
Aspectual Comprehension: Program Understanding Using Aspects
�

David R. Kaeli Sergei Kojarski David H. Lorenz Darren Ng
Institute for Complex Scientific Software

Northeastern University
Boston, Massachusetts 02115 USA�

kaeli@ece � kojarski@ccs � lorenz@ccs � dng@ece � .neu.edu

Abstract

Aspect Oriented Programming (AOP) is a powerful re-
flective programming tool. In this paper we discuss how
AOP can be used to facilitate the process of program under-
standing. We call this process “aspectual comprehension.”
We analyze the characteristics of aspectual comprehension
on three bodies of code. The first is a sizable third party
Java legacy system for manipulating and displaying protein
sequences entitled Friend. The second is Eclipse, an open
source Java IDE. The third is Compress, a SPEC JVM98
Java benchmark. We study uses of the AspectJ AOP lan-
guage to expose both dynamic and static software charac-
teristics. Examples provided are actual code and data from
re-engineering the first body of code—the Friend system.

1 Introduction

Maintenance of software systems inevitably rely on a un-
derstanding of the program structure. However, it is not
uncommon for programmers to inherit and work with unfa-
miliar code. Therefore, a majority of software maintenance
time is spent on program comprehension [26].

Program comprehension is the process of understand-
ing a program through feature and documentation analysis.
Studies and experiments [14] reveal that the success of de-
composing a program into effective mental models depend
on one’s general and program-specific domain knowledge.
While a number of different models for the cognition pro-
cess have been proposed most models fall into one of three
categories: top-down comprehension [1], bottom-up com-
prehension [2], and a hybrid model.

The top-down model is traditionally employed by pro-
grammers with code domain familiarity. By drawing on
their existing domain knowledge, programmers are able to�

Supported in part by the National Science Foundation (NSF) under
Grant CCR-0204432, and by the Institute for Complex Scientific Software
at Northeastern University.

efficiently reconcile application source code with system
goals. The bottom-up model is often applied by program-
mers working on unfamiliar code. To comprehend the ap-
plication, they build mental models by evaluating program
code against their general programming knowledge. Fi-
nally, the integrated or hybrid model reflects a combination
of the previous two modeling techniques. It is commonly
utilized for analysis of large applications.

Program comprehension, especially for large systems,
requires the inspection of a plethora of application attributes
such as dynamic call graph, source code, and documenta-
tion. For programs with an abundance of classes, the orga-
nization of these program characteristics presents a complex
and problematic task.

Many tools strive to address the organization problem by
analyzing and categorizing the data into meta-information
[22, 3, 4, 5, 6]. Tools (e.g., [10]) also provide visualization
of different perspectives of the program and its execution.
However, today’s tools are limited by:

� User experience - Studies in program comprehen-
sion revealed that expert programmers spent a major-
ity of their time learning an unfamiliar programming
environment than deciphering the target program it-
self [14].

� Flexibility - Tools provide only a fixed set of function-
ality that may not be sufficient for a task.

� Expressiveness - A tool’s ability to interpret the user’s
command. Often, a tool has to balance between ease of
use and expressiveness [21]. That’s why some experts
prefer powerful text based tools rather than simple to
use visual tools.

In this paper we propose the use of Aspect-oriented pro-
gramming (AOP) [13] as a program comprehension tool.
AOP is a new programming paradigm that allows cross-
cutting concerns to be modularized [20]. We show how as-
pects provide programmers with a methodology to rapidly

1

and easily reverse engineer software into understood mod-
els. Program compile- and run-time reflection using AOP
benefit from an extremely flexible yet simple language con-
struct absent from many of today’s profiling tools.

We discuss AspectJ [18, 12], the mainstream Java im-
plementation of AOP, as a program understanding tool. We
show that fundamental terms of the language (e.g., join
point, advice, pointcut) allow programmers to easily ex-
press requests for dynamic program meta data. We illus-
trate simple yet powerful aspects that expose, filter, and
detail a program call graph extensively. Furthermore, we
explore compile-time aspects (declare warning) for static
program browsing. We detail how aspects go beyond
Java Core Reflection in exposing meta-information located
within method bodies. We assert that compile-time aspects
are practical for solving a number of tasks, such as or-
phaned or “dead” code identification, class hierarchy analy-
sis, and style-rule checking. We believe that AOP methods
can be easily adapted by experienced programmers who de-
sire more insight into a program’s execution.

Our choice of AOP as a program comprehension tool
was motivated by the following reasons (Table 1):

� User language familiarity - The AOP language is nor-
mally implemented as an extension to a base object-
oriented language. As a result, the programmer/main-
tainer of an application is already familiar with the
AOP language syntax and context.

� Flexibility - AOP provides the user with total control
over an aspect profiler. Unlike other programming
tools, programmers can tailor the profiling aspect as
they see fit.

� Expressiveness - In addition to being highly flexible,
AspectJ allows users to easily target data in both a
static and dynamic program environment.

1.1 Outline

In Section 2, we elaborate on our three test cases. In Sec-
tion 3, we consider how best to apply compile-time aspects
to perform maintenance and reverse engineering tasks. In
Section 4, we show how AspectJ can be used to expose the
dynamic call graph of a program. We provide examples of
simple aspects that allow programmers to reflect, filter and
select run-time information. Section 6 concludes the paper
and discusses other potential maintenance tasks using As-
pectJ.

2 Case Studies

This paper reports on using aspectual comprehension to
understand three bodies of code. The first is a legacy system

C plugin
C plugin

C++main J-main

C++
Structure
Module

Java
Sequence
Module

J pluginC plugin

Bridge

Bio
Informatics
Applications

Text bio-DBs

Linux/Unix
Windows

Mac

JSQL-C

SQL bio-DBs

Figure 1. The Friend Software

called Friend. The second is Eclipse, an open source Java
IDE. The third is Compress, a SPEC JVM98 Java bench-
mark.

2.1 The Friend System

Friend is short for an ”Integrated Analytical Front-End
Application for Bioinformatics” and was developed by the
Northeastern University Biology Department. The top level
software diagram of Friend is shown in Figure 1. Friend
was designed to aid scientists interactively visualize pro-
teins and their interactions along multiple alignments, do-
mains, fragments, and binding sites in a 3-D environment
[7].

The Friend system was written in Java in the early 1990s
and has been maintained by various programming groups
during its lifetime. With little to no documentation, the
Friend program is a classical example of a legacy product
that is difficult to maintain and almost impossible to evolve.
Our initial knowledge of the Friend system is summarized
in Table 2.

To help us understand Friend we used AspectJ.

Package/Dir files classes code lines
jalview 138 140 26742
jalview.parsers 20 40 3550
aliface 11 16 8341
friendMain 3 5 380
friendmenu 35 79 3937
friendcommon 4 5 290
friendblast 27 39 3389
libJMF 14 14 1757
TOTAL 255 338 48386

Table 2. The Friend system

2

Perspective Aspectual Comprehension Program Visualization
client programmer user

activity program view
domain same language visual presentation

proficiency expert intermediate
expertise Java/AspectJ interpreting views

Table 1. Aspectual Comprehension versus Program Visualization

2.2 Eclipse

Eclipse is an extendible software integrated development
environment (IDE). Third party visual (i.e., views, menus,
property pages etc.) and non-visual (i.e., builders, compil-
ers etc.) components interact with the Eclipse application
programmer’s interface (API) to augment the IDE function-
ality.

Although the Eclipse architecture is well-designed and
contains a feature rich API, the system and its interface are
not sufficiently documented. The creator of Eclipse exten-
sions or plug-ins is often overwhelmed programming for the
complex API. As a result, developers routinely study exist-
ing plug-in source code to augment their Eclipse IDE pro-
gramming proficiency.

We propose the use of aspectual comprehension tech-
niques in the development of plug-ins for Eclipse. In our
test case, the DAJ plug-in introduces the DemeterJ traversal
language to the IDE. The central component of the plug-
in is the DAJ project builder. To understand how Eclipse
builders are implemented, we studied the existing Eclipse
AspectJ plug-in. Due to the plug-in’s entangled code how-
ever, source code analysis did not yield compelling results.
To further facilitate the understanding process, we em-
ployed an AOP-based comprehension strategy. Using run-
time and compile-time aspects we managed to reverse en-
gineer the builder architecture and successfully completed
our DAJ plug-in.

2.3 Compress - A Java Benchmark

Compress is a Java application that is part of the SPEC
JVM98 benchmark suite. It is based on a modified Lempel-
Ziv compression method (LZW) that replace common data
substrings with variable size code [25]. In JVM98, Com-
press is executed on a variety of test data files and the to-
tal benchmark run-time is recorded. The Compress results
factor into the overall SPEC JVM98 performance measure-
ment.

The execution characteristics of the SPEC JVM98
benchmarks have been well studied [9]. However, program
understanding is more easily deduced from the program’s
structure and method interactions than from its low-level

Main

Harness

CompressComp_Base

Code_Table

Compressor Decompressor

Input_Buffer

Output_Buffer

1

2
6

7

6 4

9

6

= Number of Call
Sites

Figure 2. Compress Call Hierarchy

instructions. We used dynamic and static aspectual com-
prehension techniques to decipher the inner framework of
Compress.

Figure 2 details the class interactions in the Compress
application. Call sites, discussed in more detail in Section 3
track the inter-dependencies between classes. In Figure 2
for example, the Compress class at compile time calls the
Code_Table seven times.

Aspects also allow the programmer to capture the dy-
namic call graph of the target program. A segment of
the Compress call graph behavior captured by an aspect is
shown in Listing 1.

From the call graph, it is evident by the sequence of
methods calls that the Compress algorithm is updating
its code and hash tables as it compresses data from the
Input_Buffer. Afterwards, the compressed data is stored
in the Output_Buffer. Once the Output_Buffer is full,
the Output_Buffer putbyte method is executed to drain
the buffer data.

3 Static Analysis

AspectJ allows compile-time aspects which can raise
textual warnings or a compile error if targeted program
characteristics are found in the code. This powerful mech-
anism can extract important information from the program
source and enforce proper software engineering principles.

3

Listing 1. Segment of Compress call graph
1 ...
2 execution(void _201_compress.Code_Table.set

(int,int)
3 execution(void _201_compress.Compressor.

Hash_Table.set(int,int)
4 execution(int _201_compress.Input_Buffer.

getbyte()
5 execution(int _201_compress.Compressor.

Hash_table.of(int)
6 execution(void _201_compress.Output_Buffer.

Output(int)
7 execution (void _201_compress.

Output_Buffer.putbyte(int)
8 execution (void _201_compress.

Output_Buffer.putbyte(int)
9 ...

Listing 2. aspect SequenceClients
1 package aspects;
2 aspect SequenceClients {
3 pointcut Scope(): !within(aspects..*) &&
4 !within(jalview.Sequence+);
5 pointcut profile(): Scope() &&
6 call(* jalview.Sequence.*(..));
7 declare warning: profile(): "Sequence

method call";
8 }

3.1 Identifying Orphaned or “Dead” Code

Legacy systems that are maintained and extended by var-
ious programmers, usually contain a significant percentage
of orphaned or “dead” code. These “dead” pieces contam-
inate class interfaces with multiple unused methods. Iden-
tification of obsolete methods is no easy task and often re-
quires extensive analysis of the system code.

One of the Friend interfaces, jalview.Sequence de-
fines a basic residue sequence abstraction that is the foun-
dation of all data types such as RNA, Amino Acids, and
Micro-arrays in the Friend system. The interface initially
defined 120 methods. To locate the methods used by client
classes and those unemployed, we created the compile-time
aspect shown in Listing 2. The aspect detects all call sites to
the jalview.Sequence interface used by its clients (not
implementors). Each encountered call site event prints a
message similar to the one shown below:

1 [ajc] ../jalview/AlignFrame.java:555:68:
2 Sequence method call (warning)
3 [ajc] String newstr = AlignSeq.extractGaps(
4 " ",ap.align.ds[i].getSequence());

Using the results gathered from the compile-time aspect,
we identified and safely removed 50 unused Sequence

methods out of 120.
In addition, tracking the method usage output allows the

detection of program hot spots that can be later singled out
for optimization.

3.2 Identifying Class Scope

Besides interface cleaning, aspects similar to the
SequenceClients aspect can be used to reveal the class
scope within the system, i.e., list of class clients. Moreover,
compile-time aspects also illustrate the degree of coupling
between an interface and each of its clients. For example,
the SequenceClients aspect revealed that the interface is
used by 54 classes in 5 system packages in 607 call sites.
However, only 8 packages are tightly coupled with the in-
terface. The other packages contain less than 20 (most less
than 9) call sites targeting Sequence (Table 3).

The SequenceClients aspect exposes the Sequence
class clients and allows the programmer to evaluate the cost
of its maintenance. The more clients a class has, the more
expensive it is to maintain. On the contrary, if a class has
few clients, the decision to change, remove, or augment the
class can be more easily evaluated.

3.3 Subtyping Relations

Compile-time aspects can also be utilized in categorizing
subtype relations. Consider the aspect in Listing 3.

Client class Call sites
aliface.SkyInterface 81
jalview.Alignment 70
jalview.SeqPanel 49
jalview.parsers.MSPFile 38
jalview.AlignFrame 36
jalview.DrawableAlignment 33
jalview.JnetCGI 29
jalview.AlignmentPanel 22
OTHERS 121
TOTAL 607
CLIENT CLASSES 54

Table 3. The Sequence clients

4

Listing 3. aspect SequenceClasses
1 package aspects;
2 aspect SequenceClasses {
3 pointcut jps(): staticinitialization(

jalview.Sequence+);
4 declare warning: jps(): "Warning";
5 }

The SequenceClasses aspect provides a list of imple-
mentors and subinterfaces of the jalview.Sequence in-
terface. This information is crucial to determine how many
classes will be affected by an “interface cleaning” opera-
tion. The output detailed below illustrates how the Friend
application contained very few Sequence implementors.
Therefore, modifications to the Sequence code can be eas-
ily navigated.

1 [ajc] jalview/BinarySequence.java:24:1:
2 [ajc] public class BinarySequence
3 [ajc] jalview/DrawableSequence.java:9:1:
4 [ajc] public class DrawableSequence
5 [ajc] jalview/MSPSequence.java:24:1:
6 [ajc] public class MSPSequence extends

DrawableSequence {
7 [ajc] jalview/ScoreSequence.java:7:1:
8 [ajc] public class ScoreSequence extends

DrawableSequence {
9 [ajc] jalview/Sequence_impl.java:8:1:

10 [ajc] public class Sequence_impl

3.4 Style Rules

So far we have used the declare warning AspectJ
construct to output our results. The language also pro-
vides an alternative declare error construct that halts
the compilation process if specified join points are found in
the source code. declare error can enforce adherence to
design rules during program maintenance. The most com-
mon rule in OOP requires client classes (with the exception
of subclasses) to access class state via methods only. Con-
sider an aspect that produces compiler errors if clients of
the jalview.Sequence_impl class try to access its state
directly without the use of helper methods. The aspect in
Listing 4 may be included by the maintainer to prevent rule
violation during code modification.

4 Dynamic Analysis

To understand the structure hierarchy of a program, the
control flow model of the system can be extracted from
its dynamic call graph [2]. In general, program execution

Listing 4. aspect RuleChecker
1 package aspects;
2 aspect RuleChecker {
3 pointcut Scope(): !within(aspects..*);
4 pointcut field_access(): get(*

Sequence_impl.*) ||
5 set(* Sequence_impl.*);
6 pointcut prohibit(): Scope() &&

field_access();
7 declare error: prohibit():
8 "!!!Sequence_impl state access violation

!!!";
9 }

is normally orthogonal to the program structure: a single
task usually cross-cuts or traverses multiple program mod-
ules. By invoking user configured join points and point cuts,
AOP reflection is effective in exposing the program’s cross-
cutting behavior.

Source code analysis is often employed by programmers
to construct a program call graph. By mentally “executing”
the software code, the programmer can generate a complete
runtime picture of small program instances. However, the
amount of information a programmer can simultaneously
process severely restricts the target code size. For medium
and large-sized systems which includes the Friend system,
dynamic call graph generation is tasked to automated profil-
ing methods. Profiling mechanisms provide useful abstrac-
tion of the source code by reflecting the methods that are
actually executed.

4.1 Profiling

Profiling and logging are two well-known examples of
AOP uses [18, 12]. AspectJ, the mainstream AOP extension
for Java, provides an easy way to expose program runtime
attributes. Consider the DynProf aspect we used to monitor
and create an application’s dynamic call graph (Listing 5).

The DynProf aspect profiles join points selected by the
profile pointcut, which encapsulates all method and con-
structor executions outside the aspects package and sub-
packages. By eliminating profiling in the aspects pack-
age, we limit the profile trace data to only include events
in the target program environment. As a result, our trace
data is more concise and program execution is unimpeded
by superfluous data monitoring. The around advice speci-
fies profiling logic to execute “around” the profile point
cut. In our case, the level instance variable is used to
keep track of the current method level in the call graph.
Logging is provided by the log method which converts
thisJoinPoint and level arguments into a string rep-
resentation before commitment into the log.

5

Listing 5. aspect DynProf
1 package aspects;
2 public aspect DynProf {
3 pointcut Scope(): !within(aspects..*);
4 pointcut profile(): Scope() &&
5 (execution(*.new(..)) || execution

(* *(..)));
6 private int level=0;
7

8 Object around(): profile() {
9 level++;

10 log(thisJoinPoint,level);
11 Object result = proceed();
12 level--;
13 return result;
14 }
15

16 void log(JoinPoint jp, int level) {
17 String message = "";
18 while(level>0) {
19 message=message+" ";
20 level--;
21 }
22 message = message+jp.toString();
23 System.out.println(message);
24 }
25 }

Although simple, the DynProf aspect practically con-
structs the control flow model of the system. Without any
extra tools we were able to extract the complete call graph
of the analyzed application.

The output of the aspect, however, is problematic to read.
Loops in the program execution produce a large number of
log messages. While contributing little to the program un-
derstanding, these repetitious messages severely hinder out-
put readability. For example, a single open file operation in
Friend produced a 18 MB log file containing 17.7 MB of
loop-generated messages.

4.2 Filtering

The readability of the call graph can be improved by fil-
tering the loop output. Loops can be easily identified in the
log file by their repeating output messages pattern. For ex-
ample, the file open operation output discussed earlier pro-
duced two distinct patterns:

1 ...
2 public String Sequence_impl.getSequence()
3 public void DrawableSequence.

setResidueBoxColour()
4 ...

and

1 ...
2 public int Alignment.maxLength()
3 public int DrawableSequence.length()
4 public int Sequence_impl.length()
5 public String DrawableSequence.getSequence

()
6 public String Sequence_impl.getSequence()
7 public String DrawableSequence.getSequence

()
8 public String Sequence_impl.getSequence()
9 ...

The first pattern was created by the control flow loop
of the public DrawableSequence(Sequence) con-
structor. The second pattern is contained within the
jalview.Alignment.findQuality(int, int)

method.
Control flow loops are an inevitable consequence of any

structured program. As such, we propose an elegant and
efficient solution to the logging problem using AspectJ fil-
tering.

The cflow and cflowbelow pointcut designators allow
the programmer to specify subtrees of the call graph (i.e.
loops) to be avoided. Additional filtering can be enforced
by specifying extra conditions in the profile() pointcut
definition.

6

Listing 6. aspect DynProf (revised)
1 public aspect DynProf {
2 pointcut profile(): Scope() &&
3 (execution(*.new(..)) ||
4 execution(* *(..))) &&
5 !cflowbelow(
6 execution(jalview.DrawableSequence.new

(..)) ||
7 execution(void jalview.Alignment.

findQuality(int, int)))
8 ...
9 }

4.3 Selective Profiling

The DynProf aspect can be improved by avoid-
ing profiling loops. In our case, by bypassing loops,
our log file size decreased from 18 MB to 300 KB.
Similar techniques can also be used to achieve selec-
tive profiling. AspectJ allows programmers to focus
on points of interest in the call graph by specifying
additional conditions in the profile() pointcut def-
inition. For example, to profile the control flow of the
aliface.SkyInterface.executeOneCommand(String)

method we write:

1 pointcut profile(): Scope() &&
2 cflow(* aliface.SkyInterface.

executeOneCommand(String));

In general, the pointcut designators supported by As-
pectJ allow for a very precise profile targeting mechanism.

5 Related Work

5.1 Current Profiling Techniques

A majority of existing Java profiling applications invoke
a customized instrumented Java Virtual Machine (JVM) or
the experimental Java Virtual Machine Profiler Interface
(JVMPI) to gather program runtime attributes [24]. Each
of these profiling techniques are effective but not without
their limitations.

Instrumented JVMs, as shown in Figure 3, are user modi-
fied virtual machines that generate special events at targeted
program points [11]. For instance, a byte-code instrumented
JVM can create method entry and exit events to track occur-
rences in a program execution.

By default, instrumented JVMs are cumbersome due to
their required inclusion in each profiling tool instance [24].
They are also limited in configuration due to their highly
customized nature. An unsupported profile feature requires

Java
Class
Files

Instrumented
Java Virtual

Machine

Trace
Results

Figure 3. Instrumented Java Virtual Machine

the JVM to be painstakingly altered and reconfigured for
the addition.

Profiler
Agent

JVMPI

Events

Control

Profiler
Front-
end

Java
Virtual

Machine

Figure 4. Java Virtual Machine Profiler Inter-
face

Sun Microsystem’s upcoming JVMPI mechanism which
is integrated into all Sun JDKs version 1.2 and above, pro-
vides a standard Java profiling structure [23]. The JVMPI,
shown in Figure 4, consists of two parts - 1) a profiler agent
and 2) a profiler front-end. The profiler agent is a user-
created Java application that interfaces with the built-in pro-
filing “hooks” in the Java Virtual Machine. The profiler
agent instructs the JVM on profile event types and times ac-
cording to user specifications delegated through the profiler
front-end. The profiler front-end also handles and manipu-
lates the data captured by the profiler agent.

JVMPI profiling takes an all or nothing approach to data
traces triggered by user specified events [8]. For example,
the JVMPI will capture all class method entries and ex-
its during a METHOD ENTER or METHOD EXIT event,
even though the user is only interested in a particular class
method behavior. It is left to the profiler agent’s front end
to remove irrelevant data among the mass of results. Also,
since the JVMPI interface is a integral part of the Sun Mi-
crosystems’ JVM, user alterations to the JVMPI to support
new functionality such as new event types are not allowed.

AOP, shown in Figure 5, bypasses the limitations of
an instrumented JVM and Sun’s JVMPI by integrating a
highly-configurable language profiling mechanism with di-
rect access to a program’s environment.

7

AspectJ

Java
Class
Files

Target
Results

Java
Aspects

Standard
Java Virtual

Machine

Figure 5. Aspect Profiling Framework

5.2 Aspectual Reflection and Unplugging Compo-
nent using Aspect

In the process of understanding and re-engineering the
Friend software, we are also applying AOP techniques to
dynamically identify system design issues. It is our goal to
re-engineer Friend to be more structured and maintainable.

By utilizing aspectual reflection [15, 16, 19] to support
profiling methods and by selectively unplugging compo-
nents using aspects [17], we have the tools to profile beyond
traditional Java core reflection and the capability to perform
controlled refactoring of legacy code. In addition to the im-
mediate benefits obtained by improving a particular body of
code, the application of aspects to program comprehension
advances the understanding of AOP in which both success
and failure yield important lessons.

6 Conclusion

In this paper, we showed how AOP can be effectively
used for both dynamic and static program analysis. We also
illustrated the usefulness of aspects to enforce program style
rules from a program maintenance perspective.

This paper represents aspectual comprehension, validat-
ing the use of AOP as a feasible profiler. Aspect Oriented
Programming provides the following advantages:

� Expressiveness. AspectJ is essentially a behavioral re-
flection tool that can be easily adapted to expose a pro-
gram’s dynamic execution profile. AOP’s fundamental
language component, a join point, can be viewed as a
program’s instruction evaluation abstraction. Evalua-
tions such as method calls, field accesses, method body
evaluations (execution), and object initializations, can
be monitored and analyzed with almost unrestricted
visibility via the join point model.

� Crosscutting. AOP’s flexibility is due to the pro-
grammable aspect pointcut designators. Pointcut des-
ignators empower programmers to selectively target
classes and methods of interest in a program’s call

graph. As a result, the readability of the profiler out-
put increases due to the absence of irrelevant trace data
which leads to a deeper and quicker understanding of
the program.

� Programmer-oriented. Most of all, the AOP language
is within the same language domain as the program
being studied. For instance, aspects woven into a Java
application are created in the Java language with As-
pectJ. A profiler programmed in the same language
construct as a target application allows the maintain-
er/programmer to utilize their coding expertise in the
profiler learning process. On the contrary, visualiza-
tion tools that utilize non-standard protocols and dif-
ferent language domains often require experience and
special skills to be used efficiently.

Experienced programmers should also appreciate the in-
timate access to a program’s underlying code via AOP re-
flection that other profiling methodologies lack.

References

[1] Elliot Soloway and Beth Adelson and Kate Ehrlich. Knowl-
edge and Processes in the Comprehension of Computer Pro-
grams. In The Nature of Expertise, Eds. M. Chi, R. Glaser,
and M. Farr, pages 129-152, 1988.

[2] Nancy Pennigton. Comprehension Strategies in Program-
ming In Empirical Studies of Programming: Second Work-
shop, pages 100-112, 1987.

[3] Kenny Wong. Rigi User’s Manual. http://ftp.
rigi.csc.uvic.ca/pub/rigi/doc/rigi-5.4.
4-manual.pdf.

[4] Michael W. Godfrey. Practical Data Exchange for Re-
verse Engineering Frameworks: Some Requirements, Some
Experience, Some Headaches. In ICSE 2000 Workshop
on Standard Exchange Format, 2000. http://plg.
uwaterloo.ca/˜migod/papers/wosef00.pdf.

[5] B. Kullbach and A. Winter and P. Dahm and J. Ebert. Pro-
gram Comprehension in Multi-Language Systems In Pro-
ceedings of the 5th Working Conference on Reverse Engi-
neering 1998 (WCRE ’98), pages 135-143, Los Alamos,
1998.

[6] Jrg Czeranski and Thomas Eisenbarth and Holger Kienle
and Rainer Koschke and Daniel Simon. Analyzing xfig Us-
ing the Bauhaus Tool. Working Conference on Reverse En-
gineering, November 23-25, Brisbane, Australia, pages 197-
199, IEEE Computer Society Press, 2000.

[7] A. Abyzov, C. Leslin, and V. Ilyin. Friend - an integrated an-
alytical front-end for bioinformatics. In Computational and
Systems Biology at MIT (CBSi), 2003. http://mozart.
bio.neu.edu/friend/poster_jan2003.html.

[8] P. Bellavista, A. Corradi, and C. Stefanelli. Java based online
monitoring of heterogeneous resources and systems. Tech-
nical report, Universita di Bologna, 2000.

8

[9] K. Bowers and D. Kaeli. Characterizing the spec jvm98
benchmarks on the java virtual machine. Technical report,
Northeastern University, Dept. of ECE, Computer Architec-
ture Group, 1998.

[10] W. De Pauw, D. Lorenz, J. Vlissides, and M. Wegman. Ex-
ecution patterns in object-oriented visualization. In Pro-
ceedings of the 4th USENIX Conference on Object-Oriented
Technologies and Systems, pages 219–234, Santa Fe, New
Mexico, Apr. 27-30 1998. USENIX Association, 2560 Ninth
Street, Suite 215 Berkeley, CA 94710 USA.

[11] M. Dmitriev. Application of the hotswap technology to ad-
vanced profiling. Technical report, Sun Microsystems Lab-
oratories, 2002.

[12] G. Kiczales, E. Hilsdale, J. Hugunin, M. Kersten, J. Palm,
and W. G. Griswold. An overview of AspectJ. In J. L. Knud-
sen, editor, Proceedings of the 15th European Conference
on Object-Oriented Programming, number 2072 in Lecture
Notes in Computer Science, pages 327–353, Budapest, Hun-
gary, June 18-22 2001. ECOOP 2001, Springer Verlag.

[13] G. Kiczales, J. Lamping, A. Mendhekar, C. Maeda,
C. Lopes, J.-M. Loingtier, and J. Irwin. Aspect-oriented pro-
gramming. In M. Akşit and S. Matsuoka, editors, Proceed-
ings of the 11th European Conference on Object-Oriented
Programming, number 1241 in Lecture Notes in Computer
Science, pages 220–242, Jyväskylä, Finland, June 9-13
1997. ECOOP’97, Springer Verlag.

[14] A. J. Ko and B. Uttl. Individual differences in program
comprehension strategies in unfamiliar programming sys-
tems. In 11th IEEE International Workshop on Program
Comprehension (IWPC’03), pages 175–184, Portland, Ore-
gon, USA, May 10-11 2003.

[15] S. Kojarski, K. Lieberherr, D. H. Lorenz, and R. Hirschfeld.
Aspectual reflection. In AOSD 2003 Workshop on Software-
engineering Properties of Languages for Aspect Technolo-
gies, Boston, Massachusetts, Mar.18 2003. AOSD 2003
Workshop on Software-engineering Properties of Languages
for Aspect Technologies, ACM Press.

[16] S. Kojarski and D. H. Lorenz. Reflective mechanisms in
AOP languages. Technical Report NU-CCIS-03-07, College
of Computer and Information Science, Northeastern Univer-
sity, Boston, MA 02115, Mar. 2003.

[17] S. Kojarski and D. H. Lorenz. Unplugging components
using aspects. In J. Bosch, C. Szyperski, and W. Weck,
editors, ECOOP 2003 Eighth International Workshop on
Component-Oriented Programming, 2003.

[18] C. V. Lopes and G. Kiczales. Recent developments in As-
pectJ. In S. Demeyer and J. Bosch, editors, Object-Oriented
Technology. ECOOP’98 Workshop Reader, number 1543 in
Lecture Notes in Computer Science, pages 398–401. Work-
shop Proceedings, Brussels, Belgium, Springer Verlag, July
20-24 1998.

[19] D. H. Lorenz and J. Vlissides. Pluggable reflection: Decou-
pling meta-interface and implementation. In Proceedings of
the 25th International Conference on Software Engineering,
pages 3–13, Portland, Oregon, May 1-10 2003. ICSE 2003,
IEEE Computer Society.

[20] H. Masuhara and G. Kiczales. Modeling crosscutting in
aspect-oriented mechanisms. In L. Cardelli, editor, Proceed-
ings of the 17th European Conference on Object-Oriented

Programming, number 2743 in Lecture Notes in Computer
Science, pages 2–28, Darmstadt, Germany, July21-25 2003.
ECOOP 2003, Springer Verlag.

[21] A. Repenning and J. Ambach. Tactile programming: A
unified manipulation paradigm supporting program compre-
hension, composition and sharing. pages 102–109.

[22] S. C. Richard Wheeldon and K. Keenoy. Using memex-
like trails to improve program comprehension. In 2nd An-
nual Designfest on Visualizing Software for Understanding
and Analysis of Software (VISSOFT), Amsterdam, Sept. 22
2003.

[23] Sun Microsystems. The java virtual machine profiler inter-
face, 2003. http://java.sun.com/j2se/1.4.2/
docs/guide/jvmpi/jvmpi.html.

[24] D. Viswanathan and S. Liang. Java virtual machine profiler
interface. In IBM Systems Journal, volume 39, pages 82–95,
2000.

[25] T. A. Welch. A technique for high performance data com-
pression. In IEEE Computer, volume 17-6, pages 8–19, June
1984.

[26] S. S. Yau and J. Collofello. Some stability measures for
software maintenance. In IEEE Transactions on Software
Engineering, volume SE-6, pages 545–552, 1980.

9

