
Environment al Acquisition

~ A New Inheritance-Like Abstraction Mechanism

JOSEPH GIL DAVID H. LORENZ

The Faculty of Computer Science,

Technion-Israel Institute of Technology,

Technion City, Haifa 32000, ISRAEL;

Email: { yogi 1 david } @CS.Technion.AC.IL

Abstract

The class of an object is not necessarily the only deter-

miner of its runtime behaviour. Often it is necessary

to have an object behave differently depending upon

the other objects to which it is connected. However, as

it currently stands, object-oriented programming pro-

vides no support for this concept, and little recogni-

tion of its role in common, practical programming sit-

uations. This paper investigates a new programming

paradigm, environmental acquisition in the context of

object aggregation, in which objects acquire behaviour

from their current containers at runtime. The key idea

is that the behaviour of a component may depend upon

its enclosing composite(s). In particular, we propose a

form of feature sharing in which an object “inherits”

features from the classes of objects in its environment.

By examining the declaration of classes, it is possi-

ble to determine which kinds of classes may contain a

component, and which components must be contained

in a given kind of composite. These relationships are

the basis for language constructs that supports acquisi-

tion. We develop the theory of acquisition that includes

topics such as the kinds of links along which acquisi-

tion may occur, and the behaviour of routine (meth-

ods) and attribute features under acquisition. The pro-

posed model for acquisition as a hierarchical abstrac-

tion mechanism is a strongly typed model that allows

static type checking of programs exploiting this mech-

anism. We compare it to several other mechanisms in-

cluding inheritance and delegation, and show that it is

significantly different than these.

Permission to make digital/hard copy of part or all Of this work for Personal
or classroom use is granted without fee provided that wles are not made
or distributed for profit or commercial advantage, the copyright noti% the
title of the publication and its date appear, and notice is given that
copying is by permission of ACM, Inc. To Copy otherwise, to republis$ to
post on sewers, or to redistribute to lists, requires prior specific PermIssion
and/or a fee.

oOPSLA ‘96 CA, USA
Q 1996 ACM 0-89791-788-x/96/0010...$3.50

1 Introduction

“Nature vs. Nvrture?“1 This long standing question

obsessed philosophers, psychologists, laymen and even

physicists [46] for years. The dispute is over the relative

importance of heredity and environment in determining

the makeup of an organism. However, for the object-

orienteer2, it has rarely been a problem: The basic char-

acter of an object, sometimes called “behaviour” in the

object-oriented (00) jargon, is determined at birth (in-

stantiation), and not by the household (the composite

object) of which it is a part. This simplistic sweeping

claim is, as are all such claims, false for humans. How

true is it for objects? How should the “nurturing” of an

object, affect its manners? Can such influence be dealt

with in a (type) safe manner?

In this paper we address these questions. We explain

what is and what is not “the influencing environment”

of an object. We show that there are many impor-

tant cases, both in the problem and program domains,

in which the need for environmental a$ect naturally

arises. We then propose a new abstraction mechanism,

environmental acquisition, and study its possible real-

ization in a strongly-typed programming language.

This paper does not provide solutions to all the prob-

lems it raises. Rather, it presents a framework for ad-

dressing the issues involved in the many aspects of en-

vironmental affects.

1.1 Motivation

Consider the following example which may occur in an

automobile industry application: An object of a class

Car depicted in Figure 1, is a composite which comprises

components such as objects of class Door. Suppose that

it is known that a car is coloured red, then we are likely

’ Also known as the environmental-heredity controversy.

*or, should we write, object-orientalist?

214

Door 0 Colour

A
i I

Hatchback Sedan

Figure 1: Acquisition in t.he problem space

to infer that its doors are red as well. However, al-

though the door “inherits” its colour from the car of

which it is part, it would be wrong to derive Door from

Car. This “colour-inheritance” is related to t,he “in-a”

link which binds doors to cars.

Consider now the subclasses of Car, say Sedan and

Hatchback, which are distinguished among other things

by their number of doors. Class Door “inherits” its

colour from Sedans and Hatchbacks alike, just as it

would from another hypothetical class Airplane which

does not stand in an “is-a” relationship with Car. We

call this kind of inheritance environmental acquisition

(acquisition for short) and distinguish it from inheri-

tance. Observe that since acquisition binds objects and

not their classes, it does not (indeed it cannot) induce

any subtype relationship. This is in contrast to the

common role of inheritance in programming.

The above example is drawn from the problem

space. Another example, which belongs in the pro-

gram space, is that of class objects. In a pure object-

oriented programming (OOP) model, such as that of

SMALLTALK [19], 1 c asses are also objects. The concept

of class objects occurs even in less pure models such

as Objective-C [la], and SOM [15]. A class object is

an instance of a meta-class Class.3 It provides a mould

for the instantiation of objects in the class and defines

their behaviour. If a class Ci inherits from Cz, then the

class object of Ci has a “super” link t,o its containing

class object of Car as shown in Figure 2. Inheritance

is realized by propagation of features4 of Cz along that

pointer from Ci. This propagation can be thought of

as acquisition in the meta-level. Part of the role of the

meta-class Class is to define and implement the process

of this propagation.

The fact that the propagation of features across links

is not part of the usual object model contributes to the

3For the purposes of the example, it is sufficient to assume
that there is only one m&a-class and that abstraction stops at

Class. That is, there are no meta-meta-class, meta-meta-meta-

class etc. However, the example becomes even more interesting,

albeit more complex, if these are allowed.

411ere, and henceforth, our terminology adheres as much as

possible to that of EIFFEL [32].

complexity of understanding and programming with

class objects and meta-classes. Assuming a single-

inheritance scheme, a view which mitigates this diffi-

culty is that of class objects as representing sets. The

class object Car models the set of all cars. The class

objects Sedan and Hatchback model their correspond-

ing sets, which are part-of the class object of Car. By

allowing components to acquire attributes from their

respective composites we put “colour-inheritance” of

doors from cars, and the acquisition of features of the

class object Sedan from the class object of Car at at the

same conceptual level.

1.2 Acquisition vs. inheritance

Generally, an 00 system encompasses two hierarchies,

as depicted in Figure 3: an “is-a”-inheritance hierar-

chy of classes, and an an “in-a”-composition hierarchy

of objects where acquisition dwells. The two hierar-

chies are tied by “instance-of” links between objects

and classes which are drawn as dotted lines in the figure.

Despite superficial similarity, there are important dif-

ferences between inheritance and acquisition. These are

highlighted by making the distinction between shared

and particular features of an object. Shared features are

those which are determined by the object’s class. They

include behaviour (declaration and definition of meth-

ods) and structure (declaration of instance variables).

Particular features may be different in different objects

of the same class. They include the object’s identity

and state (current values of instance variables). Inheri-

tance pertains to classes and therefore serves as a means

of abstraction over shared features. In cont#rast, acqui-

sition can be viewed as a means of abstraction over

particular features.5

Let al,. , a, be objects of classes Cl,. . , C, respec-

tively, such that al is an instance variable of az, and so

on, as depicted in Figure 4. All shared attributes of al

are determined by Cl. Traditionally, the particular fea-

tures of al are independent of both the shared and the

particular features of a2. Environmental affect on al is

tantamount to the dependence of its particular features

on the class Cz and its instance ~2. More generally, the

environment of al consists of the particular features of

a2,...,an as well as their shared features ((72,.) Cn).

The environmental affect on al is the extent t,o which

its particular attributes depend on the environment.

Unlike inheritance, acquisition does not impose sub-

typing: a Door is not a Car just as Clyde the ele-

phant [13] is not the jungle it resides in. In subtyp-

‘One may argue that in the case of inheritance an object in-

herits particular features from its subobjects. With acquisition

the “subobject” would had inherited from the containing object.

215

Classes
Objects

class ____

S” er

Bi
Class

Figure 2: Meta class acquisition in the program space

Classes
Objects

Figure 3: The “is-a”-inheritance and the “in-a”-composition hierarchies

Objects
Classes

shared features j
.:

C2 particular features 1

;c n pmtrt~ular features

Figure 4: Environmental affect on al

216

ing, the heir could be used wherever the parent is used. an imitation does not match a disciplined use of this

Hence, all features of the parent musi also exist in the paradigm as enforced by built-in lingual support. This

heir. With acquisition, this is unexpected, often unde- difference is similar to that of high-level languages to

sirable, and in some cases impossible: Although the be- assembly language. Although machine code is at least

haviour of Clyde in the jungle might be different than in as powerful as high-level languages, since it implements

a zoo, Clyde is not green just because the jungle is. On them all, the availability of high-level promotes better

a workstation, we may want our windows to acquire the programming practices. For example, as we shall see,

colour palette, but not the exact colour of their com- it is possible to practice type-safe programming with

posite window. In word processors, words cannot, be acquisition, a trait which the unharnessed power of del-

justified, while the paragraphs they are in can. egation excludes.

Another difference between acquisition and inheri-

tance is therefore that acquisition is done on a feature

by feature basis. The acquiring class must enumerate

all features it needs to acquire. In offering this freedom

of selection, acquisition is more expressive than inheri-

tance. The penalty, that comes in the form of long lists

of such enumerations, can be alleviated with semantic

grouping of features, or even collect,ing features that are

acquired together in a compound feature class.

Our proposal for acquisition is strongly typed; spe-

cific ways are provided for the programmer of an object

to cater for all of its potential environments and deal

in a type safe manner with a concrete environment in

which it exists. Moreover, a component can be dynam-

ically moved to a different composit,e, resembling per-

haps dynamic inheritance. A consequence of this is an

inclination towards forwarding rather than delegation

semantics.

Outline The rest of the paper is organized as fol-

lows: To give the reader a taste of the motivation for

this research, we present in Section 2 several important

application domains in which acquisition ernerges nat-

urally. Sections 3, 4 and 5 together develop the theory

of acquisition: Section 3 deals with the channels along

which acquisition occurs, Section 4 with environmen-

tal polymorphism, and Section 5 deals with the ques-

tion of propagating features in these channels in a type

safe manner. In Section 6 the proposed acquisition is

compared with few other models, including dynamic in-

heritance, delegation, genericity, composite object sup-

port [23] and complex associations [27]. Finally, Sec-

tion 7 gives the conclusions and possible directions for

further research.

Acquisition is also subject to polymorphism. Envi-

ronmental polymorphism means that there are many

possible variant behaviours of objects of a given class,

and that the precise behaviour is dependent on the envi-

ronmental affect. The terms environmental acquisition

and environmental polymorphism are complementary,

just as inheritance and subtype polymorphism [41, 81

are. Environmental polymorphism is different from

subtype polymorphism: With subtype polymorphism,

the code applicable to a certain type (class), be it part

of that type definition or not, is also applicable to all

of its subtypes (subclasses). The code’s behaviour is

therefore parameterized by the actual object it operates

on. With environmental polymorphism, the object’s

behaviour is parameterized by its surrounding environ-

ment

2 Application Domains

Containment hierarchy is a ubiquitous concept in pro-

gramming methodology in general, and specifically in

the 00 paradigm. The COMPOSITE design pattern [16]

appears in almost any 00 system. Many of the 00

analysis and design methods even devote a special nota-

tion for containment [3, 10, 381. In this section we show

that there are abundant cases of containment hierar-

chies where contained objects have different behaviours

depending on their surrounding environment. We give

five application domains in which this phenomenon oc-

curs naturally.

2.1 GUI Systems
Acquisition is different from programming with ex-

emplars [29, 51 in the same way that classical class-

based languages are different from languages such as

SELF6 [47]. Although acquisition can be imitated (to

a known extent) by the delegation mechanism, such

‘There is no need in a “single-hierarchy” system with only one

kind of objects, as in SELF, for m&a-classes because objects de-

scribe themselves. SELF provides, however, dynamic inheritance

00 graphic user interface (GUI) frameworks typically

organize screen elements: windows, views, dialog boxes,

and so on, in a view tree. Systems of this sort are for

example, Turbo-Vision and its descendent OWL [4, 431,

Interviews [30], and that of NeXT [45]. Responsibili-

ties, such as screen drawing and handling input events,

are distributed down this hierarchical view-tree. A

screen element to which responsibility is delegated from

its (environmental) narents. also acauires some of its in the form of delegation. \ I 1

217

parents’ traits. In Turbo Vision [4] for example, we see

the following acquired traits.

Origin of the coordinate system. The coordinate sys-

tem of a screen element is relative to that of its parent.

Error handling. The routine to call in case an unrec-

ognized event occurs may be that of the parent.

Control fiozu. Modal screen elements are subtrees

which, when activated, disable all elements external to

them. Examples of modals are yes-no message boxes

and the application itself. When a modal element

terminates, it returns control to its nearest enclosing

modal element. The nearest enclosing modal element is

implemented as an environmentally-acquired attribute

which exists in all screen elements.

Attributes palette. Screen colours (aka attributes) of

a screen element are given as indices of a palette table

stored in one of the screen element ancestors. The val-

ues stored in this table serve in turn as indices to an

ancestor of this a.ncestor and so on until the application

global attributes are reached. This acquisition mecha-

nism is designed for flexibility and power, but it makes

programming and reasoning with palettes a complex

task.

Interviews [30] uses acquisition for computing con-

straints on an object’s size. Other GUI systems use ac-

quisition for other purposes e.g., context sensitive help,

where a screen element acquires its response to a help

request from its enclosing element but may override it

to support more specific help.

These GUI systems are written in languages that do

not support acquisition as an environmental inheritance

mechanism. Acquisition must be therefore emulated,

usually by a complicated web of point,ers and schemes

for call-back. Beyond unwieldy complexity, this results

in difficult to understand features (as in the attribute

palettes example), or in non-safe programming, (e.g., is

it always guaranteed that an existing modal will find

an enclosing modal?).

2.2 Graphic modeling

The intricacies of Turbo Vision’s attribute palette are

only multiplied in the realm of high resolution graphics

modeling 3-D objects. Here it is necessary to address

issues of acquisition of many more kinds of attributes

such as line styles, colour, shading, textures, model-

ing type, and transformation matrix, spread along very

complex objects. The graphics community recognizes

that the ensuing questions are difficult [14, Section 9.21.

However, there is at least one major graphic standard

which includes acquisition [37].

2.3 Text processing

Emphasized text in I4TEX [28] normally prints in ital-

ics. However, an emphasized within an emphasized

block prints in roman (as demonstrated in this sen-

tence). This is only one of the many examples in

the domain of desktop publishing systems where the

behaviour of text elements is strongly dependent on

their surrounding environment. Systematic approaches

to document processing, such as SGML [20, 7] and

RTF (Rich Text Format), use a hierarchical represen-

tation, and let attributes such as type-face, text-size,

and bounding boxes be environmentally-inherited by

elements from their surrounding elements. Some mod-

ern word-processors (e.g., Dagesh [l]) even explicitly

use the word “inheritance” to denote what we call ac-

quisition.

The usage of acquisition is very evident in the scoping

model of TEX [25]: the value of all macros, declarations,

and registers, is acquired at each point from the inner-

most enclosing scope in which they are defined. Ac-

quisition and environmental polymorphism are part of

the reason why programming T&X macros is so notori-

ously difficult. A macro is a polymorphic object whose

behaviour depends on the values of the commands and

on other macros that it calls at t,he time of activation.

To add to the complication, a macro may change its

own definition during its execution. Therefore, recur-

sive calls may amount to something totally different

than our usual understanding of recursion. Better’un-

derstanding, strong typing, and disciplined acquisition

should make TEX macros less awkward.

2.4 User defaults in an operating envi-
ronment

Fancy GUI windowing environments allow the attach-

ment of various defaults and user preferences to files

and other resources. For example, one may attach a

word processing application, customized and configured

appropriately, to a certain type of document. On click-

ing on a document’s icon, the corresponding editing ap-

plication will be invoked. If the user manipulates many

different projects, or if a large multi-user environment

is to be supported, this attachment has to be carried

out in an orderly manner.

Even in a simple Unix environment, a default system

is needed: Different users have different preferences,

which may further depend on the types of files and

their location. Upon editing a file of an unknown type

located anywhere under the Programs directory, the ed-

itor should be in programming mode. If the same file

is under a Documents directory, defaults should change

21%

accordingly. This behaviour may be different depend-

ing under which home directory these directories reside.

Acquisition, together with an inheritance hierarchy

of types of files and other resources, is the appropri-

ate way of setting defaults. Its absence brings about a

major source of confusion for naive users and a source

of headache for the system administrator. Current

solutions in Unix use a tangled mixture of compile-

time flags for applications, system-global, user and di-

rectory initialization files (. Xrc in the Unix jargon),

together with environment variables settings. Shared

(networked) installation of many applications in MS-

Windows is next to impossible.

2.5 Language processors and reverse
engineering

Processing formal (programming) languages is another

application domain which calls for acquisition: com-

pilers, interpreters, automatic generation of test cases,

computing metrics, etc. If the processed language be-

longs in the Algol family and has static binding, then

acquisition is applicable. A parse tree for a specific in-

put program of this language only captures the syntac-

tical aspects of the prograrn [17]. The semantic infor-

mation can be computed from that tree with the help

of acquisition. Here are a few examples, all taken from

C+t.

In our motivating examples, features were acquired

through aggregation links. A natural question that

arises is that of acquisition along other kinds of links

among objects. In the MVC model [26] for example, it

would be far-fetched to claim that the view is part of

the model, but it would be very natural for it to acquire

along the %iews” link those aspects of the model that

are relevant to displaying the model. The same can

be argued for the OBSERVER design pattern [16] which

can be thought of as a generalization of MVC. There

are other design patterns such as PROXY and STATE in

which acquisition might prove useful even across non-

aggregation links.

3.1 Aggregation links

Acquisition along aggregation links is particularly in-

teresting because of several properties that the contain-

ment relationship exhibits:

(i) an object may be a component of (directly con-

tained in) at most one composite at any one time;

Constructors. Constructors and ordinary member

functions have essentially the same syntax, but gener-

ate quite a different code. The precise type of method

can only be determined by the name property of the

enclosing class/struct definition.

(ii) no object may be contained, directly or indirectly,

in itself; and

(iii) all objects may be part of a containment hierar-

chy, i.e., all objects have aggregation links.

Variable definition vs. function declaration. The

x y(z) ; C++ statement is either a function declaration

or a variable declaration, depending on the declarations

of x, y and z. These declarations can only be found in

the environment surrounding the statement.

Members’ visibility. The visibility (public,

protected or private) of members in an aggregation is

also determined by the type of the aggregation, struct

or class.

Property (i) eliminates the need to specify the link

through which the acquisition is done. Property (ii) re-

solves the problem of circularity in acquisition. Prop-

erty (iii) enables acquisition for all objects.

The forest topology of containment engenders an

analogy between single inheritance and acquisition.

This analogy even suggests “environmental inheri-

tance” as an alternate term to acquisition, where the

notion of environment refers to a list of all enclosing

composites of a component.

Contexts. More generally, each scoping unit: file,

function, class, struct or namespace, acquires a con-

text from its enclosing scoping unit, may override this

context in part or in whole, and passes on the modified

context to elements enclosed in it.

Three more properties complement our understand-

ing of the containment relationship:

(iv) composites export the ability to access the com-

ponents they enclose as autonomous objects;

In summary, as is the case in life, things must be put

in context. Observe that in the last two items above, an

enclosed element not only acquires properties of the en-

closing one, but may also change them. A protected:

statement in a struct changes the visibility attribute

(v) the protocol of a composite does not depend on

knowledge of its components; and

(vi) the protocol of a component does not depend on

knowledge of its composite.

of its enclosing struct. We deal with this delicate issue

later.

3 Paths of Acquisition

219

Together, these last three properties constrain the

coupling between the composite and the component.

Although property (iv) is sometimes used for separa-

tion of containment (Car-Door) from attribution (Car-

Colour), it is not a pre-requisite for the two others, nor

for acquisition. The protocol of objects exists even if

they are inaccessible from outside the containment, and

acquisition might be useful for such objects as well. 7

Containment relationship has yet another property:

(vii) the “contains” relationship is covariant.

Specifically, if a class Cs has a slot of class Ci, then

the type of this slot in a subclass of Ca is Cl, or Ci,

a subclass of Ci. With the natural abstract superclass

rule [al], and the proviso that insertion of components

into slots can only be done in concrete container classes,

we have that covariance of slot type is not only natural,

but can also be checked statically. This form of covari-

ante should be contrasted with covariance of function

arguments, which is natural but unsafe.

Although general purpose programming languages

reflect the situation in which “. . . the difference be-

tween whole-part associations (WPAs) and other asso-

ciations is often only cosmetic and diagrammatic.” [9],

there are numerous application domains in which con-

tainment is essential and natural. In these domains,

which include solid modelers, hierarchical databases,

text structuring systems such as SGML, parsers and

other language processors, acquisition should be done

along aggregation links.

In order to restrict acquisition to aggregation links,

we must be able to distinguish these from all other links.

However, in examining programming languages we find

that such a lingual distinction tends to be the exception

rather than the rule: In reference-semantics languages

such as SMALLTALK, there is no clear distinction be-

tween containment and other kinds of associations; in

value-semantics languages such as LISP, all associations

are containment in a sense.

The distinction is crisper in mixed semantics lan-

guages such as C++ and EIFFEL [32]: an object is inter-

preted to be contained in another if its value is stored in

it (EIFFEL’S expanded), while reference representation

is used for non-containment associations. But despite

the explicit claims [24] of the designers of BETA [31],

reference semantics is not exclusive to associations in

that language as in others. Reference semantics is used

in many cases for implementation convenience, for over-

coming problems of creating and managing large wholes

7Conversely, we can remark that it is not even essential that

the composition root itself be accessible. In a parse tree applica-

tion, for example, there may be no need for direct access to the

single composition root.

and wholes with a variable number of parts, and for

handling cases where garbage collecting environments

prevent the realization of property (iv) with value se-

mantics of the containment. Note also, that despite its

smoothness and safety, property (vii) is not supported

directly in mainstream languages.

The consideration of issues of acquisition may help

in the dilemma of discerning WPA from other kinds

of associations. This dilemma is expressed in Civello’s

words [9]: “While it is generally acknowledged that

WPAs bind classes more strongly than other associa-

tions, there are no further rules or constraints to guide

design and implementation decisions.” If acquisition

occurs along specific links then these links are more

likely to be classified as containments, although as we

have seen, there are cases of acquisition along other

kinds of links.

The term whole in the acronym WPA does not co-

incide entirely with our understanding of the compos-

ite notion. In [9]: Civello also suggests classification

of wholes as assemblies in which WPAs are functional,

or as either aggregates or tuples in which both WPAs

are non-functional. We believe that acquisition along

aggregation links should occur only along functional

WPAs. However, it should also occur along spatial or

temporal inclusions which are not WPAs according to

Civello’s taxonomy.

3.2 Nonaggregation links

Although our chief example for acquisition is through

containment links, there are cases of acquisition of fea-

tures along other links. The environment of an object

might contain the sender of the message, the set of con-

tainers, or the creator of the object ([22] for example

presents a language mechanism for allowing an object

to inherit behaviour from its creator).

We generalize the concept of acquisition by allow-

ing acquisition to occur through an arbitrary system of

links that has a forest topology and is similar in struc-

ture to containment. By this we mean chiefly properties

(i)-(iii) and (vii). Properties (iv)-(vi) are significant as

well, but they are usually only a concern in containment

in which the binding between the objects is so strong

that a clear boundary must be set bet,ween t~hem. Ex-

amples for containment-like hierarchies are the relation

between an object and its creator [22] and ownership

as in Car-Owner.

Another possible generalization is multiple environ-

mental acquisition: this occurs e.g., in the armed forces

and other large organizations where there are two

chains of commands: professional and organizational.

An artillery officer might report organizationally to the

220

brigadier and professionally to the chief artillery com-

mander. We leave this generalization beyond the scope

of this paper, and, sufficing ourselves with the intuition

and the motivation built upon the motivating exam-

ples, concentrate on issues of the theory of acquisition

itself.

The main virtue of containments and containment-

like hierarchies is the ability to use transitive closure in

acquisition. If an object a is contained in b and b is con-

tained in c, then a may acquire features from c, even

if b does not acquire them. Current applications us-

ing attribute grammars are cumbersome because copy

rules must be used to propagate the values of attributes.

Great simplifications are achieved using what we may

call leap acquisition, arising from this transitive closure.

Yet another generalization step is that of allowing

acquisition across arbitrary links. However, with this

generalization, the uniformity of the links is lost; the

notion of transitive closures may thus lose its meaning.

Although it may be technically possible to extend the

definitions to enable leap acquisition in such a case, we

will refrain from doing so. To smoothen t.he discourse,

we limit the technical discussion to containment rela-

tionships only. It should be obvious that no generality

is lost.

4 Static acquisition

Acquisition could be implemented by letting all objects

store a reference to their immediate enclosing compos-

ite, if one exists. The standard binding of messages to

methods can then be altered so that if a message is not

recognized by a receiver, it is resent to its composite.

Resends could be done in a forwarding manner, i.e.,

method execution in the context of the composite, or

in a delegation manner, that is method execution in the

context of the original receiver. s

The implementation of this seemingly-simple scheme

is difficult in statically-typed compiled languages such

as Ctt; sophisticated tricks such as the one presented

in [ll, Section 9.21 are required for tampering with the

builtin dynamic binding mechanism. Implementation is

more feasible, however, in SMALLTALK and other dy-

namically typed languages which poses runtime reflec-

tive capabilities. Nevertheless, in both implementations

much is left to be desired in terms of safety and ease of

use. The sender of a message must be familiar with the

runtime environment of the receiver in order to know if

the messages will be recognized or not. Lack of safety

is also the source of difficulty in an implementation in

8The following section explains why forwarding is preferred

over delegation for acquisition, but this distinction is of secondary

importance here.

221

Ct+-like languages: the protocol of an object can only

be determined at runtime.

To obtain type safety, a programming environment’

supporting acquisition must be able to generate and

prove predicates such as “instances of Ci can only occur

as direct components of instances of Cz”, “instances

of Cr can only occur as direct or indirect components

of instances of C2”, and “instances of Ci may occur as

direct components of instances of (32”. Further, since

as explained above, the interface of a component lists

the acquired features that are part of its interface, the

environment must be able to make deductions of similar

nature with regard to individual features.

4.1 Environmental polymorphism

The main difficulty in carrying out static analysis is the

accounting for the environmental polymorphism, i.e.,

the uncertainty that stems from the multitude of po-

tential configurations of the composition hierarchy at

runtime. There are two sources to this uncertainty:

4.1.1 Containment freedom

The same component may belong to composites of dif-

ferent classes or even occur standalone. Examining Fig-

ure 5 for example, we see that Door may acquire colour

and airline. A Door may be part of a Car or a part of

an Airplane but never both. Acquisition of neither can

be guaranteed.

4.1.2 Subtype polymorphism

Determining all possible composites a class may be part

of is done by a traversal of the graph of classes and

the composition links that connect them. Curiously

enough, subtype polymorphism makes it necessary to

examine, for each class encountered in the traversal, all

of its superclasses, a.11 of its subclasses and even all su-

perclasses of all of its subclasses. To understand this,

Auto-part

4
D00r

Vehicle

driver

Figure 5: Environmental polymorphism

consider the two distinct ways in which subtype poly-

morphism may effect acquisition:

Component Polymorphism If a superclass of a

certain class may be contained in a composite, then

so might the class itself. In Figure 5, a Trunk-door may

be contained in a Car.

Composite Polymorphism If a class may serve as

a composite of a certain component, then all classes in-

heriting from this class are potential composites of that

component. Consequently, when we go from the com-

ponent to the composite through a specific composition

link, there is uncertainty with regard to the actual class

of the composite. If that composite is in turn a com-

ponent of yet anot#her composite, then its polymorphic

nature must be taken into account.

In other words, composite polymorphism means that

if a subclass of a certain class may be contained in some

other class, then (non-immediate) instances of this class

may also be contained in this composite. In Figure 5,

we have that some Auto-parts may be contained in a

Car.

More generally, in a multiple inheritance setting,

non-immediate instances of a class that shares a heir

with another class, may be contained in any composite

that contains instances of that other class. In Figure 5,

some Cars may be contained in a Box.

To handle cases where a component cannot be guar-

anteed to acquire a feature, we employ two standard

techniques: a default action or value for missing fea-

tures and a guarded computation mechanism similar

to ML’s case operator [36] and C’s ternary operator,

cond? expl : exp2, where expl and exp2 (the true and

the false branches) are of the same type. These tech-

niques should be used to capture uncertainty due to

containment freedom and due to component polymor-

phism; protection against uncertainty due to compos-

ite polymorphism is more appropriately taken care of

by dynamic binding. In the example we have that an

Auto-part may have a pla-y-age feature in its environ-

ment if it happens to also be an instance of Door which

happens to also be part of an instance of a Match-

box-car. However, this property is not allowed to be ac-

quired since checking whether or not it exists is nothing

else than a baroque mechanism of runtime type infor-

mation of objects-a technique that. is better avoided

whenever possible.

4.2 Kinships between classes

This subsection gives a precise meaning to the sentence

“a class Ci may be contained in a class Cz”, writ-

ten as Ci c C2. This meaning accounts for contain-

ment freedom and for component polymorphism but

specifically excludes composite polymorphism from the

semantics of the word “may”. In Figure 5, we will

have that Door & Car, but that none of the pairs

(Auto-part,Car), (D oor,Vehicle), and (Door,Box) stand

in the ‘,’ relationship.

Note that if Ci C Cz, then all features that Ci ac-

quires from Cz must have default values or be used only

with guarded expressions. Guaranteed acquisition of a

feature can only be done if is known that “Ci must be

contained in C2”. The precise meaning for this sentence

(Definition 4.3) includes all sources of runtime uncer-

tainty, since in this case, a feature that Ci acquires

from Cz can be used without guards in all possible con-

figurations of the runtime hierarchy.

The remainder of this section gives formal defini-

tions for the so-inclined readers. These definitions

can be readily translated to algorithms. The follow-

ing notations are pertinent: For t,wo classes C, C’, we

write C < C’ if C inherits directly or indirectly from C’

andC<C’ifC<C’orC=C’. AclassChasa

set of slots S(C). Members of S(C) are pairs of the

form (n, D), n being a named place holder for a com-

ponent of class D. Also, let S’(C) be the set of all

inherited slots of C, i.e., S’(C) = Uccc, S(C’) . -
For simplicity, we assume that no overloading oc-

curs. Every slot name n is introduced in exactly one

class which we denote by Intro(n). That is to say. no

name n appears in more than one set S(C). (Overload-

ing fans who dislike this restriction may use classes to

tag overloaded names.) One exception to account for

property (vii) applies, if (n, D) E S(C) and if C < C’,

D < D’, then we may also find that (n, U’) E S(C’).

Still, S’(C) would contain only one copy of R as part of

the pair (n, D) (usual overriding).

W.1.o.g. , there is also a unique frozen” root c1a.s~‘~ R

which makes roots of composition trees; only instances

of R can serve as such roots; there is a single slot

(r>R’) E S(R); only subclasses of RI can instantiate

immediate components of roots.

4.2.1 May kinship

As explained above, when analyzing potential contain-

ment relations, we must look at classes that are related

by a common subclass. If D 5 Cr and also D 5 Cz,

then an object contained in a slot defined in Cr may

acquire features defined in Ca.

gFrozen classes are classes that cannot be further used for

inheritance.

“The root class R should not be confused with “Any” that is

sometimes used to denote the root of the inheritance tree.

222

Figure 6: A containment path from CO to Ck.

We write C -&- C’ to denote that C and C’ are

related via a common subclass D. We write C’$C to

denote that n is a slot satisfying (n, C’) E S(C).

Definition 4.1 A containment path is a sequence

Dk-1
lr=c,~c~2c,~...-c~~, %c,

where Ck is the root class R. (Figure 6)

l We say that a class D dominates a containment

path P if there exists a class Di on T, such

that Di 2 D.

l We say that a containment path T covers a class D

if D 5 Ci and D 5 C[, for a pair of classes Ci,

Ci on x.

Dominance of a containment path starting with a

class CO is a necessary condition for environmentally

affecting Co’s interface. If D dominates a particular

containment path (that starts wit#h Co), then Co is po-

tentially contained in D. If all containment paths that

start with Co are dominated by D, then Co is necessar-

ily contained in D. May- and must-kinships are based

on potential- and necessary-conta.inment, respectively,

with few additional constraints.

The concept of coverage captures uncertainty due to

composite polymorphism, that is, the freedom of choos-

ing the actual composites Do, D1,. , Dk-1. A defini-

tion of may kinship has to ensure that nothing is re-

vealed about the subtype of the composite. Suppose

that we have that a class C “may be contained” in a

class D. Then, the environmental acquisition mecha-

nism makes it possible to determine in runtime for any

specific object of C if it is contained in an object of D.

We would like to limit this runtime power to exactly

this. Specifically, if D’ < D or D < D’ then the envi-

ronmental acquisition mechanism should not give rise

to a possibility of determining whether an object of C

is in an object of D or D’.

There are several other subtleties in the definition of

may kinship which are not discussed in t,his proceedings

version of this paper. As it turns out the appropriate

definition for may kinship is:

Definition 4.2 We say that a class C may be con-

tained in a class D, C E D, if all containment paths

that start with C and couer D are also dominated by D.

4.2.2 Must kinship

It is harmless to ignore some potential containment

paths in may kinship. Not so for the must kinship. We

need to examine all potential paths to ensure that an

instance of the component, can only be contained in an

instance of the composite. Yet, must-kinship overrules

some containments that satisfy this condition but their

safety is coincidental in nature rather than captured in

the design.

Again, we can obtain that an adequate definition for

must kinship is:

Definition 4.3 We say that a class C must be con-

tained in a class D, C 4 D, if there exist a slot n

such that all containment paths that start with C are

dominated by D, pass through n, and D = Intro(n).

With regards to inheritance, the must kinship takes into

account both component and composite subtype poly-

morphism as follows: C 4 D only if C’ + D for any C’

such that C’ 5 C or C 5 C’.

5 Acquisition of features

Now that the may and must kinships are elucidated,

we can deepen our study of acquisition by investigating

the issues arising when specific features are acquired.

223

5.1 Acquisition of routines

Inheritance, as a relation among classes, pertains only

to features which are shared by all instances of the class:

methods, structure and potentially also class variables.

As explained in the introduction, acquisition, as a rela-

tion between classes, deals also with features which are

particular to an object (attribute values). To gradually

reach understanding of this, our study begins with ex-

amination of routines. Routines are conceptually sim-

pler than attributes in the sense that they are read-only

features. In most object-oriented systems (excepting

perhaps Delphi) objects cannot replace routines defined

in the class.

The simplest case of routine acquisition occurs when

a class must be contained in another class. In this case,

we can use the following EIFFEL-like syntax to declare

an acquired routine:

class Paragraph

feature

acquire emphasize0

. . .

end Paragraph

(Recall that acquired features must be declared ex-

plicitly. After all, we do not want a Door to acci-

dently acquire a method to start the engine.) The

compiler must now check that there exists a class that

defines emphasize such that Paragraph must be con-

tained in that class. For example, it may find that an

emphasize method is defined in a class Document and

that Paragraph 4 Document.

What happens if there exists some other class, say

Section, that defines emphasize, and Paragraph must (or

even just may) be contained in it? An instance of Para-

graph would then acquire emphasize of the inner most

composite object that has it, be it of class Document

or Section. This is fine as long as Document.emphasize

and Section.emphasize are “basically the same” feature.

That is to say, if there is a common ancestor of Sec-

tion and Document, say Formatting-Entity that, defines

emphasize.

If there is no such ances-

tor, then Document.emphasize and Section.emphasize

are tied only by means of name overloading. Such a

tie is coincidental in nature; there is no certainty of

agreement or even conformance between the types of

the two features. If the features were intrinsically re-

lated, then a skilled designer should have captured this

in a common ancestor.

We allow acquisition of an overloaded attribute only

if the overloading ambiguity is resolved with explicit

qualification of the defining class name. Incidentally,

another consequence of the above deliberation is that a

good acquisition system must support multiple inheri-

tance so as to enable factoring of common features into

appropriate base classes.

The next case to consider is acquisition in may kin-

ship. Consider two classes Cl, Cz such that Cl may be

in Ca, but it is not guaranteed that 6’1 must be in Ca,

i.e., Cl E Cz and Cl + Ca. Suppose that, Cz defines a

feature f. It would be unsafe to invoke, by means of ac-

quisition, the feature f from Cx unless f is defined also

in Cl. If C1. f takes precedence over C2.f) then C2.f

can never be called, and this would render acquisition

pointless.

Conversely, an interesting and useful semantics is ob-

tained when letting C2.f take precedence over C1.f.

For example, a black Door put in a white Car should

turn white. But once removed from it, it should show

black again. Notice that the precedence is in opposite

direction than what happens with ordinary inheritance.

A class that inherits a feature may override it. A class

that acquires a feature must supply a default imple-

mentation to it; the acquired feature takes precedence

over that default.

Routines that are acquired through a may kinship

are defined as follows:

class Window

feature

may acquire help0 default is

.

end help

. .

end Window

In inheritance a routine may refine its inherited im-

plementation. Is it also possible for a routine to refine

its acquired implementation? The default implemen-

tation of help cannot call its acquired version, since it

is invoked exactly when there is not such an acquired

version. In contrast, in the case of must kinship, refine-

ment is possible.

class Quotation

feature

acquire left-margino: Length overrule is

return acquired left-mar&() + I cm

end left-margin

.

end Quotation

The overrule keyword signifies that the implementma-

tion of left-margin in the current instance of Quotation

takes precedence over the acquired one.

A default implementation in a must kinship is mean-

ingless. All that remains is therefore to consider the

224

case of an overrule implementation in may kinship,

which makes sense only if the overruling implementa-

tion calls the acquired one. Although it is not entirely

clear that this must be supported, we describe how

it can be done. For a type safe implementation, we

are obliged to introduce a language construct mirror-

ing ML’s case, where it is used for safe examination of

variant records.

class Enumeration

feature

may acquire itemsep(): Length overrule is

return 0.8 * acquired itemsep() guard

0.5cm

end itemsep

. . .

end Enumeration

The guard clause provides a default value to the re-

turn expression when the acquired feature itemsep is

not present. In words, the above states that item sepa-

ration in a nested enumeration is 80% of the innermost

enclosing enumeration and that it is half a centimeter in

an external enumeration. Note that Enumeration may

probably acquire from itself.

The guard clause makes it possible to call a may

acquire routine from outside of the acquiring class.

Therefore, it is deprecated but not forbidden to declare

such a routine with no default implementation:

class Component

feature

may acquire foo(): Boolean;

-- No body for foo here!

. .
end Component

. .

x: Component

if x.foo guard true then .

Table 1 summarizes the proposed syntax and seman-

tics of routines acquisition.

5.2 Context of execution of acquired
routines

So far, we tacitly ignored the issue of the context of ex-

ecution of acquired routines. There are two possible

semantics corresponding to ordinary (static binding)

and virtual (dynamic binding) of function members

in C++. This distinction is also known as, especially in

the context of links between distinct objects, the quar-

rel between forwarding and delegation semantics.

Forwarding means that the context of the initiating

object is forgotten during the execution of an acquired

routine of this object. If this routine uses a certain

feature, then this feature is understood in the context of

the object of the current execution thread. Delegation

means that the feature is sought in the context of the

initiating object.

Dynamic binding and static binding generalize del-

egation and forwarding in prescribing the context of

features selection also for polymorphic code that is ex-

ternal to the class. For example, a non-method routine

that has a formal parameter of a certain class, may

also receive an object of any of its subclasses. Dynamic

binding dictates that the dynamic (actual) class of an

object is used in interpreting the messages sent to it;

in static binding, the static (declared) class is used in-

stead.

Since acquisition does not impose subtyping, only the

more restricted terminology is relevant. Put differently,

a component cannot be used in a general context where

a composite is expected. In the case of may kinship,

such use is not type safe because it cannot be guar-

anteed that the component has or can acquire all the

features the composite has. Even with must kinship,

there is the problem that not all the features of the

composite are sensible for the component-it is not ap-

propriate to send a message to a door enquiring it for

its number of wheels, even though it is guaranteed that

a door is always a part of a car.

Let us therefore limit the discussion to the question

of binding in a method, i.e., a routine defined within a

class (as opposed to a general routine). Suppose that

such a method of a class z uses a feature f on the

current object. Then, in the forwarding semantics, all

that is required in order to guarantee that f is found in

run time, is to check that it is defined in 2. A moment’s

reflection would show that this static check covers also

delegation, even in the case of may kinship. The search

for f is conducted along the chain of “contained in”

links starting from the initiating object. The search

must succeed since the chain includes also the current

object of class z that defines f.

The fact that, delegation semantics is type-safe does

not necessarily imply that it should be preferred over

forwarding. There are several good reasons to use for-

warding semantics in all but very special cases. First, it

is counter intuitive to have different semantics for inter-

nal and external routines. This would imply, for exam-

ple, that the set of acquired features varies depending

on whether you view it from inside or from outside the

class. Second, acquisition encompasses a sophisticated

mechanism of polymorphism by itself; delegation adds

to this, and to the usual sub-type dynamic binding,

225

Kinship Declaration Syntax Comments

may not embodied may acquire f Use with guard

embodied default may acquire f default is . Safe to use; no refinement

overrule may acquire f overrule is . . . Safe to use; refinement with guard

must not embodied acquire f Safe to use.

embodied default N/A Senseless-never invoked

overrule acauire f overrule is . . Safe to use; safe refinement

Table 1: Summary of routine acquisition.

yet another dimension of complexity. Third, in many

cases where delegation semantics is required, it can be

implemented by means of inheritance. For example, a

method for computing the paragraph indentation level

in a text processing system could read

parindento: Length

return leftmargin() + lcm

end parindent

If parindent is an acquired feature, then we must com-

pute leftmargin within the context of the acquiring ob-

ject. However, a better design would make parindent

an inherited, not acquired feature. Fourth, within the

semantics of “inherited” attributes in attribute gram-

mars (one of the thoroughly studied examples of acqui-

sition), the attributes are computed in a local context

and only then propagated further.

There could be cases in which delegation semantics

may be required also for acquisition. For example, one

may want to apply different algorithms for computing

the paragraph indentation in footnotes and in ordinary

text. For that reason, we do allow delegation semantics

for acquisition as well, and suggest that they both may

play an important role. This is in contrast to the case

of inheritance, in which the existence of non-virtual

function members have no useful semantics, and their

existence is just another symptom of the C++ design

philosophy of not penalizing a programmer for an un-

used language feature.

5.3 Acquisition of attributes

Many of the conclusions drawn in the study of acquisi-

tion of routines are also applicable to acquisition of at-

tributes. If we forget for a moment that values may be

assigned to attributes, they can be treated as functions

with no parameters in which no overriding is allowed.

The picture is complicated though if assignment is

recalled. If an acquired attribute is also embodied in

the acquiring class, then a-priori, the acquired value

should take precedence. Later, the precedence could

change. It should be possible to paint just the door

green after it had been placed in a white car.

We propose the following operational model for the

precedence of embodied attributes: With each such

a.ttribute we associate an auxiliary flag that controls

whether the component takes precedence over the com-

posite or vise versa. The flag may be in one of two

states: default or overrule. The sema.ntics of these

two are in accordance with the default and overrule

keywords used in defining bodies for routines.

Initially, when an object is created and the embodied

attribute is initialized, the flag is default. When an at-

tribute of a certain object is modified, its auxiliary flag

becomes overrule. In addition, the flags of all embod-

ied attributes acquiring the modified attribute become

default. Thus, by painting the car blue, all doors be-

come blue as well. By further painting a particular door

of the same car green, the door’s handle becomes green

as the door, but the car as a whole remains blue.

When a free object is inserted into a composite,

all auxiliary flags of that object are set to default,

thus supporting the black-white door colour flipping

behaviour described above. The flags do not need to

change when an object is removed from a composite.

There are attributes which have a special undefined

value. If an attribute is assigned undefined, then its

flag becomes default. The auxiliary flag of the embod-

ied attribute that acquire from this attribut,e does not

change in this kind of assignment.

In a Delphi like system, in which routines can be

overridden by single objects, similar semantics applies

to routines.

Table 2 summarizes the proposed syntax and seman-

tics of attribute acquisition. As it is for routines, the

acquire clause for an attribute is eit,her unmodified-

signifying that acquired value is not guaranteed or ac-

companied with a may modifier-in which case no such

guarantee can be made. In both cases, the attribute

may be also embodied in the class. An embodied at-

tribute may have an initializer, i.e., an expression used

for initializing it at the time of object construction.

Acquired attributes can be used safely, except in the

case of may acquire with no embodied, where they

should be used with guard (type safety Chauvinists

226

Kinship Declaration Syntax Comments

may not embodied may acquire f Use with guard

embodied may acquire f embodied [:= . . . 1 Safe to use; initializer may

use acquired value with guard. -
must not embodied acquire f Safe to use.

embodied acquire f embodied C := . . . 1 Safe to use; initializer may

use acquired value safely.

Table 2: Summary of attribute acquisition

may want to forbid this case). The initializer may use

the acquired value, but only with guard in the case

of may acquire. In contrast with Table 1, default

and overrule semantics is determined dynamically as

described above and therefore is not described in this

table.

The rvalue of an acquired attribute is one of the em-

bodied attributes incident on the “contained in” chain

that starts at the object. There are three possible se-

mantics of the halve of such an attribute: the embod-

ied attribute in the object itself, the nearest enclosing

attribute, and the effective enclosing attribute.

We envisage a system in which assignment is nor-

mally done to the embodiment in the object but that

has provisions for the other two semantics. Assignment

to the nearest enclosing in the case of no embodiment

is useful, e.g., for upward propagation of “synthesized

attributes” in an attribute grammar application. For

example, inside the parse tree of a nested C++ class,

an assignment to an acquired symbol table should occur

at the nearest enclosing scope that, embodies a symbol

table.

Assignment to the effective attribute is also useful.

In a drawing program, it should be possible to repaint

a distinctly painted part of a whole even through one

of its subparts.

6 Comparison to other models

and related works

In this section we briefly compare acquisition to other

related work. We first explain why some common 00

constructs do not constitute by themselves an acqui-

sition system and then turn into comparing our work

with recent advances.

6.1 State as it is recorded in instance
variables

It is possible to implement acquisition using object

state. An object may contain a pointer to its com-

posite (immediate container). By following the chain

of pointers it is possible to implement all of the intri-

cacies of the acquisition. Indeed, systems such as TI$,

Interviews, TurboVision and many attribute grammar

compilers do exactly this kind of emulation. One may

therefore argue that the state of an object, including the

value of this pointer includes all information required

for acquisition. We disagree with this claim because of

the following two reasons:

First, as should be clear by now, acquisition is far

from being trivial. Its inherent complexity cannot be

covered up. Re-implementation, as done for example in

the software systems mentioned, is bound to be compli-

cated, inefficient, and in many cases lacking a well de-

fined semantics. It is instructive to consider the case of

att,ribute grammars. Although there is a huge body of

work on their efficient implementation, they have failed

to become popular. We feel that this is partly due to

the fact that the algorithms were not packaged in a well

defined language construct, and the need to enumerate

all “inherited” attributes puts a heavy burden on the

user.

Second, we feel it is wrong to blur the boundary be-

tween objects by stret.ching the meaning of the term

“state” to include external objects to which pointers

are stored. A network of objects, including perhaps all

objects of a system, could be thus made into a single

object. Further, since in general pointers are not bidi-

rectional, and since there might be variables pointing to

various locations in the network, a complicated seman-

tics would have to be called in to describe the complex

relationship between a subobject which corresponds to

connected component of a directed graph. Instead, we

feel that if there is a consistent pattern of acquisition of

properties from one object by another, then it is bet-

ter to define an abstraction mechanism that captures

this pattern. Acquisition, and in particular the over-

rule/default mechanism described above, gives a good

balance between state change, the change undertaken

by the object itself, and the environmental influence.

227

6.2 Inheritance

Inheritance is a relation between classes, whereas ac-

quisition pertains to individual objects. Other reasons

why inheritance cannot serve for acquisition are given

in the following discussion of dynamic inheritance.

6.3 Dynamic inheritance

Here we take this term in its restricted sense-a sense

also called “configurable inheritance” [18]: if a class C

is declared as inheriting from C’, then the sub-object

of objects of C, which correspond to the base-class C’,

may also be of a class C” which also inherits from

C’. Loosely, C may also inherit at run time from any

class C” which inherits from C. Stroustrup [42, Section

12.71 reports on a C++ extension proposal accompanied

by an implementation experiment to that effect. Had

this proposal of “delegation”, as it is called there, been

accepted, it could have only approximate acquisition,

falling short in several important ways:

1. Dynamic inheritance, just as a static one, induces

a subtype relationship. This is usually undesirable

in acquisition: a component is not necessarily a

subtype of its enclosing composite. Observe that

private inheritance merely restricts the visibility

of sub-typing (as suggested in [40]) but does not

exclude it altogether.

2. There is usually an orthogonal hierarchy classifying

the kinds of objects that may occur in the contain-

ment hierarchy. Mixing the two hierarchies at the

cost of the complexities of multiple inheritance and

at the risk of blurring the distinction between the

two hierarchies is worse.

3. It is inherent to acquisition that an “inherited sub-

object” (a composite) is shared by many objects

(its inheriting components). Such sharing contra-

dicts our usual understanding of inheritance.

This latter hindrance is the main reason for the failure

of this experiment.

6.4 Prototypes

To emulate an acquisition in a prototyping system one

would, as another approximation, replace substitute

containment links with delegating ones.

Several problems arise. The first, and perhaps the

easiest, is that of delegation vs. forwarding. As men-

tioned above, both semantics are feasible and useful for

acquisition. Clearly, adding support for forwarding to

runtime systems, such as that of SELF, which already

support delegation should be a simple task.

Another problem is that, the containment links

should be distinguishable from other links. This again

could be done via relatively easy syntactical changes.

Another change required is reversing t,he links direc-

tions so that the composite has slots for the components

and not vice-versa. Although no delegation system that

we know of implements this, such an addition does not

seem too problematic.

The third, and most difficult problem: delegation

systems, almost by nature, subvert strong typing. Be-

yond the usual benefits of strong typing, such as im-

proved efficiency and reliability, we argued above that

acquisition should be done in a strongly-typed man-

ner. In this respect, our research can be viewed as

an attempt to investigate strong typing of a restricted

form of a delegation system. The more general problem

should be the subject of another investigation.

6.5 Other related work

Blake and Cook [2] deal with the issue of support to

containment hierarchy in 00 languages. They com-

pare part hierarchies with inheritance and delegation

and provide a mini-taxonomy for kinds of containment

relationships. They also identify the dilemma of the

visibility of parts, and argue strongly that exposing the

parts does not violate encapsulation. (Thus support-

ing property (iv) f o ours). Specifically they propose,

implement and report on the lessons learned from a

SMALLTALK extension in which the composite forwards

messages to its components. Another aspect in which

their work is different from ours is that they tacitly

ignore the question of strong typing and optional com-

ponents. In our model strong typing and optional “par-

ents” play an important role. We were unable to deter-

mine if Blake and Cook’s work makes the distinction

between part and attribute links.

Kim et. al [23] examine the question of composite

objects in 00 database systems. They also argue that

the composition links should be distinguishable from

other links. They provide a formal definition of the data

model of composite objects a,nd show how they might

be used in a database system by addressing questions

such as locking and efficiency. One of their interesting

contributions is the support for versions of composite

objects. (This is similar to the work in Vesta [6].) As it

is common in databases, it is assumed in their work that

parts have external visibility. No treatise is given to the

question of propagating properties inside the composite

object. We consider using their results in testing our

proposal on large inputs, such as legacy systems, which

228

need to be reverse engineered.

Kristensen [27] argues for and proposes lingual mech-

anisms to support general complex associations, includ-

ing special notations for containment. In this sense and

in the strong ties his work has with formal methodolo-

gies of analysis and designl’, it is more general than

ours. IIowever, acquisition is much more powerful than

a mere existence of a containment link.

7 Conclusions, Open Questions
and F’urt her Research

This paper demonstrated the need for down propaga-

tion of attributes in containment hierarchies. This is

just a special case of a phenomena that often shows up

in the development of even modest-sized 00 systems:

an object behaviour depends on its surrounding envi-

ronment. The broader question that we try to solve is

the modeling of environmental affect, i.e., the ways in

which the environment participates in setting the prop-

erties of an object.

It is clear that an object is not a specialization of

its container or any other element of its environment.

Therefore, it is not appropriate to let an object inherit

from its environment. Instead, the traditional tech-

nique for modeling such an affect is by interfaces that

are tailored for each kind of environmental link. De-

spite its appealing simplicity, this approach suffers from

several drawbacks:

1. Instead of the convenient separation between pub-

lic interface and implementation, objects must

posses dedicated environment interface(s).

2. The design and implementation of such interfaces

is difficult and repetitive.

3. Environmental affect by non-immediate neigh-

bours is tricky. What we called leap acquisition

is a powerful tool that is difficult to use in the

absence of a good understanding of the involved

issues.

The new acquisition mechanism we advert offers a

compromise between inheritance and a tailored solu-

tion. It is not as elegant and easy to understand as in-

heritance (but then, so are real life programming prob-

lems) but it is much more appropriate for modeling

environmental affect. On the other hand, acquisition is

more orderly and more elegant than a tailored dynamic

solution which tends to be error-prone, inefficient and

discouraging to the implementor.

I1 In this respect, it should be compared to the work of Civ-

ello [9]

Our investigation revolved around the example of ac-

quisition a.cross aggregation links. The results however,

are applicable directly to acquisition in other forest hi-

erarchies and from immediate general neighbours. The

generalization to other network topologies and leap ac-

quisition across non uniform links is a subject for fur-

ther research.

Among the surprising discoveries of this research we

include the illusive character of the definitions of the

may and must kinships: We saw that in order to prove

that an object of a certain class must be contained in

an object of another class, one has to consider carefully

the containment relationships between all super- and
subclasses of both these classes. Also, the may kinship

may, if not defined properly, capture instead of struc-

ture freedom, the dynamic type of objects; information

that is better handled by other means in good object-

oriented programming.

Most design methodologies represent relationships

and objects, but offer almost no rules or guidelines of

how these should interact with inheritance. A promis-

ing research objective is better insight of the interde-

pendencies between inheritance and containment and

other links among objects. This hopefully will result in

a coherent set of rules similar to property (vii) to guide

design and enable more structured reasoning.

Even though our understanding of the “permissible”

topologies in the inheritance-containment diagram is

lacking, and we allow many constellations which should

never occur in a well designed system, static type analy-

sis can eliminate many possibilities and help a dynamic

implementation. We can show that this analysis can be

done in O(1) calls to a directed graph s-t connectivity

algorithm.

We identified the basic rules of acquisition of rou-

tines, and in particular how refinement and overrid-

ing carry on to it. The term “environmental polymor-

phism” was coined to designate polymorphic behaviour

of objects due to their respective environments. We

proposed an operational model for environmental poly-

morphism that uses a system of defaults and overrul-

ings. The model seem to capture the needs of current

applications.

With regard to implementation complexity, it is easy

to imagine an efficient implementation if the contain-

ment trees are static: if each acquisition is realized us-

ing a pointer then the time to access an acquired fea-

ture is O(1). The problem becomes more difficult if we

want to cater for tree updates: insertion and deletion

of components.

Two solutions come to mind: In the first, acquisition

pointers are updated with each tree operation. This

is an R(n,) (worst case) time operation, where n is the

229

number of objects in our system. In the second, there

are no acquisition pointers; instead each object has a

pointer to its container. In this solution, updated are

efficient, running in O(1) time, but queries are R(n).

In both solutions though, the setting to default of an

auxiliary flag in a whole sub-tree as a result of an as-

signment to an attribute is an R(n) time operation.

There is a sophisticated implementation approach

that gives O(lg n) amortized (and at the cost of greater

programming complexity, even O(lg n) worst-case) for

all operations: insertions, deletions, query and flag flip-

ping. This is done using data structures based on Tar-

jan and Sleator’s dynamic trees [39] (See [44] for a text

book exposition.) Unfortunately, this can only be done

if there is only one kind of an acquired attribute in the

tree. If there are m kinds of attributes in the system,

then the insertions and deletions time increase by an

m factor. What’s worse, the storage requirements be-

come O(mn). Our data structures intuition leads us to

believe that much better implemenations are possible,

but their existence remains an open problem.

This research of course only opens the road to the

understanding and using acquisition. There are many

lessons to be learned and data to be gathered from a

large scale exploitation of this new abstraction mecha-

nism.

Acknowledgment We thank William Cook for his

thoughtful remarks on an early version of this paper.

References

[II

PI

[31

[41

[51

[61

PI

Accent Software International, Jerusalem, Israel.
Dagesh User’s Guide, Israel’s National Word Proces-

sor for Windows, 1994.

E. Blake and S. Cook. On including part hierar-

chies in object-oriented languages, with an implemen-

tation in Smalltalk. In European Conference on Object-

Oriented Programming, number 276 in LNCS, pages

41-50. Springer-Verlag, 1987.

G. Booth. Object Oriented Design with Applications.

Benjamin/Cummings, 1991.

Borland International, Scotts Valley, CA. Pascal Turbo

Vision Programming Guide, 1992.

A. H. Borning. Classes versus prototypes in object-

oriented languages. In ACM/IEEE Fall Joint Com-

puter Conference, pages 36-40, Dallas, TX, 1986.

M. R. Brown and J. R. Ellis. Bridges: Tools to extend

the vesta configuration management sys tern. Techni-

cal Report 108, digital Systems Research Center, 130

Lytton Avenue, Palo Alto, California 94301, June 1993.

M. Bryan. SGML an Author’s Guide to the Standard

Generalized Markup Language. Addison-Wesley, 1992.

PI

PI

[101

PII

P21

P31

P41

P51

PI

P71

W31

P91

r-201

WI

P21

L. Cardelli and P. Wegner. On understanding types,

data abstractions, and polymorphism. ACM Comput.

Surv., 17(4):471-522, 1985.

F. Civello. Roles for composite objects in object-

oriented analysis and design. In Proceedings of the 8rh

Annual Conference on Object-Oriented Programming

Systems, Languages, and Applications, pages 376-393,

Washington, DC, USA, Sept. 26 - Oct. 1 1993. OOP-

SLA’93, Acm SIGPLAN Notices 28(10) Oct. 1993.

P. Coad and E. Yourdon. Object-Oriented Design.

Prentice-Hall, 1991.

J. Coplien. Advanced C+t Programming3 Styles and

Idioms. Addison-Wesley, 1992.

B. J. Cox. Object-Oriented Programming - An Evolu-

tionary Approach. Addison-Wesley, 1986.

S. E. Fahlman. NETL: A system for representing and

using real-world knowledge, 1979.

J. D. Foley and A. V. Dam. Fundamental of Interactive

Conputer Graphics. Addison-Wesley, 1984.

I. R. Forman, S. Danforth, and H. Madduri. Composi-

tion of before/after metaclasses in SOM. In Proceedings

of the gth Annual Conference on Object-Oriented Pro-

gramming Systems, Languages, and Applications [35],

pages 427-439.

E. Gamma, R. Helm, R. Johnson, and J. Vlissides. De-

sign Patterns: Elements of Reusable Object-Oriented

Software. Professional Computing Series. Addison-

Wesley, 1995.

J. Gil and D. H. Lorenz. SOOP - a synthesizer

of an object-oriented parser. In Proceedings of the

16”h International Conference on Technology of Object-

Oriented Languages and Systems, pages 81-96, Ver-

sailles, France, Mar. 6-10 1995. TOOLS 16 Europe

Conference, Prentice-Hall.

J. Gil and R. Szmit. Software boards via configurable

objects. In Proceedings of the ldth International Con-

ference on Technology of Object-Oriented Languages

and Systems, CA, Aug. 1994. TOOLS 14 USA Con-

ference, Prentice-Hall.

A. Goldberg and D. Robson. Smalltalk-80: The Lan-

guage and Its Implementation. Addison-Wesley, 1983.

C. F. Goldfarb. The SGML Handbook. Clarendon

Press, Oxford, 1990.

W. L. Hiirsch. Should superclasses be abstract? In

M. Tokoro and R. Pareschi, editors, Proceedings of the

gLh European Conference on Object-Oriented Program-

ming, number 821 in LNCS, pages 12-31, Bologna,

Italy, July 4-8 1994. ECOOP’94, Springer-Verlag.

G. Kiczales. Traces (a cut at the “make isn’t generic”

problem). In S. Nishio and A. Yonezawa, editors,

Proceedings of the International Symposium on Ob-

ject Technologies for Advanced Software, number 742 in

LNCS, pages 27-42, Kanazawa, Japan, Nov. 4-6 1993.

First JSSST International Symposium, Springer Ver-

lag.

230

[231

[241

[25l

WI

[27l

P31

P91

[30]

[311

[321

[331

1341

W. Kim, J. Banerjee, H. T. Chou, J. F. Garza, and

D. Woelk. Composite object support in an object-

oriented database system. In Proceedings of the ,@

Annual Conference on Object-Oriented Programming

Systems, Languages, and Applications [34], pages 118-

125.

J. L. Knudsen, M. Lijfgren, 0. L. Madsen, and Mag-

nusson. Object-Oriented Environments, The MJ0L-

NER Approach. Object-Oriented Series. Prentice-Hall,

1993.

D. E. Knuth. TheT&X Boolc, volume A of Computers

& Typesetting. Addison-Wesley, 1986.

G. E. Krasner and S. T. Pope. A cookbook for using

the model view controller user interface paradigm in

SMALLTALK-80. Journal of Object-Oriented Program-

ming, 1(3):26-49, Aug.-Sept. 1988.

B. B. Kristensen. Complex associations: Abstractions

in object-oriented modeling. In Proceedings of the gth

Annual Conference on Object-Oriented Programming

Systems, Languages, and Applications [35], pages 2722

286.

L. Lamport. LATEX: A Document Preparation System.

Addison-Wesley, 1986.

H. Lieberman. Using prototypical objects to imple-

ment shared behavior in object oriented systems. In

Proceedings of the lst Annual Conference on Object-

Oriented Programming Systems, Languages, and Ap-

plications [33], pages 214-223.

M. A. Linton, J. M. Vlissides, and P. R. Calder. In-

terviews: A C++ graphical interface toolkit. Technical

Report CSL-TR-88-358, Stanford University, Stanford,

CA 94305-2192, July 1988.

0. L. Madsen, B. Moller-Pedersen, and K. Nygaard.

Object-Oriented Programming in the Beta Program-

ming Language. Addison Wesley, 1993.

B. Meyer. EIFFEL: The Language. Object-Oriented

Series. Prentice-Hall, 1992.

OOPSLA’86. Proceedings of the 1”’ Annual Conference

on Object-Oriented Programming Systems, Languages,

and Applications, Portland, Oregon, USA, Sept. 29 -

Oct. 2 1986. Acm SIGPLAN Notices 21(11) Nov. 1986.

OOPSLA’87. Proceedings of the 2nd Annual Confer-

ence on Object- Oriented Programming Systems, Lan-

guages, and Applications, Orlando, Florida, USA, Oct.

1987. Acm SIGPLAN Notices 22(12) Dec. 1987.

[35] OOPSLA’94. Proceedings of the gth Annual Conference
on Object-Oriented Programming Systems, Languages,

and Applications, Portland, Oregon, USA, Oct. 23-27

1994. Acm SIGPLAN Notices 29(10) Oct. 1994.

[36] L. C. Paulson. ML for the Working Programmer. Cam-

bridge University Press, Cambridge, 1991.

[37] Programmer’s hierarchical interactive graphics system,

1986.

1381

PI

[491

[411

[421

[431

[441

[451

[461

[471

J. Rumbaugh, M. Blaha, W. Premerlani, F. Eddy, and

W. Lorensen. Object-Oriented Modeling and Design.

Prentice-Hall, 1991.

D. Sleator and R. Tarjan. A data structure for dynamic

trees. .I. Comput. Syst. Sci., 24, 1983.

A. Snyder. Encapsullation and inheritance in object-

oriented programming languages. In Proceedings of the

1 st Annual Conference on Object-Oriented Program-

ming Systems, Languages, and Applications [33], pages

38-45.

C. Strachey. Fundamental concepts inprogramming

languages. In Lecture Notes for the International Sum-

mer School in Computer Programming, 1967. Copen-

hagen, Denmark.

B. Stroustrup. The Design and Evolution of Ctt.

Addison-Wesley, Mar. 1994.

Sun. Open Windows Library Manual.

R. E. Tarjan. Data Structures and Network Algorithms.

SIAM, Philadelphia, PA, 1983.

T. Thompson and N. Baran. The NeXT computer.

Byte, 13(12):158-175, 1988.

X. T. Trinh, J. T. van Tran, and C. Balkowski. Physics

of nearby galaxies: Nature or nurture? In Proceedings

of the 27rh Moriond Astrophysics Meetings, Les Arcs,

Savoie, France, Mar.15-22 1992. Editions Frontieres.

D. Ungar and R. B. Smith. SELF: The power of sim-

plicity. In Proceedings of the 2nd Annual Conference

on Object-Oriented Programming Systems, Languages,

and Applications [34], pages 227-241.

231

