
N
or

th
ea

st
er

n
U

ni
ve

rs
ity

 -
C

ol
le

ge
 o

f C
om

pu
te

r a
nd

 In
fo

rm
at

io
n

Sc
ie

nc
e

- T
ec

hn
ic

al
 R

ep
or

t N
U

-C
C

S-
04

-1
4

Extending Design by Contract for Aspect-Oriented
Programming

David H. Lorenz Therapon Skotiniotis
Technical Report NU-CCIS-04-14

College of Computer & Information Science
Northeastern University

Boston, Massachusetts 02115 USA�
lorenz, skotthe � @ccs.neu.edu

ABSTRACT
Design by Contract (DbC) and runtime enforcement of program as-
sertions enables the construction of more robust software. It also
enables the assignment of blame in error reporting. Unfortunately,
there is no support for runtime contract enforcement and blame
assignment for Aspect-Oriented Programming (AOP). Extending
DbC to also cover aspects brings forward a plethora of issues re-
lated to the correct order of assertion validation. We show that there
is no generally correct execution sequence of object assertions and
aspect assertions. A further classification of aspects as agnostic,
obedient, or rebellious defines the order of assertion validation that
needs to be followed. We describe the application of this classi-
fication in a prototyped DbC tool for AOP named CONA, where
aspects are used for implementing contracts, and contracts are used
for enforcing assertions on aspects.

1. INTRODUCTION
Design by Contract (DbC) [22] is a methodology for software con-
struction that is based on runtime enforcement of assertions. Sev-
eral object-oriented programming (OOP) languages follow the Eif-
fel [23] example in providing support for DbC (including, e.g.,
Blue [14] and Sather [24]). Unfortunately, no aspect-oriented pro-
gramming (AOP) language offers support for DbC. This paper ex-
tends DbC for controlling also the interactions between advice and
methods [25], a need that is evident in any non-trivial AOP appli-
cation development [11].

While runtime contract enforcement and blame assignment for ob-
jects is well understood, it is unclear how DbC extends to aspects.
In DbC for OOP, assertions are enforced during method invocation;
a failure clearly implicates one of two distinct objects, the caller or
the callee. In DbC for AOP, there are two kinds of entities (ob-
jects and aspects), two different kinds of assertions (assertions for
objects and assertions for aspects), and no implicit caller (for an
aspect’s advice).

DbC for OOP also validates logical implications between super-
type assertions and subtypes assertions on methods [9]: an overrid-
ing method must be a behavioral substitute [18] for its overridden
counterpart. In comparison, DbC for AOP must validate that the
method with an advice is a behavioral substitute for its advice-less
counterpart.

These differences brings about several issues:

(i) At what point during the execution of the program should
each kind of assertion be checked?

(ii) Should there be a connection between assertions on methods
and assertions on advice and how should that be enforced at
runtime?

(iii) How is blame assignment affected?

In this paper we extend the classic DbC runtime contract enforce-
ment mechanism to cover AspectJ’s [20, 12, 3] advice definitions.
We concentrate on the impact of the relative interleaving order of
object contract checking and aspect contract checking.

In Section 2, we show that there is no generally applicable correct
order. In Section 3, we develop a classification of aspects accord-
ing to the way they influence object contracts. We classify each
aspect as either agnostic, obedient, or rebellious, and show that the
membership of an aspect in one of the defined categories implies a
particular order. Based on this classification, the execution order of
method invocation (and its advice and assertions) changes, in order
to properly assign blame for any contract violations that may occur.

Enforcing contracts via aspects is also an application area of as-
pects that serves as an illustration for the need to differentiate be-
tween agnostic, obedient, and rebellious aspects. In Section 4, we
present CONA [21, 29, 28, 26], a tool for the provision and enforce-
ment of DbC in both OOP and AOP.

2. MOTIVATING EXAMPLE
Consider a software system for an online bookstore (Figure 1) with
offices in the USA, Greece, and Israel. A book sale transaction re-
quires a non-empty ISBN number (pre-condition of OnlineBook-
store.sale). The sale completes by providing a book that either
matches the requested ISBN number or has the same title (post-
condition of OnlineBookstore.sale)but possibly a different ISBN.
The post-condition in OnlineBookstore.sale permits to substitute

1

N
or

th
ea

st
er

n
U

ni
ve

rs
ity

 -
C

ol
le

ge
 o

f C
om

pu
te

r a
nd

 In
fo

rm
at

io
n

Sc
ie

nc
e

- T
ec

hn
ic

al
 R

ep
or

t N
U

-C
C

S-
04

-1
4

OnlineBookstore

ILBranch

GRBranch

USBranch

@pre � ISBN != null �
@post � result.ISBN.equals(ISBN)�

ISBN.getTitle() = result.getTitle() �
+ sale(ISBN):Book

�
ISBN.getTitle() = result.getTitle() �

result.getBookType() = HC &&

+ sale(ISBN):Book

@post � result.ISBN.equals(ISBN)�
(result.ISBN != ISBN &&

result.tCost() � Calc.tCost(ISBN) ���
) �bookDB.getBookType(ISBN) = PB &&

result.getTitle() = bookDB.getTitle() &&
result.getBookType() = HC &&

+ sale(ISBN):Book
@pre � ISBN != null �

@post � result.ISBN.equals(ISBN)

@post � result.ISBN.equals(ISBN)

+ sale(ISBN):Book
@pre � ISBN != null �

bookDB.getBookType(ISBN) = PB &&

�
(result.ISBN != ISBN &&

result.getShipping() ���) �

@pre � ISBN != null �
result.getTitle() = bookDB.getTitle() &&

Figure 1: The online bookstore has offices in USA, Greece, and Israel. Each site has different taxes (Sales, VAT) and also different ship-
ping agencies. sale is overwritten, however, the contracts associated with each method implementation make the three subclasses proper
behavioral subtypes of OnlineBookstore.

the requested book with a different edition of the book1 (e.g., a pa-
perback (PB) version instead of a hardcover (HC) version, or vice
versa).

Concrete subclasses of OnlineBookstore specialize sale to reflect
the policy in effect in each of the three different countries. Specifi-
cally,

� In the USA, an order for a paperback version of a book that
is not available in the bookstore may be fulfilled with a hard-
cover version of the book as long as the shipping costs for the
hardcover version does not exceed the amount of 20 Dollars.

� In Greece, an order for a book that is not in-stock but another
version (paperback or hardcover) is available is fulfilled by
providing that version instead.

� In Israel, if the requested book is a paperback but the book-
store has only the hardcover version, then the hardcover is
provided as long as the difference in the total cost (book price
plus shipping) is less than 10 Shekels.

The post-condition on the specialized implementations of sale cap-
ture the corresponding country’s policy, which needs to be checked
at runtime.

In terms of contracts (transactions) the role of provider (server) is
played by the online bookstore software. The consumer (client)
role is played by the customer that uses the online bookstore soft-
ware.

2.1 Contracts in the Presence of Aspects
Interesting issues arise in the situations where user aspects are present
in the system where contracts (regardless of how they are being

1We assume that two books with the same title are either the same
or different editions of the same book. That is, there do not exist
two books of different contents with the same title in the bookstore.

implemented) are used. Since an aspect may observe or alter in-
formation before, after, or around a method’s call/execution, a user
aspect’s advice might:

� Break a method’s pre-condition even when the client calls
the method correctly.

� Break a method’s post-condition even when the method’s
pre- and post-condition where fulfilled by the method’s im-
plementation.

� Correct a call to a method � that originally violated � ’s pre-
condition.

� Correct a previously erroneous implementation that did not
fulfill its post-condition.

� Add extra behavior to a method’s implementation without al-
tering the set of states accepted by the pre- and post-condition
assertions, i.e., provide a different mapping for the same in-
put and output value sets of the method.

� Add extra behavior by extending the method’s specification
(pre- and/or post-conditions).

� Monitor a method’s execution by collecting information or
checking certain system properties without affecting the be-
havior of the method.

The order of execution amongst aspect advice, pre- and post-condition
validation, and method execution determines which one of the above
situations occur. For example, behavioral extension via aspect ad-
vice should only be allowed when aspect advice is executed before
a method’s pre-condition or post-condition validation.

Consider (the addition of an aspect that will implement) an in-
crease of 10% in shipping cost on hardcover books (Listing 1).
ShippingCost is added to the system and attached to sale method
calls with an after advice holding the relevant code for the enforce-
ment of the extra cost. Focusing on sale method calls, it is not

2

N
or

th
ea

st
er

n
U

ni
ve

rs
ity

 -
C

ol
le

ge
 o

f C
om

pu
te

r a
nd

 In
fo

rm
at

io
n

Sc
ie

nc
e

- T
ec

hn
ic

al
 R

ep
or

t N
U

-C
C

S-
04

-1
4

Listing 1: ShippingCost aspect adding the 10% extra shipping cost
on hardcover editions.

1 aspect ShippingCost
�

2 pointcut HDSales(ISBN isbn): call(� OnlineBookstore.sales(..)
) && args(isbn);

3

4 after(ISBN isbn) returning (Book item):
5 HDSales(isbn)

�
6 item.setShippingCost(item.getShippingCost() � 1.1);
7 item.calculateTotalCost();
8 �
9 �

obvious what execution sequence amongst pre- and post-condition
validation, aspect advice and method execution should be followed.
Three possibilities (Table 1) are possible and we will examine each
one in turn within the context of the on line bookstore example.

Assuming an execution policy where user aspects are executed be-
fore pre-conditions and after post-condition are enforced (execu-
tion order A in Table 1), clients to both the USBranch and IL-
Branch may be charged more than what was agreed. Although the
client has maintained the originally agreed upon contract, the final
outcome breaks the clients expectations blaming the provider.

The shipping cost increase introduced via the aspect can result to
shipments where the total shipping cost will be more than $20 and
a total cost that is more than 10 Shekels. From the clients point of
view, it is clearly an error of the online bookstore since the agreed
policy for replacing a paperback edition was not followed.2 At
the same time the corresponding branches have assurances (sale’s
post-condition) that the replacement policy was honored. DbC
mechanisms fail to correctly assign blame in the presence of as-
pects, misguiding developers and increasing the time spend on bug
detection and correction. It is clear that the party that is actually at
fault here is the aspect. One can conclude that the aspect is at fault
only after observing all three entities, their execution sequence and
their interactions.

However, an aspect can also be used to bring about the exact oppo-
site effect. An aspect can intervene after the return of a method that
originally returned a faulty result which violated the post-condition
and modify the result in such a way so that now the post-condition
is not violated. The execution interleaving would have to allow
such aspects to intervene before the runtime check for a methods
post-condition (execution order B in Table 1). These situations are
examples of extensions/fixes through aspects.

In the case of the online bookstore, suppose that a 20% markdown
is in effect for all hardcover editions. Consider a customer in Israel
ordering a book using the ISBN of the paperback edition. Suppose
the paperback edition costs 80 Shekels and the hardcover edition
costs 100 Shekels. The bookstore does not have any copies of the
paperback edition and provides the hardcover edition of the book
instead. Before applying the 20% markdown on the hardcover edi-
tion, the post-condition of the ILBranch disallows the switch from
paperback to hardcover since the difference in cost is more than 10
Shekels. However if the aspect is allowed to intervene before the

2In fact an OOP runtime contract enforcement mechanism will
blame the corresponding bookstore branch since it does not take
into account aspects and their specification.

post-condition check is enforced then the difference in total cost is
0 Shekels and the sale can go through.

One may resort to a conservative approach in which a method’s
pre-condition is checked twice: once before the advice and once
before the method (execution order C in Table 1). However, that
would restrict the applicable aspects, thereby compromising obliv-
iousness [8].

3. A CLASSIFICATION OF ASPECTS FOR
DBC

Aspects can be used:

(i) to enforce properties without altering the behavior of the un-
derlying system (e.g., logging the online bookstore system,
checking the online bookstore coding style [17], implement-
ing the DbC assertions found in Figure 1 [cf. Section 4].

(ii) to allow for extensions to the behavior of the underlying sys-
tem, (e.g., allowing for extra charges/discounts on the online
bookstore).

The two different uses of aspects in the presence of contracts im-
poses certain restrictions on their execution order. Furthermore, it
may result in erroneous blame assignments complicating error de-
tection and resolution.

The choice of which interleaving execution order (Table 1) to en-
force also depends on the mechanism of assigning blame in cases
of violation. Standard DbC mechanisms are ignorant of aspects.
Blame assignment must therefore be extended to deal with aspects
as entities that can be assigned blame. Also, what is being violated
has to be redefined in order to take into account the intention of
code found in aspect definitions.

The ability to define an aspect’s intentions through a clear declar-
ative specification as well as the runtime validation of these inten-
tions is crucial in error detection, error resolution and reasoning
about aspect-oriented programs. We identify three intentional cat-
egories of aspects: namely, agnostic, obedient, and rebellious.

3.1 Agnostic Aspects
Agnostic aspects are aspects that do not affect a method’s asser-
tions in any way. Agnostic aspects are “sandwiched” with the orig-
inal method’s pre- and post-conditions. From the perspective of
the callers of the method, the method with the advice (as on body)
has the same assertions as the original method body. In addition,
assertions do not change from the method’s perspective either.

3.1.1 Execution Order
The language imposes the following execution sequence in the case
of agnostic aspects (execution order C):

������������� �������� ��� ����� �!��#"
$&% �������������'�����#"
$&%(�
����) � %*�!������ ���+����) � %*�!��#"
$&% ��� �#"
$&%

Where

� � � �!������ denotes to the pre-condition of the aspect’s (�) before
advice

3

N
or

th
ea

st
er

n
U

ni
ve

rs
ity

 -
C

ol
le

ge
 o

f C
om

pu
te

r a
nd

 In
fo

rm
at

io
n

Sc
ie

nc
e

- T
ec

hn
ic

al
 R

ep
or

t N
U

-C
C

S-
04

-1
4

Policy Execution Interleaving
Exec Order A � � �������,� � � ���-"
$.%/� �
Exec Order B �������,� � � � � � � ���#"
$&%
Exec Order C �������,� � � �����&�0� � � ���#"
$&%1� � � ���#"
$&%

Table 1: Three alternative policies of interleaving execution (form left to right) of contracts checking pre- and post-conditions (�2����� and� �#"
$&% respectively) with advice from an aspect (�).

� � � ����#"
$&% denotes to the post-condition of the aspect’s (�) before
advice

� ������� denotes to the method’s (�) pre-condition
� � �#"
$&% denotes to the method’s (�) post-condition
� ��) � %��3����&� denotes to the pre-condition of the aspect’s (�) after

advice
� �) � %��3��#"
$&% denotes to the post-condition of the aspect’s (�) after

advice

This execution sequence makes sure that the original method’s pre-
and post-condition is validated both before advice execution and
after advice execution.

3.1.2 Blame Assignment
Runtime assertion validation and blame assignment for agnostic as-
pects is described in Table 2. On top of checking for each individual
assertion at runtime extra implications between assertions are val-
idated to guarantee proper execution flow between aspect advice
and method implementation. The method’s pre-condition has to
imply the before advice pre-condition making sure that the aspect
developer took into account the valid start states of the method.
Furthermore, before advice post-condition has to imply the meth-
ods pre-condition. Since no alteration of behavior is allowed in
agnostic aspects execution of the method’s implementation must
start in a valid state satisfying the methods pre-condition.

Similarly, the method’s post-condition must imply the after advice
pre-condition. This is again the responsibility of the aspect devel-
oper who is required to begin any agnostic aspect after advice from
a valid state according to the method’s post-condition. Finally, af-
ter advice post-condition must directly imply the method’s post-
condition. Upon completion of an agnostic aspect’s after advice
there should be no change in the method’s behavior and specifi-
cation. Furthermore, the return values of the after advice are the
return values of the method call as a whole and thus the method’s
post-condition must also hold.

Assertion Validation Blame Assignment
�����&� Caller

�������546�7� �������� Aspect
� � �!��#"
$&% Advice

� � ����-"
$.% 46� ����� Aspect
� ���&� Advice
� �#"
$&% Method

���#"
$&%846�) � %*�!������ Advice
�) � %��3����&� Advice
�) � %��3��#"
$&% Advice

�) � %*�!��-"
$.% 46� �#"
$&% Aspect
� �#"
$&% Aspect

Table 2: Implications for agnostic aspect assertions and blame as-
signment. Order of execution goes from top (first) to bottom (last).

3.2 Obedient Aspects
Another form of extension to the base system is one where the set of
input and output states remains the same but the mapping of input
to output values changes. In these situations the aspect with such
an intended extension is categorized as an obedient aspect.

Obedient aspects are aspects used to provide extra behavior with-
out changing the method’s pre- and post- conditions, i.e., obedient
aspects just provide a different mapping from the same input to the
same output value sets of the method. From the perspective of a
caller of the method, the method with the advice has the same as-
sertions as the original method had.

3.2.1 Execution Order
Declaring an obedient aspect imposes the following execution se-
quence (execution order B):

�������9��� � �!������ ���:�;� � ����#"
$&% ���'���) � %*�!������ ���+���) � %*�3��#"
$&% �����#"
$&%
Adding an obedient aspect does not alter the pre- and post-conditions
of the method as they are known to the rest of the system. The first
assertion validation is still the original method’s pre-condition and
the last assertion validation is the original method’s post-condition.

3.2.2 Blame Assignment
Once the method’s pre-condition has been successful validated this
should immediately imply the pre-condition for the aspect’s before
advice is also true. The aspect developer knows the method’s pre-
condition and has defined the aspect to be an obedient aspect, it
is therefore the aspect developer’s responsibility to accept all legal
starting states of the method as legal starting states of the aspect’s
before advice. Failing to do so will signal an error blaming the
aspect developer for attempting to use an obedient aspect without
taking into account the original method’s pre-condition (Table 3).

The aspect’s before advice post-condition is then checked. Fail-
ing the before advice post-condition blames the advice code for
not fulfilling the expected assertion upon its termination. The next
assertion to be checked is an implication relation between the orig-
inal method’s post-condition and the after advice pre-condition.
Blame is assigned to the aspect developer in the case of failure,
for declaring an obedient aspect and not taking into account the
method’s post-condition as a valid start state for the aspect’s after

Assertion Validation Blame Assignment
� ����� Caller

� ����� 46� � ������&� Aspect
� � �!��#"
$&% Advice

���-"
$.%<46�) � %��3����&� Aspect
�) � %*�!������ Advice
�) � %*�!��#"
$&% Advice

�) � %*�3��#"
$&% 4=� �#"
$&% Aspect
Table 3: Assertions validated for obedient aspects (execution flows
from top to bottom) along with blame assignments.

4

N
or

th
ea

st
er

n
U

ni
ve

rs
ity

 -
C

ol
le

ge
 o

f C
om

pu
te

r a
nd

 In
fo

rm
at

io
n

Sc
ie

nc
e

- T
ec

hn
ic

al
 R

ep
or

t N
U

-C
C

S-
04

-1
4

advice. The after advice pre-condition is then checked, blaming
the composition rules (pointcuts) in the case of an error. The after
advice post-condition validation follows which blames the advice
code in case of an error. Finally an implication between the after
advice post-condition and the original method’s post-condition is
validated. This check makes sure that the state in which the after
advice terminates (and thus the whole call to the method) does so
in valid state according to the method’s original post-condition.

The difference between agnostic and obedient aspects is subtle. In
both cases, if the method pre-condition is valid, we can invoke the
method with its advice, and the result satisfies the post-condition.
However, in the case of the obedient aspect it is possible that a be-
fore aspect will invalidate the precondition, the method is executed
on a state that does not satisfy the precondition, and an after advice
fixes the postcondition (if necessary). With agnostic aspects, the
method code executes only in the context it was meant for.

3.3 Rebellious Aspects
Rebellious aspects are aspects used only to provide behavioral ex-
tensions to existing methods. Rebellious aspects change the behav-
ior of existing methods. After the aspect is applied to a method,
from the perspective of a caller of the method, the method with the
advice has different assertions than the original method had. How-
ever, assertions do not change from the method’s perspective.

As the category name implies, these are aspects that are determined
to alter the behavior of a method to the extend where the existing
pre- and post-conditions of the method are affected. Nonetheless,
rebellious aspects can alter a method’s pre- and post-conditions in
a controlled manner:

� For all valid start states of the method’s pre-condition, the
new pre-condition (aspect’s before pre-condition) has to also
be valid.

� For all valid states according to the new post-condition (as-
pect’s after post-condition) the original method’s post-condition
has to also be valid.

The above implications between the extend pre-condition (and orig-
inal method pre-condition) and extended post-condition (and the
original method’s post-condition) ensure proper behavioral subtype
between the original method and the extension to the method.

3.3.1 Execution Order
A rebellious aspect is guaranteed an execution sequence imposed
by the aspect that allows its advice to execute even before the method’s
pre-condition. This enables the redefinition of the method’s pre-
condition. In order to allow for the methods behavioral extension
the execution order enforced by the language is (from left to right):

� � �������� ���:�;� � �!��#"
$&% ��� ����� �;�'��� �#"
$&% ���) � %*�!������ �;�:���) � %*�!��#"
$&%
In this way an extended version of the method can be provided to
client programs. This kind of extension, however, raises an issue
with clients as to which of the methods pre-conditions are clients
supposed to follow?

The answer is either one. A rebellious aspect provides a behavioral
method extension without breaking the existing method’s contracts,
i.e., allows for a broader set of valid start states and a narrower set
of valid end states. This is reflected in the way implication between

assertions are being validated, after checking for the validity of
each assertion, extra implications between pre- and post-conditions
are further validated.

3.3.2 Blame Assignment
Blame assignment is described in Table 4. The extra implication� ����� 4>� � �!������ makes sure that the extension made through the as-
pect definition maintains the previously valid start states for the
method. In case that it does not then the blame lies with the aspect
developer for providing an extension that breaks existing clients of
the method. The implication � � ����#"
$&% 4�������� verifies that after the
termination of before advice and before the execution flows to the
method’s implementation, the program state satisfies the method’s
pre-condition. If before the advice post-condition implies the method’s
pre-condition then the method is not being wrongly used by the as-
pect. The implication ���-"
$.%?4;��) � %*�3������ verifies that upon comple-
tion of the method body execution flows into the aspect’s after ad-
vice in a correct start state for the after advice. It is therefore the re-
sponsibility of the aspect developer to make sure that all valid states
reached upon return of the method are also valid start states for the
aspect’s after advice. Finally, the implication �) � %*�!��#"
$&% 46� �#"
$&% veri-
fies that all the valid states at after advice termination are also valid
according to the original method’s post-condition. This last check
verifies that the set of valid end states is the same as, or a subset of,
the original method’s set of end states.

Assertion Validation Blame Assignment
� ����� 46� � ������&� Aspect

��� �!������ Caller
��� �!��#"
$&% Advice

� � ����#"
$&% 4=� ���&� Aspect
� ����� Advice
� �#"
$&% Method

� �-"
$.% 46��) � %��3����&� Aspect
�) � %*�!������ Advice
�) � %*�!��#"
$&% Advice

�) � %*�3��#"
$&% 4=���#"
$&% Aspect
Table 4: Implications for rebellious aspect assertions and blame as-
signment. Order of execution goes from top (first) to bottom (last).

3.4 Application and Obliviousness
A DbC for AOP system is able to provide for the runtime valida-
tion of assertions on both aspects and objects allowing for the de-
tection of errors due to erroneous aspect advice implementations,
erroneous aspect composition and aspect category violations allow-
ing for faster error detection and resolution.

The categorization into agnostic, obedient, and rebellious covers
all behaviors that aspects can introduce to a system. Along with
the incorporation of pre- and post-conditions for advice, DbC for
AOP can resolve the execution order question by, e.g., introduc-
ing three new keywords to the AspectJ language that programmers
can use to declare the categorizations of aspect implementations.
DbC support for AspectJ would then use this classification to en-
force the appropriate execution sequence according to each cate-
gory. AspectJ could also extend DbC to aspects by allowing pre-
and post-condition validation for advice and their implication on
pre- and post-conditions on their attached methods. Such an im-
plementation of DbC for AOP does not impose any restrictions on
the base code, allowing the same level of obliviousness [8] as in the
current implementations of AspectJ.

5

N
or

th
ea

st
er

n
U

ni
ve

rs
ity

 -
C

ol
le

ge
 o

f C
om

pu
te

r a
nd

 In
fo

rm
at

io
n

Sc
ie

nc
e

- T
ec

hn
ic

al
 R

ep
or

t N
U

-C
C

S-
04

-1
4

4. A CASE STUDY IN ENFORCING CON-
TRACTS USING ASPECTS WITH CONA

So far we tacitly ignored the question of how the enforcement of
assertions on methods (and on advice) is implemented. Enforcing
runtime contract checking in a program is a classical cross-cutting
concern by its very nature of monitoring calls made between soft-
ware entities [19, 4]. At the heart of any runtime contract checking
tool lies the ability to observe and intervene between calls made
from one software unit to another. The kinds of checks that need
to be carried out between calls differ depending on the paradigm
(e.g., functional [10] vs. OO etc.). The ability of AOP technolo-
gies to non-invasively extend a system, along with the ability to en-
capsulate and compose cross-cutting concerns, make AOP an ideal
implementation tool for DbC.

CONA [27] is a DbC tool for both OOP and AOP. It extends Java’s
and AspectJ’s syntax with contracts and enforces their runtime val-
idation. CONA works by generating AspectJ aspects to enforce the
runtime contract checking. CONA generates aspect definitions only
for the validation of contracts on Java classes; it generates class
definitions for the validation of contracts on AspectJ aspects.

In a CONA application there are always two “kinds” of aspects

1. User-Aspects these are aspect definitions provided by devel-
opers that affect the underlying Java program.

2. Contract-Aspects these are generated by CONA and are re-
sponsible for the enforcement of contracts for objects (DbC
for OOP).

and two “kinds” of objects

1. User-Objects these are all the instances of user defined Java
classes.

2. Contract-Objects these are all the instances of the CONA
generated Java classes used for the runtime validation of con-
tracts defined inside user aspects.

Contracts on objects are implemented by contract aspects; con-
tracts on aspects are implemented by contract objects. The desired
DbC functionality is guaranteed provided that the generated con-
tract aspects are the only aspects in the system. However, in the
presence of user aspects, and in particular, the interplay between
a contract aspect and user aspects, enforcing assertions correctly
is non-trivial. CONA is therefore an interesting testbed for expos-
ing the issues of execution order and a natural client for our aspect
classification.

In the remaining part of this section we further explain CONA and
the language extensions to Java and AspectJ as well as CONA’s
mechanisms for contract enforcement. First an overview of DbC
for Java is presented followed by a more detailed analysis of how
CONA extends DbC for OOP to achieve DbC for AOP.

4.1 An AOP Solution to DbC for OOP
The AOP implementation for the provision of DbC for OOP maps
each Java type to a contract aspect that is responsible for the en-
forcement of all contracts defined in that type. Pre- and post-conditions

and invariant expressions are generated as aspect methods. Point-
cuts are generated to capture executions of a type’s methods. Point-
cuts are further used to distinguish which type’s method is called
and which type’s implementation of this method is actually exe-
cuted. In this way the correct type is blamed in the case of a contract

Listing 2: An aspect definition generated by CONA for enforcing-
contract obligations of GRBranch.

1 priviledged aspect GRBranch Contract
�

2 GRBranch old;
3 pointcut scope(): !within(GRBranch Contract)
4 && !cflow(withincode(� GRBranch Contract. � (..)));
5 pointcut GRBranch sale(GRBranch tInst, ISBN isbn):
6 call(public � GRBranch.sale(..)) && !call(public � (

GRBranch+ && !GRBranch).sale(..))
7 && args(isbn) && target(tInst) && scope();
8 before(GRBranch tInst, ISBN isbn):
9 GRBranch sale(tInst,isbn)

�
10 boolean next = PreCondHier sale(tInst,isbn);
11 boolean res = PreCond sale(tInst,isbn);
12 if (!res)

�
13 //pre @ condition violation exception
14 �
15 if (!next)

�
16 //pre @ condition hierarchy violation exception
17 �
18 �
19 after(GRBranch tInst, ISBN isbn)returning (Book result):
20 GRBranch sale(tInst, isbn)

�
21 boolean res = PostCond sale(tInst,result,isbn);
22 if (!res)

�
23 //post @ condition violation exception
24 �
25 boolean postHier = PostCondHier sale(tInst,result,res,isbn)

;
26 if(!postHier)

�
27 //post @ condition hierarchy violation exception
28 �
29 �
30 public boolean PreCond sale(GRBranch tInst, ISBN isbn)

�
31 return(isbn.notEqual(null))
32 �
33 public boolean PostCond sale(GRBranch tInst, Book result,

ISBN isbn)
�

34 return(result.ISBN.equals(isbn) ABA isbn.getTitle().equals(
result.getTitle()))

35 �
36 public boolean PreCondHier sale(GRBranch tinst, ISBN isbn)

�
37 boolean myPre = PreCond sale(tInst,isbn);
38 boolean hierarchy =
39 OnlineBookstore Contract.aspectOf().PreCondHier sale(

tInst,isbn);
40 if (!hierarchy ACA myPre)
41 return myPre;
42 else
43 return false;
44 �
45 public boolean PostCondHier sale(GRBranch tInst, Book result

, boolean last, ISBN isbn)
�

46 myPost = PostCond sale(tInst, result, isbn);
47 if (!last ACA myPost)
48 return OnlineBookstore Contract.aspectOf().

PostCondHier sale(tInst, result, myPost, isbn);
49 else
50 return false;
51 �
52 �

6

N
or

th
ea

st
er

n
U

ni
ve

rs
ity

 -
C

ol
le

ge
 o

f C
om

pu
te

r a
nd

 In
fo

rm
at

io
n

Sc
ie

nc
e

- T
ec

hn
ic

al
 R

ep
or

t N
U

-C
C

S-
04

-1
4

Figure 2: A flowchart diagram superimposed on a sequence diagram for a method call to � showing the order of contract evaluation for
obedient aspects (top) and rebellious aspects (bottom). � ����� refers to � ’s pre-conditions assertion and � � ���D"
������&� and � � ���D"
����-"
$.% to the aspect’s
pre- and post-condition assertions respectively.

violation. Extra methods are generated which recursively traverse
contracts of the current type’s supertypes verifying the correctness
of the type hierarchy.

Listing 2 shows an example of a contract aspect implementing a
contract in AspectJ. The code has been generated by CONA [27]
and it illustrates that aspects implementing contracts can follow a
pattern (template): pointcut definitions capture calls to the method
(lines 5–7), before advice checks method pre-conditions (lines 8–
18), and after advice checks method’s post-conditions (lines 19–
29). Invariant assertions are checked both before and after a call to
the object’s public methods. Auxiliary methods are generated in-
side aspects to deal with hierarchy checking (lines 36–51) [9]. The
recipe for CONA’s aspect generation is explained elsewhere [28].

Blame assignment for OOP [9] is summarized in Table 5. The last
two rows display the type hierarchy check performed in order to
verify proper behavioral subtyping. Due to the lack of aspectual
polymorphism [5, 6] in AspectJ, the traversal of contracts in CONA
deploys AspectJ’s reflective features in order to acquire aspect in-
stances at runtime.

The AOP implementation of DbC for OOP works well as long as
the generated aspects are the only aspects in the system.

Contract Value Blame AssignmentE ������� CallerF(GIHJGLK(M*GLK�NPOQGSR+GTOCO � R+GIK.OCO ��U84E M*GIOCO � ����� 4 GIK.OCO � ����� U GLK
E � �#"
$&% CalleeF(GIHJG K M*G K NPOQGSR+GTOCO � R+G K OCO ��U84E M*GLK.OCO � �#"
$&% 4 GIOCO � �#"
$&% U GLK

Table 5: Blame assignment rules for OOP.
GLKVNPOWG

defines thatG K
is a direct subtype of

G
.
GXOCO � pre denotes the method � with

pre-conditions pre is defined in type
G

.

4.2 An OOP Solution to DbC for AOP
A DbC for AOP solution has to be able to enforce the execution
sequence required by each aspect category as well as manage pre-
and post-conditions found in user aspect definitions.

Figure 2 uses a flowchart diagram superimposed on an interaction
diagram showing when obedient (top) and a rebellious (bottom)
aspects intervene during � ’s execution, and what is the order of
contract evaluation for these two aspect categories.3 Aspect cat-
egory definitions denote a specific order of contract evaluation as
well as implications between assertions in contract aspects and con-
tract objects. All diamond shaped decisions points are generated
by CONA. Decisions points denoted as diamonds in Figure 2 and
labeled with an � pattern are captured as Java classes (contract ob-
jects). Diamond shaped decision points labeled with an � pattern
are captured as AspectJ aspects (contract aspects).

To support pre- and post-conditions for before and after advice we
assume the AspectJ language was extended with the keywords ag-
nostic, obedient (e.g., Listing 3, line 1), and rebellious,
and, furthermore, that advice definitions can be annotated with pre-
and post-conditions that apply to the corresponding advice body
(Listing 3 lines 7– 8). Pre- and post-conditions are comprised of
side effect free boolean expressions.

The extension of CONA for adding contracts to advice takes as in-
put aspect definitions with pre- and post-conditions. Through a
preprocessing stage, new aspects are generated to verify contracts
on object instances and auxiliary class definitions to handle pre-
and post-conditions on user defined advice.

First we present a sample program definition of advice with pre-
and post-conditions along with the generated output. Listing 3
shows the obedient ShippingCost aspect presented earlier for the

3Agnostic aspects are similar to obedient aspects with some addi-
tional contract checks interleaved during execution.

7

N
or

th
ea

st
er

n
U

ni
ve

rs
ity

 -
C

ol
le

ge
 o

f C
om

pu
te

r a
nd

 In
fo

rm
at

io
n

Sc
ie

nc
e

- T
ec

hn
ic

al
 R

ep
or

t N
U

-C
C

S-
04

-1
4

Listing 3: An example of using pre- and post-conditions in the
ShippingCost aspect

1 obedient aspect ShippingCost
�

2 pointcut HDSales(ISBN isbn):
3 call(� OnlineBookstore.sales(..)) && args(isbn);
4

5 after(ISBN isbn) returning (Book item):
6 HDSales(isbn)

�
7 @pre

�
item.getBookType() = HD �

8 @post
�
item.getShippingCost() = Calc.ShippingCost(item.

ISBN) � 1.1 �
9 item.setShippingCost(item.getShippingCost() � 1.1);

10 item.calculateTotalCost();
11 �
12 �

Listing 4: Sample output for ShippingCost aspect showing the
wrapping of advice to check pre- and post-conditions

1 aspect Contract ShippingCost
�

2 pointcut HDSales(ISBN isbn):
3 call(� OnlineBookstore.sales(..)) && args(isbn);
4

5 after(ISBN isbn) returning (Book item):
6 HDSales(isbn)

�
7 boolean implication1 = (new

Contract ShippingCost After PreCond()).HDSales(
thisJoinPoint,this,thisJoinPoint.getTarget(),isbn,
item);

8 if (implication1)
�

9 if(item.getBookRype()==HD)
�

10 item.setShippingCost(item.getShippingCost() � 1.1);
11 item.calculateTotalCost();
12 if (item.getShippingCost()==Calc.ShippingCost(item.

ISBN) � 1.1)
�

13 (new Contract ShippingCost After PostCond).
HDSales(this,thisJoinPoint.getTarget(),isbn,
item);

14 � else
�

15 new Error(this,”before”,jp);
16 �
17 � else

�
18 new CompositionError(jp.getTarget().getClass().

getName(),this,thisJoinPoint);
19 �
20 � else

�
21 new ObedientViolation(jp.getTarget().getClass().

getName(),this,thisJoinPoint);
22 �
23 �

online bookstore example written in CONA. Listing 4 shows the
same aspect as Listing 3 after being processed by CONA. The aux-
iliary class definitions (Listings 5 and 6) enforce the implications
between contract objects and contract aspects.

Pre- and post-conditions inside advice must be side effect free Java
boolean expressions. These expressions can refer to values that
relate to the state of the aspect, and also to the state of the receiver
and the caller of method invocations. All information concerning a
join point (e.g. target, args, source, etc.) can be referred to
from inside an aspect’s pre- and post-conditions definitions.

The programmer must specify the aspect’s category and the accept-
able states in which advice may start/finish. Failing to meet the

Listing 5: Pre-condition wrapper for aspect after advice

1 import org.aspectj.lang. � ;
2

3 class Contract ShippingCost After PostCond
�

4

5 public boolean HDSales(JoinPoint jp, Contract ShippingCost
uAspect, Object target, ISBN isbn, Book item)

�
6 String targetType = target.getClass().getName();
7 // Holds references to contract (aspects)
8 AspectMethInvoker aInv = AspectMethInvoker.getInst();
9

10 // call appropriate contracts via reflection
11 boolean m post = aInv.invokePost(targetType, jp.getSignature

(), jp.getArgs(), item);
12 boolean res = (item.getShippingCost() == Calc.ShippingCost(

item.ISBN) � 1.1);
13 if (!res ABA m post)

�
14 return res;
15 �
16 else

�
17 new CompositionError(targetType,uAspect,jp);
18 return false;
19 �
20 �
21 �

Listing 6: Post-condition wrapper for aspect after advice

1 import org.aspectj.lang. � ;
2

3 class Contract ShippingCost After PostCond
�

4

5 public boolean HDSales(JoinPoint jp, Contract ShippingCost
uAspect, Object target, ISBN isbn, Book item)

�
6 String targetType = target.getClass().getName();
7 // Holds references to contract (aspects)
8 AspectMethInvoker aInv = AspectMethInvoker.getInst();
9

10 // call appropriate contracts via reflection
11 boolean m post = aInv.invokePost(targetType, jp.getSignature

(), jp.getArgs(), item);
12 boolean res = (item.getShippingCost() == Calc.ShippingCost(

item.ISBN) � 1.1);
13 if (!res ABA m post)

�
14 return res;
15 �
16 else

�
17 new CompositionError(targetType,uAspect,jp);
18 return false;
19 �
20 �
21 �

pre-condition of a block of advice implies that the attachment of
the specific aspect to the base program Y is not correct (Listing 4
line 18) and the aspect gets blamed. Similarly, if the post-condition
of a piece of advice fails, this implies that the code inside the ad-
vice did not meet up to its obligations (Listing 4, line 15) and the
advice code gets the blame.

Once pre- and post-conditions have been satisfied, the way by which
pre- and post-conditions of advice interplay with method pre- and
post-conditions of methods that they advice are checked for cor-
rectness based on the aspects defined category.

8

N
or

th
ea

st
er

n
U

ni
ve

rs
ity

 -
C

ol
le

ge
 o

f C
om

pu
te

r a
nd

 In
fo

rm
at

io
n

Sc
ie

nc
e

- T
ec

hn
ic

al
 R

ep
or

t N
U

-C
C

S-
04

-1
4

In the case of an obedient aspect (i.e., ShippingCost), before the
execution of the after advice block the implication between the
method’s post-condition and the after advice pre-condition (List-
ing 4, line 7) is checked by passing control to an auxiliary class
(Listing 5). Failing to satisfy this implication throws an Obedi-
entViolation (Listing 4, line 21) exception pointing out the er-
roneous implementation of the aspect’s before advice. The ad-
vice pre-condition and post-condition is then checked, blaming the
aspect’s composition and the after advice implementation respec-
tively (Listing 4, lines 18 and 15)

5. DISCUSSION AND RELATED WORK
We have extended DbC for AOP to handle the interaction between
pre- and post- conditions of methods and advice. Our goal was pri-
marily to demonstrate the feasibility a novel approach for support-
ing DbC for AOP without compromising obliviousness. We have
also presented a prototyped tool for enforcing DbC by generating
aspects. This work paves the road to extending DbC for AOP but
also leaves for future work a few issues that are need to be worked
out for a complete practical support of DbC for AOP.

Invariants and Object State. DbC makes the obligation–benefit
contract between software consumers and providers explicit. Each
instance method defines the valid states in which its execution can
start (precondition), and the states in which it may terminate (post-
condition). A more general assertion (invariant), which is main-
tained before as well as after any externally observable state of
an object, ensures that the object maintains an acceptable state
throughout the program’s execution. Object and aspect invariants
can be checked by public methods as part of the pre- and post-
conditions using the same execution order we have established.
However, to handle invariants, DbC for AOP needs not only con-
trol the interaction between aspects and object behavior, but also
between aspects and object state. It is also not enough to moni-
tor only call and execution join points. Since advise can change
the state of an object, the interaction between advice and objects’
state need to checked to enforce invariants. Additional checks are
needed for checking the invariant of super-classes and outer classes.
Invariants for aspects are particularly useful as an inductive hypoth-
esis: What ever is assumed should be inductively provable.

Other Kinds of Advice. We have focused on the interaction be-
tween methods and before and after advice. An around advice
replaces the method entirely and may or may not contain a pro-
ceed() call in its body. Such a narrowing or replacement inter-
action [25] should be handled similar to how overriding methods
handle a call to super. One way of interpreting the aspect anno-
tation for around advice is to require that an around advice of the
form Z M U[*\^]-_-`�a#acb M U would behave like a before advice would, and
an around advice of the form \^]-_-`�a#acb M U[dZ M U would behave like an
after advice.

Introductions and Pointcut Descriptors. We have concerned our-
selves with the pointcut and advice mechanism in AspectJ. AspectJ
also support a static OC mechanism (e.g., introductions). This is
yet another form for a possible interaction between an aspect and
a class which we do not handle. Another subtle issue is the in-
teraction between aspects and pointcuts. In our support of DbC
for AOP we have thus far assumed that pointcuts have no side ef-
fects. This, however, is not generally true, not even for AspectJ.
One might consider augmenting pointcut descriptors with pre- and
post-conditions of their own.

Aspect Composition Validation Tool. Klaeren et al. [13] present
the Aspect Composition Validation Tool for checking pre- and post-
conditions for aspect compositions according to configurations of
the system’s components. The tool is developed using an older
version of AspectJ (0.4beta7) which is drastically different than
version 1.0.6. Further more, a set of configuration rules is added
through AspectJ’s introductions and composition is validated ac-
cording to these rules. Correctness is defined to be a valid aspect
configuration that will allow a receiver to perform its task as spec-
ified by the overall system specification. Unfortunately, checking
that the behavior of attached aspects and the base system is well
defined is not verified. As long as the composition of aspects is
within the set of valid compositions, the system is correct. An as-
pect can therefore break a methods pre- or post-condition as long
as the configuration at hand allows it. There is no clear distinction
between a type’s obligations in their system, since the same call to
an instance of the same type can behave differently depending on
its aspect configuration.

JML. Clifton and Leavens [2] use behavioral specifications for as-
pects as a means to assist in modular reasoning for aspect-oriented
programs. Aspects are categorized as either observers that do not
alter the behavioral specification of their attached methods, or as
assistants that can alter behavior. Their categorization was a result
after inspecting available AspectJ code and from discussions within
the aspect community.

Assertions on aspects as well as objects are expressed in the Java
Modeling Language (JML) [16]. The AspectJ syntax is extended
with three main features:

1. JML can be used inside aspect definitions, defining the as-
pect’s behavioral specification

2. Keywords observer and assistant can be used to an-
notate aspect definitions with their expected intend in the sys-
tem.

3. The statement accept(TypePatern) has to be used inside
modules, making explicit the modules intent to allow assis-
tance from TypePatern.

The specification of a method along with its assistant is created as a
graph by following the possible execution paths, logically and-ing
assertions and binding parameter variables and model variables to
values.

Although our goals are different than those of Clifton and Leavens
the proposals share some ideas. Our notion of aspect categoriza-
tion comes from an analysis of how aspects can affect a program
execution and not through an analysis of existing usage of aspect
oriented programming. In doing so we aim at providing a cate-
gorization that covers any possible usage of aspects rather than
the common usage of aspects. Further more, our proposal brings
these categorizations into the programming language and enforces
an execution order disallowing aspect behavior outside the bounds
of its defined category. Enforcing an execution sequence helps in
defining the semantics of assertion validation along with blame as-
signment without having to resort to long and complicated path
specifications based on control flow paths. Finally, in our proposal
modules are not affected in any way and remain oblivious to the
addition of aspects. Obliviousness is decreased in Clifton et al. [2]
with the incorporation of the accept expression in the language.

9

N
or

th
ea

st
er

n
U

ni
ve

rs
ity

 -
C

ol
le

ge
 o

f C
om

pu
te

r a
nd

 In
fo

rm
at

io
n

Sc
ie

nc
e

- T
ec

hn
ic

al
 R

ep
or

t N
U

-C
C

S-
04

-1
4

Pipa. Pipa [31] defines a Behavioral Interface Specification Lan-
guage (BISL) tailored for AspectJ along the ideas of Clifton et
al. [2]. Pipa statements extend the Java Modeling Language (JML)
to accommodate pre- and post-conditions and invariants for advice.
Specifications in Pipa, along with aspect definitions, are translated
to JML and Java code, respectively. Pipa differs from the proposal
of Clifton and Leaves. Assertions are allowed on aspect introduc-
tions and the accept expression is not provided by Pipa. Fur-
ther more, the AspectJ language is not extended to accommodate
for the definition of observer and assistant aspect defini-
tions. Behavioral specifications inside aspects are translated into
JML specifications following the specification generation of exe-
cution paths as defined in [2]. Pipa does not provide, nor enforce,
aspect categories. By concentrating on AspectJ’s intermediate Java
representation of aspect programs, Pipa becomes part of the As-
pectJ compiler making extensions difficult and blame assignment
more complex.

Classification system. Rinard et al. [25] present a classification
that is also derived from the interaction of advice and methods.
Their focus is on automated analysis, while our work focuses on
enforcing contracts based on annotations. The interaction between
agnostic aspects and methods can be classified as augmentation in
their classification. The obedient and rebellious aspects we have
identified refine their combination class of interactions. The nar-
rowing and replacement interactions can help in extending our work
to also handle around advice with or without proceed. Their addi-
tional classification of scopes and field access, can also help in ex-
tending our DbC tool to handle set-field and get-field advice. Au-
tomated classification to help suggest or verify aspect categories
annotation is a direction for future work.

6. CONCLUSION
The paper discusses the intricate issues related to DbC for AOP.
The dynamic nature of aspects along with the base system’s oblivi-
ousness render existing DbC methodologies inadequate for dealing
with aspect-oriented programs. This inadequacy unavoidably leads
to erroneous error reporting and blame assignment. An extension
to DbC to address aspect-oriented programming requires more than
simple assertion validation at each program execution point where
aspect advice gets to execute. A DbC mechanism for AOP has to
address both the execution order of contracts (on classes and as-
pects) as well as the implications (if any) that must be validated
between contracts on aspects and contracts in classes. Based on
these decisions of execution order and contract implications, blame
assignment can be defined.

We provide an analysis of the possible execution order between
contracts and view the addition of advice as a behavioral extension
to the existing program. Our analysis leads us to a categorization
of aspects into agnostic, obedient and rebellious. Each such cate-
gorization enforces an execution order between contracts as well as
the necessary implications that verify at runtime that the extended
(through aspects) system remains a behavioral subtype of the un-
extended original system. Error reporting and blame assignment
is extended to deal with contracted aspect oriented systems. Our
ideas have been integrated in CONA, an aspect-based DbC tool for
AOP which uses aspects to implement contracts and their runtime
validation. CONA serves both as a language extension to Java and
AspectJ, but also as a case study for our own work.

Through the development and usage of CONA we hope to improve
the ability to reasoning about the interactions of aspects with other

program entities including aspects themselves. We believe that the
incorporation of pre- and post-conditions on before and after
advice is a step forward towards reasoning about aspects and their
behavior.

7. REFERENCES
[1] AOSD 2003. Proceedings of the 2nd International

Conference on Aspect-Oriented Software Development,
Boston, Massachusetts, Mar. 17-21 2003. ACM Press.

[2] C. Clifton and G. T. Leavens. Observers and assistants: A
proposal for modular aspect-oriented reasoning. Technical
Report 02-04a, Iowa State University, Department of
Computer Science, Apr. 2002.

[3] A. Colyer. Aspectj. In Filman et al. [7], pages 123–143.

[4] C. A. Constantinides and T. Skotiniotis. Reasoning about the
classification of crosscutting concerns in object-oriented
systems. In Second International Workshop on
Aspect-Oriented Software Development. German Informatics
Society, February 21-22 2002.

[5] E. Ernst and D. H. Lorenz. Aspectual polymorphism.
Technical Report NU-CCS-01-09, College of Computer
Science, Northeastern University, Boston, MA 02115, Sept.
2001.

[6] E. Ernst and D. H. Lorenz. Aspects and polymorphism in
AspectJ. In AOSD 2003 [1], pages 150–157.
http://www.ccs.neu.edu/home/lorenz/
papers/aosd2003polyspect/

[7] R. E. Filman, T. Elrad, S. Clarke, and M. Akşit, editors.
Aspect-Oriented Software Development. Addison-Wesley,
Boston, 2005.

[8] R. E. Filman and D. P. Friedman. Aspect-oriented
programming is quantification and obliviousness. In Filman
et al. [7], pages 21–35.

[9] R. B. Findler and M. Felleisen. Contract soundness for
object-oriented languages. In Proceedings of the 16th Annual
Conference on Object-Oriented Programming Systems,
Languages, and Applications, pages 1–15, Tampa Bay,
Florida, Oct. 14-18 2001. OOPSLA’01, ACM SIGPLAN
Notices 36(11) Nov. 2001.

[10] R. B. Findler and M. Felleisen. Contracts for higher-order
functions. In International Conference on Functional
Programming (ICFP’02), pages 48–59, October 2002.

[11] M. Kersten and G. C. Murphy. Atlas: A case study in
building a web-based learning environment using
aspect-oriented programming. In Proceedings of the 14th

Annual Conference on Object-Oriented Programming
Systems, Languages, and Applications, pages 340–352,
Vancouver, BC, Canada, Oct. 18-22 1999. OOPSLA’99,
ACM SIGPLAN Notices 34(10) Oct. 1999.

[12] G. Kiczales, E. Hilsdale, J. Hugunin, M. Kersten, J. Palm,
and W. G. Griswold. An overview of AspectJ. In J. L.
Knudsen, editor, Proceedings of the 15th European
Conference on Object-Oriented Programming, number 2072
in Lecture Notes in Computer Science, pages 327–353,
Budapest, Hungary, June 18-22 2001. ECOOP 2001,
Springer Verlag.

10

N
or

th
ea

st
er

n
U

ni
ve

rs
ity

 -
C

ol
le

ge
 o

f C
om

pu
te

r a
nd

 In
fo

rm
at

io
n

Sc
ie

nc
e

- T
ec

hn
ic

al
 R

ep
or

t N
U

-C
C

S-
04

-1
4

[13] H. Klaeren, E. Pulvermüller, A. Rashid, and A. Speck.
Aspect composition applying the design by contract
principle. In Proceedings of the GCSE 2000, Second
International Symposium on Generative and
Component-Based Software Engineering, 2000, Oct 2000.

[14] M. Kölling and J. Rosenberg. Blue: Language Specification,
1997.

[15] S. Krishnamurthi, K. Fisler, and M. Greenberg. Verifying
aspect advice modularly. In Taylor and Dwyer [30], pages
137–146.

[16] G. T. Leavens, C. Ruby, K. Rustan, M. Leino, E. Poll, and
B. Jacobs. Jml: notations and tools supporting detailed
design in java (poster session). In Proceedings of the 15th

Annual Conference on Object-Oriented Programming
Systems, Languages, and Applications, pages 105–106,
Minneapolis, Minnesota, Oct. 15-19 2000. OOPSLA’00,
ACM SIGPLAN Notices. Also Department of Computer
Science, Iowa State University, TR 00-15, August 2000.

[17] K. Lieberherr, D. H. Lorenz, and P. Wu. A case for statically
executable advice: Checking the Law of Demeter with
AspectJ. In AOSD 2003 [1], pages 40–49.
http://www.ccs.neu.edu/home/lorenz/
papers/aosd2003lod/

[18] B. Liskov and J. Wing. A behavioral notion of subtyping.
ACM Trans. Prog. Lang. Syst., 16(6):1811–1841, Nov. 1994.

[19] C. Lopes, M. Lippert, and E. Hilsdale. Design by contract
with aspect-oriented programming, 2002. U.S. Patent No.
06,442,750. Issued August 27,2002.

[20] C. V. Lopes and G. Kiczales. Recent developments in
AspectJ. In S. Demeyer and J. Bosch, editors,
Object-Oriented Technology. ECOOP’98 Workshop Reader,
number 1543 in Lecture Notes in Computer Science, pages
398–401. Workshop Proceedings, Brussels, Belgium,
Springer Verlag, July 20-24 1998.

[21] D. H. Lorenz and T. Skotiniotis. Contracts and aspects.
Technical Report NU-CCIS-03-13, College of Computer and
Information Science, Northeastern University, Boston, MA
02115, Dec. 2003. http://www.ccs.neu.edu/home/
lorenz/papers/reports/NU-CCIS-03-13.html

[22] B. Meyer. Applying design by contract. Computer,
25(10):40–51, Oct. 1992.

[23] B. Meyer. EIFFEL the Language. Object-Oriented Series.
Prentice-Hall, 1992.

[24] S. M. Omohundro. The Sather 1.0 specification. Technical
Report TR-94-062, International Computer Science Institute,
Berkeley, 1994.

[25] M. Rinard, A. Salcianu, and S. Bugrara. A classification
system and analysis for aspect-oriented programs. In Taylor
and Dwyer [30], pages 147–158.

[26] T. Skotiniotis. Cona Home Page, 2004. http:
//www.ccs.neu.edu/home/skotthe/cona/.

[27] T. Skotiniotis and D. H. Lorenz. Cona: aspects for contracts
and contracts for aspects. In J. M. Vlissides and D. C.
Schmidt, editors, OOPSLA Companion, pages 196–197,
Vancouver, BC, Canada, Oct. 24-28 2004. ACM. http:
//doi.acm.org/10.1145/1028664.1028747

[28] T. Skotiniotis and D. H. Lorenz. Conaj: Generating contracts
as aspects. Technical Report NU-CCIS-04-03, College of
Computer and Information Science, Northeastern University,
Boston, MA 02115, Mar. 2004.

[29] T. Skotiniotis and D. H. Lorenz. From contracts to aspects
and back. Technical Report NU-CCIS-04-05, College of
Computer and Information Science, Northeastern University,
Boston, MA 02115, Mar. 2004.

[30] R. N. Taylor and M. B. Dwyer, editors. Proceedings of the
12th ACM SIGSOFT International Symposium on
Foundations of Software Engineering, Newport Beach, CA,
USA, 2004. ACM Press.

[31] J. Zhao and M. Rinard. Pipa: Behavioral Interface
Specification Language for AspectJ. In Proceedings of
Fundamental Approaches to Software Engineering
(FASE’2003), pages 150–165, 2003.

11

