Non-Invasive On-Demand Changes:
Applying Change-Sets as Aspects

ROBERT HIRSCHFELD?® DaAvID H. LORENZ"

8 Future Networking Lab, DoCoMo Communications Laboratories Furope
hirschfeld@docomolab—-euro.com

b College of Computer & Information Science, Northeastern University
lorenz@ccs.neu.edu

Abstract

All-invasive, in-place modifications of existing classes and methods are a popular
practice in making code changes to open source systems, relying on tool support
to manage change integration and maintenance. Often, a less-invasive approach is
taken that treats the system as a framework and employs subclasses to express
changed behavior. In this paper, we propose the application of aspects to repre-
sent code changes in a completely non-invasive manner. Squeak’s change sets are
an example for recording changes to a system and sharing those changes with oth-
ers. Traditionally, contributions to Squeak, which include extending system classes
and in-place modifications of system methods, are logged and shared via change
sets. This is possible because change sets are not limited to classes as the dominant
unit of modularity—their level of granularity is that of method implementations.
However, change sets are insufficient in supporting dynamic system integration and
maintenance, on-demand changes, and selective undo operations. The representa-
tion of system changes as aspects, as an infrastructural alternative to change sets,
addresses these issues.

Key words: Change-sets, Aspect-Oriented Programming, AspectS, Smalltalk
PACS:

1 Introduction

There are two popular approaches in Smalltalk [1-3] to carry out changes in
the system. The first approach, and also the most popular amongst Smalltalk
practitioners, can be characterized as all-invasive—the direct in-place modi-
fication of existing classes and methods. The second, less-intrusive approach
employs inheritance [4] wherever possible, using subclasses to express behav-
ioral differences.

Preprint submitted to Elsevier Science 25 April 2003

In-place modifications lead to less code and easier-to-understand systems, but
may require more tedious work during system integration. Often it requires in-
tegrating the changes with an evolving code base maintained by someone else.
In other cases, in-place modification may not be an option at all. Furthermore,
directly altering third-party code might be prohibited by law or by the release
license of code artifacts. Meanwhile, relying on subclassing typically results in
more code to add and change, and with that, more code to maintain.

The two approaches offer a trade-off between flexibility and modularity. Sub-
classing is preferable, but it is also too restrictive. It constrains the modifi-
cations to be within the modular structure of the base system. Difficulties
in system maintenance can be attributed to the class as the main modularity
construct in object-oriented programs and systems. In-place modifications pro-
vide maximum flexibility, allowing changes to cut across classes and methods,
but offer no linguistic constructs.

A balance is normally found in the programming environment in the form of
extra-lingual tools and mechanisms for managing the changes, namely change
sets. In Squeak [5-9], change sets keep track of in-place modifications made to
the system. Change sets have always been and still are the most fundamental
mechanism for tracking, storing, or deploying changes made to the Squeak
system. Every project is associated with a change set. Changes can be written
to a file as interpreter directives in source code form, and this source code
representation can be used to re-apply these changes to the same or another
system. Projects in Squeak not only store the state of the complete desktop,
including all visible display objects, but also reference the currently active
change set so that all changes done to the system in the context of that
particular project get recorded into this change set [9].

The use of change sets allows work to be shared by providing information
about modifications to be done to a system to achieve desired behavior. Such
modifications include changes to an existing method, the addition or removal
of a method, the change of message category names, the change of class defi-
nitions, the change of class comments, the addition or removal of classes, and
the change of class category names [2]. One can think of a change set as a
function on a program: applying such function to a program results in an
updated program. The same can be said of aspects.

1.1 Contribution

In this paper we propose to elevate change sets to be first class aspects. Often,
an aspect is viewed as a source code transformation [10]. In this work we
explore the other direction: Could also source code revisions be viewed and

treated as aspects?

Traditionally, revision control tools for manipulating and managing source
code such as SCCS [11], RCS [12], and CVS provide fine-grained single-lines
of code tracking of modifications, but they also treat the program as a mere
collection of text lines. While there is support for merging versions and for
rolling back to an earlier version, changes cannot be invoked or revoked out
of order or dynamically at runtime.

Change sets have this limitation, too. While multiple change sets can be ap-
plied to a system, they have to be applied in a certain order, they affect the
whole system, and they can only be rolled-back—if at all possible—in the re-
verse order applied originally. However, with the availability of AspectS [13,14],
a framework for aspect-oriented programming (AOP [15]) in Squeak, aspects
become an alternative to change sets, which offer a totally non-invasive ap-
proach to carrying out changes.

Changes are crosscutting by nature, the essential phenomenon addressed by
aspect-oriented software development (AOSD). We present the application of
aspects to represent change sets to allow dynamic, on-demand changes that
are non-invasive, context-dependent, and allow for selective undo operations
and better system integration and maintenance. We illustrate our approach
by means of AspectS and its application to the augmentation of the Squeak
development environment [16,17].

1.2 OQwutline

The paper shows how to use aspects to implement a revision-control-like func-
tionality in Squeak. In Section 2, we describe the application of AOP to track-
ing changes. We give a rationale for capturing changes as aspects, and we
show how particular changes can be expressed as an aspect. In Section 3, we
describe our experience in using aspects to migrate the changes from basic
Squeak to AspectS. We provide a precise description and discussion of the
schemes used to encode changes, and in Section 4 we give an example of a
particular transformation. Finally, Section 5 summarizes and concludes the
paper with an outlook at on-going work.

2 Changes as Aspects

Change sets can be described as a unit of code deployment where changes
neither contain nor are limited to a particular class, but affect several classes

and methods therein. Since change sets usually combine changes related to one
particular task or subject, change sets embody crosscutting changes. Because
of that, it is natural to represent such changes in an aspect-oriented fashion,
localizing changes within aspects.

This approach is aligned with software configuration management approaches
that employ AOSD techniques, for example the Sheets system [18], which is
a hypercode programming environment and part of the Gwydion project [19].
The Coven system [20] also supports fragment-based versioning, however, the
fragments are stored as text. In comparison, we advocate the storage of aspects
as semantic change-sets.

Our observations are based on actual experience while extending Squeak’s
code browsers to allow developers to become aware of system parts affected
by aspects introduced via AspectS, and to traverse structural relationships be-
tween aspects and system parts affected by aspects [16,17]. AspectS is an ap-
proach to general-purpose AOP in the Squeak/Smalltalk environment. Based
on concepts of Aspect] [21,22] it extends the Smalltalk metaobject protocol to
accommodate the aspect modularity mechanism. In contrast to systems like
AspectJ, weaving and unweaving in AspectS happens dynamically at runtime,
on-demand, employing metaobject composition. In addition to that,AspectS
also supports the unweaving of individual aspects dynamically at runtime.
Instead of introducing new language constructs, AspectS utilizes Smalltalk
itself as its pointcut language. AspectS benefits from the expressiveness of
Smalltalk, its elegance and power.

2.1 AspectS Case Study

In our first attempt to augment Squeak’s development environment to add
AspectS-related functionality, we decided not to apply in-place modifications
since Squeak is supposed to be a fast changing platform, which made in-place
modifications not that attractive. We subclassed all classes to be changed and
provided differential behavior there instead. Due to numerous unnecessary
hard-coded direct class references, we had to override many more methods to
readjust those references to the subclasses of such classes provided by us, and
to put mechanisms into the system that allowed us to actually integrate our
code.

After finishing that part of our system extension, we decided to move all our
changes into an aspect that could be installed and uninstalled on-demand,
evoking or revoking AspectS related browser properties when needed. The
resulting aspect allowed us to keep our changes localized in one single module,
to make them appear almost like in-place modifications, and to activate or

deactivate our changes if necessary.

In the following sections, we will describe how particular changes—the ad-
dition, removal, or modification of a method—can be transformed into and
expressed by an aspect. In an example we show changes before and after their
transformation using AspectS.

e Added Methods. Expressing added methods by an aspect is straight-forward:
Most aspect-oriented languages offer an introduction clause which qualifies
perfectly for adding new methods into a system.

e Removed Methods. Removing methods is almost as simple as adding them.
However, just rendering removed methods silent, that is changing them to
do nothing at all, is not sufficient since this will not address situations
in which the removed method was overriding another method defined in
a superclass. To avoid such erroneous behavior, removing a method must
be done via the application of an around advice that shadows the original
method and forwards the message received to ‘super.’

e Changed Methods. Changes of an existing method can be matched to before,
after, or around advice directives. A before or an after advice are perfect
candidates for additional behavior that has to be activated on entrance
into or exit from a method execution. An around advice, which is more
general than both a before and an after advice, was used to extend more
complicated methods where it was not that obvious how to just change
the entrance or the exit of a method invocation. An around advice allows
to completely render original behavior inactive by shadowing the original
method and providing a completely rewritten new method.

3 Coding Styles and Transformations

We gained our insights and experience while converting regular system exten-
sions and modifications to the Squeak image into aspects using AspectS. With
that, our guidelines about how to perform these conversions are influenced by
the actual implementation of AspectS, its strengths and limitations.

A primary design principle in the development of AspectS was to introduce the
aspect modularity construct without changing Squeak—neither the language
nor the basic development environment. Since aspects in AspectS are to be
dynamic and late bound to the image, AspectS makes use of block objects
to represent advice code. Blocks are objects often used in control structures
of the Squeak system, representing a deferred sequence of actions. Blocks are
not executed when defined, but at a later time when requested [1]. Such block
objects require special care when accessing the receiver of message affected by
aspects, the access to its state, or the returning of objects in general. In the

following, we will go into some detail to further illustrate these situations.

The code for messages that are to be sent to Squeak’s pseudo-variable ‘self’
in the context of the receiver needs to be changed by replacing all occurrences
of ‘self’ with the name of the first argument of an advice block denoting the
actual receiver of the affected message, which is commonly named ‘receiver’
in AspectS.

e Super Sends. The code for messages that are to be sent to Squeak’s pseudo-
variable ‘super’ in the context of the receiver needs to be changed, too.
Compared to ‘self’-sends, ‘super’-sends need more work to be adjusted
in advice code blocks. Here, we need to utilize Squeak’s reflection pro-
tocol to explicitly start the method lookup in the superclass of the ac-
tual receiver of the affected method. We can achieve this by means of
‘Object>>perform:withArguments:inSuperclass:’ which, as indicated above,
works just like ‘Object>>perform:withArguments:’ except that message
look up does not begin within the class of the receiver of the message, but
with the supplied superclass instead [9].

e Direct Variable Access. Since block objects of advice directives are defined
outside of the method(s) to be affected, it is not possible to access state held
by an associated object or its class directly. Object or class state can only
be accessed either through reflection, which is not recommended in regular
advice code, or via standard accessor methods. If accessor methods are not
already available, they need to be introduced by the aspect to gain state
access.

e Single Exits. Blocks in Squeak are in principle similar to continuations. Be-
sides some deficiencies of their current implementation, one of their prop-
erties is that if they contain an explicit return, the flow of control does
not continue after where the block was activated, but where the block was
defined. Because of that, explicit returns via return statements need to be
eliminated. As result, there will be no explicit return in advice blocks, leav-
ing the block with one exit point, as in Nassi-Shneiderman diagrams [23] or
flow charts.

4 A Transformation Example

The following code (Figure 1 and Figure 2) illustrates how regular changes
to Squeak can be represent as advice method of an aspects. ‘StringHolder,’
a superclass of ‘Browser’ implements ‘messageListSelectorTitle,” which is
one of the methods that needed to be changed to allow aspect navigation
for AspectS. Figure 1 shows how this change was achieved by overriding this
method in ‘Browser.” The part of the code that needed to be changed from
‘StringHolder’ is rendered ‘strikethrough,” and the part of the code that

got actually changed in ‘Browser’ is printed in ‘red.’

StringHelder|Browser=>messageListSelector Title
| selector aString aStamp aSize |
(zelector +— zelf selectedMessageName)
ifHil: [aSize +— self messageListWithoutBehavior size.

f (aSize =0
ifTrue: ['no']
ifFalse: [aSize printString])
, ' message’
. (abize =1
ifTrue: [

ifFalse: ['s"]
ifHothil: [Preferences timeStampsInMenuTitles
IfFalze: [§ nil].
aString +— selector truncate WithElipsisTo: 28,
B (aStamp < self timeStamp) size > 0
ifTrue: [aString, String cr , aStamp]
ifFalse: [aString]]

Fig. 1. Required changes

Figure 2 is the representation of the same change as an AspectS advice. To
make it easier to compare with the original method, removed explicit re-
turns were highlighted in ‘red,” and all ‘self’-references that were changed
to ‘receiver’ were highlighted in ‘yellow.’

AsAspectT ools Aspect==adviceBrowserhessage ListSelector Title
® Asdroundddiice
qualifier: {AsAdwnceQualifier
attributes: { #recetverClassSpecific. #projectSpecific. #projectlsMorphuc,)
pointcut: [OrderedCollection
with: (AsTomnPomtDescrptor
targetClass: Browser
targetSelector: #messageListSelectorTitle)]
aroundBlock: [recewver arguments aspect :client :clientMethod |
| selector aString aStamp aSize |
(zelector +— receiver selectedbessageMName)
184l |
adize +— recewver messageListWithoutBehavior size.
{afize = 0 ifTrue: ['no'] ifFalse: [aBize printString]),
'message!, (abize = 1 ifTrue; ["] ifFalze: ['s'])]
ifMothil: |
Freferences timeStampsInblenuTitles
ifTrue: [
adString +— selector truncateWithElipsisTo: 28,
{aStamp +— recetver timeStamp) size = 0
ifTrue: [alString, String cr, aStamp]
ifFalse: [aString]]

Fig. 2. Changes as as AspectS advice

This transformation is simple enough to be done automatically. The change set

is actually much easier to understand than its corresponding AspectS advice.
However, the advice is generated, and, more importantly, it is an advice and
part of an aspect with all the benefit listed earlier.

5 Conclusion and Future Work

In this paper, we propose the application of aspects to represent code changes
in a manner non-invasive to the base system, which allows changes to be
done or undone on-demand. The paper suggests a solution for encapsulating
changes, which embody crosscutting modifications. The technique is derived
from experience in performing changes to Squeak to support AspectS, using
AspectS’ aspects reflexively to implement such support.

Squeak’s change sets are an example for recording changes to a system and
sharing those changes with others. Traditionally, contributions to Squeak,
which include all-invasive in-place modifications and less-invasive extensions
to system classes and methods, are logged and shared via change sets. This is
possible because change sets are not limited to classes as the dominant unit
of modularity—their level of granularity is that of method implementations.
However, change sets are insufficient in supporting dynamic system integra-
tion and maintenance, on-demand changes, and selective undo operations. The
representation of system changes as aspects in AspectS, as an infrastructural
alternative to change sets, addresses these issues.

Instead of requiring developers to express their changes as aspects, we would
assume infrastructure or framework support to support the generation from
regular changes into aspects and back. This should not be an issue since all
transformations involved are mostly trivial.

While AspectS encourages selective do and undo operations of aspectualized
change sets, it does not yet help in describing and enforcing dependencies,
conflict detection and conflict resolution. Here, more work needs to be done to
address aspect and change management adequately. Since AspectS provides
another composition mechanism (that of aspects and advice behavior) on top
of Smalltalk and with that adds runtime overhead for composition manage-
ment, we suggest to phase-in selected aspects into the base systems once they
stabilize, using Smalltalk’s base composition mechanism (that of classes and
methods).

The feasibility to express certain modifications as aspects raises interesting
question for further research. How would such an encapsulation of program
changes affect evolution of the code base? Often changes build upon each other.
Would such a representation hinder or assist in changes to the aspectized-

encapsulated changes? Changes also interact with each other, or with other
concerns that crosscut the system. How does this change encoding facilitate
or hinder the governance of interactions with either crosscutting concerns or
other aspectized changes? How would this approach scale up to many layers
of change-sets and how would it affect the software development cycle, e.g.,
debugging? AspectS is a proof that at least a complex modification like those
required to implement AspectS can be done without a significant performance
degrade. More work and experiment are needed to asses whether the approach
will be useful in general, e.g., perhaps minor modification need to be collected
and aggregated before issuing an aspect, and perhaps large modifications need
to be split to several aspects?

A change set can be viewed as a sequence of program transformations that can
be applied to an image to obtain a new image. We have argued that AOP can
make the application of these transformations undo-able and non-intrusive.
While this has not been formally proved, we have illustrated the potential
of aspects to model change sets. Our experience with change sets as aspect
can provide insights which might be used by subsequent language developers
attempting to provide similar encoding for crosscutting changes.

On-demand changes via aspects are implementation candidates for Perspec-
tiveS [17,24]. PerspectiveS provides multiple layers of context-dependent be-
havior which will be activated or deactivated by context assessors. With Per-
spectiveS there is no need to specifically prepare the base system that is to be
decorated with context-dependent behavior. PerspectiveS was inspired by PIE
(Personal Information Environment, [25-27]). In contrast to PIE where such
alternatives were offered to developers during development-time, PerspectiveS
permits them to concurrently exist in a deployed system at runtime. Behav-
ior alternatives are activated or deactivated depending on the computational
context accessible directly or indirectly via context assessors.

Acknowledgment

We thank Matthias Wagner for his fruitful discussions and his comments.

References

[1] A. Goldberg, D. Robson, Smalltalk-80: the language and its implementation,
Addison-Wesley, 1983.

[2] A. Goldberg, SMALLTALK-80: the interactive programming environment,
Addison-Wesley, 1984.

[3] A. Goldberg, D. Robson, Smalltalk-80: The Language, Addison-Wesley, 1989.

[4] G. Bracha, W. Cook, Mixin-based inheritance, in: Proceedings of the
European Conference on Cbject-Criented Programming Systems, Languages,
and Applications (OOPSLA/ECOOP), Vol. 25 of ACM SIGPLAN Notices,
1990.

[5] M. Guzdial, Squeak: Object-Oriented Design with Multimedia Applications,
Prentice Hall, 2000.

[6] M. Guzdial, K. Rose, Squeak: Open Personal Computing and Multimedia,
Prentice Hall, 2001.

[7] D. Ingalls, T. Kaehler, J. Maloney, S. Wallace, A. Kay, Back to the future: The
story of Squeak, a practical Smalltalk written in itself, in: Proceedings of the
12t Annual Conference on Object-Oriented Programming Systems, Languages,
and Applications, OOPSLA’97, ACM SIGPLAN Notices 32(10) Oct. 1997,
Atlanta, Georgia, 1997, pp. 318-326.

[8] G. Korienek, T. Wrensch, D. Dechow, Squeak - A Quick Trip to ObjectLand,
Addison-Wesley, 2001.

[9] Squeak homepage, http://www.squeak.org.

[10] M. Katara, S. Katz, Architectural views of aspects, in: Proceedings of the 1st
International Conference on Aspect-Oriented Software Development (AOSD),
Enschede, 2003, pp. 1-10.

[11] M. Rochkind, The source code control system, in: IEEE Transactions on
Software Engineering, Vol. 1, 1979, pp. 364-370.

[12] W. Tichy, Rcs - a system for version control, Software, Practice & Experience
22 (8) (1992) 637-657.

[13] Aspects homepage, http:
//www.prakinf .tu-ilmenau.de/ hirsch/Projects/Squeak/AspectS/.

[14] R. Hirschfeld, AspectS—aspect-oriented programming with Squeak, in:
M. Aksit, M. Mezini, R. Unland (Eds.), Architectures, Services, and
Applications for a Networked World, no. 2591 in Lecture Notes in Computer
Science, Springer Verlag, 2003.

[15] R. Filman, D. Friedman, Aspect-oriented programming is quantification and
obliviousness, in: Proceedings of the Workshop on Advanced Separation of
Concerns at the 15th European Conference on Object-Oriented Programming
(ECOOP), Budapest, 2001.

[16] R. Hirschfeld, M. Wagner, Metalevel tool support in AspectS, in: Proceedings of
the OOPSLA 2002 Workshop Tools for Aspect-Oriented Software Development,
Seattle, Washington, 2002.

[17] R. Hirschfeld, M. Wagner, PerspectiveS — AspectS with context, in: Proceedings
of the OOPSLA 2002 Workshop on Engineering Context-Aware Object-
Oriented Systems and Environments, Seattle, Washington, 2002.

10

[18] Sheets homepage, http://www-2.cs.cmu.edu/afs/cs.cmu.edu/project/
gwydion/docs/htdocs/gwydkion/Sheets/.

[19] Gwydion, Gwydion homepage, http://www-2.cs.cmu.edu/afs/cs/project/
gwydion/docs/htdocs/gwydion/.

[20] M. Chu-Carroll, S. Sprenkle, Software configuration management as a
mechanism for multidimensional separation of concerns, in: Workshop on Multi-
Dimensional Separation of Concerns in Software Engineering, ICSE 2000, 2000.

[21] G. Kiczales, E. Hilsdale, J. Hugunin, M. Kersten, J. Palm, W. G. Griswold, An
overview of AspectJ, in: J. L. Knudsen (Ed.), Proceedings of the 15¢* European
Conference on Object-Oriented Programming, no. 2072 in Lecture Notes in
Computer Science, ECOOP 2001, Springer Verlag, Budapest, Hungary, 2001,
pp- 327-353.

[22] C. V. Lopes, G. Kiczales, Recent developments in AspectJ, in: S. Demeyer,
J. Bosch (Eds.), Object-Oriented Technology. ECOOP’98 Workshop Reader, no.
1543 in Lecture Notes in Computer Science, Workshop Proceedings, Brussels,
Belgium, Springer Verlag, 1998, pp. 398—401.

[23] I. Nassi, B. Shneiderman, Flowchart techniques for structured programming,
in: ACM SIGPLAN Notices, Vol. 8, 1993, pp. 12-26.

[24] Perspectives homepage, http://www.prakinf.tu-ilmenau.de/ hirsch/
Projects/Squeak/PerspectiveS/.

[25] D. Bobrow, I. Goldstein, Representing design alternatives, in: Proceedings of
the Conference on Artificial Intelligence and the Simulation of Behavior (AISB),
Amsterdam, 1980.

[26] D. G. Bobrow, I. P. Goldstein, A layered approach to software design, Tech.
Rep. CSL-80-5 (Dec. 1980).

[27] D. G. Bobrow, I. P. Goldstein, An experimental description-based programming
environment: Four reports, Tech. Rep. CSL-81-3 (Mar. 1981).

11

