
Reflective Mechanisms in AOP Languages

Sergei Kojarski David H. Lorenz
�

Northeastern University
College of Computer & Information Science

Boston, Massachusetts 02115 USA� kojarski,lorenz � @ccs.neu.edu

ABSTRACT
The paper describes concepts and experiments with reflective mech-
anisms in AOP languages, illustrating that an AOP computation is
a reflective computation. The goal is to improve the understanding
of AOP and reflection by revealing that AOP and reflection are in
fact both first class reflective mechanisms. The paper discusses the
relation between reflection and AOP, and demonstrates how AOP
can be used for implementing reflection. We illustrate that in case
the aspect language does not offer core reflection or in case the re-
flection offered by the aspect language is not expressive enough,
reflection can be simulated with AOP. This is in contrast to the tra-
ditional thinking of AOP as merely a mechanism for facilitating
reflection functionality.

1. INTRODUCTION
Aspect-oriented programming (AOP) is in essence a computational
reflection mechanism [17]. The join point model reflects a pro-
gram’s behavior: a join point provides the ability to introspect;
advice provides the intercession (manipulation) capability. Aspect-
oriented languages (e.g., AspectS [7] and AspectJ [15, 10]) are typ-
ically built on top of a base object-oriented programming (OOP)
language, which has native support for reflection. Consequently, in
addition to its aspectual reflective mechanism (���), the aspect-
oriented language also supports the underlying OOP core reflection
mechanism (���). AOP programmers thus have two reflective
mechanisms to their disposal.

From a software engineering point of view, the two reflective mech-
anisms serve different purposes, with different application areas. In
AspectJ, for example, Java Core Reflection is mainly used for in-
trospection on structure [4], while aspects are mainly used for inter-
cession on behavior. However, an aspect could just introspect the
behavior without inflecting any functional affect on the program;
�
Supported in part by the National Science Foundation (NSF) un-

der Grant No. CCR-0098643 and CCR-0204432, and by the Insti-
tute for Complex Scientific Software at Northeastern University.
0A short version of this paper appeard as a position paper at
AOSD’03 SPLAT Workshop [11].

and instantiating objects or invoking methods using reflection does
affect the program’s run-time structure and behavior.

The goal of the paper is to improve our understanding of AOP and
reflection by revealing that AOP and reflection are in fact both first
class reflective mechanisms. This paper explores to what extend
reflective properties of ��� and ��� overlap. We illustrate how
��� and ��� may interact in beneficial and unexpected ways, re-
sulting in improvement of the software engineering abilities of each
other. The paper addresses the fundamental question of whether or
not one mechanism subsumes the other.

We show that the two mechanisms interact, and making practical
observations based on those examples. We illustrate that traditional
AOP semantics can be achieved by reflection; we illustrate that tra-
ditional reflection semantics can be simulated by AOP; and we give
examples on how the two can interact collaboratively.

The rest of the paper is organized as follows. Section 2 illustrates
the ability of AOP to simulate reflection by giving two concrete
examples in Java and AspectJ. Section 3 provides the conceptual
framework to viewing AOP as computational reflection. Section 4
describes experiments in implementing a complete reflection ap-
plication programming interface (reflection API) on top of AspectJ
without using Java Core Reflection. In Section 5, the inability of
AOP to do every single thing that core reflection supports is ex-
posed clearly, and similarly in the opposite direction. We also de-
scribe a practical software engineering perspective on AOP and re-
flection collaboration. Related work is described in Section 6, and
in Section 7 we conclude by mapping the space of AOSD languages
with respect to aspectual and reflective features.

2. MOTIVATION
Historically, the seeds of AOP are founded in metaobject proto-
cols (MOPs) [9] and open implementations (OIs) [8]. This fact
gave rise to the point of view that reflection is the underlying basis
for AOP. Under this view [18], AOP facilitates disciplined meta-
programming, utilizing MOPs [9]. It is sometimes even said that
the emerging aspect languages reify principled reflection “meta-
level” abilities to “base-level” programmers.

Indeed, AOP can be implemented as an aspectual interface (AI)
to the underlying (MOP) reflective interface (RI), as exemplified
by AspectS. However, an AOP system is reflective in its own right.
Conceptually, the AOP language can implement its AI directly. For
example, MCI [12] is a statically type-safe extension of an OOP
language, �
	�� [12], with native support for AI. While a compiler
for MCI hasn’t been implement yet, MCI has complete semantics

and no reflection.

Moreover, in this paper we show that AI provides almost the same
level of introspection as RI. We show that AOP offers meta-information
at a comparable level to that of full introspection MOP’s, (i.e.,
we show that it is not true that join point models offer less meta-
information than introspection.)

Throughout the paper we use RI and AI as abbreviations for the in-
terfaces provided by reflective and aspectual features, respectively.
We differentiate between ��� - and ��� -based implementation
of these feature interfaces. We denote by RI
 and AI
 the ��� -
based implementation, and by RI � and AI � the ��� -based im-
plementation, of RI and AI, respectively.

��

��

���

���

��

��

���

��

RI � RI �

AI �AI �

Figure 1: Aspectual Reflection

In the rest of this section, we underscore the observation that AI
can be the basis for RI. Even if the base OO language does not
provide RI
 , the AOP language can still build one RI � on top of
its ��� . We illustrate this in Java and AspectJ first for object-level
and then for class-level structural reflection.

2.1 AOP-based Object-level Reflection
Consider the manner in which a client of reflection can access the
field fname of an object host using Java Core Reflection:

1 host.getClass().getDeclaredField(fname).get(host)
;

which actually should be in a try-catch statement:

1 try {
2 host.getClass()
3 .getDeclaredField(fname).get(host);
4 } catch(IllegalAccessException iae) {
5 System.out.println("Illegal field access: "
6 + iae.getMessage());
7 } catch(NoSuchFieldException nsfe) {
8 System.out.println("Field not found: "
9 + nsfe.getMessage());

10 }

Now assume AspectJ was an extension of a dialect of Java that
did not include support for core reflection. We could still provide
access field values using AOP without relying on reflection by, e.g.,

1 FieldInspector.aspectOf(host).get(fname);

where reflection is simulated with the FieldInspector aspect:

1 import java.util.HashMap;
2 aspect FieldInspector
3 pertarget(initialization(

4 (!FieldInspector).new(..))) {
5 before(Object newValue): set(* *.*)
6 && args(newValue) {
7 fields.put(thisJoinPoint
8 .getSignature().getName(),newValue);
9 }

10 public Object get(String name) {
11 return fields.get(name);
12 }
13 private HashMap fields = new HashMap();
14 }

In the above aspect, pertarget guarantees that every object ever
created is associated on initialization with an instance of the FieldInspector
aspect. FieldInspector.hasAspect(target) is always true,

and aspectOf(host) is always defined. For simplicity, FieldInspector
assumes field names to be unique (and ignores the issue of overrid-
den fields) and (similar to RI
) boxes primitive values in objects
(ignoring default value initialization).

The FieldInspector example illustrates that it is possible to pro-
vide reflective information about every field of every object without
having core reflection. This example can be extended to provide
complete structural reflection on the object-level resulting in the
AOP-based RI (RI �). RI � could even expose structural informa-
tion beyond what RI
 normally offers. For example, run-time pro-
filing information (e.g., how many times a particular method was
executed) is not a part of RI
 , but can be easily provided using
AOP.

2.2 AOP-based Class-level Reflection
To complete the picture, we need to also explore reflection over
a class structures. Consider the manner in which one can find a
superclass of a class C using Java Core Reflection API (RI
):

1 C.class.getSuperclass();

Similar to the case with object-level reflection, aspects can also
simulate class-level reflection. We can find the superclass using
AOP without using RI
 by, e.g.,

1 ClassHierarchy.getSuperclass(C.class)

where the class-level structural reflection is simulated with the as-
pect ClassHierarchy:

1 import java.util.HashMap;
2 aspect ClassHierarchy
3 percflow(call(
4 (!ClassHierarchy).new(..))) {
5 before(): initialization(
6 (!ClassHierarchy).new(..)) {
7 Class descClass = thisJoinPointStaticPart
8 .getSignature().getDeclaringType();
9 hierarchy.put(descClass,superClass);

10 superClass = descClass;
11 }
12 private static HashMap hierarchy =
13 new HashMap();
14 public static Class getSuperclass(
15 Class desc) {
16 return (Class)hierarchy.get(desc);
17 }
18 private Class superClass;
19 }

The ClassHierarchy aspect maintains a hash-map hierarchy,
which reflects all the classes instantiated directly or indirectly.

3. CONCEPTS
This section provides the conceptual framework for discussing the
relation between reflection and AOP. The goal is to remove the haze
from the understanding of AOP and reflection by revealing that
AOP and reflection are in fact (almost) equivalent concepts. Tra-
ditionally, AOP is viewed as a reflection-based or transformation-
based extension to a certain core OOP language. Conceptually,
however, reflection can also be viewed as an AOP-based extension
to a certain core AOP language.

3.1 Computational reflection
A system exhibits computational reflection [17] if:

(i) the system always has an accurate self-representation; and

(ii) the system is causally connected to its self-representation.

Figure 2 depicts the similarities between reflection and AOP as
first-class computational reflection mechanisms. The circle-head
lines marked RI
 and AI � are the interfaces used by clients of re-
flection and AOP. �
 and � � are self-representation domains of
meta-information. The internal information and the domains �

and � � are linked in such a way that if one of them changes, the
other changes correspondingly. The arrows ��� and ��� are the
mechanisms that keep the system’s internal information causally
connected to ��
 and ��� , respectively. Some of the internal infor-
mation is reflected by both ��
 and by ��� , but they do not overlap
entirely.

Internal

System

RI

AI �

� �

� �
���

 �
information

Interpreter

OOP Domain

Reflection
Aspectual

AOP Domain

Reflection
Core

Figure 2: Native !#" and native $%"

3.2 Core Reflection
Core reflection comprises a reflection API, RI
 , an OOP domain
meta-information, �
 , and a reflective mechanisms, ��� , keep-
ing the system causally connected to the meta-information.

For example, in Java, RI
 is the package java.lang.reflect.
�
 is the OOP reflective meta-information domain, e.g., Java Core
Reflection, comprising of the class objects, method objects, etc.
that reify RI
 . ��� denotes reflective mechanism that keeps the
system’s internal state causally connected to �
 . A change to the
internal information is reflected in �
 and a change in �
 is re-
flected internally, but in Java, the structural information in ��
 is
read-only.

3.3 Aspectual Reflection
An AOP system comprises AI, � � , and ��� . Consider an AOP
language with native supports for AI. We denote by AI the as-
pectual interface to the aspectual domain � � (i.e., the syntax of
a certain AOP expressiveness); and by ��� the aspectual mecha-
nism that keeps the internal state casually connected to �&� (i.e.,
the mechanism that preserves the semantics of AI).

Next we elaborate on what we mean by AI, � � , and ��� . The
rest of this section is leading to the logical conclusion that AOL
supports “core” computational reflection via AI, just as OOL sup-
port computational reflection via RI, and thus AOP languages have
a reflective architecture.

3.4 What is AI?
An AOP system is a system with some implementation of AI. Gen-
erally, an AOP language comprises a base language and an aspec-
tual interface AI. The dynamic semantics of AI denotes aspectual
computations.

3.5 What is � � ?
An aspectual computational system is a system whose purpose is
to support action in the AOP domain, where the AOP domain is
the domain of the base language plus the aspectual domain. For
this paper we only assume that there is some definition of a join
point model (JPM), some definition of an advice model (ADM),
and some definition of a superimpose model (SIM), where SIM
is a relation over JPM ' ADM. The aspectual domain consists of
JPM, ADM, and a relation SIM. That is, ��� comprises a join point
model, an advice model, and a superimpose model.

JPM specifies the types of join points and their structure. ADM
specifies the kinds of advice and how they modify the program be-
havior during execution. SIM is a mapping JPM (ADM, which
prescribes which advice applies to which join point.

SIM can be implicit or explicit. In AspectJ, for example, the super-
impose instruction is implicit by including, within the advice, point
cut descriptors (PCD), i.e., a patterns specification of sets of join
points. In MCI, on the other hand, the superimpose instruction is
explicit using a superimpose language construct that allows to
attach an advice to join points of a specified method calls.

3.6 Self-representation
In order to justify that the internal information is causally con-
nected to � � , we must show that � � is indeed a self-representation
of the system. A system’s self-representation means some abstrac-
tion of itself, which must be accurate but not necessarily complete.
That is, some image of the internal-information is causally connect
to the system’s meta-information, namely its self-representation.

In AOP, a JP is a point in the program execution: it is an abstraction
of a state transitions in the program execution. The join point model
specifies what are the kinds of monitored transitions (i.e., kinds of
join points). Monitored state transitions in the execution lead to
corresponding join points. The join point model is linked to the
program execution is such a way that it reflects the execution.

Join points reflect the transitions; advice affects the transitions,
which are then reflected in the join points. Join points are tempo-
rally connected to internal behavior information (state transition.)
We can say that the two are causally connected.

Hence, ��� is a self-representation of the program execution, be-
cause

(a) monitored state transitions are accurately represented by the
join points; and

(b) advising join points affects the internal state transitions.

3.7 What is ��� ?
��� is the implementation of the AI semantics. ��� is the mech-
anism that guarantees that the internal information and the external
self-representation are causally connected. Internal means program
transition between states. External means the join point model. The
execution is a dynamic representation of the program. ��� is a
temporal state of the program in the form of a steam of join points.
The stream of join points reflects the execution of the program; and
the join point stream is in sync with the execution. ��� clients
(e.g., advice) affect the execution of the program. As a result, ���
clients change the stream of join points.

Hence aspectual computation is a reflective computation, i.e.,:

COROLLARY 1. An AOP system is reflective.

3.8 Aspectual Architectures
Now that we have established conceptually that an AOP system is
a reflective system, we list three different aspectual architectures
exhibiting different implementation strategies for AI :

Native. AI is the aspectual instruction set that clients use for AOP.
The actual processor that interprets AI instructions can be a
native ��� , as shown in Figure 2 (but without the reflection
parts ��� , �
 , and RI
 .) MCI is an example of an AOP
language, which is based on a pure OOP language (supports
class hierarchies with single inheritance). The base OOP lan-
guage does not provide support for reflection. MCI is a lan-
guage extension that is type-safe, supports separate compila-
tion, it is state-aware (evaluation of advice code could pro-
duce side-effects). MCI provides precise operational seman-
tics for a native implementation of AI: the precise semantics
for the superimpose construct is defined directly. While a
compiler has not been implemented for the MCI language,
such a compiler is implementable.

Reflection-based AI may be implemented over an underlying ��� ,
as is the case for AspectS. The AOP instructions include As-
BeforeAfterAdvice etc. The implementation is in Smalltalk,
that is, the processor is Smalltalk. The operational semantics
is given in terms of method wrappers [3].

System

Internal

Interpreter

AI

RI

��
� � � �

information
Aspectual

Reflection
Core

OOP Domain

Reflection

AOP Domain

Figure 3: Reflection-based !#"

Transformation-based DemeterJ is an AOSD system that imple-
ment by transformation. AOP instructions, such as Before
etc., are implement by transforming to Java operational se-
mantics. We denote by AI) the aspectual interface to a
transformation-based ��� .

AspectJ is an example of partly reflection-based and partly trans-
formation based as shown in Figure 4. The semantic of AspectJ
was initially “transformation-based” (static + dynamic JPM). Later
AspectJ adapted its own native JPM, although the implementation
remained transformation-based and reflection-based, using the Java
virtual machine (JVM). Future versions of AspectJ might eventu-
ally include a JVM with native support for ��� . A JVM with
a native ��� would allows, e.g., “aspectof” in addition to “in-
stanceof”.

information

�+*

� �

AI)

� �

 � RI

System

Internal

Interpreter

Reflection
Core

OOP Domain

Repository

Source Code

Reflection
Aspectual

AOP Domain

Figure 4: Transformation-based !#"

3.9 Reflective Architectures
There are several possible implementation strategies for RI too. RI
is the reflective instruction set that clients use for OOP reflection.

Native. The actual processor that interprets RI instructions can be
natively supported, i.e., core reflection ��� . This is the case
in Java Core Reflection as well as in Smalltalk’s MOP.

Repository-based. Elsewhere [16], we illustrate that the reflective
meta-interface can be decoupled from its reflection imple-
mentation, and that clients can be retargeted to use a mirrored
reflection instead. We call that pluggable reflection [16].

AOP-based. Last but not least, the reflective mechanism could be
simulated by an aspectual mechanism. That is, imagine As-
pectJ had core ��� but no core ��� , we could still simulate
RI � on top of ��� .

RI �

AI �

System

Internal

Interpreter

���

� � � �
information Core

Reflection
Aspectual

AOP Domain

Reflection

OOP Domain

Figure 5: Aspect-based $%"

In the next section we illustrate concretely that AOP-based reflec-
tion is feasible in AspectJ.

4. EXPERIMENTS
This section descibes an experiment in aspectual reflection striving
to verify the following hypothesis:

HYPOTHESIS 1. AspectJ’s ��� subsumes Java’s ��� .

In order to assess to what degree Hypothesis 1 holds, we build an
AOP-based (aspectual) reflection in AspectJ. Specifically, we im-
plement Java Core Reflection API using aspects and illustrate that
clients of Reflection API can be retargeted to use aspectual reflec-
tion instead of Core Reflection. The goal is to demonstrate that
AspectJ’s aspectual domain is able to provide as much meta infor-
mation as Java Core Reflection does.

4.1 Requirements
It is important to clarify what information is allowed to be accessed
from within the implementation of aspectual reflection, and what
outcome would count as a successful result of the experiment.

Generally, the implementation of aspectual reflection is allowed
to only use ,�- as a source of meta-information without access-
ing ,�. . It means that reflective data is obtained via join points
along (reflected) program execution while functionality provided
by java.lang.Class, java.lang.reflect.* and native run-
time type information (RTTI) (java.lang.Object.getClass()
) is forbidden.

On practice, however, we allow calls to Class.toString() and
Class.getModifiers() methods. This exception is caused by
the fact that AspectJ doesn’t provide it’s own abstraction over types
and uses java.lang.Class to expose join point type information
(e.g. org.aspectj.lang.Signature, org.aspectj.lang.reflect.SourceLocation).
We regard these methods to be pieces of information that concep-
tually could be exposed via the join point interface in reflection -
independent manner (for example, modifiers for a particular class
could be exposed via staticinitialization join point signa-
ture while string representation of types could be a part of any join
point signature).

To avoid any misunderstanding and to check that no illegal calls are
made we use the Proof aspect shown at Listing 1. The aspect stat-
ically verifies via the declare warning construct of AspectJ, that
no calls are made to Java Core Reflection API from the aspectual
reflection implementation. Its sole purpose is to be a proof that we
are not “cheating”.

Listing 1: Proof.java

1 aspect Proof {
2 declare warning: call(* java.lang.Class.*(..))
3 && !call(* java.lang.Class.getName(..))
4 && !call(* java.lang.Class.getModifiers(..))
5 && !call(* java.lang.Class.isInterface(..)):
6 "Using Java Core Reflection!";
7 }

4.2 Methodology
Two general issues need to be adressed by the implementation:

1. Obtaining reflective information from a program execution;

2. Retargeting client code to use aspectual reflection instead of
Core Reflection.

We use an aspect-oriented method to deal with both concerns by
associating specific group of aspects with each.

Collector Several Collector aspects employ ��� to collect meta-
information from a reflected program by advising join points
along its execution path.

Retarget A Retaget aspect replaces functionality provided by
Core Reflection with aspectual reflection mechanism.

4.3 Model
The overall architecture of the solution is shown in Figure 6. The

Bridge

Core

retarget

advise

collect

advise

Client

<<aspect>>

<<aspect>>

adapter

��� ’

�

RI �

Meta-
Information

com.sun.jdi.Mirror

Store

Reflection
Repository
OOP Domain

Figure 6: Overall architecture

model consists of the following two packages:

/ Core. Core package is the heart of the system. It addresses
issues of obtaining and storing meta information about re-
flected program . The package consists of the following mod-
ules:

– Collector aspects advise reflected program. Provided
abstraction of a program execution as join point se-
quence, aspects access meta-information via join point
interface and place it into the aspectual repository ,�- ;

– Aspectual repository is a collection of classes that im-
plements interface, similar to (but simpler than) com.
sun.jdi.Mirror. In essence, it is a database of meta-
information. The repository implements two interfaces:
� Repository - Collector interface. The interface al-

lows Collector aspects to deposit meta-information
into the database and is internal for the package
(package - protected);�
com.sun.jdi.Mirror interface allows external
clients to access content of the repository. The in-
terface supports clients with both static (types) and
(dynamic) meta-information about reflected pro-
gram.

/ Retarget. Retarget package takes care of redirecting reflec-
tion client to use aspectual repository and performs all the
necessary conversions between Reflection API and aspectual
repository terms. It consists of the two modules:

– Retarget contains set of around advice wrapping exe-
cutions of Core Reflection API methods so that origi-
nal methods never executes but aspectual repository is
used instead. All the calls to aspectual repository from
Retarget are done indirectly via Adapter module;

– Adapter is a bridge performing conversion between Re-
flection API and repository terms. It is implemented as
a Reflection API - compatible wrapper around reposi-
tory classes.

Finally, client’s code still uses RI (the reflection interface) but is
actually served with information from � � filled by ��� thereby
using RI � .

4.4 Implementation
This section provides an implementation of the system model. Fol-
lowing the model, full code is given in 4 steps:

1. Collector aspects;

2. Aspectual repository;

3. Retarget aspect;

4. Adapter classes;

4.4.1 Collector Aspects
The Collector aspects advise client’s code in order to intercept
join points that occur during a client program execution. There are
two collector aspects:

/ A EntityCollector keeps the aspectual repository in sync
with the object store of the interpreter by updating it with
newly-created instances. It also obtains structural informa-
tion over class hierarchies of a reflected program. Finally,
it monitors if constructed object is of inner non-static class
and, if so, creates inner/enclosing link between created and
creator objects in the object store;

/ A MemberCollector supplies the repository with informa-
tion about class and interface members, such as fields (and
their values), methods, constructors and inner classes.

Listing 2: EntityCollector.java

1 package edu.neu.ccs.mirror.aspects.internal;
2 import java.util.Vector;
3

4 import org.aspectj.lang.reflect.*;
5

6 aspect EntityCollector dominates MemberCollector
7 percflow(Any.ConstructorCall()) {
8 private Object created=null;
9 private CodeSignature sig;

10 private Vector interfaces=new Vector();
11 private Vector classes=new Vector();
12 private ClassType superclass;
13

14 / 010
15 0 Runs once per each aspect instance
16 0 That’s how we know static type of
17 0 object is about to be created.
18 0 /
19 before():Any.ConstructorCall() {

20 sig = (CodeSignature)thisJoinPointStaticPart.
getSignature();

21 }
22

23 / 010
24 0 At first initialization jp within constructor call flow
25 0 adds new object into the object store.
26 0 For each new initialization join point
27 0 builds correspnding links for a class
28 0 hierarchy
29 0 /
30 before(Object created):Any.Initialization(created

) {
31 //Adding new object into the object store
32 if (this.created==null) {
33 this.created=created;
34 //Add object into value store
35 //Note, that information about object type
36 //is known from constructor signature
37 Store.addObject(created,sig);
38 }
39

40 //Changing superclass information for types in the
41 //type store
42 Method method = Store.convert((CodeSignature)
43 thisJoinPointStaticPart.

getSignature());
44 ReferenceType declaringType = method.

getDeclaringType();
45

46 if (declaringType instanceof ClassType) {
47 ClassType subclass = (ClassType)declaringType;
48 //if (!subclass.isSuperAssigned())
49 subclass.setSuperClass(superclass);
50 superclass = subclass;
51 //at this point interfaces vector contains
52 //all the interfaces this class implements
53 //(directly and by extending its superclasses)
54 //Of course, implementation is not efficient...
55

56 for (int i=0;i<interfaces.size();i++) {
57 InterfaceType iType= (InterfaceType)interfaces

.get(i);
58

59 //1. Adding current class as implementor
60 // to the interface
61 iType.addImplementor(subclass);
62

63 //2. Adding the interface to
64 //the vector of interfaces implemented
65 //by the current class
66 subclass.addInterface(iType);
67 //System.out.println(”adding interface ”+iType.getName()+” to

class ”+subclass.getName());
68 }
69 }
70 if (declaringType instanceof InterfaceType)
71 interfaces.add(declaringType);
72 }
73 }

Adding object. EntityCollector (Listing 2) aspect advises object-
creation join points of the client program. Using capabilities of
context exposure provided by AspectJ, it accesses newly created
objects and places them into the repository.

Notice that object are added by the static method of Store.addObject
, providing it the sig actual argument along with the object itself.
sig carries information about the type of the object created. sig
is obtained by an advice on the Any.ConstructorCall pointcut
that captures all the constructor calls occurring within the client

program. Observe that a constructor call join point always precedes
the corresponding object initialization join point, thus allowing us
to safely use this technique.

Furthermore, the object creation can trigger more than one initial-
ization join point. More specifically, there are initialization join
points for each interface that the object’s class implements and for
each superclass of the object’s class. The private variable created
defined in the aspect guards the repository from excessive updates,
so that an object is added only once at the first initialization join
point. Also note that the before construct ensures that the object
will be accessible via the aspectual repository as soon as it is cre-
ated (and even before it is used by the base program).

Reconstructing the class hierarchy. As mentioned above, an ini-
tialization join point is triggered not only for a class instantiating
the object, but also for each interface this class implements as well
as for each superclass in the hierarchy.

Furthermore, AspectJ defines the order of these join points as fol-
lows:

1. All the classes are traversed from superclass to subclass or-
der, starting from the the root of hierarchy;

2. In each level, first the initialization join points for the in-
terfaces that the class implements are triggered. Then, class-
level initialization is done with the current-level initialization
join point. “Current-level initialization join point” and “in-
terface initialization join point” means that the signature of
the join point contains, at the declaring class, the class of the
current level or the interface.

By relying on this protocol and the predicted order of join points,
EntityCollector can easily recognize the class hierarchy for the
type of the object being constructed.

All the static information is obtained via thisJoinPointStaticPart
of a join point. Conversion from AspectJ signature class instances

to the repository Method class is implemented in the Store class.

As can be seen, declaringType of the initialization join point
could be of either InterfaceType or ClassType. If it is Interface-
Type, we simply add it into the interfaces vector. If it is a ClassType,
this means that the current initialization join point completed the
current class level in the initialization path. Thereby, we add into
the store the information about this level that includes the interfaces
and superclass (hierarchy) information.

In fact, EntityCollector sees each constructor call as separate
unit to be analyzed. To reflect this fact, the EntityCollector
aspect is defined as percflow(Any.ConstructorCall). This

guarantees that:

/ The existence of one instance of the aspect per each construc-
tor call. Therefore, the aspect’s fields will only be relevant to
the particular object construction.

/ If any of the object constructors calls constructors on pro-
gram classes within it’s code, then for that call a new EntityCollector
will be instantiated, without interfering with the current in-

stance of EntityCollector.

Recognizing enclosing/inner object relationship. Enclosing/in-
ner object relationship can be easily recognized, since:

/ Inner object is always instance of non-static inner class;
/ Inner object could only be constructed by enclosing object

(in AspectJ’s terms, for inner object constructor call join point,
“currently executing” object is always enclosing one).

In the EntityCollector aspect, private field creator always
contains “currently executing” object of the monitored constructor
call, as guaranteed by the body of before():Any.ConstructorCall
() advice.

As the first initializer for a constructed object runs, aspect checks if
created object type is inner and non-static. If so, created object
is inner object of creator instance.

Listing 3: MemberCollector.java
1 package edu.neu.ccs.mirror.aspects.internal;
2 import org.aspectj.lang.*;
3 import org.aspectj.lang.reflect.*;
4

5 aspect MemberCollector {
6 / 010
7 0 Adds new types into the store.
8 0 /
9 before(): Any.StaticInitialization() {

10 Store.convert(thisJoinPoint.getSignature().
getDeclaringType());

11 }
12

13 / 010
14 0 Field type and code tables
15 0 meta 2 data collector via
16 0 get join point.
17 0 (programs can access fields
18 0 not covered by set join point, i.e.
19 0 not 2 initialized (initialized with
20 0 default value) fields.
21 0 /
22 after() returning(Object value):
23 Any.Get() {
24 Store.updateField(thisJoinPoint.getTarget(),

value,
25 (FieldSignature)

thisJoinPointStaticPart.
26 getSignature());
27 }
28

29 / 010
30 0 Field type and code tables
31 0 meta 2 data collector via
32 0 set join point.
33 0 /
34 before(Object value):
35 Any.Set() && args(value) {
36 Store.updateField(thisJoinPoint.getTarget(),

value,
37 (FieldSignature)thisJoinPointStaticPart

.
38 getSignature());
39 }
40

41 / 010 Method type & code tables
42 0 meta 2 data collector
43 0 for methods only
44 0 /
45 before():Any.MethodCall() || Any.MethodExecution

() {

46 Store.updateMethod(thisJoinPoint.getTarget(),
null,

47 (CodeSignature)thisJoinPointStaticPart
.

48 getSignature());
49 }
50

51 / 010 Method type & code tables
52 0 meta 2 data collector
53 0 for constructors only
54 0 /
55 before():Any.ConstructorExecution() {
56 Store.updateMethod(null,null,
57 (CodeSignature)thisJoinPointStaticPart

.
58 getSignature());
59 }
60 }

The MemberCollector aspect is a singleton aspect that advises
all the member-relevant join points in the program flow. All the
object state information (field values) is obtained via the join point
interface, while all the information related to the member types is
obtained via the join point signatures. MemberCollector also ad-
vises all the program staticinitialization join points thereby
adding class and interface types into the store as soon as JVM runs
their static initializer.

Reflecting on members Field types and field values are gathered
by advising field accesses and settings throughout the program (Any
.Get() and Any.Set()) Conceptually, the set join point would
be enough to cover all field-related information. However, AspectJ
doesn’t intercept default field settings. If it were the case, Any.Get
() advice would be excessive.

Method types are gathered by advising all method calls and execu-
tions of the base program. Interesting to note that the signature of a
method call is not always the same as a method execution signature
due to dynamic method dispatch mechanism. For example, abstract
methods meta-information is never revealed via method execution,
but only through method call join points.

Constructors are never abstract. Therefore, advice on constructor
execution join points is sufficient.

Adding class and interface types Shortly after loading class, JVM
runs its static initializer. Aspect intercepts those executions by
before advice to Any.StaticInitialization() pointcut. Un-
like well-defined protocol for object initialization, JVM doesn’t
provide sufficent logic for a sequence of class-loads that would al-
low to construct class and interface hierarchies at load-time. There-
fore, advising staticinitialization join points doesn’t do much
but only places new ”stub” type into the type store (type without
any information about it’s type hierarchy). However, knowledge of
a type name allows to reveal if the type is inner class. It is plausible,
because:

/ for all inner classes, name of inner class includes name of all
of its enclosing classes;

/ for non-static inner classes, immediate enclosing class is al-
ways loaded and initialized before inner class;

/ for static inner classes, attempt to load inner class triggers
load of its top-most enclosing class;

Thanks to this logic, we are able to collect inner-type hierarchy
meta information.

Any aspect All the pointcuts used in the collector aspects are are
defined inn the Any aspects. Code of the Any aspect is shown at
Listing 4. As you may see, all the pointcuts used in the collector as-
pects don’t cover join points within and within control flow of any
class defined in package edu.neu.ccs.mirror.aspects and its
subpackages (package which name has edu.neu.ccs.mirror.
aspects prefix). Since al the system is defined in the subpackages
of edu.neu.ccs.mirror.aspects, collector aspects can only
reflect system - outside programs but never aspectual reflection im-
plementation.

Listing 4: Any.java

1 package edu.neu.ccs.mirror.aspects.internal;
2

3 public class Any {
4 pointcut scope():!cflow(within(edu.neu.ccs.mirror

.aspects..*)) &&
5 !within (edu.neu.ccs.mirror.aspects

..*);
6 pointcut ConstructorCall():scope() && call(*.new

(..));
7 pointcut ConstructorExecution():scope() &&

execution(*.new(..));
8 pointcut StaticInitialization():scope() &&

staticinitialization(*);
9 pointcut MethodCall():scope() && call(* *.*(..));

10 pointcut MethodExecution():scope() && execution
(* *.*(..));

11 pointcut Set():scope() && set(* *.*);
12 pointcut Get():scope() && get(* *.*);
13 pointcut Initialization(Object created):scope()

&& target(created) && initialization(*.new
(..));

14 }

4.4.2 Mirrored Reflection
Before introducing Retarget and Adapter modules it is impor-
tant to note that retargeting client to other source of meta-information
implies providing different implementation for Java Core Reflec-
tion API. It requires ability to create objects with types, compatible
with Java Core Reflection API. However

/ Reflection API is implemented as a set of classes and doesn’t
specify interface that would allow different implementations
for the Reflection API;

/ All meta-classes in the Reflection API are final and, thereby,
cannot be extended.

As a result, only JVM can create meta-objects and different imple-
mentation compatible with Java Core Reflection is not feasible.

To solve the problem we provide mirrored reflection that mim-
ics Java Core Reflection classes. java.lang.Class is mirrored
by edu.neu.ccs.mirror.java.lang.Class class and classes
defined in java.lang.reflect package are mirrored with in-
terfaces defined in edu.neu.ccs.mirror.java.lang.reflect
package. Each of mirrored interfaces corresponds to one of the Re-
flection classes and provides the same interface to the client as the
latter.

As we have mirrored reflection we need to change client’s code to
use mirrored reflection instead of native one. It is achieved by:

/ importing edu.neu.ccs.mirror.java.lang.Class class
whenever code in the file uses java.lang.Class interface,
calls obj.getClass() or uses ClassName.class state-
ment;

/ importing edu.neu.ccs.mirror.java.lang.reflect.*
classe whenever code in the file uses java.lang.reflect
.* classes interface;

/ changing obj.getClass() calls to Class.getClass(obj
) and replacing ClassName.class statement with Class.
forName("ClassName").

It important to note, that process of redirecting client from Core
Reflection API to mirrored reflection needs to be completed before
applying Retarget aspect to the client’s code. It also important to
note, that this step is caused only by Core Reflection implementa-
tion features and is not conceptually important.

4.4.3 Retaget Aspect
Client can obtain meta-objects only via the following methods of
(mirrored) Class class:

/ public static Class Class.forName(String,..);

/ public static Class Class.getClass(Object);

While first allows to obtain Class instance by its name, the second
implements run-time type information (RTTI) returning Class in-
stance representing type of the Object argument. Other meta -
objects, such as Field, Method and Constructor could only be
obtained Class interface.

Following this reasoning, it is enough to redirect executions of the
reflection’s Class forName and getClass methods in order to
retarget any reflection library client to the new source of meta-
information.

RAspectExecution aspect, shown at Listing 5 also advises Class
.getEnclosingInstance method. This method is a mirrored-
based extension to the Reflection API and provides clients ability
to obtain enclosing object for an instance of a non-static inner class.

Listing 5: RAspectExecution.java

1 package edu.neu.ccs.mirror.aspects.external.
retarget;

2 import edu.neu.ccs.mirror.java.lang.Class;
3 import edu.neu.ccs.mirror.aspects.external.

reflect.*;
4

5 aspect RAspectExecution {
6

7 Object around(String className) throws
ClassNotFoundException:

8 execution(public static Class Class.forName(
String,..)

9 throws ClassNotFoundException) &&
10 args(className) {
11 return new ClassImpl(className);
12 }

13

14 Object around(Object obj):
15 execution(public static Class Class.getClass(

Object)) &&
16 args(obj) {
17 try{
18 return new ClassImpl(obj);
19 } catch (Exception e) {
20 return null;
21 }
22 }
23

24 Object around(Object obj):
25 execution(
26 public static Object Class.getEnclosingInstance

(Object)) &&
27 args(obj) {
28 return ClassImpl.getEnclosingInstance(obj);
29 }
30 }

As you can see, RAspectExecution simply appeals to the Adapter
module (ClassImpl class is a part of Adapter module that con-

verts between (mirrored) reflection Class and aspectuual reposi-
tory Type).

4.4.4 Adapter
Adapter is a repository-based implementation of a (mirrored) repos-
itory API. It is defined within edu.neu.edu.ccs.mirror.aspects
.reflect package and consists of the following classes:

/ ClassImpl;

/ MemberImpl;

/ MethodImpl;

/ FieldImpl;

/ ConstructorImpl.

Each of those classes simply represents wrapper around correspond-
ning repository classes while providing interface specified by mir-
rored reflection.

4.5 Results
Using only toString() and getModifiers() methods defined
in java.lang.Class class we were able to reconstruct most of
Reflection API using ��� . However, RI � built is different than
Java Core Reflection API in the following features:

/ Read-only structural reflection. The RI � implemented doesn’t
support method invocation and field value setting functional-
ity provided by Java Core Reflection. However, this defi-
ciency is not a conceptual one, since the code and data loca-
tions in form of signatures are captured by ��� and reflected
in the repository. If Java has an ability to to form and send
arbitrary message to an object (as part of the language) the
problem would be solved;

/ Limited structural static introspection. The problem es-
sential for a dynamic join point model is a limited reflective
capabilities over type structure of a program (relations over

types). ��� allows to reflect program execution while pro-
gram structural component is revealed only through reason-
ing over kinds and sequences of join points. For example,
EntityCollector reveals class hierarchies of a program
by analyzing sequences of initialization join points in
the control flow of a constructor call. Ability to reconstruct
subclass and implements relations over types is based
on well-defined protocol specifying order of initialization
join points occuring on object-creation time. Lack of a sim-

ilar protocol for class loads disallow to reveal such a knowl-
edge as class is initialized by JVM. Consequences are the
follows:

– Class hierarchies are known only for classes instanti-
ated at least once during the program execution 1. If
there are no instances of a class in the repository then
no class hierarchy for the class is known.

– The only known members for a class are those refer-
enced in the execution path. That is, the method is
known to be a member of a class if it was called and/or
executed on any instance of this class. Similarly, field
is only known to be a member of a class if it was set
and/or accessed on any instance of the class.

– Super/sub type relations over interfaces are not cov-
ered since this information is purely static and is not re-
vealed by any dynamic join point. Consequently, meta-
information about super/sub interfaces for any given in-
terface is not available.

– Class hierarchies are only known for a classes actually
advised (compiled with the aspect). This limitation is
not conceptual but is due to the source-code transfor-
mation implementation strategy for AspectJ

– The aspectual repository reflects essentially non-temporal
static meta-information in a temporal manner, i.e. static
meta-information adds up as program executes. As a
result, the same request to aspectual repository for static
data could return different results depending on the point
in the execution path the it was made.

/ Full introspection over objects. Not so surprisingly, an
��� based on a dynamic JPM exposes full object structure
of a program. As soon as an object is created by the pro-
gram, it is reflected in the aspectual repository. Nevertheless,
the following limitations exists:

– Only objects whose classes were actually advised by
AspectJ compiler are immediately reflected (on creation-
time) in the repository 2.

– Array objects are never reflected on creation-time since
currently AspectJ doesn’t capture the corresponding join
points. Array objects are only reflected on set/get/method
call join points.

/ New features. Currently, Java Core Reflection doesn’t al-
low to reveal inner/enclosing relations over objects. That is,
it doesn’t provide enclosing object for an instance of non-
static inner class. New method public static Object
Class.getEnclosingInstance(Object) supported by

1Class is instantiated if its constructor or constructor of any of its
subclasses is called.
2This limitation is due to the current implementation of AspectJ
and is not conceptual.

the aspectual repository supports inner/enclosing object hier-
archies.

/ Other new features that can potentially be supported. The
aspectual repository is a database that reflects some JVM
internal structures even more precisely than Java Core Re-
flection does. For example, it has separate meta-objects for
classes, interfaces, arrays and primitive types while Core Re-
flection API unites all of them into java.lang.Class. Fur-
thermore, a repository database can answer questions that
Core Reflection cannot, for example:

– Return all objects/classes/interfaces/arrays located thus
far in the repository.

– How many objects of a given class/interface are there?

– How many times a certain method was executed?

and so on.

/ Potential support for a services to be provided. The as-
pectual repository could also implement a set of listeners of
a certain events like object instantiations, method execution,
class/interface load etc. Such interfaces would allow broad-
casting of AOP events.

/ Security break-in. Since AspectJ is intentional; uncensored
(“unsecured”, in the sense of a Java security) ��� and RI �
could easily provide clients with information about private/pro-
tected field values, normally inaccessible via Core Reflec-
tion.

5. DISCUSSION
The experiment illustrates that ��� can simulate ��� and pro-
vide clients with RI � . Experiment results, however, shows that
Hypothesis 1 doesn’t strictly hold due to specific features of RI �
as opposed to RI
 . At this section we analyze the nature of ���
and compare it with ��� . We explore intersection between two
and discuss how they can work collaboratively.

5.1 ��� vs ���
��� has a “behavioral” view of a program. Aspectual mechanism
is clearly instruction-oriented since it exposes instruction flow in
terms of ,�- to the clients of its AI. As Figure 7 illustrates, the
only structural program meta-information available for ,�- is the
one associated with instructions, available to ��� .

���
� �internal

advice

join points

instruction

data

Figure 7: !#"

On the other hand, ��� sees a program from the “structural” point
of view. As Figure 7 shows, ,�. reflects program structures.

Information
Meta-
 �
� �internal

instruction

data

Figure 8: $%"

Although having different understanding of a program, mechanisms
can simulate each other. The reason why ��� can simulate ���
is that program instructions (i.e. method bodies) are considered
by ��� to be the part of the program structure. Consequently, if
��� has write-access for instructions (i.e. it can overwrite meth-
ods bodies) it can be used for aspect-weaving, thereby implement-
ing AI
 . However, if ��� is not powerful enough, this opportu-
nity is forbidden. The example is Java Core Reflection, that allows
very limited intercession capabilities providing no support for pos-
sible AI
 implementations. Simulating ��� with ��� is more
challenging since the only data available to ��� is the data associ-
ated with instructions and accessible via join point interface. While
few join poins correpond to the program structure in a straight-
forward manner (such as set join point that reveals information
about part-of relationship between its target and argument) the oth-
ers require additional analisys to be mapped on the program struc-
ture (for example, EntityCollector aspect relies on the order
of initialization join points to reveal class hierarchy informa-
tion). This way or the other, ��� can reveal a structural program
component through RI � only if it is accessible via join point oc-
cured in the program execution path. In order words, ��� cannot
reflect on structural program components, that are

/ Haven’t been revealed via join points yet;

/ Don’t provided by the set of join points supported by AOP
language (for instance, interface hierarchy is purely struc-
tural abstraction that has no effect during program execu-
tion);

It explains incompleteness of the aspectial repository for certain
categories of meta-information.

5.2 Mechanism Intersection
Ability to simulate one reflective mechanism with the other implies
that their domains overlap. Figure 10 illustrates intersection of the
internal meta-information regions revealed by the two mechanisms.

In ��� , the representation is passive and clients are active: clients
must actively pull information. ��� is typically class structure. In
��� , the representation is active and clients are passive: clients are
notified of or invoked by join points. ��� is typically object be-
havior (program execution.) ��� includes a JPM, which consists
of kinds of join points (event types), and structure of a join point
(reflective info about the join point.) The join point structure will
typically be callee, caller, args, etc.

5.3 Trade-offs
In the introspection sense, RI � is as complete as RI
 , although
the lack of statically executable advice in current AOP implementa-
tions limits their reflective capabilities. RI
 and RI � have performance-
space tradeoffs. MOP and Reflection usually entail considerable
performance overhead [6] since they handle (traverse and convert)
the internal representation of a meta-information. RI � displays im-
proved performance by directly accessing the meta-information via
the hash-map. For the same reasons, however, RI � is less econom-
ical than RI
 , since RI � caches everything, it actually duplicates
the internal information.

With RI � , the overhead is adjustable: we have control over what
to reflect, i.e., we can reflect only on selected join points (classes,

objects, etc). RI
 is not configurable. RI
 is available regard-
less of whether or not it is used. It always uses one source of
meta-information (its internal representation) and is tightly coupled
to its implementation [16]. In contrast, aspect-based RI � can be
(un)pluggable allowing better composability. Furthermore, it gives
opportunities to increase compile and run-time efficiency by un-
plugging RI � when not needed or not in use.

The join point model provided by AspectJ puts certain limitations
on AspectJ-based RI � . The join point interface does not provide
comprehensive static information (e.g., poor reflective abilities over
Java interfaces). Furthermore, the org.aspectj.lang.reflect
.MethodSignature join point interface (which corresponds to the
java.lang.reflect.Method class in Java) lacks certain meta-
method capabilities, e.g., invocation-by-signature (which is pro-
vided in RI
). Nevertheless, the gap between RI � and RI
 is
bridgeable. Statically executable advice along with improved lexi-
cal a join point model would eliminate these problems.

Degree of overlapping depends on the concrete instances of ���
and ��� . While ��� apprehends the program on the level of
structural abstractions (i.e. classes, methods, fields, objects etc.)
��� goes further and reflects on the program’s instruction stream.
MOP, powerful ��� mechanism can be the basis for some AI

as it allows to intercept method calls and participate in the dispatch
process. However, some instructions are not handled by such a
MOP. Consider type-cast expression: (TypeOfExpression) Expres-
sion. This expression doesn’t relate to any particular structural ab-
straction. At the same time, native ��� could have a join point,
correponding to this kind of expression. In this case, AI
 would
not be able to simulate type-cast join point.

Similarly, ��� could reveal only structural meta-information from
the intersection aria. The amount of the structural meta-information
covered by ��� , and thereby its ability to simulate ��� depends
on the maturity of the domains of the AOP language. In the follow-
ing section we explore relationship between each of domains and
expresiveness of the AOP language.

5.4 AOP expressiveness
From ��� ’s perspective, expressiveness is measured in what data
you can read and what data you can write. From ��� ’s perspec-
tive, expressiveness means what instructions you can read, and how
you can write instructions. Only certain kinds of instructions are
available for ��� . Only certain data is connected to the instruc-
tions. Only certain intercession are permitted on the instruction
stream.

The execution of the program is reflectively represented by ���
in terms of join points. Complete behavioral reflection would be
available for ��� , if there were a 1:1 mapping between the in-
struction set of the base language and the kinds of join points, and
the join point data reflected the actual arguments to the instructions.
The join point stream, however, usually only approximates the ex-
ecution, since the available kinds of join points do not cover the
full instruction set of the base language. For example, AspectJ has
a dynamic join point model. The join point model determines the
kinds of join points that are related to the instructions of the Java
language.

Figure 9 shows the expressiveness space of AOP languages. MCI
supports one kind of join point, namely a method-call join point,
and the join point interface includes caller, callee, arguments, and

result value. MCI has three kinds of advice: dispatch (before call),
enter (before execution), and exit (after execution). Aspectj, sup-
ports many more kinds of join points. It supports before, after, and
around advice. It provides data via thisJoinPoint (this, target,
results, arguments, etc.), and via thisJoinPointStaticPart.

MCI

kinds of advice

structure of join point

kinds of join points

AspectJ

Figure 9: AOP expressiveness model

Often we require static information, for example the declaring class
of a method. This kind of information is impossible to acquire from
the target object’s dynamic information (e.g., actual arguments of
the method). Consider AspectJ before JoinPointStaticPart

was provided. There were two main ways to make this sort of
static information available for AspectJ’s ��� . (1) Add more kinds
of join points, e.g., a static method declarations join points. That
is, adding a static join point model to AspectJ. This would corre-
sponding to moving the AspectJ dot upwards in Figure 9. (2) Al-
ternatively, extending the join point interface to include also static
information, e.g., signature of a method call would also provide re-
quired functionality. This would correspond to moving the AspectJ
dot more to the right. AspectJ chose the latter by providing the
JoinPointStaticPart interface.

5.5 Comparison
Both mechanisms are different. Thus we need both. The reason
why one may simulate the other is the partial overlap. Instruction
still contain data, and that’s how we get a channel to the data. Re-
flection includes code, and that’s how instruction can be rearranged.

The reason why one does not subsume the other is because they
don’t completely overlap. This fact makes both mechanisms de-
sirable, and sometimes necessary for jobs which neither one can
accomplish solely.

Even with full MOP, the lexical information and the internal inter-
preter instructions are out of reach. For example, reflective infor-
mation such as source code location (e.g., file name, line number)
is available in AspectJ but not in AspectS.

In comparison, RI
 reflects on classes that were loaded to the
JVM 3 therefore accounting for a larger set of classes. Once As-
pectJ allows byte-code level weaving, advising the java.lang.
ClassLoader class would eliminate this minor distinction (e.g.,
using an around advice on the loadClass method).

Another approach is to extend the existing AOP model with a mech-
anism of statically executable advice [13]. Such a mechanism would
furnish a complete picture of the class structure statically. RI �
could then expose more structural meta information than RI
 does
today.
3With Java Core Reflection, one cannot reflect on classes until they
are loaded to the JVM.

Behaviior

Structure

354

6 4

Figure 10: intersect

When we have a non-native ��� , it is restricted to capabilities
of the base language reflective capabilities (when implemented on
top of MOP or using program code transformation). At the same
time native implementation can use internals of interpreter and have
more control over exposed information and could have richer set of
join points.

Obviously, ��� stems from ��� . It mimics ��� hooks-meta-
object collaborative mechanism. On the other hand, ��� goes
beyond ��� by generalizing meta-object term to aspect. Both
are definitely located at meta-level and feed on behavioral program
meta-data. The difference is “cross-cutting” nature of aspects. In
other words, while the meta-object has a corresponding item from
within its base level entity structure (class or object), aspect doesn’t
have one. Instead, it (the aspect) is connected to program exe-
cution (behavioral meta-information) given in terms of (sets of)
join points. Similarly, the join point is a generalization of MOP’s
“hooks”. While hook has well-defined purpose in MOP protocol
(it connects certain points in program base level structure to certain
meta-objects), join point is defined only in terms of base program
- it could have or could not have any aspect, or could have set of
aspects associated with it.

��� views the program statically, as a database of structural com-
ponents. Since this database also includes the program’s code (set
of instruction) ��� ’s intercession capabilities over code compo-
nent could easily change program’s behavior.

��� considers the program in terms of a program run-time. Basi-
cally, ��� is unaware about the program structure, but rather well-
aware of program execution path, detailed to a join point stream.
Therefore, ��� could only introspect on structure by assumptions
made over join point stream (if given rich enough join point model
- join point set and (reflective) structure of a join point) and is not
able to intersect on structure. But it’s view of program execution is
amazing. It has “full” (as JPM allows) view of program behavior
and rich (again, as ADM allows) intercession capabilities on it.

��� and ��� should complement each other if complete reflec-
tive capabilities is needed. (Probably, they should evolve to become
one core mechanism). AOL with statically executable advice is an
example of one system that has dynamic JPM reflective capabil-
ities over program behavior and “full” static view of a program.
But still, it would lack direct mechanism to introspect on structure
MOP, on the other hand, has full structural control and allows to im-
plement AOP on top of it if behavioral introspection is necessary.
But, again, MOP should be COMPLETE enough to implement all
the interesting join points.

From a software engineering perspective, AspectJ has limited as-

pectual (incomplete static information) and reflective capabilities
(bound by Java Core Reflection), which limits its area of appli-
cability. In the rest of this Section, we explore opportunities to
overcome these limitations by combining aspectual and reflective
features of AspectJ in unexpected ways.

5.6 Reflection within advice
Compile-time weaving promoted by AspectJ in contrast with As-
pectS dynamic weaving approach gives better run-time performance
though less flexibility. Using RI
 within AspectJ’s advice could
improve aspects run-time flexibility.

An example below illustrates this idea. The Notifier aspect,
shown at the listing invokes a static no-argument methods (lis-
teners) using RI
 method-invocation technique. The basis for a
method selection is equality between method name and the name
of the join point target class. Notice, that aspect Notifier knows
nothing about ClassListeners class (or even if such a class ex-
ists).

Further development of this approach would allow dynamically
(de)attach functionality to advised join points providing limited
run-time aspects weaving [5, 2].

However, it is possible to get the same functionality as the exam-
ple provides without using RI
 . But that would entail a dedicated
aspect and advice for each method resulting in a loss of a dynamic
flexibility.

1 class ClassObserver {
2 static void A() {
3 System.out.println("A Listener");
4 }
5 static void C() {
6 System.out.println("C Listener");
7 }
8 }

1 aspect Notifier {
2 before(Object targ): within(!Notifier)
3 && call(* *(..)) && target(targ) {
4 try {
5 String className =
6 targ.getClass().getName();
7 Class.forName("ClassListeners")
8 .getDeclaredMethod(className,null)
9 .invoke(null,null);

10 } catch (Exception e) {}
11 }
12 }

5.7 Generative aspects
Some tasks that rely on structural meta-information cannot be done
with either RI
 or AI � 4. Consider a lexical style guideline for OO
program coding, which states that call-sites within a method should
only target instance-variable classes of the enclosing class and ar-
gument classes of the method. This style rule is a simplified variant
of the Class Form of the Law of Demeter [14], and detecting vio-
lations of this rule is polynomial and requires only static structural
metal-information. The reason the style rule cannot be checked
with only RI
 is that it does not expose call-sites within method
code. In a related AOSD’03 paper [13] we also prove that it is im-
possible to check such rules in AspectJ. Specifically, we consider
the following aspect:
4In the context of Java/AspectJ

Listing 7: A.java

1 class A {
2 C c=new C();
3 B b=new B();
4 void foo() {
5 foo();
6 c.foo();
7 b.foo(c);
8 D d=new D();
9 d.foo(); // style rule violation

10 }
11 }

1 abstract aspect Violation {
2 abstract pointcut Violation;
3 declare warning: Violation: "Violation";
4 }

where Violation refers to the style rule violation. Indeed, there
is no way to avoid an if pointcut primitive in the pointcut des-
ignator instantiating Violation for the above style rule. But the
if pointcut primitive is not statically determinable and therefore
inappropriate in for the declare warning construct.

It is also impossible to perform a complete check dynamically, be-
cause at run-time not all class meta-information is available; and,
moreover, not all method calls are covered. This holds indepen-
dently of whether we use RI
 within the aspect or not.

However, reflection can be employed to generate an aspect that
does implement the Violation aspect successfully using the generateAspect
method shown in Listing 6. Listing 8 shows the generated as-

pect for a particular class hierarchy: the code listings for class A is
shown in Listing 7; classes B, C, D, and interface I are omitted.

Listing 6: Aspect generator

1 public void generateAspect(StyleRule rule) {
2 FileWriter writer = null;
3 try{
4 writer = new FileWriter(fileName);
5 writer.write("aspect LoDViolation extends

Violation {\n");
6 List declarations = rule.getPointcutDeclarations

();
7 for (int i=0;i<declarations.size();i++)
8 writer.write((String)declarations.get(i)+"\n")

;
9 writer.write("pointcut LoD(): "+rule.

getRulePointcut()+";\n");
10 writer.write("pointcut Violation(): !LoD();\n");
11 writer.write("}");
12 } catch(Exception e) {
13 e.printStackTrace();
14 } finally {
15 try {writer.close();} catch(Exception exc) {}
16 }
17 }

Listing 8: LoDViolation.java

1 aspect LoDViolation extends Violation {
2 pointcut Global(): within(*) && call(* *.*(..));
3 pointcut A(): within(A) && call(* (!(B || C))

.*(..));
4 pointcut A_foo(): withincode(* A.foo()) && call

(* (!(A)).*(..));
5 pointcut B(): within(B) && call(* (!(I)).*(..));
6 pointcut B_foo_C(): withincode(* B.foo(C)) &&

call(* (!(B || C)).*(..));
7 pointcut C(): within(C) && call(* *.*(..));
8 pointcut C_foo(): withincode(* C.foo()) && call

(* (!(C)).*(..));
9 pointcut D(): within(D) && call(* *.*(..));

10 pointcut D_foo(): withincode(* D.foo()) && call
(* (!(D)).*(..));

11 pointcut LoD(): (Global() && ((A() && (A_foo()))
|| (B() && (B_foo_C())) || (C() && (C_foo()

)) || (D() && (D_foo()))));
12 pointcut Violation(): !LoD();
13 }

6. RELATED WORK
In this section we give a brief overview of research conducted in
areas of reflection and AOP and state how these works related to
our. We describe the related work using the terminology presented
in this paper in order to make the comparison clearer.

Related work are classified into two main groups:

/ Works conducting research and experiments in computational
reflection. Specifically, three approaches are considered:

– A reflection-based approach to AOP (i.e., AOP as a fa-
cilitation for MOP).

– A transformation-based approach to AOP.

– Pluggable reflection [16].

/ Works in AOP semantics that take a step toward recognizing
AOP-expressiveness as being first-class in the syntactical and
semantical domains of programming languages. By provid-
ing semantics for AOP functionality, these works describe a
native ��� , thereby decoupling AOP from reflection-based
and transformation-based approaches.

6.1 Reflection-based approach to AOP
The connection between AOP and reflection is usually examined
through the conceptual framework of MOPs. Works overviewed in
this section are no exception. The goal in these works is different
than ours. However, a close examination of the implementation
techniques used to build reflection-based ��� s also highlights the
overlap between ��� and ��� , which is the focus of our study.

6.1.1 Aspect-Oriented programming using Reflection.
Sullivan [18] describes the development of a reflective object-oriented
language (with MOP) for supporting AOP extensions. More specif-
ically, AI (a syntactic extension) is introduced to Java by extend-
ing the base language type system with predicate types that in-
clude predicate and advice expressions. The extended type system
then allows to affect the method-dispatch process by evaluating ad-
vice expressions of predicate-type variables which predicate-match

the method-invocation properties (predicate could have dynamic or
static parts).

Sullivan’s work [18] highlights the intersection between ��� and
��� . It studies what features should ��� support in order to pro-
vide proper semantics for AI. For example, the semantic of advice
is given in terms of a (meta-level) virtual function dispatch method.
Sullivan concludes that ��� with a rich introspective and inter-
cessive capabilities over the program structure and behavior gives
sufficient basis for an ��� implementation to support the corre-
sponding AI
 .

6.1.2 Two-Step weaving with Reflection using As-
pectJ

An interesting example of ��� — ��� collaboration in Java/AspectJ
is given by Ledoux et al. [5]. As opposed to Sullivan’s observations,
Ledoux et al. shows how certain MOP functionality not found in
Java could be simulated by ��� in AspectJ. A proxy-based run-
time MOP system, called RAM (Reflection for Adaptable Mobil-
ity), is built on top of both Java’s ��� and AspectJ’s ��� .

RAM could be seen as RI � (at least, partially), but there are dra-
matic difference in the point of view between Ledoux et al.’s work
and ours. While employing ��� to provide an essential piece of
RAM functionality ([5, section on AOP/Reflection relationship]),
the authors view AOP as facilitation for MOP and conclude on
similarities between MOP hooks and AOP join points and on the
similarities between meta-objects and aspects. We, on the other
hand, emphasize the other direction.

Nevertheless, overall the system demonstrates that a collaboration
between ��� and a read-only structural ��� (Java Core Reflec-
tion) could raise into a fully-functional ��� (RAM). Consequently,
we consider this as another example illustrating that ��� provides
a strong alternative to ��� introspection and to the intercession
behavioral component.

6.2 Transformation-based approach to AOP
The reflective information required to implement AOP could be ob-
tained from the program’s source code. ��� can then be imple-
mented by weaving AOP-expressiveness into the base-level pro-
gram at compile-time (or load time for byte-code weaving) via
source code instrumentation thereby guaranteeing the causal con-
nection at run-time. AspectJ is an example of this approach. The
transformation-based in AspectJ illustrates the behavioral nature
of ��� as reflective mechanism, since it is AOP functionality is
achieved by directly changing the original instruction stream (source
code).

6.3 Pluggable reflection
Reflective abilities of a programming language are typically tightly
coupled with the language implementation (built into the interpreter
to guarantee causal connection), and tightly coupled with the reflec-
tive programs written in this language (i.e., reflective computation
is a client and provider of the meta-information). Elsewhere [16]
we preset a different approach that views reflection as a program-
ming interface that could be separated from it’s implementation and
from clients. As an example, an implementation of a mirrored re-
flection interface that uses a source code repository is given. There
is a strong connection between the works (e.g., here we also pro-
vide a mirrored reflection to clients).

Both works put forward the lesson that a language’s native reflec-
tion mechanism, namely ��� , is not the only possible provider of
computational reflection. While in [16] we substitute Java Core Re-
flection with a source code repository, in this paper we simulate it
using ��� . Note that a repository-based reflection has a structural
introspective nature. An interesting followup research would be
to see if the repository-based reflection could be joined with AOP
and what reflective capabilities this mutated AOP would have (e.g.,
statically executable advice [13]).

6.4 AOP semantics
Models for allowing native ��� implementation are also addressed
from the programming language perspective. In this section we
give an overview two works on AOP-semantics.

6.4.1 Method-Call Interception
Method-Call Interception [12] (MCI) is an extension to a simple
core Object-Oriented language �
	 � defined (which is also defined
that paper.) MCI is presented for addressing issues related to at-
taching additional functionality to method calls. The work pro-
vides syntax, static and dynamic semantics for MCI expressiveness
in terms of the language domains. In order words, MCI defines
both an AI (syntax) and a native ��� for the �
	 � language. The
fact that the extended ��	 � has an ��� but doesn’t have a native
��� serves as proof that the two are independent mechanisms.

In the context of our research, the MCI example raises the follow-
ing questions:

/ Can we provide RI � in the MCI-extended 798;:=< ? If so, to
what extend? If not, why?

/ What JPM and what ADM should the AOL have to allow
implementation of RI � ?

/ What features would RI � have?

These questions could motivate research aimed to implementing
RI � in MCI (or in an extended MCI) language. We expect this
kind of work to improve our understanding of aspectual reflection
and AOP as a whole.

6.4.2 Semantics for Dynamic Join Points
Denotational semantics for a functional AOP mini-language is given
in Wand et al. [19]. Although the model introduced is based on
functional language, it is quite similar to AspectJ.

The work examines the semantics for JPM and ADM. The JPM
and ADM studied are more mature compared with those in MCI. In
pursuing the followup research proposed above, Want et al.’s work
[19] would play a role a provider of an alternative native ��� . One
idea is to extend MCI’s JPM and ADM with the best features from
both AOP-semantics worlds.

7. CONCLUSION
In a nutshell, this paper heightens the awareness that ��� and
��� are alternative providers of computational reflection (Figure 11).
Both ��� and ��� exhibit aspectual and reflective features. AOSD
approaches differ in the features they use. AspectS combines the
aspectual and reflective features of the Smalltalk MOP. AspectJ
combines the reflective features of Java with new aspectual fea-
tures.

mn
�� mn ���

mnComputational
mnReflection

mnConceptual level

mnMechanism level

mnLanguage level

mnFeature level

mnAspectJ mnRaspectmnAspectS mnSmalltalk

mnAI
mn >

mnRI
mn >

mnAI
mn ?

mnRI
mn ?

Figure 11: Computational Reflection Space

The leftmost feature-level hexagon in Figure 11 denotes the imple-
mentation of an aspectual interface over reflection, namely AI
 .
The rightmost hexagon in Figure 11 denotes the implementation of
a reflection API over AOP, namely RI � . The two center hexagons,
RI
 and AI � , represent the traditional implementation of reflec-
tion and AOP.

Figure 11 also maps the space of AOSD languages. Pure OOP lan-
guages, like Smalltalk, utilize just the reflective features of ��� .
Analogously, a pure AOP languages would be one that utilizes just
aspectual features. In the figure, we propose a novel Raspect lan-
guage, which utilizes only the reflective features of ��� .

We have identified, analyzed, and provided examples of explicit
aspectual support in ��� and explicit reflective support in ��� ,
and illustrated AOP and Reflection collaboration from a practical
software engineering perspective. Understanding the software en-
gineering trade-offs could also impact future language design and
implementation.

In a keynote talk on Reflection, MOPs, AOP and back again for
more? 5, Kiczales explained the distinction between AOP and re-
flection, and suggested that seeds of other (good) ideas like AOP
might be found in reflection. When a native ��� becomes a re-
ality, and reflection is implemented as just another aspect, we can
search for seeds of other (good) ideas like reflection in AOP.

8. REFERENCES
[1] AOSD 2002. Proceedings of the 1st International Conference

on Aspect-Oriented Software Development, Enschede, The
Netherlands, Apr. 2002. ACM Press.

[2] J. Baker and W. Hsieh. Runtime aspect weaving through
metaprogramming. In AOSD 2002 [1], pages 86–95.

[3] J. Brant, B. Foote, R. E. Johnson, and D. Roberts. Wrappers
to the rescue. In E. Jul, editor, Proceedings of the 12th

European Conference on Object-Oriented Programming,
number 1445 in Lecture Notes in Computer Science, pages
396–417, Brussels, Belgium, July 20-24 1998. ECOOP’98,
Springer Verlag.

[4] S. Chiba. Load-time structural reflection in Java. In
E. Bertino, editor, Proceedings of the 14th European

5Reflection 2001.

Conference on Object-Oriented Programming, number 1850
in Lecture Notes in Computer Science, pages 313–336,
Cannes, France, June 12-16 2000. ECOOP 2000, Springer
Verlag.

[5] P.-C. David, T. Ledoux, and N. M. N. Bouraqadi-Saâdani.
Two-step weaving with reflection using aspectj. In
Proceedings of the 16th Annual Conference on
Object-Oriented Programming Systems, Languages, and
Applications, Tampa Bay, Florida, Oct. 14-18 2001.
OOPSLA’01, ACM SIGPLAN Notices 36(11) Nov. 2001.

[6] Y.-G. Guéhéneuc. Overall impression on the AOP workshop.
http://www.yann-gael.gueheneuc.net/Work/
Publications/Documents/Trip+rep%ort+AOP+
Workshop01.doc.pdf, May 2001.

[7] R. Hirschfeld. AspectS—aspect-oriented programming with
Squeak. In M. Aksit, M. Mezini, and R. Unland, editors,
Architectures, Services, and Applications for a Networked
World, number 2591 in Lecture Notes in Computer Science.
Springer Verlag, 2003.

[8] G. Kiczales. Beyond the Black Box: Open Implementation.
IEEE Software, 13:1:8, 10–11, January 1996.

[9] G. Kiczales, J. des Rivires, and D. G. Bobrow. The Art of the
Metaobject Protocol. MIT Press, 1991.

[10] G. Kiczales, E. Hilsdale, J. Hugunin, M. Kersten, J. Palm,
and W. G. Griswold. An overview of AspectJ. In J. L.
Knudsen, editor, Proceedings of the 15th European
Conference on Object-Oriented Programming, number 2072
in Lecture Notes in Computer Science, pages 327–353,
Budapest, Hungary, June 18-22 2001. ECOOP 2001,
Springer Verlag.

[11] S. Kojarski, K. Lieberherr, D. H. Lorenz, and R. Hirschfeld.
Aspectual reflection. In AOSD 2003 Workshop on
Software-engineering Properties of Languages for Aspect
Technologies, Boston, Massachusetts, Mar.18 2003. AOSD
2003 Workshop on Software-engineering Properties of
Languages for Aspect Technologies, ACM Press.

[12] R. Lämmel. A semantical approach to method-call
interception. In AOSD 2002 [1], pages 41–55.

[13] K. Lieberherr, D. H. Lorenz, and P. Wu. A case for statically
executable advice: Checking the Law of Demeter with
AspectJ. In Proceedings of the 2nd International Conference
on Aspect-Oriented Software Development, pages 40–49,
Boston, Massachusetts, Mar. 17-21 2003. AOSD 2003, ACM
Press.

[14] K. J. Lieberherr, I. Holland, and A. J. Riel. Object-oriented
programming: An objective sense of style. In Proceedings of
the 3rd Annual Conference on Object-Oriented Programming
Systems, Languages, and Applications, pages 323–334, San
Diego, California, Sept. 25-30 1988. OOPSLA’88, ACM
SIGPLAN Notices 23(11) Nov. 1988.

[15] C. V. Lopes and G. Kiczales. Recent developments in
AspectJ. In S. Demeyer and J. Bosch, editors,
Object-Oriented Technology. ECOOP’98 Workshop Reader,
number 1543 in Lecture Notes in Computer Science, pages
398–401. Workshop Proceedings, Brussels, Belgium,
Springer Verlag, July 20-24 1998.

[16] D. H. Lorenz and J. Vlissides. Pluggable reflection:
Decoupling meta-interface and implementation. In
Proceedings of the 25th International Conference on
Software Engineering, pages 3–13, Portland, Oregon, May
1-10 2003. ICSE 2003, IEEE Computer Society.

[17] P. Maes. Concepts and experiments in computational
reflection. In Proceedings of the 2nd Annual Conference on
Object-Oriented Programming Systems, Languages, and
Applications, pages 147–155, Orlando, Florida, Oct. 4-8
1987. OOPSLA’87, ACM SIGPLAN Notices 22(12) Dec.
1987.

[18] G. Sullivan. Aspect-oriented programming using reflection
and metaobject protocols. Communications of the ACM,
44(10):95–97, 2001.

[19] M. Wand, G. Kiczales, and C. Dutchyn. A semantics for
advice and dynamic join points in aspect-oriented
programming, 2002.

