recursion. Better’un- 

derstanding, strong typing, and disciplined acquisition 

should make TEX macros less awkward. 

2.4 User defaults in an operating envi- 
ronment 

Fancy GUI windowing environments allow the attach- 

ment of various defaults and user preferences to files 

and other resources. For example, one may attach a 

word processing application, customized and configured 

appropriately, to a certain type of document. On click- 

ing on a document’s icon, the corresponding editing ap- 

plication will be invoked. If the user manipulates many 

different projects, or if a large multi-user environment 

is to be supported, this attachment has to be carried 

out in an orderly manner. 

Even in a simple Unix environment, a default system 

is needed: Different users have different preferences, 

which may further depend on the types of files and 

their location. Upon editing a file of an unknown type 

located anywhere under the Programs directory, the ed- 

itor should be in programming mode. If the same file 

is under a Documents directory, defaults should change 
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accordingly. This behaviour may be different depend- 

ing under which home directory these directories reside. 

Acquisition, together with an inheritance hierarchy 

of types of files and other resources, is the appropri- 

ate way of setting defaults. Its absence brings about a 

major source of confusion for naive users and a source 

of headache for the system administrator. Current 

solutions in Unix use a tangled mixture of compile- 

time flags for applications, system-global, user and di- 

rectory initialization files (. Xrc in the Unix jargon), 

together with environment variables settings. Shared 

(networked) installation of many applications in MS- 

Windows is next to impossible. 

2.5 Language processors and reverse 
engineering 

Processing formal (programming) languages is another 

application domain which calls for acquisition: com- 

pilers, interpreters, automatic generation of test cases, 

computing metrics, etc. If the processed language be- 

longs in the Algol family and has static binding, then 

acquisition is applicable. A parse tree for a specific in- 

put program of this language only captures the syntac- 

tical aspects of the prograrn [17]. The semantic infor- 

mation can be computed from that tree with the help 

of acquisition. Here are a few examples, all taken from 

C+t. 

In our motivating examples, features were acquired 

through aggregation links. A natural question that 

arises is that of acquisition along other kinds of links 

among objects. In the MVC model [26] for example, it 

would be far-fetched to claim that the view is part of 

the model, but it would be very natural for it to acquire 

along the %iews” link those aspects of the model that 

are relevant to displaying the model. The same can 

be argued for the OBSERVER design pattern [16] which 

can be thought of as a generalization of MVC. There 

are other design patterns such as PROXY and STATE in 

which acquisition might prove useful even across non- 

aggregation links. 

3.1 Aggregation links 

Acquisition along aggregation links is particularly in- 

teresting because of several properties that the contain- 

ment relationship exhibits: 

(i) an object may be a component of (directly con- 

tained in) at most one composite at any one time; 

Constructors. Constructors and ordinary member 

functions have essentially the same syntax, but gener- 

ate quite a different code. The precise type of method 

can only be determined by the name property of the 

enclosing class/struct definition. 

(ii) no object may be contained, directly or indirectly, 

in itself; and 

(iii) all objects may be part of a containment hierar- 

chy, i.e., all objects have aggregation links. 

Variable definition vs. function declaration. The 

x y(z) ; C++ statement is either a function declaration 

or a variable declaration, depending on the declarations 

of x, y and z. These declarations can only be found in 

the environment surrounding the statement. 

Members’ visibility. The visibility (public, 

protected or private) of members in an aggregation is 

also determined by the type of the aggregation, struct 

or class. 

Property (i) eliminates the need to specify the link 

through which the acquisition is done. Property (ii) re- 

solves the problem of circularity in acquisition. Prop- 

erty (iii) enables acquisition for all objects. 

The forest topology of containment engenders an 

analogy between single inheritance and acquisition. 

This analogy even suggests “environmental inheri- 

tance” as an alternate term to acquisition, where the 

notion of environment refers to a list of all enclosing 

composites of a component. 

Contexts. More generally, each scoping unit: file, 

function, class, struct or namespace, acquires a con- 

text from its enclosing scoping unit, may override this 

context in part or in whole, and passes on the modified 

context to elements enclosed in it. 

Three more properties complement our understand- 

ing of the containment relationship: 

(iv) composites export the ability to access the com- 

ponents they enclose as autonomous objects; 

In summary, as is the case in life, things must be put 

in context. Observe that in the last two items above, an 

enclosed element not only acquires properties of the en- 

closing one, but may also change them. A protected: 

statement in a struct changes the visibility attribute 

(v) the protocol of a composite does not depend on 

knowledge of its components; and 

(vi) the protocol of a component does not depend on 

knowledge of its composite. 

of its enclosing struct. We deal with this delicate issue 

later. 

3 Paths of Acquisition 
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Together, these last three properties constrain the 

coupling between the composite and the component. 

Although property (iv) is sometimes used for separa- 

tion of containment (Car-Door) from attribution (Car- 

Colour), it is not a pre-requisite for the two others, nor 

for acquisition. The protocol of objects exists even if 

they are inaccessible from outside the containment, and 

acquisition might be useful for such objects as well. 7 

Containment relationship has yet another property: 

(vii) the “contains” relationship is covariant. 

Specifically, if a class Cs has a slot of class Ci, then 

the type of this slot in a subclass of Ca is Cl, or Ci, 

a subclass of Ci. With the natural abstract superclass 

rule [al], and the proviso that insertion of components 

into slots can only be done in concrete container classes, 

we have that covariance of slot type is not only natural, 

but can also be checked statically. This form of covari- 

ante should be contrasted with covariance of function 

arguments, which is natural but unsafe. 

Although general purpose programming languages 

reflect the situation in which “. . . the difference be- 

tween whole-part associations (WPAs) and other asso- 

ciations is often only cosmetic and diagrammatic.” [9], 

there are numerous application domains in which con- 

tainment is essential and natural. In these domains, 

which include solid modelers, hierarchical databases, 

text structuring systems such as SGML, parsers and 

other language processors, acquisition should be done 

along aggregation links. 

In order to restrict acquisition to aggregation links, 

we must be able to distinguish these from all other links. 

However, in examining programming languages we find 

that such a lingual distinction tends to be the exception 

rather than the rule: In reference-semantics languages 

such as SMALLTALK, there is no clear distinction be- 

tween containment and other kinds of associations; in 

value-semantics languages such as LISP, all associations 

are containment in a sense. 

The distinction is crisper in mixed semantics lan- 

guages such as C++ and EIFFEL [32]: an object is inter- 

preted to be contained in another if its value is stored in 

it ( EIFFEL’S expanded), while reference representation 

is used for non-containment associations. But despite 

the explicit claims [24] of the designers of BETA [31], 

reference semantics is not exclusive to associations in 

that language as in others. Reference semantics is used 

in many cases for implementation convenience, for over- 

coming problems of creating and managing large wholes 

7Conversely, we can remark that it is not even essential that 

the composition root itself be accessible. In a parse tree applica- 

tion, for example, there may be no need for direct access to the 

single composition root. 

and wholes with a variable number of parts, and for 

handling cases where garbage collecting environments 

prevent the realization of property (iv) with value se- 

mantics of the containment. Note also, that despite its 

smoothness and safety, property (vii) is not supported 

directly in mainstream languages. 

The consideration of issues of acquisition may help 

in the dilemma of discerning WPA from other kinds 

of associations. This dilemma is expressed in Civello’s 

words [9]: “While it is generally acknowledged that 

WPAs bind classes more strongly than other associa- 

tions, there are no further rules or constraints to guide 

design and implementation decisions.” If acquisition 

occurs along specific links then these links are more 

likely to be classified as containments, although as we 

have seen, there are cases of acquisition along other 

kinds of links. 

The term whole in the acronym WPA does not co- 

incide entirely with our understanding of the compos- 

ite notion. In [9]: Civello also suggests classification 

of wholes as assemblies in which WPAs are functional, 

or as either aggregates or tuples in which both WPAs 

are non-functional. We believe that acquisition along 

aggregation links should occur only along functional 

WPAs. However, it should also occur along spatial or 

temporal inclusions which are not WPAs according to 

Civello’s taxonomy. 

3.2 Nonaggregation links 

Although our chief example for acquisition is through 

containment links, there are cases of acquisition of fea- 

tures along other links. The environment of an object 

might contain the sender of the message, the set of con- 

tainers, or the creator of the object ([22] for example 

presents a language mechanism for allowing an object 

to inherit behaviour from its creator). 

We generalize the concept of acquisition by allow- 

ing acquisition to occur through an arbitrary system of 

links that has a forest topology and is similar in struc- 

ture to containment. By this we mean chiefly properties 

(i)-(iii) and (vii). Properties (iv)-(vi) are significant as 

well, but they are usually only a concern in containment 

in which the binding between the objects is so strong 

that a clear boundary must be set bet,ween t~hem. Ex- 

amples for containment-like hierarchies are the relation 

between an object and its creator [22] and ownership 

as in Car-Owner. 

Another possible generalization is multiple environ- 

mental acquisition: this occurs e.g., in the armed forces 

and other large organizations where there are two 

chains of commands: professional and organizational. 

An artillery officer might report organizationally to the 
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brigadier and professionally to the chief artillery com- 

mander. We leave this generalization beyond the scope 

of this paper, and, sufficing ourselves with the intuition 

and the motivation built upon the motivating exam- 

ples, concentrate on issues of the theory of acquisition 

itself. 

The main virtue of containments and containment- 

like hierarchies is the ability to use transitive closure in 

acquisition. If an object a is contained in b and b is con- 

tained in c, then a may acquire features from c, even 

if b does not acquire them. Current applications us- 

ing attribute grammars are cumbersome because copy 

rules must be used to propagate the values of attributes. 

Great simplifications are achieved using what we may 

call leap acquisition, arising from this transitive closure. 

Yet another generalization step is that of allowing 

acquisition across arbitrary links. However, with this 

generalization, the uniformity of the links is lost; the 

notion of transitive closures may thus lose its meaning. 

Although it may be technically possible to extend the 

definitions to enable leap acquisition in such a case, we 

will refrain from doing so. To smoothen t.he discourse, 

we limit the technical discussion to containment rela- 

tionships only. It should be obvious that no generality 

is lost. 

4 Static acquisition 

Acquisition could be implemented by letting all objects 

store a reference to their immediate enclosing compos- 

ite, if one exists. The standard binding of messages to 

methods can then be altered so that if a message is not 

recognized by a receiver, it is resent to its composite. 

Resends could be done in a forwarding manner, i.e., 

method execution in the context of the composite, or 

in a delegation manner, that is method execution in the 

context of the original receiver. s 

The implementation of this seemingly-simple scheme 

is difficult in statically-typed compiled languages such 

as Ctt; sophisticated tricks such as the one presented 

in [ll, Section 9.21 are required for tampering with the 

builtin dynamic binding mechanism. Implementation is 

more feasible, however, in SMALLTALK and other dy- 

namically typed languages which poses runtime reflec- 

tive capabilities. Nevertheless, in both implementations 

much is left to be desired in terms of safety and ease of 

use. The sender of a message must be familiar with the 

runtime environment of the receiver in order to know if 

the messages will be recognized or not. Lack of safety 

is also the source of difficulty in an implementation in 

8The following section explains why forwarding is preferred 

over delegation for acquisition, but this distinction is of secondary 

importance here. 
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Ct+-like languages: the protocol of an object can only 

be determined at runtime. 

To obtain type safety, a programming environment’ 

supporting acquisition must be able to generate and 

prove predicates such as “instances of Ci can only occur 

as direct components of instances of Cz”, “instances 

of Cr can only occur as direct or indirect components 

of instances of C2”, and “instances of Ci may occur as 

direct components of instances of (32”. Further, since 

as explained above, the interface of a component lists 

the acquired features that are part of its interface, the 

environment must be able to make deductions of similar 

nature with regard to individual features. 

4.1 Environmental polymorphism 

The main difficulty in carrying out static analysis is the 

accounting for the environmental polymorphism, i.e., 

the uncertainty that stems from the multitude of po- 

tential configurations of the composition hierarchy at 

runtime. There are two sources to this uncertainty: 

4.1.1 Containment freedom 

The same component may belong to composites of dif- 

ferent classes or even occur standalone. Examining Fig- 

ure 5 for example, we see that Door may acquire colour 

and airline. A Door may be part of a Car or a part of 

an Airplane but never both. Acquisition of neither can 

be guaranteed. 

4.1.2 Subtype polymorphism 

Determining all possible composites a class may be part 

of is done by a traversal of the graph of classes and 

the composition links that connect them. Curiously 

enough, subtype polymorphism makes it necessary to 

examine, for each class encountered in the traversal, all 

of its superclasses, a.11 of its subclasses and even all su- 

perclasses of all of its subclasses. To understand this, 

Auto-part 

4 
D00r 

Vehicle 

driver 

Figure 5: Environmental polymorphism 



consider the two distinct ways in which subtype poly- 

morphism may effect acquisition: 

Component Polymorphism If a superclass of a 

certain class may be contained in a composite, then 

so might the class itself. In Figure 5, a Trunk-door may 

be contained in a Car. 

Composite Polymorphism If a class may serve as 

a composite of a certain component, then all classes in- 

heriting from this class are potential composites of that 

component. Consequently, when we go from the com- 

ponent to the composite through a specific composition 

link, there is uncertainty with regard to the actual class 

of the composite. If that composite is in turn a com- 

ponent of yet anot#her composite, then its polymorphic 

nature must be taken into account. 

In other words, composite polymorphism means that 

if a subclass of a certain class may be contained in some 

other class, then (non-immediate) instances of this class 

may also be contained in this composite. In Figure 5, 

we have that some Auto-parts may be contained in a 

Car. 

More generally, in a multiple inheritance setting, 

non-immediate instances of a class that shares a heir 

with another class, may be contained in any composite 

that contains instances of that other class. In Figure 5, 

some Cars may be contained in a Box. 

To handle cases where a component cannot be guar- 

anteed to acquire a feature, we employ two standard 

techniques: a default action or value for missing fea- 

tures and a guarded computation mechanism similar 

to ML’s case operator [36] and C’s ternary operator, 

cond? expl : exp2, where expl and exp2 (the true and 

the false branches) are of the same type. These tech- 

niques should be used to capture uncertainty due to 

containment freedom and due to component polymor- 

phism; protection against uncertainty due to compos- 

ite polymorphism is more appropriately taken care of 

by dynamic binding. In the example we have that an 

Auto-part may have a pla-y-age feature in its environ- 

ment if it happens to also be an instance of Door which 

happens to also be part of an instance of a Match- 

box-car. However, this property is not allowed to be ac- 

quired since checking whether or not it exists is nothing 

else than a baroque mechanism of runtime type infor- 

mation of objects-a technique that. is better avoided 

whenever possible. 

4.2 Kinships between classes 

This subsection gives a precise meaning to the sentence 

“a class Ci may be contained in a class Cz”, writ- 

ten as Ci c C2. This meaning accounts for contain- 

ment freedom and for component polymorphism but 

specifically excludes composite polymorphism from the 

semantics of the word “may”. In Figure 5, we will 

have that Door & Car, but that none of the pairs 

(Auto-part,Car), (D oor,Vehicle), and (Door,Box) stand 

in the ‘,’ relationship. 

Note that if Ci C Cz, then all features that Ci ac- 

quires from Cz must have default values or be used only 

with guarded expressions. Guaranteed acquisition of a 

feature can only be done if is known that “Ci must be 

contained in C2”. The precise meaning for this sentence 

(Definition 4.3) includes all sources of runtime uncer- 

tainty, since in this case, a feature that Ci acquires 

from Cz can be used without guards in all possible con- 

figurations of the runtime hierarchy. 

The remainder of this section gives formal defini- 

tions for the so-inclined readers. These definitions 

can be readily translated to algorithms. The follow- 

ing notations are pertinent: For t,wo classes C, C’, we 

write C < C’ if C inherits directly or indirectly from C’ 

andC<C’ifC<C’orC=C’. AclassChasa 

set of slots S(C). Members of S(C) are pairs of the 

form (n, D), n being a named place holder for a com- 

ponent of class D. Also, let S’(C) be the set of all 

inherited slots of C, i.e., S’(C) = Uccc, S(C’) . - 
For simplicity, we assume that no overloading oc- 

curs. Every slot name n is introduced in exactly one 

class which we denote by Intro(n). That is to say. no 

name n appears in more than one set S(C). (Overload- 

ing fans who dislike this restriction may use classes to 

tag overloaded names.) One exception to account for 

property (vii) applies, if (n, D) E S(C) and if C < C’, 

D < D’, then we may also find that (n, U’) E S(C’). 

Still, S’(C) would contain only one copy of R as part of 

the pair (n, D) ( usual overriding). 

W.1.o.g. , there is also a unique frozen” root c1a.s~‘~ R 

which makes roots of composition trees; only instances 

of R can serve as such roots; there is a single slot 

(r>R’) E S(R); only subclasses of RI can instantiate 

immediate components of roots. 

4.2.1 May kinship 

As explained above, when analyzing potential contain- 

ment relations, we must look at classes that are related 

by a common subclass. If D 5 Cr and also D 5 Cz, 

then an object contained in a slot defined in Cr may 

acquire features defined in Ca. 

gFrozen classes are classes that cannot be further used for 

inheritance. 

“The root class R should not be confused with “Any” that is 

sometimes used to denote the root of the inheritance tree. 
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Figure 6: A containment path from CO to Ck. 

We write C -&- C’ to denote that C and C’ are 

related via a common subclass D. We write C’$C to 

denote that n is a slot satisfying (n, C’) E S(C). 

Definition 4.1 A containment path is a sequence 

Dk-1 
lr=c,~c~2c,~...-c~~, %c, 

where Ck is the root class R. (Figure 6) 

l We say that a class D dominates a containment 

path P if there exists a class Di on T, such 

that Di 2 D. 

l We say that a containment path T covers a class D 

if D 5 Ci and D 5 C[, for a pair of classes Ci, 

Ci on x. 

Dominance of a containment path starting with a 

class CO is a necessary condition for environmentally 

affecting Co’s interface. If D dominates a particular 

containment path (that starts wit#h Co), then Co is po- 

tentially contained in D. If all containment paths that 

start with Co are dominated by D, then Co is necessar- 

ily contained in D. May- and must-kinships are based 

on potential- and necessary-conta.inment, respectively, 

with few additional constraints. 

The concept of coverage captures uncertainty due to 

composite polymorphism, that is, the freedom of choos- 

ing the actual composites Do, D1,. , Dk-1. A defini- 

tion of may kinship has to ensure that nothing is re- 

vealed about the subtype of the composite. Suppose 

that we have that a class C “may be contained” in a 

class D. Then, the environmental acquisition mecha- 

nism makes it possible to determine in runtime for any 

specific object of C if it is contained in an object of D. 

We would like to limit this runtime power to exactly 

this. Specifically, if D’ < D or D < D’ then the envi- 

ronmental acquisition mechanism should not give rise 

to a possibility of determining whether an object of C 

is in an object of D or D’. 

There are several other subtleties in the definition of 

may kinship which are not discussed in t,his proceedings 

version of this paper. As it turns out the appropriate 

definition for may kinship is: 

Definition 4.2 We say that a class C may be con- 

tained in a class D, C E D, if all containment paths 

that start with C and couer D are also dominated by D. 

4.2.2 Must kinship 

It is harmless to ignore some potential containment 

paths in may kinship. Not so for the must kinship. We 

need to examine all potential paths to ensure that an 

instance of the component, can only be contained in an 

instance of the composite. Yet, must-kinship overrules 

some containments that satisfy this condition but their 

safety is coincidental in nature rather than captured in 

the design. 

Again, we can obtain that an adequate definition for 

must kinship is: 

Definition 4.3 We say that a class C must be con- 

tained in a class D, C 4 D, if there exist a slot n 

such that all containment paths that start with C are 

dominated by D, pass through n, and D = Intro(n). 

With regards to inheritance, the must kinship takes into 

account both component and composite subtype poly- 

morphism as follows: C 4 D only if C’ + D for any C’ 

such that C’ 5 C or C 5 C’. 

5 Acquisition of features 

Now that the may and must kinships are elucidated, 

we can deepen our study of acquisition by investigating 

the issues arising when specific features are acquired. 
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5.1 Acquisition of routines 

Inheritance, as a relation among classes, pertains only 

to features which are shared by all instances of the class: 

methods, structure and potentially also class variables. 

As explained in the introduction, acquisition, as a rela- 

tion between classes, deals also with features which are 

particular to an object (attribute values). To gradually 

reach understanding of this, our study begins with ex- 

amination of routines. Routines are conceptually sim- 

pler than attributes in the sense that they are read-only 

features. In most object-oriented systems (excepting 

perhaps Delphi) objects cannot replace routines defined 

in the class. 

The simplest case of routine acquisition occurs when 

a class must be contained in another class. In this case, 

we can use the following EIFFEL-like syntax to declare 

an acquired routine: 

class Paragraph 

feature 

acquire emphasize0 

. . . 

end Paragraph 

(Recall that acquired features must be declared ex- 

plicitly. After all, we do not want a Door to acci- 

dently acquire a method to start the engine.) The 

compiler must now check that there exists a class that 

defines emphasize such that Paragraph must be con- 

tained in that class. For example, it may find that an 

emphasize method is defined in a class Document and 

that Paragraph 4 Document. 

What happens if there exists some other class, say 

Section, that defines emphasize, and Paragraph must (or 

even just may) be contained in it? An instance of Para- 

graph would then acquire emphasize of the inner most 

composite object that has it, be it of class Document 

or Section. This is fine as long as Document.emphasize 

and Section.emphasize are “basically the same” feature. 

That is to say, if there is a common ancestor of Sec- 

tion and Document, say Formatting-Entity that, defines 

emphasize. 

If there is no such ances- 

tor, then Document.emphasize and Section.emphasize 

are tied only by means of name overloading. Such a 

tie is coincidental in nature; there is no certainty of 

agreement or even conformance between the types of 

the two features. If the features were intrinsically re- 

lated, then a skilled designer should have captured this 

in a common ancestor. 

We allow acquisition of an overloaded attribute only 

if the overloading ambiguity is resolved with explicit 

qualification of the defining class name. Incidentally, 

another consequence of the above deliberation is that a 

good acquisition system must support multiple inheri- 

tance so as to enable factoring of common features into 

appropriate base classes. 

The next case to consider is acquisition in may kin- 

ship. Consider two classes Cl, Cz such that Cl may be 

in Ca, but it is not guaranteed that 6’1 must be in Ca, 

i.e., Cl E Cz and Cl + Ca. Suppose that, Cz defines a 

feature f. It would be unsafe to invoke, by means of ac- 

quisition, the feature f from Cx unless f is defined also 

in Cl. If C1. f takes precedence over C2.f) then C2.f 

can never be called, and this would render acquisition 

pointless. 

Conversely, an interesting and useful semantics is ob- 

tained when letting C2.f take precedence over C1.f. 

For example, a black Door put in a white Car should 

turn white. But once removed from it, it should show 

black again. Notice that the precedence is in opposite 

direction than what happens with ordinary inheritance. 

A class that inherits a feature may override it. A class 

that acquires a feature must supply a default imple- 

mentation to it; the acquired feature takes precedence 

over that default. 

Routines that are acquired through a may kinship 

are defined as follows: 

class Window 

feature 

may acquire help0 default is 

. 

end help 

. . 

end Window 

In inheritance a routine may refine its inherited im- 

plementation. Is it also possible for a routine to refine 

its acquired implementation? The default implemen- 

tation of help cannot call its acquired version, since it 

is invoked exactly when there is not such an acquired 

version. In contrast, in the case of must kinship, refine- 

ment is possible. 

class Quotation 

feature 

acquire left-margino: Length overrule is 

return acquired left-mar&() + I cm 

end left-margin 

. 

end Quotation 

The overrule keyword signifies that the implementma- 

tion of left-margin in the current instance of Quotation 

takes precedence over the acquired one. 

A default implementation in a must kinship is mean- 

ingless. All that remains is therefore to consider the 
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case of an overrule implementation in may kinship, 

which makes sense only if the overruling implementa- 

tion calls the acquired one. Although it is not entirely 

clear that this must be supported, we describe how 

it can be done. For a type safe implementation, we 

are obliged to introduce a language construct mirror- 

ing ML’s case, where it is used for safe examination of 

variant records. 

class Enumeration 

feature 

may acquire itemsep(): Length overrule is 

return 0.8 * acquired itemsep() guard 

0.5cm 

end itemsep 

. . . 

end Enumeration 

The guard clause provides a default value to the re- 

turn expression when the acquired feature itemsep is 

not present. In words, the above states that item sepa- 

ration in a nested enumeration is 80% of the innermost 

enclosing enumeration and that it is half a centimeter in 

an external enumeration. Note that Enumeration may 

probably acquire from itself. 

The guard clause makes it possible to call a may 

acquire routine from outside of the acquiring class. 

Therefore, it is deprecated but not forbidden to declare 

such a routine with no default implementation: 

class Component 

feature 

may acquire foo(): Boolean; 

-- No body for foo here! 

. . 
end Component 

. . 

x: Component 

if x.foo guard true then . 

Table 1 summarizes the proposed syntax and seman- 

tics of routines acquisition. 

5.2 Context of execution of acquired 
routines 

So far, we tacitly ignored the issue of the context of ex- 

ecution of acquired routines. There are two possible 

semantics corresponding to ordinary (static binding) 

and virtual (dynamic binding) of function members 

in C++. This distinction is also known as, especially in 

the context of links between distinct objects, the quar- 

rel between forwarding and delegation semantics. 

Forwarding means that the context of the initiating 

object is forgotten during the execution of an acquired 

routine of this object. If this routine uses a certain 

feature, then this feature is understood in the context of 

the object of the current execution thread. Delegation 

means that the feature is sought in the context of the 

initiating object. 

Dynamic binding and static binding generalize del- 

egation and forwarding in prescribing the context of 

features selection also for polymorphic code that is ex- 

ternal to the class. For example, a non-method routine 

that has a formal parameter of a certain class, may 

also receive an object of any of its subclasses. Dynamic 

binding dictates that the dynamic (actual) class of an 

object is used in interpreting the messages sent to it; 

in static binding, the static (declared) class is used in- 

stead. 

Since acquisition does not impose subtyping, only the 

more restricted terminology is relevant. Put differently, 

a component cannot be used in a general context where 

a composite is expected. In the case of may kinship, 

such use is not type safe because it cannot be guar- 

anteed that the component has or can acquire all the 

features the composite has. Even with must kinship, 

there is the problem that not all the features of the 

composite are sensible for the component-it is not ap- 

propriate to send a message to a door enquiring it for 

its number of wheels, even though it is guaranteed that 

a door is always a part of a car. 

Let us therefore limit the discussion to the question 

of binding in a method, i.e., a routine defined within a 

class (as opposed to a general routine). Suppose that 

such a method of a class z uses a feature f on the 

current object. Then, in the forwarding semantics, all 

that is required in order to guarantee that f is found in 

run time, is to check that it is defined in 2. A moment’s 

reflection would show that this static check covers also 

delegation, even in the case of may kinship. The search 

for f is conducted along the chain of “contained in” 

links starting from the initiating object. The search 

must succeed since the chain includes also the current 

object of class z that defines f. 

The fact that, delegation semantics is type-safe does 

not necessarily imply that it should be preferred over 

forwarding. There are several good reasons to use for- 

warding semantics in all but very special cases. First, it 

is counter intuitive to have different semantics for inter- 

nal and external routines. This would imply, for exam- 

ple, that the set of acquired features varies depending 

on whether you view it from inside or from outside the 

class. Second, acquisition encompasses a sophisticated 

mechanism of polymorphism by itself; delegation adds 

to this, and to the usual sub-type dynamic binding, 
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Kinship Declaration Syntax Comments 

may not embodied may acquire f Use with guard 

embodied default may acquire f default is . Safe to use; no refinement 

overrule may acquire f overrule is . . . Safe to use; refinement with guard 

must not embodied acquire f Safe to use. 

embodied default N/A Senseless-never invoked 

overrule acauire f overrule is . . Safe to use; safe refinement 

Table 1: Summary of routine acquisition. 

yet another dimension of complexity. Third, in many 

cases where delegation semantics is required, it can be 

implemented by means of inheritance. For example, a 

method for computing the paragraph indentation level 

in a text processing system could read 

parindento: Length 

return leftmargin() + lcm 

end parindent 

If parindent is an acquired feature, then we must com- 

pute leftmargin within the context of the acquiring ob- 

ject. However, a better design would make parindent 

an inherited, not acquired feature. Fourth, within the 

semantics of “inherited” attributes in attribute gram- 

mars (one of the thoroughly studied examples of acqui- 

sition), the attributes are computed in a local context 

and only then propagated further. 

There could be cases in which delegation semantics 

may be required also for acquisition. For example, one 

may want to apply different algorithms for computing 

the paragraph indentation in footnotes and in ordinary 

text. For that reason, we do allow delegation semantics 

for acquisition as well, and suggest that they both may 

play an important role. This is in contrast to the case 

of inheritance, in which the existence of non-virtual 

function members have no useful semantics, and their 

existence is just another symptom of the C++ design 

philosophy of not penalizing a programmer for an un- 

used language feature. 

5.3 Acquisition of attributes 

Many of the conclusions drawn in the study of acquisi- 

tion of routines are also applicable to acquisition of at- 

tributes. If we forget for a moment that values may be 

assigned to attributes, they can be treated as functions 

with no parameters in which no overriding is allowed. 

The picture is complicated though if assignment is 

recalled. If an acquired attribute is also embodied in 

the acquiring class, then a-priori, the acquired value 

should take precedence. Later, the precedence could 

change. It should be possible to paint just the door 

green after it had been placed in a white car. 

We propose the following operational model for the 

precedence of embodied attributes: With each such 

a.ttribute we associate an auxiliary flag that controls 

whether the component takes precedence over the com- 

posite or vise versa. The flag may be in one of two 

states: default or overrule. The sema.ntics of these 

two are in accordance with the default and overrule 

keywords used in defining bodies for routines. 

Initially, when an object is created and the embodied 

attribute is initialized, the flag is default. When an at- 

tribute of a certain object is modified, its auxiliary flag 

becomes overrule. In addition, the flags of all embod- 

ied attributes acquiring the modified attribute become 

default. Thus, by painting the car blue, all doors be- 

come blue as well. By further painting a particular door 

of the same car green, the door’s handle becomes green 

as the door, but the car as a whole remains blue. 

When a free object is inserted into a composite, 

all auxiliary flags of that object are set to default, 

thus supporting the black-white door colour flipping 

behaviour described above. The flags do not need to 

change when an object is removed from a composite. 

There are attributes which have a special undefined 

value. If an attribute is assigned undefined, then its 

flag becomes default. The auxiliary flag of the embod- 

ied attribute that acquire from this attribut,e does not 

change in this kind of assignment. 

In a Delphi like system, in which routines can be 

overridden by single objects, similar semantics applies 

to routines. 

Table 2 summarizes the proposed syntax and seman- 

tics of attribute acquisition. As it is for routines, the 

acquire clause for an attribute is eit,her unmodified- 

signifying that acquired value is not guaranteed or ac- 

companied with a may modifier-in which case no such 

guarantee can be made. In both cases, the attribute 

may be also embodied in the class. An embodied at- 

tribute may have an initializer, i.e., an expression used 

for initializing it at the time of object construction. 

Acquired attributes can be used safely, except in the 

case of may acquire with no embodied, where they 

should be used with guard (type safety Chauvinists 
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Kinship Declaration Syntax Comments 

may not embodied may acquire f Use with guard 

embodied may acquire f embodied [ := . . . 1 Safe to use; initializer may 

use acquired value with guard. - 
must not embodied acquire f Safe to use. 

embodied acquire f embodied C := . . . 1 Safe to use; initializer may 

use acquired value safely. 

Table 2: Summary of attribute acquisition 

may want to forbid this case). The initializer may use 

the acquired value, but only with guard in the case 

of may acquire. In contrast with Table 1, default 

and overrule semantics is determined dynamically as 

described above and therefore is not described in this 

table. 

The rvalue of an acquired attribute is one of the em- 

bodied attributes incident on the “contained in” chain 

that starts at the object. There are three possible se- 

mantics of the halve of such an attribute: the embod- 

ied attribute in the object itself, the nearest enclosing 

attribute, and the effective enclosing attribute. 

We envisage a system in which assignment is nor- 

mally done to the embodiment in the object but that 

has provisions for the other two semantics. Assignment 

to the nearest enclosing in the case of no embodiment 

is useful, e.g., for upward propagation of “synthesized 

attributes” in an attribute grammar application. For 

example, inside the parse tree of a nested C++ class, 

an assignment to an acquired symbol table should occur 

at the nearest enclosing scope that, embodies a symbol 

table. 

Assignment to the effective attribute is also useful. 

In a drawing program, it should be possible to repaint 

a distinctly painted part of a whole even through one 

of its subparts. 

6 Comparison to other models 

and related works 

In this section we briefly compare acquisition to other 

related work. We first explain why some common 00 

constructs do not constitute by themselves an acqui- 

sition system and then turn into comparing our work 

with recent advances. 

6.1 State as it is recorded in instance 
variables 

It is possible to implement acquisition using object 

state. An object may contain a pointer to its com- 

posite (immediate container). By following the chain 

of pointers it is possible to implement all of the intri- 

cacies of the acquisition. Indeed, systems such as TI$, 

Interviews, TurboVision and many attribute grammar 

compilers do exactly this kind of emulation. One may 

therefore argue that the state of an object, including the 

value of this pointer includes all information required 

for acquisition. We disagree with this claim because of 

the following two reasons: 

First, as should be clear by now, acquisition is far 

from being trivial. Its inherent complexity cannot be 

covered up. Re-implementation, as done for example in 

the software systems mentioned, is bound to be compli- 

cated, inefficient, and in many cases lacking a well de- 

fined semantics. It is instructive to consider the case of 

att,ribute grammars. Although there is a huge body of 

work on their efficient implementation, they have failed 

to become popular. We feel that this is partly due to 

the fact that the algorithms were not packaged in a well 

defined language construct, and the need to enumerate 

all “inherited” attributes puts a heavy burden on the 

user. 

Second, we feel it is wrong to blur the boundary be- 

tween objects by stret.ching the meaning of the term 

“state” to include external objects to which pointers 

are stored. A network of objects, including perhaps all 

objects of a system, could be thus made into a single 

object. Further, since in general pointers are not bidi- 

rectional, and since there might be variables pointing to 

various locations in the network, a complicated seman- 

tics would have to be called in to describe the complex 

relationship between a subobject which corresponds to 

connected component of a directed graph. Instead, we 

feel that if there is a consistent pattern of acquisition of 

properties from one object by another, then it is bet- 

ter to define an abstraction mechanism that captures 

this pattern. Acquisition, and in particular the over- 

rule/default mechanism described above, gives a good 

balance between state change, the change undertaken 

by the object itself, and the environmental influence. 
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6.2 Inheritance 

Inheritance is a relation between classes, whereas ac- 

quisition pertains to individual objects. Other reasons 

why inheritance cannot serve for acquisition are given 

in the following discussion of dynamic inheritance. 

6.3 Dynamic inheritance 

Here we take this term in its restricted sense-a sense 

also called “configurable inheritance” [18]: if a class C 

is declared as inheriting from C’, then the sub-object 

of objects of C, which correspond to the base-class C’, 

may also be of a class C” which also inherits from 

C’. Loosely, C may also inherit at run time from any 

class C” which inherits from C. Stroustrup [42, Section 

12.71 reports on a C++ extension proposal accompanied 

by an implementation experiment to that effect. Had 

this proposal of “delegation”, as it is called there, been 

accepted, it could have only approximate acquisition, 

falling short in several important ways: 

1. Dynamic inheritance, just as a static one, induces 

a subtype relationship. This is usually undesirable 

in acquisition: a component is not necessarily a 

subtype of its enclosing composite. Observe that 

private inheritance merely restricts the visibility 

of sub-typing (as suggested in [40]) but does not 

exclude it altogether. 

2. There is usually an orthogonal hierarchy classifying 

the kinds of objects that may occur in the contain- 

ment hierarchy. Mixing the two hierarchies at the 

cost of the complexities of multiple inheritance and 

at the risk of blurring the distinction between the 

two hierarchies is worse. 

3. It is inherent to acquisition that an “inherited sub- 

object” (a composite) is shared by many objects 

(its inheriting components). Such sharing contra- 

dicts our usual understanding of inheritance. 

This latter hindrance is the main reason for the failure 

of this experiment. 

6.4 Prototypes 

To emulate an acquisition in a prototyping system one 

would, as another approximation, replace substitute 

containment links with delegating ones. 

Several problems arise. The first, and perhaps the 

easiest, is that of delegation vs. forwarding. As men- 

tioned above, both semantics are feasible and useful for 

acquisition. Clearly, adding support for forwarding to 

runtime systems, such as that of SELF, which already 

support delegation should be a simple task. 

Another problem is that, the containment links 

should be distinguishable from other links. This again 

could be done via relatively easy syntactical changes. 

Another change required is reversing t,he links direc- 

tions so that the composite has slots for the components 

and not vice-versa. Although no delegation system that 

we know of implements this, such an addition does not 

seem too problematic. 

The third, and most difficult problem: delegation 

systems, almost by nature, subvert strong typing. Be- 

yond the usual benefits of strong typing, such as im- 

proved efficiency and reliability, we argued above that 

acquisition should be done in a strongly-typed man- 

ner. In this respect, our research can be viewed as 

an attempt to investigate strong typing of a restricted 

form of a delegation system. The more general problem 

should be the subject of another investigation. 

6.5 Other related work 

Blake and Cook [2] deal with the issue of support to 

containment hierarchy in 00 languages. They com- 

pare part hierarchies with inheritance and delegation 

and provide a mini-taxonomy for kinds of containment 

relationships. They also identify the dilemma of the 

visibility of parts, and argue strongly that exposing the 

parts does not violate encapsulation. (Thus support- 

ing property (iv) f o ours). Specifically they propose, 

implement and report on the lessons learned from a 

SMALLTALK extension in which the composite forwards 

messages to its components. Another aspect in which 

their work is different from ours is that they tacitly 

ignore the question of strong typing and optional com- 

ponents. In our model strong typing and optional “par- 

ents” play an important role. We were unable to deter- 

mine if Blake and Cook’s work makes the distinction 

between part and attribute links. 

Kim et. al [23] examine the question of composite 

objects in 00 database systems. They also argue that 

the composition links should be distinguishable from 

other links. They provide a formal definition of the data 

model of composite objects a,nd show how they might 

be used in a database system by addressing questions 

such as locking and efficiency. One of their interesting 

contributions is the support for versions of composite 

objects. (This is similar to the work in Vesta [6].) As it 

is common in databases, it is assumed in their work that 

parts have external visibility. No treatise is given to the 

question of propagating properties inside the composite 

object. We consider using their results in testing our 

proposal on large inputs, such as legacy systems, which 
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need to be reverse engineered. 

Kristensen [27] argues for and proposes lingual mech- 

anisms to support general complex associations, includ- 

ing special notations for containment. In this sense and 

in the strong ties his work has with formal methodolo- 

gies of analysis and designl’, it is more general than 

ours. IIowever, acquisition is much more powerful than 

a mere existence of a containment link. 

7 Conclusions, Open Questions 
and F’urt her Research 

This paper demonstrated the need for down propaga- 

tion of attributes in containment hierarchies. This is 

just a special case of a phenomena that often shows up 

in the development of even modest-sized 00 systems: 

an object behaviour depends on its surrounding envi- 

ronment. The broader question that we try to solve is 

the modeling of environmental affect, i.e., the ways in 

which the environment participates in setting the prop- 

erties of an object. 

It is clear that an object is not a specialization of 

its container or any other element of its environment. 

Therefore, it is not appropriate to let an object inherit 

from its environment. Instead, the traditional tech- 

nique for modeling such an affect is by interfaces that 

are tailored for each kind of environmental link. De- 

spite its appealing simplicity, this approach suffers from 

several drawbacks: 

1. Instead of the convenient separation between pub- 

lic interface and implementation, objects must 

posses dedicated environment interface(s). 

2. The design and implementation of such interfaces 

is difficult and repetitive. 

3. Environmental affect by non-immediate neigh- 

bours is tricky. What we called leap acquisition 

is a powerful tool that is difficult to use in the 

absence of a good understanding of the involved 

issues. 

The new acquisition mechanism we advert offers a 

compromise between inheritance and a tailored solu- 

tion. It is not as elegant and easy to understand as in- 

heritance (but then, so are real life programming prob- 

lems) but it is much more appropriate for modeling 

environmental affect. On the other hand, acquisition is 

more orderly and more elegant than a tailored dynamic 

solution which tends to be error-prone, inefficient and 

discouraging to the implementor. 

I1 In this respect, it should be compared to the work of Civ- 

ello [9] 

Our investigation revolved around the example of ac- 

quisition a.cross aggregation links. The results however, 

are applicable directly to acquisition in other forest hi- 

erarchies and from immediate general neighbours. The 

generalization to other network topologies and leap ac- 

quisition across non uniform links is a subject for fur- 

ther research. 

Among the surprising discoveries of this research we 

include the illusive character of the definitions of the 

may and must kinships: We saw that in order to prove 

that an object of a certain class must be contained in 

an object of another class, one has to consider carefully 

the containment relationships between all super- and 
subclasses of both these classes. Also, the may kinship 

may, if not defined properly, capture instead of struc- 

ture freedom, the dynamic type of objects; information 

that is better handled by other means in good object- 

oriented programming. 

Most design methodologies represent relationships 

and objects, but offer almost no rules or guidelines of 

how these should interact with inheritance. A promis- 

ing research objective is better insight of the interde- 

pendencies between inheritance and containment and 

other links among objects. This hopefully will result in 

a coherent set of rules similar to property (vii) to guide 

design and enable more structured reasoning. 

Even though our understanding of the “permissible” 

topologies in the inheritance-containment diagram is 

lacking, and we allow many constellations which should 

never occur in a well designed system, static type analy- 

sis can eliminate many possibilities and help a dynamic 

implementation. We can show that this analysis can be 

done in O(1) calls to a directed graph s-t connectivity 

algorithm. 

We identified the basic rules of acquisition of rou- 

tines, and in particular how refinement and overrid- 

ing carry on to it. The term “environmental polymor- 

phism” was coined to designate polymorphic behaviour 

of objects due to their respective environments. We 

proposed an operational model for environmental poly- 

morphism that uses a system of defaults and overrul- 

ings. The model seem to capture the needs of current 

applications. 

With regard to implementation complexity, it is easy 

to imagine an efficient implementation if the contain- 

ment trees are static: if each acquisition is realized us- 

ing a pointer then the time to access an acquired fea- 

ture is O(1). The problem becomes more difficult if we 

want to cater for tree updates: insertion and deletion 

of components. 

Two solutions come to mind: In the first, acquisition 

pointers are updated with each tree operation. This 

is an R(n,) (worst case) time operation, where n is the 
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number of objects in our system. In the second, there 

are no acquisition pointers; instead each object has a 

pointer to its container. In this solution, updated are 

efficient, running in O(1) time, but queries are R(n). 

In both solutions though, the setting to default of an 

auxiliary flag in a whole sub-tree as a result of an as- 

signment to an attribute is an R(n) time operation. 

There is a sophisticated implementation approach 

that gives O(lg n) amortized (and at the cost of greater 

programming complexity, even O(lg n) worst-case) for 

all operations: insertions, deletions, query and flag flip- 

ping. This is done using data structures based on Tar- 

jan and Sleator’s dynamic trees [39] (See [44] for a text 

book exposition.) Unfortunately, this can only be done 

if there is only one kind of an acquired attribute in the 

tree. If there are m kinds of attributes in the system, 

then the insertions and deletions time increase by an 

m factor. What’s worse, the storage requirements be- 

come O(mn). Our data structures intuition leads us to 

believe that much better implemenations are possible, 

but their existence remains an open problem. 

This research of course only opens the road to the 

understanding and using acquisition. There are many 

lessons to be learned and data to be gathered from a 

large scale exploitation of this new abstraction mecha- 

nism. 
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