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ABSTRACT

We present a methodology for designing component-based
systems and verifying the temporal behavior properties of
such systems. Our verification method is mostly automatic,
with very little manual deduction required. Our verification
method is not susceptible to the well-known state ezrplosion
problem, which has hitherto severely limited thepractical ap-
plicability of automatic verification methods. Our method
specifies the externally visible behavior of each component
C as several interface automaton, one for each of the other
components which C interacts directly with. For each pair
of directly interacting components, we compute the prod-
uct of the interface automata. These “pair machines” can
then be verified mechanically, since they are small. The
verified “pair properties” can then be combined to deduce
global properties. This combination is done deductively, and
is quite simple, since the hard work of verifying the pair-
properties has already been done. Our case study of an
elevator example will substantiate this point.

Another contributuion of this paper is the use of several
interface automata per component. This enables a clean
separation between interfaces, so that the interactions of a
component C with several others are cleanly separated, and
can be inspected in isolation. Our method also enhances
extensibility. If a component is modified, only the pairs in
which that component is involved are affected. The rest of
the system is undisturbed. We illustrate our method by de-
signing and verifying an elevator example, a standard exam-
ple in the software engineering literature. To our knowledge,
our method is the first approach to behavioral compatibility
that does not suffer from state-explosion.

1. INTRODUCTION
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Monolithic software systems are fragile and unreliable. In
principle, component-based programming (CBP) [25] allevi-
ates this inherent software problem. Software components
may be produced by third-party providers applying cost-
effective product line development [6, 7]. Third-party com-
position of software systems is less susceptible to the devel-
oper’s programming skills and improves the productivity of
system developers [31]. Finally, black-box reuse of third-
party components increases the confidence in their reliabil-
ity, which in turn reduces the system’s overall fragility, at
least so it seems.

Software components are supposed to make software less
fragile and more reliable. In practice, however, part of the
fragility is merely shifted from the component artifacts to
the connectors and the composition process. When the com-
position is unreliable, component systems are just as fragile
and unreliable as monolithic software. Improving the theo-
retical and practical foundation of third-party composition
techniques is thus essential to improving overall component
software reliability.

In this paper, we make initial steps toward a new compo-
nent model which supports behavioral interoperability and
is based on the use of temporal logic and automata to spec-
ify and reason about concurrent component systems. Unlike
other temporal logic and automata-based methods for soft-
ware components, our work avoids using exhaustive state-
space enumeration, which quickly runs up against the state-
ezplosion problem: the number of global states of a system
is exponential in the number of its components.

We present formal analysis and synthesis techniques that
will address issues of behavioral compatibility amongst com-
ponents, and will enable reasoning about the global behavior
(including temporal behavior, i.e., safety and liveness) of an
assembly of components. Our technique is not restricted
to small, unrealistic applications. We illustrate the model
concretely by means of an example design for an elevator
system, which can scale up in size (number of components
and number of states) and still be modeled checked.

1.1 Component interoperability

Components are “units of independent production, acqui-
sition, and deployment” [25]. In component-based software
engineering (CBSE) [11], software development is decoupled
from assembly and deployment. During component devel-



opment the component’s source code is compiled, typically
by third party component providers, and ”forgotten” there-
after. That is, a component may originate from a different
author in binary format and without its source code.

Third party assembly (henceforth, third party composition)
is the activity of connecting components. During assem-
bly time, the application (or component) is assembled from
other (compiled) components. The activity takes place be-
tween the compilation of the components and the compi-
lation (or serialization) of the application (which might be
itself a compound component).

For two components, which were independently developed,
to be deployed and work together, third-party composition
must allow the flexibility of assembling even dissimilar, het-
erogeneous, precompiled components. In achieving this flex-
ibility, a delicate balance is preserved between prohibiting
the connecting of incompatible components (avoiding false
positive), while permitting the connecting of “almost com-
patible” components through adaptation (avoiding false neg-
ative). This is achieved during assembly through introspec-
tion, compatibility checks, and adaptability.

1.2 Interface compatibility

Parnas’s principles [22] of information hiding for modules
emphasize the separation of interface from implementation:
components providing different implementations of the same
interface can be swapped without having a functional affect
on clients; two components need to agree on the interface
in order to communicate. This works well in OOP where
the design is centralized, but is not practical in component-
based designs [20]. Agreement before hand is possible only
if third-party components providers are coordinated.

Extending Parnas’s principles to CBP, the component clients
(i-e., other components) must be provided with composition
information and nothing more. Even agreement on the inter-
face is no longer an accepted level of exported information.
Components gathered from third parties are unlikely and
cannot be expected to agree on interfaces before hand. For
third-party composition to work, components need to agree
of how to agree rather then agree on the interface.

Indeed, CBP builder environments (e.g., BeanBox [14], JavaS-
tudio [16], PowerJ [23], JBuilder [17], VisualAge [29], Vi-
sualCafé [30]), typically apply two mechanisms to overcome
this difficulty and support third-party composition. First, to
check for interface compatibility, builders use introspection.
Introspection is means for discovering the component inter-
face. Second, builders support adaptability by generating
adapters to overcome differences in the interface. Adapters
are means of fixing small mismatches when the interfaces
are not syntactically identical.

1.3 Behavioral compatibility

The goal of works in behavioral compatibility for compo-
nents is to develop support in CBP for behavioral introspec-
tion and behavioral adaptability that can be scaled up for
constructing large complex component systems. While there
is progress in addressing behavioral introspection and adapt-
ability [32, 28, 33, 27, 26] there is no progress in dealing with
the state explosion problem. The main focus of this work is

in addressing the latter in a manner that can be applied to
event-based components.

Currently, the introspector reveals only the interface, and
adapters are used in an ad-hoc manner relying on names
and types only. There are emerging proposals for handling
richer interface mechanisms that express contractible con-
straints on the interface, e.g., the order in which the func-
tions should be called, or the result of a sequence of calls.
These methods typically rely on defining finite-state “behav-
ioral” automata that express state changes. When two com-
ponents are connected, the two automata can be tested for
compatibility by producing their automata-theoretic prod-
uct. This is based on theoretical automata theory but fail to
provide a practical foundation for software growth (because
of sate explosion.)

All current mechanical methods for reasoning about behav-
ior (finite state systems) that we are aware of rely on some
form of exhaustive state-space search to generate all the pos-
sible behaviors of the program. These methods are thus sus-
ceptible to state explosion: the number of global states of
a concurrent program consisting of K processes, each with
O(N) local states, is in O(N¥). Thus, all extant methods
have time complexity exponential in the number of compo-
nents in the system. Thus they are not suitable for analyz-
ing and constructing large complex systems. We address the
challenge of avoiding state explosion. In Section 3, we show
an elevator example which, when scalled up to 200 floors,
requires an upper bound of only 1166400 states (instead of
10'8%), which is within in the reach of model checkers.

2. FORMALMETHODS FOR COMPONENTS

AND COMPOSITION CORRECTNESS

Our interest is in large systems of concurrently executing
components. A crucial aspect of the correctness of such
systems is their temporal behavior. Chief among behavioral
properties are:

o Safety properties: “nothing bad happens” — for exam-
ple, when an elevator is moving up, it does not attempt
to move down without stopping first.

e Liveness properties: “progress occurs in the system”
— for example, if a button inside an elevator is pressed,
then the elevator eventually arrives at the correspond-
ing floor.

The required behavioral properties are given by a specifi-
cation, which unambiguously documents what the system
is supposed to achieve. Proposed solutions to the problem
of the design and implementation of large software systems
can be generally classified as informal (i.e., Computer-Aided
Software Engineering) versus formal:

o Computer-Aided Software Engineering (CASE). These
approaches use a structured notation for describing
large systems and tools to support editing and simu-
lation. While CASE notations provide an operational
semantics, and are certainly an improvement over cur-
rent ad hoc methods, the refinement steps in CASE-
based methodologies are typically informal in nature.



There is no assurance, apart from informal reasoning,
that the refined system satisfies the same correctness
properties as the original system.

o Formal methods. This approach addresses the main
deficiency of CASE. The process of constructing soft-
ware involves a formal proof of correctness. We classify
formal methods into:

1. Proof-theoretic. In proof-theoretic methods, a suit-
able deductive system is used, and correctness

proofs are built manually, or using a theorem prover.

2. Model-theoretic. In model-theoretic methods, a
model of the run-time behavior of the software is
built, and this model is checked (usually mechan-
ically) for the required properties.

Since the cost of the manual labor required is still one
of the obstacles to wide-scale deployment of formal
methods, we shall emphasize model-theoretic methods,
due to their greater potential for automation.

We can also classify formal methods into analytic and
synthetic methods.

1. Analytic. An analytic method takes an already
constructed system and determines whether it sat-
isfies a given specification. The most successful
exemplar of this to date is temporal logic model
checking [4].

2. Synthetic. A synthetic method starts from the
specification and derives a correct system. Step-
wise refinement methodologies, where an imple-
mentation is derived by a series of refinement steps,
are examples of this. Another example is temporal
logic synthesis methods, where a correct (finite-
state) program is mechanically produced from a
specification expressed as a formula of some propo-
sitional temporal logic.

2.1 Avoiding state-explosion by pairwise com-
position

In [3, 1], we present a temporal logic synthesis method for
the synthesis of finite-state concurrent programs from speci-
fications expressed in the branching-time propositional tem-
poral logic CTL [9]. The method of [3, 2] avoids exhaustive
state-space search. Rather than deal with the behavior of
the program as a whole, the method instead generates the
interactions between processes one pair at a time. Thus,
for every pair of processes that interact, a pair-machine is
constructed that gives their interaction. Since the pair-
machines are small (O(N?)), they can be built using ex-
haustive methods. A pair-program can then be extracted
from the pair-machine. The final program is generated by
a syntactic composition of all the pair-programs. This com-
position has a conjunctive nature: a process P; can make
a transition if and only if that transition is permitted by
every pair-machine in which P; participates.

The pairwise method as given in [3, 2] is synthetic: for each
interacting pair, the problem specification gives a formula
that specifies their interaction, and that is used to synthesize
the corresponding pair-machine. We also consider the ana-
lytic use of the pairwise method: if a program is given, e.g.,

by manual design, then generate the pair-machine by taking
the concurrent composition of the components one pair at
a time. The pair-machines can then be model-checked for
the required conformance to the specification. If the pair-
machines behave as required, then we can deduce that the
overall program is correct.

2.2 Applying pairwise composition to compo-

nent assembly

To apply the pairwise method to components, we must be
able to define the pairwise interaction amongst components.
We do this by extending the component model so that each
component is accompanied by a behavioral automaton [13,
5], which provides information about the externally observ-
able temporal behavior of the component. For example,
such an automaton could provide information on the order
in which a component makes certain method calls to other
components.

Given two components and their behavioral automata, we
construct the pair-machine for their interaction by simply
taking the automata-theoretic product of the behavioral au-
tomata (possibly first projecting these automata on the com-
mon inputs/outputs of the two components). We can then
model check the pair-machine for the desired behavioral
compatibility among the two components. If successful,
we can then use this pair-machine as input to the pairwise
method, as discussed above.

2.3 The interoperability space for components
A behavioral automaton of a component expresses some as-
pects of that components run-time (i.e., temporal) behavior.
Depending on how much information about temporal behav-
ior is included in the automaton, there is a spectrum of state
information ranging from a maximal behavioral automaton
for the component (which includes every transition the com-
ponent makes, even internal ones), to a trivial automaton
consisting of a single state. Thus, any behavioral automaton
for a component can be regarded as a homomorphic image
of the maximal automaton. This spectrum refines the tradi-
tional white-box/black-box spectrum of components reuse,
ranging from exporting the complete source code (maximal
automaton) of the component—white-box, and exporting
just the interface (trivial automaton)—black box. Table 1
displays this spectrum. The proposed project falls in the
middle column.

In practice, it is unrealistic to expect the programmer to
provide the maximal behavioral automaton, just as precisely
specified semantics are rarely part of programming practices.
As long as the most important behavioral properties (e.g.,
the safety-critical ones) can be expressed and established,
a homomorphic image of the maximal automaton (which
omits some information on the components behavior) is suf-
ficient.

The behavioral automaton can be provided by the compo-
nent designer and verified by the compiler (just like typed in-
terfaces are) using techniques such as abstraction mappings
and model checking. Verification is necessary to ensure the
correctness of the behavioral automaton, i.e., that it is truly
a homomorphic image of the maximal automaton. Alter-



Interface Automaton Behavioral
compatibility compatibility compatibility
Export interface interface + automaton complete code
Reuse black box adjustable white box
Encapsulation highest adjustable lowest
Interoperability unsafe adjustable safe
time complexity linear polynomial for finite state | undecidable
Assembly properties || none provable from pair prop- | complete but impractical
Assembly behavior none S;triglslesizable from pair- | complete but impractical
wise behavior

Table 1: The interoperability space for components

natively, the component compiler can generate a behavioral
automaton from the code, using, for example, abstract in-
terpretation or machine learning [21]. In this case, the be-
havioral automaton will be correct by construction. In this
project, we will assume the first option for third party com-
ponents, and will explore the second option for components
assembled in our builder.

3. EXAMPLE

One of the traditional and most widely studied examples in
software engineering is the “lift example”: a building con-
tains F' floors and E elevators. Requests for service come
from “panel” buttons inside an elevator, indicating a request
from a passenger within the elevator, and from “floor” but-
tons on a particular floor, indicating a request a request from
a passenger waiting at a particular floor. The latter requests
have a direction (up or down) associated with them, and can
be satisfied by any of the elevators.

In a system with several elevators operating concurrently,
and with requests from the various floors arriving concur-
rently, the coordination of the elevators and the efficient res-
olution of the floor requests is quite intricate. Furthermore,

a straightforward solution suffers from significant state-explosion,

since the global state-space is the product for the state-
spaces of all the elevators, (including all the panel requests),
and all the floor requests.

3.1 Requirements

The problem is to design software for the various compo-
nents of an elevator system. The requirements have both
static aspects and dynamic aspects.

The static aspects are expressed as interfaces. The compo-
nents implement the CommandListener interface:

public interface CommandListener extends EventListener {
public void onCommand (CommandEvent e);

}

and the RequestListener interface:

public interface RequestListener extends EventListener {
public void onRequest(RequestEvent e);
}

CommandEvent and RequestEvent are event classes. The
payload in the CommandEvent specifies if the request is up

or down or stop. The payload in the RequestEvent specifies
the floor, and optionally up or down.

The dynamic aspects are given by the following required
temporal behavioral properties: (1) Safety: an elevator does
not attempt to change direction without stopping first, (2)
Liveness: every request for service is eventually satisfied,
and (3) Efficiency: for a request from a floor button, only
one elevator responds.

3.2 Approaches and Architectures

‘We first consider current approaches to developing component-
based systems. First, there are approaches based on a naive
interface compatibility component implementation. Such
“static approaches” merely ensure that the interfaces of two
interacting components are compatible in that all method
calls have the correct number and type of arguments, and
the event types conform. While such approaches provide
necessary checks, they are nevertheless not sufficient. They
are akin to a compiler, which can ensure that a program
is free of type errors, but cannot ensure that a program
is free of bugs. Likewise, approaches that check only the
static aspects of interfaces cannot ensure that the system
has the correct behavioral properties. For example, check-
ing that an elevator controller and an elevator motor have
the correct interface with each other does not ensure that
the controller will not send the motor a command to change
direction without stopping first.

An improvement on static approaches are “dynamic ap-
proaches” which consider behavior compatability. Such meth-
ods typically express the externally visible temporal behav-
ior of a component by means of a behavioral automaton.
Then, the required temporal behavioral properties of the
system as a whole are checked by computing the automata-
theoretic product of behavioral automata of all the compo-
nents, and then verifying the properties by means of exhaus-
tive state-space search techniques, such as model-checking
[4]. While the ability to verify temporal behavior is a major
advance over the purely static methods, such dynamic ap-
proaches are severely limited in practice by the well-known
state-explosion problem: if there are K behavioral automata,
each with O(N) states, then their product has O(N¥) states.
This exponential growth of the state space with the num-
ber K of components renders methods based on exhaustive
state-space search inapplicable to any but the smallest sys-
tems, and hence of limited practical utility: such methods
simply do not scale up.



To overcome state-explosion, we eschew the computation
of the product of all K behavioral automata. Instead, we
compute the products of pairs of behavioral automata, cor-
responding to the pairs of components that interact directly.
In the worst case, where all components interact, this has
complexity O(N?K?). This low polynomial complexity means
that our method scales up to large systems. We verify tem-
poral behavior properties of these “pair-products.” These
give us properties of the interactions of all component-pairs,
when considered in isolation. We then combine such “pair-
properties” to deduce global properties of the entire system.
Such combination can be by means of temporal logic de-
ductive systems [9]. Since the pair-properties embody the
complexity of the component interaction, this deductive part
of the verification will be quite short. For example, in [1], a
two-phase commit protocol is verified in a pairwise manner.
The deductive argument to combine the pairwise properties
into the standard correctness properties of two-phase com-
mit consists of no more than 15 lines of proof.

3.3 Our Approach to Design of a Component-
based System

The main insight is that components can be designed to en-
able pairwise composition, thus supporting behavioral com-
putability checks that scale up to large complex systems. In
terms of design of components this mean that the compo-
nents are designed in such a way that we can check the sys-
tem one connector at a time, i.e., pairwise. In this section we
demonstrate this for a pairwise elevator component-system.

In order for a component to be pairwise composable, one
has to take the following steps. The component interface
needs to be a collection of separate interfaces, each interface
addressing a related set of connectors. This corresponds to
JavaBeans component implementing several event listener
interfaces, but does not need to be necessarily fine grained.
For the elevator example, we would expect the controller
to have 3 interfaces: one for the communication channel
with the elevator’s panel, one for the floor buttons, and for
communication channel with the motor. We name those
connector interfaces: panel interface, button interface, and
motor interface.

Each connector interface is split into an external part and an
internal part. The external interface plays a part in checking
the behavioral compatibility with external components; the
internal interface plays a part in checking the compatibility
with the other internal ainterfaces. Both parts of the con-
nector interface are designed such that they can be easily
composed by superimposing the state transition graphs.

To reduce the complexity of varifying the composition, the
aim during the design phase is to determin exactly what
information needs to be captured in the local state of the
component.

3.4 A Component-based Approach

When connecting the controller to the motor, the builder
would typically generate CommandListener adapter, which
subscribes to up events, and when an event is received from
the controller, invokes the up method of the motor. Now,

suppose the motor, for physical constraints, cannot be switched
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from going up to going down without stopping first. Builders
in current systems would not detect if the controller violates
this constraint, and consequently the motor could be “dam-
aged” at runtime.

In our framework, however, the motor component and the
controller component would export their behavioral automata.
The builder would compute the product of the two automata,
and detect violation by model checking the pair product
against the motor constraint which could be expressed as a
temporal logic formula.

3.5 Implementation

The system is built from the JavaBeans components shown
in Figure 1 (BDK does not render the connectors). Figure 2
gives the schematic architecture of our system. Our system
consists of the following components among others:



o Floor buttons: For requesting the lift from outside. An
up-button on floor f issues a request by the method
call uf_req(f), and receives notification that the re-
quest is satisfied by the method call uf_sat(f). Like-
wise for the down button on floor f, with the method
calls df req(f) and df_sat(f), respectively.

o Lift panel buttons: For requesting, from inside, that
the lift stop at a particular floor. A panel button for
floor f issues a request by the method call p_req(f),
and receives notification that the request is satisfied
by the method call p_sat(f).

o Lift controller: Reads requests from panel and floor
buttons. Send appropriate signals to the lift’s motor
and door. Has to coordinate with other lifts to assign
floor requests.

e Lift motor: The motor sends the lift up and down,
and stops the lift on designated floors. The motor re-
sponds to the method calls stop, up, down from the lift
controller, which cause it to stop, start moving in the
up direction, and start moving in the down directions,
respectively.

o Lift doors: For opening and closing the entrance.

It is clear that the main challenge lies in designing the con-
troller, since the buttons simply issue requests and receive
responses, and the motor simply responds to motion com-
mands. Figure 13 presents a centralized implementation
of the controller. However, as discussed above, a central-
ized implementation is subject to state-explosion, since its
state-space is the product of the state spaces of all compo-
nents. Instead, we apply the pairwise method. We provide a
separate interface between the controller and panel buttons
(CP), the controller and floor buttons (CB), and the con-
troller and elevator motor (CM). The interaction between
the controller and each of these other components is mod-
eled by a separate pair-machine. For sake of simplicity, our
design will deal with only a single elevator. We subsequently
outline how it can be expanded for multiple elevators. Fig-
ure 14 presents these separate interfaces.

Each interface is composed of two parts, which are composed
together in a conjunctive manner (see Section 2.1). So, the
controller-panel interface (on the controller side) CP con-
sists of two automata CP, and CP,, given in Figures 3 and
4, respectively. We present automata as a directed graph,
where the nodes are local control states, and the arcs are la-
beled with guarded commands [8], of the form B — A, con-
sisting of a guard B and an action A. If no guard is present,
then the guard is taken to be true, and if no action is present,
then the action is taken to be skip, i.e., a “no operation”.
CP, interacts with the panel-buttons component, P, while
CP. interacts with the rest of the controller. Likewise, CBy
interacts with the floor-buttons component, B, while CB,.
interacts with the rest of the controller, and CM,, inter-
acts with the motor component, M, while CM. interacts
with the rest of the controller. Summarizing, we have the
pair machines CPp ||m P, CBp ||m B, and CMy, ||m M.
The communication and coordination between the two pro-
cesses in each pair-machine is by means of method calls,

indicated by the m subscript in ||m. In addition, the con-
troller itself consists of three processes composed in paral-
lel: CP. ||; CB. |li CM.. However, because these three
processes are all part of the same component, their con-
current composition is “internal”, and so a much “tighter”
mechanism than method calls can be used. For example,
CP., CB., CM. can be “interpreted” by a central daemon,
which generates the behavior of the controller. To retain
maximum flexibility, we make no restriction in principle on
the method of composition used within a component, and
indicated by |, the ¢ standing for “internal.” For the eleva-
tor example, we happen to use a shared memory model of
concurrency. To express the “conjunctive” requirement of
the pairwise method, we compose CP, and CP. in a con-
junctive manner: CP, and CP. have the same local state
structure, and the same arcs. They are required to exe-
cute arcs synchronously, i.e., an arc can be executed if and
only if it is executed by both CP, and CP.. Likewise for
CBy/CB., and CM,,/CM..

We now provide a more detailed discussion of the example.
We first discuss the interfaces CP,, CBy, and CM,,. We
start with the panel interface CPp.

Most local control states of CP, are specified by four vari-
ables: (1) floor € 1...F, the current floor, (2) dir € {u,d},
the direction of motion, u (up) or d (down), (3) status €
{s,m}, the status of motion, s (stopped) or m (moving),
and (4) requests € {p, i}, the existence of further requests
in the direction of motion of the elevator, p indicates that
such requests are pending, and ¢ (idle) indicated no such
requests are pending in the direction of motion, but some
requests in the opposite direction are pending. By a request
in the direction of motion of the elevator, we mean either
that the elevator is at a floor f and moving up, and there
is a request for a higher floor, or the elevator is at a floor f
and moving down, and there is a request for a lower floor. In
addition, there are states marked [f, s,4¢]. This indicates be-
ing stopped at floor f, and with no requests at all, in either
direction. These states are needed so that the elevator can
stop moving when there are no requests pending anywhere.

The state transitions of CP, are intended to accurately re-
flect the receipt of various requests from the panel. In addi-
tion to the local control states, CP, maintains some “data”
state, namely a set panel_sched of all of the panel requests re-
ceived. panel_sched is updated by the method call p_req(f),
which adds f to panel_sched, and is also updated when the
elevator stops at floor f: f is removed from panel_sched.

Figure 3 gives a “slice” of CP,, corresponding to a single
floor f, which is neither the top nor the bottom floor. The
guards on the transitions are of two kinds. First, on every
state, there are F' “self-loop” transitions labeled with the
guarded command p_req(f) — panel_sched := panel_sched U
{f}. These serve to update panel_sched upon receipt of a
p-req(f) method call. Second, there are transitions between
states, whose guards are predicates over panel_sched. To
express these succinctly, we define the following predicates:
r(f) = f € panel_sched, i.e., a request at floor f, a(f) =
Af . f > fAf € panel_sched, i.e., a request above floor f,
b(f) =3f : f' < fAf € panel_sched, i.e., a request below
floor f. Transitions without a label are defined to have the



label true.

We now explain briefly the transitions leaving each state in
Figure 3. For some states, we use a sublist whose item head-
ers are the guards of the transitions leaving that state. To
save space, discuss only the transitions concerned with up-
ward motion, and with reversing direction from up to down.
The transitions for downward motion, and for reversing di-
rection from down to up, are symmetric.

° [f’ u) mip]:

— =r(f) Aa(f), i.e., no request for the current floor
but a request for a higher floor, then the elevator
keeps moving up, so transition to [f + 1, u, m, p].

— r(f) AN a(f), i.e., a request for both the current
floor and some higher floor, then the elevator first
stops, so transition to [f, u, s, p], and then contin-
ues on up, so transition from [f,u,s,p] to [f +
17 u’ m7p]'

— r(f) A-a(f) Ab(f): i.e., a request for the current
floor, no request for a higher floor, and a request
for some lower floor. The elevator first stops, so
transition to [f, u, s,?], and then may either con-
tinue up, or may reverse direction. This will de-
pend on what floor button requests are pending.
We discuss this further below.

e [f,u,s,p]: Since more requests in the up direction are
pending, the elevator continues moving up, so tran-
sition unconditionally (i.e., with guard true) to [f +
17 u’ m’ p]'

o [fyu,m,i]:

— -a(f), i-e., no request for the current floor but a
request for a higher floor, then the elevator keeps
moving up, so transition to [f + 1,u, m, p].

— a(f), i.e., a request for both the current floor and
some higher floor, then the elevator first stops, so
transition to [f, u, s, p], and then continues on up,
so transition from [f,u, s,p] to [f + 1, u, m, p].

— true, there is a transition with ¢rue guard from
[f,u,,1] to [f,d, s, p] (reverse direction). Since, by
virtue of pending =i in [f, u, s,4], there must be
pending requests below, the latter transition is to
a state with pending = p, i.e., [f,d, s,p].

e [f,u,s,i]: Since there are no pending panel requests
for floors above the current floor, the elevator can ei-
ther continue moving up (in case there are floor but-
ton requests higher up), or can reverse direction. So,
there are transitions with true guards from [f, u, s, 7] to
[f +1,u,m,i] (continue moving up), and to [f,d, s, p]
(reverse direction). Since, by virtue of pending = i in
[f,u, s,1], there must be pending requests below, the
latter transition is to a state with pending = p, i.e.,

[f.,d,s,p].

e [f,s,%i] In this state, there are no pending panel re-
quests at all. So, receipt of a request for a higher floor,
causing a(f) to become true, enables the transition to
[f,u,s,p], and receipt of a request for a lower floor,
causing b(f) to become true, enables the transition to

[f.d,s,p].

The floor button interface CB; operates in a similar man-
ner to CPp, except that the direction of the requests (re-
quest to go up, or request to go down) must be considered.
Thus, we maintain two sets, up_floor_sched—the set of all
floor requests in the up direction, and down_floor_sched—
the set of all floor requests in the down direction. These
are updated by the method calls uf_req(f), df_req(f), re-
spectively, which insert a request for floor f. Floor f is
removed from wup_floor_sched, down_floor_sched when the
elevator visits floor f and is traveling in the appropriate di-
rection. To express the needed transition guards in CB,
succinctly, we define the following predicates: ur(f) = f €
up_floor__sched, i.e., an up request at floor f, dr(f) = f €
down_floor_sched, i.e., a down request at floor f, a(f) =
3f" . (f' € up_floor_sched V f' € down_floor_sched) A f' > f,
i.e., arequest above floor f, b(f) = 3f' : (f' € up_floor _schedV
f € down_floor_sched) A f' < f, i.e., a request below floor
f. Transitions without a label are defined to have the label
true. CByp has the same local state structure as CP,, and
the same transition guards, except for the transitions that
involve stopping at a floor. Here, the direction of requests is
important. So, for example, the transition from [f,u, m,p]
to [f, u, s,p] has guard ur(f), rather than just r(f), since the
elevator should only stop for a floor up request when it is
going up. Also, the method calls are adjusted appropriately,
so the [f,u, m,p] to [f,u,s,p] transition issues the method
call uf sat(f), for example.

The motor interface CM ,,, issues stop, up, and down method
calls to the motor, which command it to stop the elevator at
the current floor, start the elevator moving in the up direc-
tions, and start the elevator moving in the down direction,
respectively. The states of CM ,,, are specified by the current
floor f, the the status of motion, s or m, and the direction
of motion u or d. CM ,,, issues method calls as appropriate
to the transition being made, e.g., a transition from [f, s, u]
to [f + 1, m,u] issues the method call up, since the elevator
must move up in this case.

The three interfaces CPp, CBy, and CM,, are coordinated
by the remaining parts of the controller, as follows. Each of
the automata CPp, CBy, and CM,, is composed “conjunc-
tively” with an “internal controller” counterpart CP., CB.,
and CM ., respectively. Conjunctive composition means that
the two automata has the same local state structure and the
same transition structure, but can have different guarded
commands labeling corresponding transitions. For example,
the [f,u, m, p] to [f, u, s, p] transition in CP, is labeled with
the guarded command r(f) A a(f) — p-sat(f), whilst the
[f, u,m, p] to [f, u, s, p] transition in CP. is labeled with the
guarded command C M. f, which is true when the automaton
CM_. is in a state which has a floor component equal to f.
Then, both CP, and CP. must execute the transition from
[f, u,m, p] to [f,u, s,p] simultaneously, i.e., both the guards
r(f) A a(f) and CM.f must hold, and execution must re-
sult in both guarded command bodies being executed (in
this case the body of the second guarded command is null).
Finally, to achieve the required coordination amongst the in-
terfaces, the three automata CP., CB., and CM . are tightly
coupled by means of a shared memory communication and
synchronization mechanism, whereby each automaton can
inspect the local state of the other, and use this local state
in evaluating guards on its transitions, e.g., as in the guard



CM.f on the [f,u,m,p] to [f,u,s,p] transition in CP. dis-
cussed above.

The general interconnection scheme is then as follows.

e CP, and CP. are composed “conjunctively,” so that
they take the same transitions simultaneously. One
can think of the two automata as being “overlaid” on
top of each other, and, if a transition in CP, is la-
beled with guarded command B, — Ap, and the same
transition in CP, is labeled with B, — A., then the
transition in the overlaid automaton is labeled with
By, AB. = Ap || Ac. See [3, 1] for a formal definition
and extended discussion of this conjunctive composi-
tion. We let CP denote the result of this conjunctive
composition.

e In a similar manner, CB; and CB, are composed con-
junctively, resulting in CB, and CM,, and CM. are
composed conjunctively, resulting in CM.

e (P, interacts with the panel P via the method calls
p-req(f) and psat(f). CB; interacts with the floor
buttons B via the method calls uf_req(f), uf_sat(f),
df_req(f), and df sat(f). CM,, interacts with the mo-
tor M via the method calls stop, up, and down. These
interactions are given by the pair-machines CP ||m P,
CByp ||m B, and CM, ||m M.

e CP,, CBy, and CM,, can read each others local state
and condition their transitions on the local state of
each other. This interaction is given by the composi-
tion CP. ||1 CB. ||z CM..

Figure 2 presents this interconnection scheme. The heavy
dark lines indicate the shared memory mechanism. Arrows
labeled with method calls indicate interfaces. It remains to
discuss the operation of CP. ||; CB. ||; CM..

We regard the motor controller CM as defining the physical
location of the elevator, since it actually controls the motor.
We regard CP and CB as defining “virtual” elevators, since
each of them has a local control-state space that defines a
current floor f, direction of motion (up or down), status
of motion (stopped or moving), and further requests (more
requests in the direction of motion, or not). In particular,
the discussion of CP, given above should be viewed with
this in mind.

CP and CB are synchronized with CM via CP. ||; CB¢ ||s
CM.. This synchronization works as follows. All of CM,
CP, and CB are never more than one floor apart. Except
when a “crossover” (i.e., a change of direction) is in progress,
all three machines are moving in the same direction. We dis-
cuss the up direction and crossover from up to down. The
other cases are symmetric. Upon reaching a floor f whilst
moving up, CM waits for CP and CB to make the next
move. If both move on to floor f + 1, then CM does to. If
CP stops at floor f, then CM stops at floor f, since this
indicates a panel request for floor f. Likewise, if CB stops
at floor f, then CM stops at floor f, since this indicates a
floor button request for floor f. If both CP and CB stop
at floor f then again CM stops at f. After stopping at f,

?up, ?down, ?stop

?down

Figure 9: Motor

5

?psat(f)

Figure 10: Panel Buttons

!preq(f)

?psat(f)

CM must decide whether to continue going up or to change
direction. If the requests bit of either CP or CB is set to p,
this indicates more panel or floor requests in the up direction
(i.e., above the current floor f), and so CM continues mov-
ing up. if both requests bits are set to %, then this indicates
no more requests in the up direction, but some requests in
the down direction, and so CM changes direction. See Fig-
ure 8, and in particular, the guards on transitions leaving
state [f, s, u]. if one of CP or CB has its requests bit set
to ¢ whilst the other is in the state [f,s,4¢] (indicating no
requests at all), then again CM changes direction. If both
CP and CB are in the state [f, s, %3], then CM remains sta-
tionary at floor f, since in this case there are no pending re-
quests in the system. When CP has its requests bit set to ,
then it keeps moving up along with CM and CB, as needed,
without stopping at any floors. Similar remarks apply to
CB. This design allows CP, CB, and CM to remain always
within one floor of each other, which greatly simplifies the
design of CP. ||i CB. ||i CM., and also keeps the num-
ber of states of CP. ||; CB. ||i CM. in O(F), rather than
O(F3). The constraint of staying within one floor of each
other is enforced by appropriate guards in the transitions
of each automaton. When referencing the local state of one
automaton within another, we use the notation “automaton-
name.predicate”. For example, the guard CM.(f, u) which
appears in Figure 4, is true iff CM. floor = f A CM .dir = u,
where CM. floor, CM .dir are the floor and dir variables in
the local state space of CM. Similar abbreviation is used
for all the other guards in CP., CB., and CM.. We also
use underscore to indicate “don’t care.” When we use less
than 4 argument, it should be understood to mean that the
omitted arguments are don’t cares.

We can regard CP and CB as moving along one of eight
“chains” of local states, given by the eight possible settings
of the dir, status, and requests bits. A ninth chain consists
of the states [f, s, %], indicating no requests at all, and in
this case CP, CB just keep moving in concert with CM.
These transitions out of [f, s,4i] are not shown for sake of
clarity of the diagrams.
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3.6 Verification of Behavioral Properties with-

out State-explosion
Our interconnection scheme enables the separation of the
state spaces of the various components. Instead of con-
structing the global product automaton of all the compo-
nents in the elevator system, we only construct the pair
machines CPy, ||;m P, CBp ||m B, CMp, ||m M, and the “in-
ternal shared memory” composition CP. |; CB. ||s CM..

We can then verify behavioral properties of each of these
machines in isolation, and then combine these properties
deductively to obtain properties of the overall system.

The CP, ||m P pair-machine is very simple: it just records
panel requests into panel_sched, and removes requests from
panel_sched when the appropriate floor is visited. It also
changes the state of CP as appropriate to record the current
state of the panel requests, in particular, it manages the
transitions between states with CP.request = p, states with
CP.request = 4, and states of the form [f, s, 73].

Likewise the CBy ||;» B pair-machine records floor button
requests into up_floor_sched and down_floor_sched, and re-
moves them when the appropriate floor is visited with the
elevator moving in the right direction, and also manages the
CB.requests bit.

We can therefore easily verify the following properties.

CP, ||m P satisfies: (1) If a p_req(f) event occurs, then f €
panel_sched subsequently remains true until CP.floor = f
holds, if ever.

CBy ||m B satisfies: (1) If a uf_req(f) event occurs, then f €
up_floor_sched subsequently remains true until CB. floor =
fACB.dir = u holds, if ever, and (2) If a df _req(f) event oc-
curs, then f € down_floor_sched subsequently remains true
until CB.floor = f A CB.dir = d holds, if ever.

CM ., ||m M satisfies: (1) Between an occurrence of event
lup and a subsequent occurrence of !down, there is an occur-
rence of !Istop, and (2) Between an occurrence of event !down
and a subsequent occurrence of !up, there is an occurrence
of !stop.

The CP. |; CB. ||li CM. machine is more complex, since
it in effect performs the coordination of the elevator. How-
ever, it has few states. Each of CP., CB., and CM. has
9F states. Furthermore, the coordination between these
three automata ensures that they are never more than one
floor apart. Hence, the number of states in the product
CP. ||l: CB. |li CM. cannot exceed (2 x 9)3F, i.e., 5832F.
In practice, F' does not exceed 200, giving an upper bound
of 1166400 states, well within the reach of current auto-
matic verification methods such as model checking [4]. We
can therefore verify that CP. |; CB. |i CM. satisfies:
(1) if CP.floor = f holds, then eventually CM.floor = f
holds, (2) if CB.floor = f A CB.dir = u, then eventually
CM.floor = f A CM.dir = u, and (3) if CB.floor = f A
CB.dir = d, then eventually CM. floor = f A CM .dir = d.

We now verify the safety and liveness requirements given
in Section 3.1. Properties (1) and (2) of CMy ||m M im-



mediately gives us safety. We establish liveness as follows.
For panel requests, property (1) of CPy ||m P together with
property (1) of CP. ||; CB. |li CM. gives us: if a p_req(f)
event occurs, then eventually CM.floor = f holds. Hence
all panel requests are eventually satisfied. For up button
floor requests, property (1) of CBp |m B together with
property (2) of CP. ||; CB¢ ||li CM. gives us: if a uf_req(f)
event occurs, then eventually CM. floor = f A CM .dir = u
Hence all up floor button requests are eventually satisfied.
For down button floor requests, property (1) of CBy ||m B
together with property (3) of CP. ||i CBc ||i CM. gives
us: if a df_req(f) event occurs, then eventually CM. floor =
f A CM.dir = d Hence all down floor button requests are
eventually satisfied. Having shown that all requests are
eventually satisfied, we have established liveness.

Our example can be extended to several elevators by intro-
ducing interfaces between controllers which coordinate the
servicing of floor requests, so that only one elevator services
any given floor request. We omit the details.

4. DISCUSSION AND RELATED WORK

The pairwise architecture enables a clean separation be-
tween interfaces. In the usual approach, a component has
a single interface, through which it interacts with all other
components. Thus, different interactions with different com-
ponents are all mediated through the same interface. This
results in an “entangling” of the run-time behaviors of vari-
ous components, and makes reasoning (both mechanical and
manual) about the temporal behavior of a system difficult.
By contrast, our architecture “disentangles” the interactions
of the components, so that the interaction of two compo-
nents is mediated by a pair of interfaces, one in each com-
ponent, that are designed expressly for only that purpose,
and which are not involved in any other interaction. Thus,
our architecture provides a clean separation of the run-time
interaction behaviors of the various component-pairs. This
simplifies both mechanical and manual reasoning, and re-
sults in a design and verification methodology that scales

up.

Our architecture also facilitates extensibility: if a new com-
ponent is added to the system, all that is required is to
design new interfaces for interaction with that component.
The interfaces between all pre-existing pairs of components
need not be modified. Furthermore, all verification already
performed of the behavior of pre-existing component-pairs
does not need to be redone. Thus, both design and verifica-
tion are extensible in our methodology.

We can apply our approach at varying degrees of granular-
ity. For example, we could have modeled each button as a
separate component, with its own interfaces. We chose not
to do this, and collected all panel buttons (floor buttons)
into a single component, because the behavior of the but-
tons is so simple, that even though the button component
has a large number of states (O(2F)), it nevertheless is very
easy to analyze.

By contrast, a brute-force approach in which the product of
all components in the system was first generated, and then
verified by model checking or reachability analysis, would
have generated a global state space with at least 2F23F,
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since there are three schedules (panel_sched, up_floor_sched,
and down_floor _sched), and a centralized controller would
require at least 2F states, to record the current floor and
the direction of motion.

For a building with 200 floors, our approach requires verify-
ing properties of a state space with at most 1166400 states,
which is within reach of current methods, whereas a brute-
force approach would require checking a state space of size
400 * 250 or approximately 10'8° states, which is clearly
impractical.

Vanderperren and Wydaeghe [32, 28, 33, 27, 26] have de-
veloped a component composition tool (PascoWire) for Jav-
aBeans that employs automata-theoretic techniques to ver-
ify behavioral automata. They acknowledge that the prac-
ticality of their method is limited by state-explosion. Incor-
porating our technique with their system is an avenue for
future work.

Alur and Henzinger [5] have defined a notion of interface
automaton, and have developed a method for mechanically
verify temporal behavior properties of component-based sys-

tems expressed in their formalism. Unfortunately, their method

computes the automata-theoretic product of all of the inter-
face automata in the system, and is thus subject to state-
explosion.

Component generators [18, 19, 20], synthesize a system of
components from a concise specification. A combination of
these techniques can form the basis for a method for the con-
struction of large component-based software systems. The
interactions amongst components can be checked pairwise,
thus avoiding state explosion.

5. CONCLUSION

‘We have presented a methodology for designing components
so that they can be composed in a pariwse manner, and
their temporal behavior properties verified without state-
explosion. Our method specifies the externally visible be-
havior of each component C as several interface automa-
ton, one for each of the other components which C interacts
directly with. An interface automaton is a finite-state au-
tomaton whose transitions can be labeled with method calls.
Finite-state automata are widely used as a specification for-
malism, and so our work in compatible with the mainstream
of component-based software engineering.

‘We implemented our system in the IOA toolset and language
(see http://theory.lcs.mit.edu/tds/ioa/). A technical
report presenting this implementation is available at http:

//wuw.ccs.neu.edu/home/lorenz/papers/reports/NU-CCS-03-02.

html

Ensuring the correct behavior of large complex systems is
the key challenge of software engineering. Due to the inef-
fectiveness of testing, formal verification has been regarded
as a possible approach, but has been problematic due to the
expense of carrying out large proofs by hand, or woth the aid
of theorem provers. One porposed approach to making for-
mal methods economical is that of automatic model checking
[4]: the state space of the system is mechanically generated
and then exhaustively explored to verify the desired behav-



ioral properites. Unfortunately, the number of global states
is exponential in the number of components. This state-
explosion problem is the main impediment to the succesfull
application of automatic methods such as model-checking
and reachability analysis. Our approach is a promising di-
rection in overcoming state-explosion. In addition to the
elevator problem, the pairwise approach has been applied
succesfully to the two-phase committ problem [1] and the
dining and drinking philosophers problems [3].

Large scale component-based systems are widely acknowl-
edged as a promising approach to constructing large-scale
complex software systems. A key requirement of an succes-
ful methodology for assembling such systems is to ensure
the behavioral compatibility of the components with each
other. This paper presents a first step towards a practical
method for achieving this.
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