
N
or

th
ea

st
er

n
U

ni
ve

rs
ity

 -
C

ol
le

ge
 o

f C
om

pu
te

r a
nd

 In
fo

rm
at

io
n

Sc
ie

nc
e

- T
ec

hn
ic

al
 R

ep
or

t N
U

-C
C

IS
-0

3-
13

Contracts and Aspects

David H. Lorenz and Therapon Skotiniotis

Technical Report NU-CCIS-03-13
College of Computer and Information Science

Northeastern University
360 Huntington Avenue 161 CN

Boston, Massachusetts 02115 USA�
lorenz,skotthe � @ccs.neu.edu

Abstract. Recently it has been shown that Design by Contract (DBC) in OOP
have been erroneously enforced by existing DBC technologies. The crosscutting
nature of DBC and its runtime enforcement, make it an ideal problem for AOSD
to solve. In this paper we present an AOSD DBC tool, conaj that provides
DBC support by means of aspects, accommodating also pre- and post-conditions
for advice. conaj is based on the analysis of the relationships of pre- and post-
conditions between aspects and their advised objects. Assertions on advice guar-
antees that addition of aspects honors the underlying systems obligations and
does not break existing system behavior due to erroneous advice attachments or
conflicting aspect–object obligations. AOSD development benefits as runtime er-
ror reporting becomes more accurate and advice expectations and obligations are
now explicitly defined and validated. As a result increasing the ability to reason
about composition as well as the behavior of aspects.

1 Introduction

The use of assertions to verify program correctness dates back to the basics of program-
ming [7, 8]. Having their roots in theory and verification, assertions have made their way
to procedural [22], functional [5] as well as Object-Oriented Programming (OOP) lan-
guages [18]. The Eiffel [18, 19] OOP language, for example, provides the definition of
assertions as part of the language. This discipline of programming is generally called:
Design by Contract (DBC).

DBC makes the obligation–benefit contract between software consumers and providers
explicit. Each instance method defines the valid states in which its execution can start
(precondition), and the states in which it will terminate (postcondition). A more general
assertion (invariant), which is maintained before as well as after any externally observ-
able state of an object, ensures that the object maintains an acceptable state throughout
the program’s execution. Invariants are particularly useful as an inductive hypothesis:
What ever is assumed should be inductively provable.

Checking assertions for methods is an important technique which improves soft-
ware stability and reliability [18]. Many languages provide package support for DBC,
e.g., Java [1, 12, 9, 13], Ada [17], C [22]. In Eiffel [19], Sather [20], and Blue [11] the
provision of DBC is an integral mechanism of the language itself.

N
or

th
ea

st
er

n
U

ni
ve

rs
ity

 -
C

ol
le

ge
 o

f C
om

pu
te

r a
nd

 In
fo

rm
at

io
n

Sc
ie

nc
e

- T
ec

hn
ic

al
 R

ep
or

t N
U

-C
C

IS
-0

3-
13

1.1 Contribution

Contract checking is a crosscutting concern. Contracts are systematically placed through-
out the code, and their evaluation also crosscuts the program’s execution at systemati-
cally, well defined, execution points [16, 25, 2]. This paper presents the use of aspects
to enforce contracts and the use of contracts to check advice.

The use of aspects for contracts has several advantages. First, aspects can bring
DBC to languages that currently have no support for contracts. We present an AODBC
tool that implements this approach in AspectJ. The deployment of DBC in conaj is a
separate aspect inside a program, which developers activate or deactivate at will. Fur-
thermore, all the code that deals with contracts (and their enforcement) is separated
from the application’s code, both at the source code level and at the binary level, allow-
ing for more reuse and easier integration with third-party software.

Second, aspects can provide a supplemental implementation of DBC in a language
that already has some support for DBC. For example, DBC in OO languages has an
interesting interplay with inheritance [4, 6], and more specifically with behavioral sub-
types [21, 15]. Findler and Felleisen [4] point out a common error in the implementation
of contract checking in OO languages: computing the disjunctions of preconditions of
overridden methods does not capture the cases where subtypes violate the law of type
substitutability [15]. In [4] the authors further provide the semantics of a correct con-
tract checking mechanism, and prove its soundness using Java’s core semantics. This
papers builds on their results.

Third, this paper discusses the usage of pre- and post-conditions for advice. We de-
fine what program states are being specified by pre- and post-conditions in advice, and
how these conditions should be checked at runtime. The dependency between advice
obligations and the base program’s obligations are defined in a form that maintains the
original program’s semantics and disallow aspects from breaking them. The paper con-
cludes by presenting a set of judgments that define the compilation steps required to
extend conaj and provide runtime contract checking for both methods and advice.

2 Aspects for Contracts

The key idea in using aspects for contracts is to provide a solution that encapsulates
both the code that specifies the contracts and the code that implements the contract
checking mechanism that is to enforce proper subtype behavior as defined by [4]. While
several contract checking tools have explored alternatives other than AOP [12, 9, 1, 19],
an AOSD implementation is better suited for DBC. A requirement that we imposed on
the aspectual design of conaj was that code that deals with contracts is solely handled
by aspects. Given an OO program along with contract annotations for each type, the
solution should only non-invasively introduce new “components” as aspects and keep
the original classes unaffected1.

1 By “unaffected” we also refer to the absence of introductions as known in AspectJ

2

N
or

th
ea

st
er

n
U

ni
ve

rs
ity

 -
C

ol
le

ge
 o

f C
om

pu
te

r a
nd

 In
fo

rm
at

io
n

Sc
ie

nc
e

- T
ec

hn
ic

al
 R

ep
or

t N
U

-C
C

IS
-0

3-
13

2.1 Architecture

conaj (Figure 1) is a preprocessing tool, implemented using DemeterJ.2 The grammar
for conaj is specified by a DemeterJ class file (conaj.cd), while all operations
for analysis and output are specified inside DemeterJ behavior files (.beh). Compiling
these files with DemeterJ produces all binary files (.class files) that make up conaj.

conaj takes as input a list of files with extension .conaj or .java, containing
code written in a superset of Java which accommodates for contract definitions. The
input files are parsed and analyzed by conaj producing two sets of files as output:

1. Pure Java .java files (one for each .conaj file), where all contract related code
(if present) is commented out.

2. AspectJ .aj files (one for each input type that holds contract definitions) with
appropriate pointcuts, advice, and methods for enforcing contracts.

�
.conaj �

Contract.aj

�
.java

ContainerClasses.behGenerateAspect.beh ContractCollector.beh JVM

�
.class�
Contract.class

CONAJ AJCDemeterJconaj.cd

Conaj Development Conaj Usage

conaj.beh JavaRewriter.beh FileAndDir.beh

Fig. 1. conaj Architecture

2.2 Syntax

conaj is a preprocessor, implemented in an adaptive style in DemeterJ. conaj intro-
duces four new keywords to Java’s set of keywords,@pre, @post, @invariant, and
old. The specification of conaj’s grammar (Figure 2) uses DemeterJ’s [27] syntax for
class files. Class names denoted by ‘[]’ are optional. Rules with ‘=’ denote concrete
classes and their members and ‘ � ’ denotes inheritance from abstract classes.

Definitions of @pre and @post conditions are allowed anywhere in the body of a
method, and also after the signature of a method in an interface definition. @invari-
ant definitions are allowed at the beginning or at the end of a class or an interface
definition. Any valid Java boolean expression ��� can be placed inside an invariant, pre-
or post-condition definitions. In the case of a post-condition, the special keyword old
can be used to refer to the object state before a method’s execution. The usage of a
method’s name (�) inside it’s PostCondition block is used to refer to the returned value

2 conaj was developed with DemeterJ version 0.8.6 [14, 27] and AspectJ [26] version 1.0.6

3

N
or

th
ea

st
er

n
U

ni
ve

rs
ity

 -
C

ol
le

ge
 o

f C
om

pu
te

r a
nd

 In
fo

rm
at

io
n

Sc
ie

nc
e

- T
ec

hn
ic

al
 R

ep
or

t N
U

-C
C

IS
-0

3-
13

�
	
Extensions for Conaj

	����
�������������������� � �"!�#�$ � ���������%�&������'�(*)�
�+-,
./
���0102����� ��3���
04�5���������%�&�����6� �"!87�9�: � �����;���%���<����'8(=)�
�+-,
.>
���010?�<��� ��3@���A�'8
���'B��� � �DC1E�FBG�#8C�G�E�: � ���������%�&������'�(*)�
�+-,
./
���0102����� ��3��(*'�0101HD����I � �-J @���ABKL�2'B�
M"'B�<(ON���(*'�0�02HD����I8PQ�2R?(=0 J @��;ABKL�2'B�
MS'B�T(UN ��3@���ABKL�1'B�
MS'B�<(V�W@���A�'8
���'B��� 3XZY>[T\^]*_?`
aZ\cbd\5a?e �fC1E�:�$�#
gBG�h�$iX4j
\^Y>[%k lm\^] J $�n
:�$�E
o89"pq'Brs�1tu�T0?��N�-J @��;A�'B
���'8�v�TN%XZY�[T\^]=_4`
aZ\cwx\^yQzZ\^]5bd\5a?e { J @���A�'B
���'B�v��N ��3|}�?�&~>���BPQ�2R4(�fwx\^[*���2j1w��2j�k l�\^]Z{�|��?�5~>���8���%�B�;'����/
��m�"��I8Hd(*��R?� 3�"��I8Hd(O��R4� ��� Hd(O��R4�W�m� ���2rq�T����(O��� 3� Hd(O��R4� � �-J Hi(*��R?�8KL�2'8�SN8Hd(O��R4�>���&'��&�1rq�2���50J Hi(*��R?��MS'8�<(BN ��3Hd(O��R4��KL�2'B�
MS'8�<(���Hd(O��R4�BMS'B�<(���Hd(*��R?�8KL�2'B�h�7?�
�>7�E J ��
������������%�&������N J ����04�c������������������N 3Hd(O��R4��KL�2'B� � 3Hd(O��R4�BMS'B�<(� 3� ���1r��T����(*��� ��� J ��
���������������������N J ����04�c�����;���%���<����N 3�
	
Grammar for the Java Language. (omitted)

	��

Fig. 2. conaj Grammar (using DemeterJ Class Graph syntax)

obtained (if the method returns a value other than void) after the method � completes
its execution.

2.3 Code Generation

conaj generates an aspect class for each Java type that uses contracts. These pointcuts
are used in enforcing pre- and post-conditions. In the case of an invariant definition the
generated pointcut captures all public method calls made to an object. The invariant
pointcut is then advised with a before and an after advice, both of which call a method
inside the aspect that checks the invariant condition.

In the case of methods with contract definitions, the aspect defines two pointcuts:
one to capture method calls and another to capture method execution joinpoints. Both
calls and executions of the method must be caught in order to deal with the cases where
the dynamic type of an instance is different from its static type.

A before advice is generated if a pre-condition is specified, and a post advice if
a post-condition is specified. The before advice first tests that the pre-condition ex-
pression evaluates to true and then calls the checks for the pre-condition hierarchy.
The pre-condition hierarchy tests that the implication �?���;���2�T�4�;�����4 f¡ �2�;¢1���4�;�2���?
holds for the whole chain of supertypes from the receiver’s static type and up in-

4

N
or

th
ea

st
er

n
U

ni
ve

rs
ity

 -
C

ol
le

ge
 o

f C
om

pu
te

r a
nd

 In
fo

rm
at

io
n

Sc
ie

nc
e

- T
ec

hn
ic

al
 R

ep
or

t N
U

-C
C

IS
-0

3-
13

cluding interfaces. Both checks should hold. If any of the checks fails an appropri-
ate exception is thrown. Checking post-conditions is done in a similar fashion with
only a change in the logical implication that is checked for the hierarchy of supertypes�?�;¢����4���1��£^¤5¥�¡¦�2���;�1�2���4�;�2��£4¤&¥ .

A second advice is generated to check executions of the method. The checks per-
formed are essentially the same as for method calls, except this time the hierarchy check
(both for pre- and post-conditions) starts from the dynamic type of the receiver instead
of its static type. The synergy of these two pointcuts allows the correct sequence of con-
tract checks in the situations where the static and dynamic type of the receiver instance
differ.

aspectOf()
D Contract.
aspectOf()

C Contract.
aspectOf()

B Contract.
aspectOf()

A Contract.caller:Object callee:D

B
E

FO
R

E
C

A
L

L

PrecondHier m()

Precond m()

Precond m()

Precond m()

PrecondHier m()

PrecondHier m() Precond m()

PrecondHier m()

after:execution(D.m());

PostCond m()

Postcond m()

PostCondHier m() Postcond m()

PostCondHier m() PostCondHier m()

PostCond m()

PostCondHier m()

A
FT

E
R

C
A

L
L

A
FT

E
R

E
X

E
C

U
T

IO
N

B
E

FO
R

E
E

X
E

C
U

T
IO

N

after:call(B.m()); Postcond m()

PostcondHier m()
Postcond m()

PostcondHier m()

before:execution(D.m());

PrecondHier m() PrecondHier m()

Precond m()before:call(B.m());

m()
Precond m()

return

Fig. 3. Interaction diagram for the code fragment
�
B b = new D(); b.m(); �

Figure 3 depicts more concretely the interactions between aspects that implement the
proper contract checking for the following scenario. Consider a program that consists of
four classes, §©¨^ª«¨?¬ and ­ with an inheritance relation §¯®Q�Bª°®Q��¬±®Q�8­ where ®Q�
denotes inheritance, i.e., �2���;�1�2���4�;�Q®Q�v�2�;¢��T�4�;� . The method � is defined in § and is
overridden in each subclass of § . During program execution, a call to � is made from
a caller of type Object. The static type of the receiver is ª while its dynamic type
is ­ . In Figure 3 we denote instances of aspects by using their name and the AspectJ
call that returns an aspect instance (i.e. aspectOf()).

First, the contract obligations for the static type of the receiver are checked. On
success of the static types contract obligations, the contract obligations for the dynamic

5

N
or

th
ea

st
er

n
U

ni
ve

rs
ity

 -
C

ol
le

ge
 o

f C
om

pu
te

r a
nd

 In
fo

rm
at

io
n

Sc
ie

nc
e

- T
ec

hn
ic

al
 R

ep
or

t N
U

-C
C

IS
-0

3-
13

type are checked. On success, � is executed. The opposite sequence of interactions is
performed for the symmetrical case of post-conditions on � .

2.4 Aspect generated for the Stack Example

Listing 1.1 shows an example of a Stack implemented in conaj, and Listing 1.2 the
generated aspect. In Listing 1.2 the aspect definition is declared as privileged to
allow access to the instance’s private data members if needed. In order to support access
to the instance’s old state, we introduce an implementation of clone(). This is the
only situation where we relax our constraint of not using AspectJ’s introductions. The
extra pointcut scope is used to exclude calls to methods that are initiated by the aspect.

Listing 1.1. The Stack example in conaj
class MyStack {
@invariant{0<=size() && size()<=maxSize}
protected Vector elements;
protected int maxSize;
protected int size;

MyStack(int n){
elements = new Vector(n);
maxSize = n;
size = 0;

}

public int size() { return size; }

public void push(int i){
@pre{!full()}
@post{!empty() && top()==i && size()==old.size() + 1}
Integer val = new Integer(i);
elements.add(val);
size=elements.size();

}

public int pop(){
@pre{!empty()}
@post{!full() && size()==old.size() - 1}
Integer result = (Integer) elements.lastElement();
int index = elements.lastIndexOf(result);
elements.remove(index);
size = elements.size();
return result.intValue();

}

public int top(){
@post{size() == old.size()}
Integer result = (Integer) elements.lastElement();
return result.intValue();

6

N
or

th
ea

st
er

n
U

ni
ve

rs
ity

 -
C

ol
le

ge
 o

f C
om

pu
te

r a
nd

 In
fo

rm
at

io
n

Sc
ie

nc
e

- T
ec

hn
ic

al
 R

ep
or

t N
U

-C
C

IS
-0

3-
13

}

public boolean full(){return (size() == this.maxSize);}

public boolean empty(){return elements.isEmpty();}
}

Listing 1.2. Generated aspect for MyStack. Showing relevant code for invariant and
method push()

1 privileged aspect MyStack_Contract {
2 declare parents : MyStack implements Cloneable;
3 public Object MyStack.clone(){
4 try {
5 return super.clone();
6 } catch (Exception e){ //Error }
7 }
8

9 MyStack old;
10 pointcut scope():
11 !within(MyStack_Contract)
12 && !cflow(withincode(* MyStack_Contract.*(..)));
13 pointcut MyStack_push(MyStack trg_instance, int i):
14 call(public * MyStack.push(..))
15 && !call(public * (MyStack+ && !MyStack).push(..))
16 && args(i) && target(trg_instance) && scope();
17 pointcut dynamic_MyStack_push(MyStack trg_instance, int i):
18 execution(public * MyStack.push(..))
19 && !execution(public * (MyStack+ && !MyStack).push(..))
20 && args(i) && target(trg_instance) && scope();
21 // PCD for Invariant
22 pointcut MyStack_invariant(MyStack trg_instance):
23 call(public * MyStack.*(..))
24 && !call(public * (MyStack+ && !MyStack).*(..))
25 && target(trg_instance) && scope();
26

27 before(MyStack trg_instance):
28 MyStack_invariant(trg_instance){
29 if (!checkInvariant(trg_instance)){ //Invariant Error }
30 }
31 before(MyStack trg_instance , int i):
32 MyStack_push(trg_instance , i){
33 old = (MyStack) trg_instance.clone();
34 boolean res = PreCond_push(trg_instance , i);
35 boolean next = true ;
36 if (!res){ //PreCond Error }
37 if (!next) { //HierPreCond Error }
38 }
39 before(MyStack trg_instance , int i):
40 dynamic_MyStack_push(trg_instance, i){

7

N
or

th
ea

st
er

n
U

ni
ve

rs
ity

 -
C

ol
le

ge
 o

f C
om

pu
te

r a
nd

 In
fo

rm
at

io
n

Sc
ie

nc
e

- T
ec

hn
ic

al
 R

ep
or

t N
U

-C
C

IS
-0

3-
13

41 boolean hierResult = (true);
42 boolean res = PreCond_push(trg_instance , i);
43 if (hierResult && ! res){ //HierPreCond Error }
44 }
45 after(MyStack trg_instance , int i):
46 MyStack_push(trg_instance, i) {
47 boolean res = PostCond_push(trg_instance, i);
48 if(!res){ //PostCond Error }
49 boolean postHier = PostCondHier_push(trg_instance, res,i);
50 if(!postHier){ //HierPostCond Error }
51 }
52 after(MyStack trg_instance , int i):
53 cast_MyStack_push(trg_instance, i){
54 boolean postResult = PostCond_push(trg_instance, i);
55 if(!postResult){ //PostCond Error }
56 boolean postHier = (true);
57 if(!postHier){ //HierPostCond Error }
58 }
59 after(MyStack trg_instance):
60 MyStack_invariant(trg_instance){
61 if (!checkInvariant(trg_instance)){ //Invariant Error }
62 }
63 public boolean checkInvariant(MyStack trg_instance){
64 if (0<=trg_instance.size()&&trg_instance.size()<=trg_instance

.maxSize)
65 return true;
66 else
67 return false;
68 }
69 public boolean PreCond_push(MyStack trg_instance,int i){
70 if(!trg_instance.full())
71 return true;
72 else
73 return false;
74 }
75 public boolean PostCond_push(MyStack trg_instance,int i){
76 if(! trg_instance.empty() && trg_instance.top() == i &&

trg_instance.size() == old.size() + 1)
77 return true;
78 else
79 return false;
80 }
81 public boolean PreCondHier_push(MyStack trg_instance,int i){
82 boolean myPre = PreCond_push(trg_instance , i);
83 boolean hierarchy = (true);
84 if (!hierarchy || myPre)
85 return myPre;
86 else
87 return false;
88 }

8

N
or

th
ea

st
er

n
U

ni
ve

rs
ity

 -
C

ol
le

ge
 o

f C
om

pu
te

r a
nd

 In
fo

rm
at

io
n

Sc
ie

nc
e

- T
ec

hn
ic

al
 R

ep
or

t N
U

-C
C

IS
-0

3-
13

89 public boolean PostCondHier_push(MyStack trg_instance, boolean
last,int i){

90 boolean postResult = PostCond_push(trg_instance, i);
91 if (!last || postResult)
92 return (true);
93 else
94 return false;
95 }
96 }

3 The Anatomy of an Aspect Implementing a Contract

This section provides the details of conaj’s aspect generation. Readers not interested
in the details of the generation process may wish to skip to the next section.

We describe the general structure of an aspect that implements a contract obligation
for a Java type. The generalization is based on AspectJ code and terms denoted as²
TERM ³ which denote type specific information. The meta variables (Table 1) are place

Table 1. Meta variables used and their meaning within conaj

Terms Definition´
Type µ Refers to any Java or user defined type name

The special variable ¶ refers
to the type currently being processed (e.g MyStack)´

Method µ Refers to a type’s method name (e.g. push).
An index is used when a task is repeated for each
of the type’s methods´

SuperType µ Refers to a direct super type name of ¶ .
An index is used to iterate through all super types.´

Invariant code µ Refers to the segment of Java code provided as
the invariant´

Method · Precondition code µ Refers to the segment of Java code provided as
the precondition to

´
Method · µ´

Method · Postcondition code µ Refers to the segment of Java code provided as
the post-condition to

´
Method · µ´ ¸d¹ µ Refers to a method’s list of formal parameters

(e.g
´
Type º µ ´ Arg º µ^3?3?3 ´ Type » µ ´ Arg » µ)´ ¹ µ Refers to a method’s list of argument names

(e.g
´
Arg º µ^343?3 ´ Arg » µ)´

Arg µ Refers to a name binding for a method/pointcut argument

holders that will be filled in by conaj depending on the type ¼ . This provides a flavor
of a template which the generator instantiates for each type.

9

N
or

th
ea

st
er

n
U

ni
ve

rs
ity

 -
C

ol
le

ge
 o

f C
om

pu
te

r a
nd

 In
fo

rm
at

io
n

Sc
ie

nc
e

- T
ec

hn
ic

al
 R

ep
or

t N
U

-C
C

IS
-0

3-
13

Listing 1.3 gives the first seven lines of the aspect template. The naming convention
used is based on name mangling. For a type ¼ , an aspect with the name ¼ Contract
is defined. This definition will reside in a file named after the aspect name with an
extension .aj. Lines 2–6 define a method clone() for ¼ . The introduction adds
the interface Cloneable to the list of implemented interfaces and also provides a
definition for the method clone(). Line 8 provides an aspect member definition to
hold a reference to the cloned old copy of ¼ . The pointcut definition scope() is
defined so that we can exclude calls to methods of ¼ that occur inside the contracts
code. This is necessary to prevent an infinite sequence of method-advice execution that
leads to non-termination.

Listing 1.3. Aspect definition and the introduction of clone
1 privileged aspect

´ ¶ µ _Contract {
2

3 declare parents :
´ ¶ µ implements Cloneable;

4 public Object
´ ¶ µ .clone(){

5 //Implementation of “shallow” cloning for usage with old
6 }
7 //Reference previous state of object
8

´ ¶ µ old;
9

10 pointcut scope(): !within(
´ ¶ µ _Contract)

11 && !cflow(withincode(*
´ ¶ µ _Contract.*(..)));

Listing 1.4 gives the two pointcuts that are defined for each method
²
Method ½ ³ of ¼ .

The first pointcut definition (lines 30–33) is named by concatenating the type’s name,
an underscore and the method’s name. The pointcut’s arguments are made up of the²
Method ½ ³ ’s formal arguments, as they appear in the method’s signature. In order to be

able to expose the running instance of ¼ , we include an extra argument tInst as an
argument to the pointcut. Inside the pointcut body, lines 31–32, is an AspectJ idiom [23]
that captures all calls made exclusively to type ¼ . By ‘exclusively’ we mean those calls
that are made on instances whose static type is ¼ and not any calls to any subtypes of¼ . Using AspectJ’s args and target primitive pointcuts, arguments and the running
instance of ¼ are bound to the pointcut’s arguments. These bindings will be used later
on in the evaluation of code defined in the type’s contract.

The second pointcut definition, lines 35–38, deals with situations where the running
instance of an object is of type ¼ but it’s static type is not ¼ . The body of the pointcut
uses another idiom (lines 36–37) which is similar to the idiom used in the previous
pointcut deals with execution rather than call joinpoints. Here the idiom captures
executions of this type exclusively. This idiom capture executions of type ¼ , and only¼ , that originated by an invocation on some static type other than ¼ . The usage of args
and target are used again to bind the appropriate values to the pointcuts arguments.
The template code in Listing 1.4 is instantiated for each method ¾¿����À�Á�Â�Ã in ¼ .

Listing 1.4. Pointcut definitions for each method

29 // for each Method · defined in ¶ with either a @pre or @post
30 pointcut

´ ¶ µ _ ´ Method · µ (´ ¶ µ tInst, ´ ¸Ä¹ µ):
10

N
or

th
ea

st
er

n
U

ni
ve

rs
ity

 -
C

ol
le

ge
 o

f C
om

pu
te

r a
nd

 In
fo

rm
at

io
n

Sc
ie

nc
e

- T
ec

hn
ic

al
 R

ep
or

t N
U

-C
C

IS
-0

3-
13

31 call(public *
´ ¶ µ . ´ Method · µ (..))

32 && !call(public * (
´ ¶ µ + && !

´ ¶ µ). ´ Method · µ (..))
33 && args(

´ ¹ µ) && target(tInst) && scope();
34

35 pointcut dynamic_
´ ¶ µ _ ´ Method · µ (´ ¶ µ tInst, ´ ¸d¹ µ):

36 execution(public *
´ ¶ µ . ´ Method · µ (..))

37 && !execution(public * (
´ ¶ µ + && !

´ ¶ µ). ´ Method · µ (..))
38 && args(

´ ¹ µ) && target(tInst) && scope();
39 // similar pointcut definitions for each of the remaining methods of ¶ (ommitted)

Listing 1.5 captures all calls to public methods made to type ¼ exclusively. The same
idiom is used as the one found in lines 31–32, although this time the pointcut captures
any public method’s name through the usage of the * pattern. In the case of invariants
only the running instance is exposed through the pointcut definition.

Listing 1.5. Capturing all public calls, to be advised with invariant code

79 //Invariant PCD
80 pointcut

´ ¶ µ _invariant(´ ¶ µ tInst):
81 call(public *

´ ¶ µ .*(..))
82 && !call(public * (

´ ¶ µ + && !
´ ¶ µ).*(..))

83 && target(tInst) && scope();

Listings 1.3, 1.4 and 1.5 make up all the pointcuts that an aspect (implementing a
contract definition) will contain.

Listing 1.6 shows all before advice (one for each pointcut). Before advice must be
grouped together in the aspect definition file. The reason for this is the fact that there
are situations where a join point will be caught by two different pointcuts. An example
is the case where a method has both pre- and post-conditions and the object also has an
invariant definition. In this case, before and after advice for the method will take care
of pre- and post-conditions respectively. At the same time, the invariant pointcut will
add its own before and after in order to check for the invariant condition. Interleaving
before and after advice definitions of different pointcuts causes the AspectJ compiler to
throw a compile time error3.

Listing 1.6. Before advice definitions

85 before(
´ ¶ µ tInst):

86
´ ¶ µ _invariant(tInst){

87 if (!Invariant(tInst)){
88 // throw Invariant Error exception
89 }
90 }
91

92 // repeat the following 2 before advice for each pointcut
93 before(

´ ¶ µ tInst, ´ ¸Ä¹ µ):
94

´ ¶ µ _ ´ Method · µ (tInst, ´ ¹ µ){
95 old = (

´ ¶ µ) tInst.clone();

3 ajc gives: circularity in advice precedence applied to ...

11

N
or

th
ea

st
er

n
U

ni
ve

rs
ity

 -
C

ol
le

ge
 o

f C
om

pu
te

r a
nd

 In
fo

rm
at

io
n

Sc
ie

nc
e

- T
ec

hn
ic

al
 R

ep
or

t N
U

-C
C

IS
-0

3-
13

96 res=Precond_
´
Method · µ (tInst, ´ ¹ µ);

97 next=PrecondHier_
´
Method · µ (tInst, ´ ¹ µ) ;

98 if (!res){
99 // throw PreCond Error exception

´
Method · µ

100 }
101 if (!next) {
102 // throw HierPreCond Error exception

´
Method · µ

103 }
104 }
105 before(

´ ¶ µ tInst, ´ ¸Ä¹ µ):
106 dynamic_

´ ¶ µ _ ´ Method · µ (tInst, ´ ¹ µ){
107 hierResult=PrecondHier_

´
Method · µ (tInst, ´ ¹ µ);

108 res=Precond_
´
Method · µ (tInst, ´ ¹ µ);

109 if (!(!hierResult || res)){
110 // throw HierPreCond Error exception
111 }
112 }

A before advice that deals with the objects invariant is essentially a call to a method
inside the aspect. The checkInvariant()method checks the user’s invariant code,
throwing a runtime exception if it evaluates to false. There are two more types of be-
fore advice defined. The first before advice, advises calls made to a method

²
Method ½ ³

of the type ¼ (lines 93–104). If needed, a copy of the object is created for usage in
post-conditions (old). Evaluation of the method’s precondition code is done by calling
a method defined inside the aspect (PreCond

²
Method ½ ³ ()). Then, according to the

appropriate operational semantics [4], the class hierarchy and its preconditions needs
to be checked. If there is a hierarchy of user defined classes, then for each of this
object’s immediate supertypes, the method PreCondHier

²
Method ½ ³ () defined in²

SuperType ½ ³ Contract is called, and their results are combined in a disjunction.
The method (recursively) checks that all supertype’s pre-condition logically implies the
subtype’s precondition. If the set of supertypes is empty then the hierarchical check
is set to true. Finally we check that the method’s precondition implies the method’s
hierarchical precondition result.

The second type of before advice, advises executions of a method
²
Method ½ ³ due

to a call to a static reference of some type ¼�Å and with a dynamic type ¼ (lines 105–
112). The code checks (using the same methods as those given above) for the method’s
precondition and that the hierarchy is well formed.

Listing 1.7. After Advice

124 // repeat the following 2 after advice for each pointcut
125 after(

´ ¶ µ tInst, ´ ¸Ä¹ µ) returning(
´
Type µ result):

126
´ ¶ µ _ ´ Method · µ (tInst, ´ ¹ µ){

127 res=Postcond_
´
Method · µ (tInst, ´ ¹ µ);

128 if(!res){
129 // throw PostCond Error exception
130 }
131 postHier=PostcondHier_

´
Method · µ (tInst,res,result, ´ ¹ µ);

132 if(!postHier) {

12

N
or

th
ea

st
er

n
U

ni
ve

rs
ity

 -
C

ol
le

ge
 o

f C
om

pu
te

r a
nd

 In
fo

rm
at

io
n

Sc
ie

nc
e

- T
ec

hn
ic

al
 R

ep
or

t N
U

-C
C

IS
-0

3-
13

133 //throw HierPostCond Error exception
134 }
135 }
136

137 after(
´ ¶ µ tInst, ´ ¸Ä¹ µ) returning(

´
Type µ result):

138 dynamic_
´ ¶ µ _ ´ Method · µ (tInst, ´ ¹ µ){

139 postResult=Postcond_
´
Method · µ (tInst,result, ´ ¹ µ);

140 if(!postResult){
141 //throw PostCond Error exception
142 }
143 postHier=PostcondHier_

´
Method · µ (tInst,postResult,result, ´ ¹ µ);

144 if(!postHier){
145 // throw HierPostCond Error exception
146 }
147 }
148 after(

´ ¶ µ tInst):
149

´ ¶ µ _invariant(tInst){
150 if (!Invariant(tInst)){
151 // throw Invariant Error exception
152 }
153 }

Symmetrically there are three types of after advice. After advice deals with post-
conditions and with the invariant condition after a method has completed its execution.
Listing 1.7 shows the three types of after advice that are generated.

Lines 148–153 checks the invariant condition for type ¼ by calling the appropriate
method inside the aspect. The first after advice in Listing 1.7 deals with calls that are
made to the type ¼ . In the cases where the method has a return type, this is captured
by AspectJ’s returning statement used with after advice. First the method’s post
condition is checked by calling another method defined within the aspect which holds
the post-condition code. After that we need to check the class hierarchy and verify that is
well formed. A well formed hierarchy for post conditions semantically means that each
of the subtypes post-condition should imply its supertypes post-condition [4]. Inside
the aspect this is done recursively by the calls to the PostCondHier

²
Method ½ ³ ().

The last type of after advice (lines 137–147) performs the same checks (method
post-condition and class hierarchy check), but this is called in situations where a call
was made to some static type ¼ Å while the dynamic type of the receiver object was of
type ¼ .

Listing 1.8. Aspect Methods

210

211 public boolean Invariant(
´ ¶ µ tInst){

212 (
´
Invariant code µ)? return true: return false;}

213

214 //for each method with a precondition definition
215 public boolean Precond_

´
Method · µ (´ ¶ µ tInst, ´ ¸d¹ µ){

216 (
´
Method · Precodintion code µ)? return true : return false;}

217

13

N
or

th
ea

st
er

n
U

ni
ve

rs
ity

 -
C

ol
le

ge
 o

f C
om

pu
te

r a
nd

 In
fo

rm
at

io
n

Sc
ie

nc
e

- T
ec

hn
ic

al
 R

ep
or

t N
U

-C
C

IS
-0

3-
13

218 //for each method with a postcondition definition
219 public boolean Postcond_

´
Method · µ (´ ¶ µ tInst, ´ Type µ result, ´ ¸d¹ µ){

220 (
´
Method · Postcondition code µ)? return true : return false;}

221

222 //for each method with a precondition definition
223 public boolean PrecondHier_

´
Method · µ (´ ¶ µ tInst, ´ ¸d¹ µ){

224 myPre = Precond_
´
Method · µ (tInst,

´ ¹ µ);
225 hierarchy=
226

´
SuperType º µ _Contract.aspectOf().PrecondHier_ ´ Method · µ (tInst, ´ ¹ µ)

227 || 32343
228 ||
229

´
SuperType Æ µ _Contract.aspectOf().PrecondHier_ ´ Method · µ (tInst,´ ¹ µ);

230 (!hierarchy || myPre) ? return myPre : return false;
231 }
232

233 //for each method with a postcondition definition
234 public boolean PostcondHier_

´
Method · µ (´ ¶ µ tInst,boolean last,´

Type µ result, ´ ¸d¹ µ){
235 myPost=Postcond_

´
Method · µ (tInst,result, ´ ¹ µ);

236 if (!last || myPost) { // last => myPost
237 return
238 (

´
SuperType º µ _Contract.aspectOf().PostcondHier_ ´ Method · µ (tInst

,myPost,result,
´ ¹ µ)

239 && 3?3?3
240 &&
241

´
SuperType Æ µ _Contract.aspectOf().PostcondHier_ ´ Method · µ (tInst,

myPost,result,
´ ¹ µ);

242 }else
243 return false;
244 }

Listing 1.8 shows the methods inside the aspect that get generated in order to check
the pre, post and invariant code given to a method/class (lines 211–220). The hierarchy
checking methods (lines 223 to 244) recursively traverse the hierarchy chain and ensure
that the appropriate implications hold for pre- and post-conditions. In order to access
methods in aspects defined for superclasses, the usage of AspectJ’s (aspectOf()) is
used to refer to an aspect’s instance.

conaj, the Aftermath The authors in [4] present Contract Java through a set of judg-
ments. Programs are written in a superset of Java and translated to pure Java with extra
classes and wrapper methods. Using the same names for the judgments found in [4]
the mapping to aspects is straight forward. [defn Ç] and [defn ½] are used to generate the
necessary classes along with methods that hold pre, post and invariant definitions for
a type. The same operations are present in conaj with the difference that aspects are
created along with methods inside the aspects to hold pre, post and invariant code for
a type. The judgment [wrap] takes each Java type declaration with methods that hold
pre and post conditions, and a wrapper method is used to call the classes responsible for

14

N
or

th
ea

st
er

n
U

ni
ve

rs
ity

 -
C

ol
le

ge
 o

f C
om

pu
te

r a
nd

 In
fo

rm
at

io
n

Sc
ie

nc
e

- T
ec

hn
ic

al
 R

ep
or

t N
U

-C
C

IS
-0

3-
13

checking the class hierarchy. The wrapper method’s body corresponds to the code found
in the advice generated by conaj. The hierarchy checks are performed by calling the
appropriate method is the aspect bound to an instance supertype.

Developing conaj certain decisions concerning the solution’s design, but also its
final implementation, brought some interesting issues. At first finding the appropriate
pointcut that would enable the capture of calls to a type ¼ and to none of the subtypes of¼ was problematic. The solution came about as an idiom which performs as expected,
but cannot be inferred by the documentation of AspectJ at the time.

The design could have been more robust, if the ability to dispatch on aspect method
names was possible [3]. Currently, conaj keeps track of aspect names and type names
and inserts the appropriate calls in order to obtain the correct aspect instances.

Still, some AspectJ features have helped the development of conaj. The extra re-
flective power provided through AspectJ’s library allows the inspection of more infor-
mation than with plain Java. For example, the context of a message send (i.e. caller type,
receiver static/dynamic type, method call signature). Information that assisted both in
error reporting but also acquiring with greater ease information about the running pro-
gram.

4 Contracts for Advice

One of the hardest part of writing down an aspect definition in order to capture a cross-
cutting concern lies in the precise definition of its pointcut(s). Defining not only the
correct joinpoints in a program, but also making sure that the aspect does not interfere
with some other parts of the program. It is even harder to anticipate an aspect’s behavior
when the system is extended with new classes.

Reasoning about AOSD programs, and more specifically, with the correctness of
an aspect inside a system boils down to “compile, run and see the results”. Making
pointcuts generic allows for greater possibilities for reuse of the aspect. At the same
time however, a generic pointcut may catch more information than what was meant
([25], Chapter 5). Development tools [24] help in the understanding of the resulting
program, but cannot verify whether aspects are being used according to the developer’s
intent.

As an example consider the simple case of a logging aspect on a class § , reporting on
calls to accessor and mutator methods (Figure 4). Suppose a new class ª is introduced
as a subclass of § , which performs logging inside the definitions of its methods. Run-
ning the above system will produce two types of logging information for methods in
class ª . Logger takes effect over both § ’s and ª ’s method calls in all situations whereª is used. The overall effects due to the addition of ª are only observable after running
the program. In bigger systems, with more complex pointcuts, the effects become hard
to understand, as a result, debugging becomes difficult. In order to attach Logger only
on § , the AspectJ manual (Chapter 4) proposes an idiom consisting of a runtime check
on the target’s dynamic type inside the pointcut definition. A better solution would be to

15

N
or

th
ea

st
er

n
U

ni
ve

rs
ity

 -
C

ol
le

ge
 o

f C
om

pu
te

r a
nd

 In
fo

rm
at

io
n

Sc
ie

nc
e

- T
ec

hn
ic

al
 R

ep
or

t N
U

-C
C

IS
-0

3-
13

A

+ getSize():int
+ setSize(newVal):void

size call(* A.setSize(..))

Logger

call(* A.getSize(..))

A

+ getSize():int
+ setSize(newVal):void

size call(* A.setSize(..))

Logger

call(* A.getSize(..))

B

+ setSize(newVal):void
+ getSize():int

(b)(a)

Fig. 4. Logging Example (a) for one class
�

.Adding
H

(b) and overriding
�

’s methods toinclude
logging inside the methods of

H
.

express, in the definition of the advice, the acceptable states that the advice can be ex-
ecuted in. In this way, the expected advice behavior is specified and through a contract
checking mechanism, this behavior can be verified at runtime. Failing to meet a contract
obligation will generate appropriate error messages providing more information about
the source of the problem. Reasoning about what went wrong, where it went wrong and
why, will be easily pointed out, leading to faster error detection and repair.

4.1 Externally Visible States with Before and After Advice

Pre- and post-conditions in OO programs allow for the specification of externally visi-
ble states of an instance. These specifications denote not only the set of acceptable states
a method can start and finish in, but also play a role in the type relationships found in
an OO program. To address the idea of DBC for advice a clear and precise definition
of what is considered an externally visible states of the aspect is required. Also the in-
terplay between pre- and post-conditions found on advice and pre- and post-conditions
found in object instances need to uphold certain restrictions. Specifically, pieces of ad-
vice should not alter the program states in a way that will cause a valid method call to
no longer uphold it’s contract obligations.

We will consider before and after advice for aspects in AspectJ to investigate
(1) what are the externally visible states of instances of Aspects (2) when is the def-
inition of externally visible states of object instances is still valid (3) the interplay of
advice pre- and post-conditions with pre- and post-conditions found in object instances.

The following scenario is considered. Having a method � of some type ¼ in a pro-
gram È , we advice � through the addition of a new aspect É . In the resulting programÈ Å we can identify some new program states.

The external behavior of an aspect’s advice is the same as a call to some methodÊ in È Å .4 Treating advice as some special form of a method (Ê) found only in È Å , the
externally observable states for an advice are the points in the execution path of È Å im-
mediately before a call to Ê and after completion of Ê . Based on the above observation

4 Looking at AspectJ’s output .class files, a method invocation is used to call an aspect’s
advice

16

N
or

th
ea

st
er

n
U

ni
ve

rs
ity

 -
C

ol
le

ge
 o

f C
om

pu
te

r a
nd

 In
fo

rm
at

io
n

Sc
ie

nc
e

- T
ec

hn
ic

al
 R

ep
or

t N
U

-C
C

IS
-0

3-
13

we can define pre- and post-conditions for advice for these states. In Figure 5 circles de-
note code blocks, black for advice and white for methods of È . Pre- and post-conditions
are used to specify the expected and guaranteed states that a before or after ad-
vice can start or finish. ÉmË�Ì&Í� and É�Ë�ÎZÏ&Ð� refer to the pre- and post-condition of before
advice on aspect É . Similarly É Ë�Ì&ÍÑ and É Ë�ÎZÏ&ÐÑ for after advice.

Ò�Ó<ÔUÕBÒmÓ<ÖO×ÙØ¯Ú�Ó<ÔÛÕÜ Ú�Ó<ÖO×ÙØÜ
Ú Ó<ÔUÕÝ Ú ÓTÖO×ÙØÝ Ò Ó<ÔUÕ Ò ÓTÖO×ÙØÒ�Þ BEFORE

AFTER

ADVICE

ADVICE

Key:

Aspect execution

ß Þß
Program flow with
external states

ß
,
ß Þ

Method execution

Fig. 5. Externally visible states for before and after advice

4.2 Executing User Defined Aspects in conaj

In order to understand the relationships and dependencies between advice contracts and
method contracts, it is important to first expose the sequence of events that occur in
a contracted OO program that also has user defined aspects. Given a conaj program
with contracts and user defined aspects, what is the order of execution? Do you execute
the user’s aspect first, or the aspects generated by conaj? More importantly, which
order of execution is correct?

To maintain the meaning of the method’s pre- and post-conditions, the following
conditions should be checked at specific points:

– Pre-conditionsà
The receiver’s static type pre-condition should be the first one to be checked.
In this way if the client failed to establish the correct state before calling � ,
this should be caught and reported back to the client.à
The receiver’s dynamic type pre-condition should be the last condition to be
checked before executing � . In this way we guarantee that the pre-condition
will be checked at the appropriate time before executing the first statement of� .

– Post-conditionsà
the first post-condition to be checked should be the one defined by the receiver’s
dynamic type. In this way we are actually checking that the method’s imple-
mentation is meeting its obligationsà
the last post-condition to be checked should be the one defined by the receiver’s
static type. Since the caller is aware, and expects, the post-condition for the type
of object that he initially called � on, to hold.

17

N
or

th
ea

st
er

n
U

ni
ve

rs
ity

 -
C

ol
le

ge
 o

f C
om

pu
te

r a
nd

 In
fo

rm
at

io
n

Sc
ie

nc
e

- T
ec

hn
ic

al
 R

ep
or

t N
U

-C
C

IS
-0

3-
13

c
a
l
l
e
r

c
a
l
l
e
e

r
e
t
u
r
n

m

time

áâãä äåäæ áâçèé äåäæ

áâçèé æê
ëëáâãä æê

ëë m
(
)

ex
ec

(m
)

ca
ll(

m
)

Fig. 6.
rqì^í=îï=ð�ñ ñ denotes the pre-condition check for

r
’s static type.

r ì^í%îî=ò5î ï denotes the pre-condition
check for

r
’s dynamic type, and similarly for

r ìcóTô%õï=ð�ñ ñ and
r ìZóTô=õî=ò5î ï . call(m) and exec(m) denote

joinpoints for call and execution respectively.

In Figure 6, the occurrence of an AspectJ joinpoint (call(m) and exec(m)) is shown as
circles. The empty zig-zag lines denote available points for user aspects to be attached.
The filled zig-zag lines are reserved points for conaj generated aspects that check pre-
and post-conditions for method � . User aspects cannot advice the program at the points
denoted with a filled zig-zag line. User aspects are “sandwiched” between conaj gen-
erated aspect. In this way a method’s pre- and post-conditions will be checked at the
intended execution points.

4.3 Pre- and Post-conditions for Before and After Advice

In this section, we propose an extension to the the syntax of the AspectJ language to
accommodate pre- and post-conditions for before and after advice. One extra con-
straint on AOSD programs is that a single piece of advice is attached to each joinpoint.
An extension of conaj for adding contracts to advice now takes as input aspect defi-
nitions with pre- and post-conditions. Through a preprocessing stage, aspects are gen-
erated to verify contracts on object instances and auxiliary class definitions to handle
pre- and post-conditions on user defined advice.

First we present a sample program definition of advice with pre- and post-conditions
along with a part of the generated output. An analysis of the logical implications that
need to hold between pre- and post-conditions in advice and methods of the base system
is then presented. An implementation is presented, using a set of judgments similar to
those of Findler and Felleisen, as an extension to conaj enforcing runtime contract
checking for pre- and post-conditions in advice.

Listing 1.9. An example of using pre- and post-conditions in the Logger aspect

aspect ContractLogger {
pointcut logAacc(): call(* A.getSize(..));
pointcut logAmut(): call(* A.setSize(..));

before():

18

N
or

th
ea

st
er

n
U

ni
ve

rs
ity

 -
C

ol
le

ge
 o

f C
om

pu
te

r a
nd

 In
fo

rm
at

io
n

Sc
ie

nc
e

- T
ec

hn
ic

al
 R

ep
or

t N
U

-C
C

IS
-0

3-
13

logAacc(){
@pre{target.getClass() == A.class}
@post{true}
System.out.println(" ++++ Loggin from the aspect GET ");

}
after():
logAmut(){
@pre{target.getClass() == A.class}
@post{true}
System.out.println(" ++++ Loggin from the aspect SET ");

}
}

Listing 1.10. Sample output for Logger aspect showing the extra generated class def-
inition and the wrapping of advice to check pre- and post-conditions

1 aspect ContractLogger {
2 pointcut logAacc(): call(* A.getSize(..));
3 pointcut logAmut(): call(* A.setSize(..));
4
5 before():
6 logAacc(){
7 if(thisJoinPoint.getTarget().getClass() == A.class){
8 (new ContractLogger_Before_PreCond()).logAcc(

thisJoinPoint,this,thisJoinPoint.getTarget()
);

9 System.out.println(" ++++ Loggin from the aspect
GET ");

10 if (true){
11 (new ContractLogger_Before_PostCond).logAcc(this,

thisJoinPoint.getTarget());
12 }else{
13 new Error(this,"before",jp);
14 }
15 }else{
16 new CompositionError(jp.getTarget().getClass().

getName(),this,thisJoinPoint);
17 }
18 }
19 }

1import org.aspectj.lang.*;
2
3class ContractLogger_Before_PreCond {
4
5public boolean logAcc(JoinPoint jp, ContractLogger

uAspect, Object target){
6String targetType = target.getClass().getName();
7// Holds references to contract (aspects)
8AspectMethInvoker aInv = AspectMethInvoker.getInst();
9
10// aInv calls the appropriate contract methods using

reflection
11boolean m_pre = aInv.invoke(targetType, jp.

getSignature(), jp.getArgs());
12boolean res = target.getClass() == A.class;
13if (!m_pre || res){
14return res;
15}
16else {
17new CompositionError(targetType,uAspect,jp);
18return false;
19}
20}
21}

Listing 1.10 shows an example usage of contracts inside advice. Listing 1.10 gives
the resulting aspect and auxiliary class definition, dealing with contract enforcement for
advice.

Pre- and post-conditions inside advice must be side effect free Java boolean state-
ment. These expressions can refer to values that relate to the state of the aspect, and also
to the state of receivers and callers of method invocations. All information concerning
a joinpoint (e.g. target, args, source, etc.) can be refered from inside pre- and
post-conditions.

The programmer, specifies the acceptable states in which advice may start/finish in.
Failing to meet the pre-condition of a block of advice implies that the attachment of the
specific aspect to the base program È is not correct (Listing 1.10 line 16). Similarly, if
the post-condition of a piece of advice fails, this implies that the code inside the advice
did not meet up to its obligations (Listing 1.10 line 13).

Once pre- and post-conditions have been satisfied, the way by which pre- and post-
conditions of advice interplay with method calls (or executions) that they advice should
be checked for its correctness. For before advice, upon completion of their advice code,
control is passed to the original method � in È . Therefore, the post-condition of a be-

19

N
or

th
ea

st
er

n
U

ni
ve

rs
ity

 -
C

ol
le

ge
 o

f C
om

pu
te

r a
nd

 In
fo

rm
at

io
n

Sc
ie

nc
e

- T
ec

hn
ic

al
 R

ep
or

t N
U

-C
C

IS
-0

3-
13

fore advice of an aspect É must imply the underlying method’s (�) pre-condition (i.e.,ÉöË�ÎZÏ&Ð� ¡÷� ���?). On failure to do so, the error should lie with the aspect developer. The
aspect’s obligations conflict with the advised method’s contract raising a composition
error (Listing 1.10 line 17). This is an error in the logic of the advice either due to
the aspect developer’s misunderstanding of the advised method’s contract, or due to an
error in the pointcut definition of the aspect which allowed this attachment.

Similarly, a method’s post condition must imply the attached aspects after advice
pre-condition (i.e., � ��£4¤&¥ ¡øÉ Ë�Ì5ÍÑ). Failure to do so signals a composition error. The
blame lies with the aspect programmer for failing to address a state of the program that
was known in advance to be provided by the method after its completion. Finally, an
after advice’s post-condition must imply the underlying methods post-condition (i.e.,É Ë�ÎZÏ&ÐÑ ¡ù� Ë�ÎZÏ&Ð). Having this check will ensure that clients which use method � will
be guaranteed the post-condition of the method. Clients expect � ’s post-condition to
hold upon � ’s completion regardless of the presence of aspects in the system. Relaxing
this implication will allow for aspects to break � ’s obligations causing unexpected
behavior to clients of � . In this case the blame should lie with the aspect programmer
for a malformed composition of his aspect.

4.4 Compiling Pre- and Post-conditions for before and after Advice

In this section, a more detailed definition of the compilation of contract checking rules
for advice is provided. The rules build on top of conaj. Pre- and post-conditions of
methods are being handled by conaj. Pre- and post-conditions for before and after
advice are handled by newly generated classes. Wrapper methods are generated inside
the user’s aspect definition that perform the necessary calling conventions to check for
pre- and post-conditions expressions and their implications to the underlying methods
contract obligations.

As a final step, to enforce the appropriate execution of conaj generated aspects and
user defined aspects, dominates statements are introduced to both conaj generated
aspects and user defined aspects in order to maintain the correct execution sequence
(Figure 6).

The rules provided are in the same flavor as [4]. Inside the rule definitions ��� PRE ú ² ÉS¨
û8Â�ü�ý<þ?�8³
is a relation between the set of user defined advice ÿ and advice pre-conditions. The ex-
pression ��� is the pre-condition for ¢?���1Á��^� advice in aspect É . Similarly for � Ñ POST ú ² É"¨�û��?�5���8³
The BEFORE and AFTER rules in Figure 7 take user defined aspects containing pre-

and post-conditions in before and after advice. Auxiliary class definitions are cre-
ated with the bodies of before and after advice wrapped around conditionals Figure 8
(WRAPbef and WRAPafter respectively).

Finally Figure 9 shows the generation of all implications that are to be checked for
advice pre- and post-conditions, and the underlying methods pre- and post-conditions.
The judgments ������� and �	��� as well as the value of � Ë�Ì&Í is being handled by
AspectMethInvoker in the example output of Listing 1.10. The information is
collected at runtime through the deployment of reflection both inside AspectJ’s and
Java’s API.

20

N
or

th
ea

st
er

n
U

ni
ve

rs
ity

 -
C

ol
le

ge
 o

f C
om

pu
te

r a
nd

 In
fo

rm
at

io
n

Sc
ie

nc
e

- T
ec

hn
ic

al
 R

ep
or

t N
U

-C
C

IS
-0

3-
13

Table 2. Rule definitions for contracts on advice

��

�����
program

�
consisting of class and aspect definitions is compiled to

program
���

with method contracts as aspect and extra classes for
contracts found in advice of user defined aspects.
made up of classes and methods����j�\=_^Y�
	�Äj
\=_^Y��Tj�\=_^Y ì^í=î j�\=_^Y ìZóTô%õj�\=_^Y

compiles into
j�\=_^Y �

with
j�\=_^Y ì^í=î and

j�\=_^Y ìZóTô%õ as as contract checkers� ��������������
! "�"���#�������
�"���#�����

gets compiled to
�"���#�����$�

which checks pre- and post-conditions defined in
�����#�����

.
Contract violations blame �� ��%&�#'(���)
	*�%+��'(��� �
%&�#'(���

gets compiled to
%+��',�$���

which checks pre- and post-conditions defined in
%&�#'(���

.
Contract violations blame �� �.- R/��`�j�02k�aZ\1
2�43�5�`�j�02k�aZ\ �`
j�02k�aZ\

gets compiled to
`
j�02k�aZ\ �

which checks the pre-conditions defined in
`�j�02k�aZ\

but also
the implication between the

`
j�02k�aZ\
pre-condition and method’s

r
pre-condition

defined in type
R
. Contract violations will blame � .� �.- R/��`�j�02k�aZ\1
2�(687:9m`
j�02k�aZ\ �`
j�02k�aZ\

gets compiled to
`
j�02k�aZ\ �

which checks the pre-conditions defined in
`�j�02k�aZ\

but also
the implication between the

`
j�02k�aZ\
pre-condition and method’s

r
pre-condition

defined in type
R
. Contract violations will blame � .� �.- R/���;
<5�� ��

gets compiled to
� �

which blames the composition of � with
R
, for contract violations= .��©R

at the joinpoint
= .

an instance of class
R

is being advicedR>�©r
the method

r
is defined in class

R

5 Discussion, Related Work and Future Work

Klaeren et al. [10] present Aspect Composition Validation Tool is presented that checks
pre- and post-conditions for aspect compositions according to configurations of the
system’s components. Assertions in the form of pre- and post-conditions are used to
validate aspect configurations in a system. The tool is developed using an older version
of AspectJ (0.4beta7) which is drastically different than version 1.0.6. Aspects in ver-
sion 0.4beta7 had the ability of being instantiated by the programmer, making method
calls to aspects an easy task. Further more, a set of rules is added through AspectJ’s
introductions and composition is validated according to those rules. The correctness is
defined to be a valid aspect configuration that will allow a receiver to perform its task as
specified by the overall system specification. Unfortunately, checking that the behavior
of attached aspects and the base system is well defined is not verified. As long as the
composition of aspects is within the set of valid compositions, the system is correct. An
aspect can therefore break a methods pre- or post-condition as long as the configuration
at hand allows it. Therefore there is no clear distinction between a type’s obligations

21

N
or

th
ea

st
er

n
U

ni
ve

rs
ity

 -
C

ol
le

ge
 o

f C
om

pu
te

r a
nd

 In
fo

rm
at

io
n

Sc
ie

nc
e

- T
ec

hn
ic

al
 R

ep
or

t N
U

-C
C

IS
-0

3-
13

BEFORE:

?A@1B&C(DFE�G8C,H"I Ý B&C(DFE�G8C ÞH JLK ? K Ç @)B&C(DFE�G8C,H"I�MONQPRB�C,DFESG�C ÞH preJLK ? K Ç @1B�C(DTESG�C H I M,U:V�W B�C(DTESG�C ÞH post
for X/Y[Z \ K�];^

J @1_a`Qb�C(cOde?fC(ghdQC(ij`k? Þalnm b+onC m C4iSdQ` ½qper�r�rT½Fs � ÇQt p�r�r�r � ÇQt(u B�C,DFESG�C per�r�r B�C(DTESG�C u Iwv_�`Qb&C(cOdk?/C(ghdQC4i�j$`k? Þalxm b&oyC m C4iSdQ` ½zper�r�r�½Ts � ÇQt p�r�r�r � ÇQt(u B�C(DTESG�C Þ p r8r�r B�C(DTESG�C Þuc(oy_a`Q` ÇQ{ ÇQ| ? � 8}�£^�? ���4 B&C(DFE�G8C p MONQP r�r�r B�C(DTESG�C u M,N:Pc(oy_a`Q` ÇQ{ ÇQ| ? � 8}�£^�? ��£^¤5¥ B&C(DFE�G8C p M,U:V�W r8r�r B�C,DFESG�C u M,U:V�W

AFTER:

?A@1_aDTd:C(G H I Ü _aDTdQC,G ÞH JLK ? K Ç @1_aDTdQC,G H I MONQP _�DxdQC(G ÞH preJLK ? K Ç @1_aDTd:C(G H I M,U:V#W _aDTd:C(G ÞH post
for X/Y�Z \ K#]f^

J @1_a`Qb�C(c8dk?fC(ghd:C4ij`e? Þ�lnm b+oyC m C(iSdQ` ½ p r�r�rT½ s � ÇQt p r8r�r � ÇQt u _aDTd:C(G p r�r8r _aDTdQC,G u I v_�`Qb�C,cOdk?/C(ghdQC4i�j+`k? Þ�lnm b&oyC m C4iSdQ` ½zper�r8rT½Ts � ÇQt p�r�r�r � ÇQt(u _�DxdQC(G Þ p r�r�r _�DxdQC(G Þuc(oy_�`Q` ÇQ{ ÇQ| ? Ñ }�¥< 5� ���4 _�DxdQC(G p MONQP r�r�r _aDTdQC(G u MONQPc(oy_�`Q` ÇQ{ ÇQ| ? Ñ }�¥< 5� ��£^¤&¥ _�DxdQC(G p M,U:V�W r�r8r _aDTd:C(G u M,U:V#W
Fig. 7. Class generation and wrapper methods for the elaboration of pre- and post-conditions in
advice

through out the system, since the same call to an instance of the same type can behave
differently depending on its aspect configuration. This feature obscures the understand-
ing of a type’s behavior inside the program, decreasing understandability.

Pipa [28] defines a Behavioral Interface Specification Language (BISL) tailored for
AspectJ. Pipa statements extend the Java Modeling Language (JML) to accommodate
pre- and post-conditions and invariants for advice. Specifications in Pipa, along with
aspect definitions, are translated to JML and Java code, respectively. Using a BISL
requires familiarity with yet another language with a full blown specification model in-
creasing the complexity of its usage. In contrast, conaj is a straightforward extension
of Java.

5.1 Future Work

Incorporating pre- and post-conditions for around advice comes as a necessary next
step, along with a proof of soundness of our contracting rules for advice.

Implementing conaj in AspectJ 1.1 which now allows the advice of advice is
another future step which will provide a natural extension to the design of conajwhile
at the same time providing a solution to a complex and interesting problem entirely
within the domain of AOSD.

An interesting path for exploration, is the relationship between aspect interactions
and contract enforcement and how can contracts specify ordering of aspect advice on
joinpoints, making their interaction explicit but also providing a runtime check about a
composition’s correctness.

Another extension to the system, would be to allow the addition of user defined
aspects that can be placed before or after contract checking operations for the base
system’s methods. This approach will allow for more interesting (or aggressive) AOSD
extensions to a base program’s behavior.

22

N
or

th
ea

st
er

n
U

ni
ve

rs
ity

 -
C

ol
le

ge
 o

f C
om

pu
te

r a
nd

 In
fo

rm
at

io
n

Sc
ie

nc
e

- T
ec

hn
ic

al
 R

ep
or

t N
U

-C
C

IS
-0

3-
13

WRAP ~���� :
 Ý PRE ��� ? KO� ÍT�5ÎZÌ&Í�� Ü POST ��� ? K,� ÍT�5ÎZÌ5Í:�JkK ? K Ç @ cÝ I P Þ Ý JLK ? K Ç @ Ü I P Þ ÜJLK Ç K ?�@1B�C(DTESG�C.� ¥ p���p K r�r�r K ¥ sf��s��k� Ë��:� �$�8��Í � ��p K r8r�r K �Ss�� Ï5Ðn�"ÐUÏ I ÝB�C(DFE�G�C.� ¥ p � p K r�rOr K ¥ s � s �k� ËS��� �$�8��Í � � p K r�r�r K � s ���l D4� Þ Ý ����Fi�C(� ����Í:��� ? � ÍF�5ÎZÌ&Í Ë�Ì5Í �:r Ë��:� �$�8��Í � �Ï5Ðx�"ÐÛÏl DL� Þ Ü ��Ti�C(� ����Í:�:� ? � ÍT�5ÎZÌ5Í Ë�ÎZÏ5Ð �Qr Ë��:� ���8�-Í � �C4oy`QC���G�G�ESG4�F? K:�8���y�8� �8K: 8��¡F¢ ��£¤C4oy`QC"¥¦E m b�E�`QC4��G�G�ESG,�F? KQ���#�y��� �8K: Q� � ��£

WRAP §:� ¨z��© :
 ZÝ PRE ��� ? K ����Ð%Í�Ì(� Ü POST ��� ? K ����Ð%Í�Ì4�JkK ? K Ç @ cÝ IwP Þ Ý JLK ? K Ç @ Ü I�P Þ ÜJLK Ç K ?A@1_aDTdQC,G�� ¥ p���p K r8r�r K ¥ s/�Ss�� G�C,d�ª�G8i l i�« �? c¤ � Ë��:� ���8�-Í � ��p K r�r8r K �Ss�� Ï&Ðx�"ÐUÏ I Ü_aDTdQC,G�� ¥ p���p K r8r�r K ¥ s/�Ss��k� ËS�:� ���8�-Í � ��p K r�r8r K �Ss����l D(� Þ Ý ����Ti�C(� ����Í:�:� ? ����Ð%Í�Ì Ë�Ì5Í �:r Ë��:� �$�8��Í � �oyC,d � �? c¤�¬ Ï5Ðn��ÐÛÏ ¤l i � l DR� Þ Ü ��Fi�C(� ����Í:��� ? ����Ð%Í�Ì Ë�ÎZÏ&Ð �:r Ë��:� �$�8��Í � �C4oy`QC���G�G�ESG4�F? K�­�� ¢T�:�qK: 8��¡F¢ ��£�? c¤ ¤¤ C4oy`QC�¥¦E m b�E�`QC4��G�G�ESG(�F? K�­�� ¢T�:�zK: Q� � ��£

Fig. 8. Wrapper method generation

6 Conclusion

This paper presents conaj, a preprocessor tool that implements Design by Contract
using AspectJ. The paper also presents, as an extension to conaj, runtime contract
checking for pre- and post-conditions for advice. Based on the ideas from Design by
Contract, the paper analyzes and provides pre- and post-conditions for before and
after advice. These conditions on advice code specify not only the expected states in
which advice can start and finish, but also the relationship of these conditions to pre-
and post-conditions defined in the underlying methods they advice.

The paper describes an extension to conaj that would allow for the runtime checks
of pre- and post-conditions on advice. The enforcement of these conditions allow the
explicit definition of advice behavior within the underlying system. One of the primary
usage of advice is to extend an existing system. Any extension on a system through the
incorporation of aspects should take into account the original system behavior and its
obligations. The runtime contract checks of advice behavior against the base program’s
contracts, verifies that the behavior extensions provided by aspects do not change the
base program’s behavior to the extend where previously correct code is now rendered
incorrect. Further more, error detection in AOSD programs can be extended to take into
account behavior mismatch between advice and the base program.

Pre- and post-conditions in advice and their runtime check, allows for the incorpo-
ration of aspects without breaking already working code, while at the same time provid-
ing for better error reporting. Incorporation of pre- and post-conditions on before and
after advice is a step forward towards reasoning about aspects and their behavior. The

23

N
or

th
ea

st
er

n
U

ni
ve

rs
ity

 -
C

ol
le

ge
 o

f C
om

pu
te

r a
nd

 In
fo

rm
at

io
n

Sc
ie

nc
e

- T
ec

hn
ic

al
 R

ep
or

t N
U

-C
C

IS
-0

3-
13

 �(3�5
: X � @ Ç Ç @]JkK ? K Ç @1B�C(DTESG�CS� ¥ pe�hp K r�r�r K ¥ s®��s��k� � ÇQt ¯ Ñ] � ��p K r�r�r K ��s����O° b+G�C � cÝ ¤ ° b�E�`:d � Ü ¤ ¤&¥] ¥<¤ ¤ I[MONQPB�E�ESonC,_Si Ë��:� �$�8��Í � ÐF±L²(± K r�r8r K Ðn³�²8³ K ? Ðn�4´UÏ K � ÐUÌqµ �#�oyC,d �] MONQP ¬ Ç ¶ £ ¯ ¥�� Ñ Ç ¥ r Ñ ¤T�� Ç ¥�·¦} � �Qr J �4 ¶ £ ¯$t] � ¥��8¸ K � p K r�r�r K � s ��4 c¤�¬« cÝ ¤l i l D��z¹] M,N:Paºyº �4 Z¤ ��? c¤C4oy`QC�¥"E m b&ES`QC4��G�G�ESG(�F? KQ���#�y��� �8K: Q� � �

 �(385
: X � @ Ç Ç @]JLK ? K Ç @1_aDTd:C(Ga� ¥ p���p K r8r�r K ¥ s®�Ss�� G�C,d�ª�GOi l i$« Ì&Í&Ï � � ÇQt ¯ Ñ] � ��p K r8r�r K �Ss����O° b$G8C � cÝ ¤ ° b&ES`:d � Ü ¤ ¤&¥] ¥<¤ ¤ I[MONQPB�E�EhoyC(_�i ËS�:� ���8��Í � Ð ± ² ± K r�r�r K Ð ³ ² ³ K ? Ðx�4´ÛÏ K � ÐÛÌ�µ K Ð8Ì&Í�Ï �#�onCOd �] M,U:V#W ¬ Ç ¶ £ ¯ ¥�� Ñ Ç ¥ r Ñ ¤T�� Ç ¥�·.} � �:r J £4¤&¥ ¶ £ ¯$t] � ¥��8¸ K �? c¤ K �hp K r�r�r K ��s$�Ñ ¯ ¤R¬« cÝ ¤l i l D(�z¹] M,U:V#W ºyº Ñ ¯ ¤ �Ñ ¯ ¤C4oy`QC�¥¦E m b�ES`QC(��G�G8E�G(�F? K�­�� ¢T�Q�FK: Q� � �

�,687:9

: X � @ Ç Ç @]JkK ? K Ç @1B�C(DTESG�Ch� ¥ p � p K r�r�r K ¥ s � s ��� � ÇQt ¯ Ñ] � � p K r�r�r K � s ���8° b$G�C � cÝ ¤ ° b�E�`:d � Ü ¤ ¤&¥] ¥<¤ ¤ I M(U�V�WB�E�ESonC,_Si Ë��:� �$�8��Í � Ð ± ² ± K r�r8r K Ð ³ ² ³ K ? Ðn�4´UÏ K � ÐUÌqµ �#�oyC,d �] MONQP ¬ Ç ¶ £ ¯ ¥�� Ñ Ç ¥ r Ñ ¤T�� Ç ¥�·¦} � �Qr J �4 ¶ £ ¯$t] � ¥��8¸ K ��p K r�r�r K �Ss���4 c¤�¬« Ü ¤l i l D��z¹ �4 c¤ ºyº] M,N:P ��? c¤C4oy`QC�¥"E m b&ES`QC4��G�G�ESG(�F? KQ���#�y��� �8K: 8��¡F¢ �

 �(687:9

: X � @ Ç Ç @]JLK ? K Ç @1_aDTd:C(Ga� ¥ p���p K r8r�r K ¥ s/�Ss�� G�C,d�ª�GOi l i$« Ì&Í&Ï � � ÇQt ¯ Ñ] � ��p K r8r�r K �Ss����O° b$G8C � ZÝ ¤ ° b&ES`:d � Ü ¤ ¤&¥] ¥<¤ ¤ I[M,U:V�WB�E�ESonC,_Si Ë��:� �$�8��Í � ÐF±L²(± K r�r8r K Ðn³�²8³ K ? Ðn�4´UÏ K � ÐUÌqµ K Ð�Ì&Í&Ï �#�oyC,d �] M,U:V�W ¬ Ç ¶ £ ¯ ¥�� Ñ Ç ¥ r Ñ ¤��� Ç ¥�·¦} � �:r J £4¤&¥ ¶ £ ¯$t] � ¥��O¸ K �? c¤ K � p K r8r�r K � s �Ñ ¯ ¤�¬L Ü ¤l i l D��z¹ Ñ ¯ ¤ ºyº] M,U:V�W �Ñ ¯ ¤C4oy`QC�¥"E m b&ES`QC4��G�G�ESG(�F? K�­�� ¢F�:�zK: 8��¡F¢ �
Fig. 9. Pre- and post-condition compilation for advice

current implementation of conaj is available from http://www.ccs.neu.edu/home/skotthe/conaj.

References

1. D. Bartetzko, C. Fischer, M. Moller, and H. Wehrheim. Jass - java with assertions. In
Workshop on Runtime Verification, 2001. held in conjunction with the 13th Conference on
Computer Aided Verification, CAV’01., 2001.

2. C. A. Constantinides and T. Skotiniotis. Reasoning about a classification of crosscutting
concerns in object-oriented systems. In Second International Workshop on Aspect-Oriented
Software Development of the SIG Object-Oriented Software Development, Bonn, February
21-22 2002. German Informatics Society.

3. E. Ernst and D. H. Lorenz. Aspects and polymorphism in AspectJ. In Proceedings of the
2nd International Conference on Aspect-Oriented Software Development, pages 150–157,
Boston, Massachusetts, Mar. 17-21 2003. AOSD 2003, ACM Press.

24

N
or

th
ea

st
er

n
U

ni
ve

rs
ity

 -
C

ol
le

ge
 o

f C
om

pu
te

r a
nd

 In
fo

rm
at

io
n

Sc
ie

nc
e

- T
ec

hn
ic

al
 R

ep
or

t N
U

-C
C

IS
-0

3-
13

4. R. B. Findler and M. Felleisen. Contract soundness for object-oriented languages. In Con-
ferece on Object Oriented Programming, Systems, Languages and Applications, number 11
in ACM SIGPLAN Notices, pages 1–15, Tampa Bay, Florida, October 2002.

5. R. B. Findler and M. Felleisen. Contracts for higher-order functions. In International Con-
ference on Functional Programming (ICFP’02), pages 48–59, October 2002.

6. R. B. Findler, M. Latendresse, and M. Felleisen. Behavioral contracts and behavioral sub-
typing. In Proceedings of ACM Conference Foundations of Software Engineering, 2001.

7. R. W. Floyd. Assigning meaning to programs. In Proceedings of Symposium on Applied
Mathematics, volume 19, Providence, R.I, 1976.

8. C. Hoare. An axiomatic basis for computer programming. In Communications of the ACM,
1969.

9. M. Karaorman, U. Hölzle, and J. Bruno. jContractor: A reflective Java library to support
design by contract. Lecture Notes in Computer Science, 1616, 1999.

10. H. Klaeren, E. Pulvermüller, A. Rashid, and A. Speck. Aspect composition applying the
design by contract principle. In Proceedings of the GCSE 2000, Second International Sym-
posium on Generative and Component-Based Software Engineering, 2000, Oct 2000.

11. M. Kölling and J. Rosenberg. Blue: Language Specification, 1997.
12. R. Kramer. iContract - the java - design by contract - tool. In Technology of Object-Oriented

Langauges and Systems (TOOLS 98), August 1998.
13. G. T. Leavens, K. R. M. Leino, E. Poll, C. Ruby, and B. Jacobs. JML: notations and tools

supporting detailed design in Java. In Object-Oriented Programming, Systems, Languages,
and Applications Companion, pages 105–106, 2000. Also Department of Computer Science,
Iowa State University, TR 00-15, August 2000.

14. K. J. Lieberherr. Adaptive Object-Oriented Software: The Demeter Method with Propagation
Patterns. PWS Publishing Company, Boston, 1996.

15. B. H. Liskov and J. M. Wing. A behavioral notion of subtyping. ACM Transactions on
Programming Languages and Systems, 16(6):1811–1841, November 1994.

16. C. Lopes, M. Lippert, and E. Hilsdale. Design by contract with aspect-oriented program-
ming, 2002. U.S. Patent No. 06,442,750. Issued August 27,2002.

17. D. C. Luckham and F. von Henke. An overview of anna, a specification language for Ada.
In IEEE Software, volume 2, pages 9–23, March 1985.

18. B. Meyer. Object-Oriented Software Construction. International Series in Computer Science.
Prentice Hall, 1988.

19. B. Meyer. Eiffel: The language. Prentice Hall PTR, 1991.
20. S. M. Omohundro. The Sather 1.0 specification. Technical Report TR-94-062, International

Computer Science Institute, Berkeley, 1994.
21. P.America. Designing an object-oriented languages with behavioural subtyping. In J. de

Bakker, editor, Foundations of Object Oriented Languages, volume 489 of Lecture Notes in
Computer Science, pages 60–90. Springer, 1991.

22. D. Rosenblum. A practical approach to programming with assertions. In IEEE Transactions
on Software Engineering, volume 21(1), pages 19–31, January 1995.

23. T. Skotiniotis, K. Lieberherr, and D. H. Lorenz. Aspect instances and their interactions.
In AOSD 2003 Workshop on Software-engineering Properties of Languages for Aspect
Technologies, Boston, Massachusetts, Mar.18 2003. AOSD 2003 Workshop on Software-
engineering Properties of Languages for Aspect Technologies, ACM Press.

24. The AspectJ Team. AspectJ Development Tools, 2003. http://www.eclipse.org/aspectj/.
25. The AspectJ Team. The AspectJ Programmers Guide, 2003. http://www.eclipse.org/aspectj/.
26. The AspectJ Team. The AspectJ Web Site, 2003. http://www.eclipse.org/aspectj/.
27. The Demeter Group. DemeterJ Resources, 2003.

25

N
or

th
ea

st
er

n
U

ni
ve

rs
ity

 -
C

ol
le

ge
 o

f C
om

pu
te

r a
nd

 In
fo

rm
at

io
n

Sc
ie

nc
e

- T
ec

hn
ic

al
 R

ep
or

t N
U

-C
C

IS
-0

3-
13

28. J. Zhao and M. Rinard. Pipa: Behavioral Interface Specification Language for AspectJ. In
Proceedings of Fundamental Approaches to Software Engineering (FASE’2003), pages 150–
165, 2003.

26

