
Aspectual Reflection

SERGEI KOJARSKI
�

KARL LIEBERHERR
�

DAVID H. LORENZ
�

ROBERT HIRSCHFELD
�

AOSD’03 SPLAT Workshop

Abstract

With most of today’s aspect-oriented language extensions,
developers have both aspectual and core reflection mech-
anisms available to them. From a software engineering
point of view, these mechanisms serve different purposes
in different application areas. This paper explores to what
extent aspectual and core reflection overlap. Interactions
of aspectual and core reflection are discussed based on
practical observations in concrete examples.

1 Introduction

Aspect-oriented programming (AOP) is in essence a com-
putational reflection mechanism [15]. The join point
model reflects a program’s behavior: a join point pro-
vides the ability to introspect; advice provides the inter-
cession (manipulation) capability. Aspect-oriented lan-
guages (e.g., AspectS [8] and AspectJ [13, 10]) are typ-
ically built on top of a base object-oriented programming
(OOP) language, which has native support for reflection.
Consequently, in addition to its aspectual reflection mech-
anism (ARM), the aspect-oriented language also supports
the underlying OOP core reflection mechanism (CRM).
AOP programmers thus have two reflective mechanisms
to their disposal.

From a software engineering point of view, the two re-
flective mechanisms serve different purposes, with differ-
ent application areas. In AspectJ, for example, Java Core
Reflection is mainly used for introspection on structure
[4], while aspects are mainly used for intercession on be-
havior. However, an aspect could just introspect the be-
havior without inflecting any functional affect on the pro-
gram; and instantiating objects or invoking methods using
reflection does affect the program’s run-time structure and
behavior.

This paper explores to what extend reflective properties
�
College of Computer & Information Science, Northeastern Univer-

sity, 360 Huntington Avenue 161 CN, Boston, Massachusetts 02115
USA. � kojarski,lieber,lorenz � @ccs.neu.edu�

Future Networking Lab, DoCoMo Communications Laboratories
Europe, Landsberger Strasse 308-312, D-80687 Munich, Germany.
hirschfeld@docomolab-euro.com

of ARM and CRM overlap. We illustrate how ARM and
CRM may interact in beneficial and unexpected ways, re-
sulting in improvement of the software engineering abil-
ities of each other. The paper addresses the fundamental
question of whether or not one mechanism subsumes the
other.

A contribution of the paper is in giving concrete ex-
amples of how the two mechanisms interact, and making
practical observations based on those examples. Using
Smalltalk and AspectS, we illustrate that traditional AOP
semantics can be achieved by reflection; using Java and
AspectJ, we illustrate that traditional reflection semantics
can be simulated by AOP; and we give examples on how
the two can interact collaboratively.

The rest of the paper is organized as follows. Section 2
discusses the implementation of AOP features in AspectS
on top of OOP-level Smalltalk reflection. Section 3 de-
scribes the implementation of a reflection application pro-
gramming interface on top of AspectJ without using Java
Core Reflection. Section 4 describes a practical software
engineering perspective on AOP and Reflection interac-
tion in AspectJ. In Section 5 we conclude by mapping the
space of AOSD languages with respect to aspectual and
reflective features.

Throughout the paper we use RI and AI as abbrevia-
tions for the interfaces provided by reflective and aspec-
tual features, respectively. We denote by RI � and AI �
the CRM-based implementation, and by RI � and AI � the
ARM-based implementation, of RI and AI, respectively.

�	�	�	�	�	�	��	�	�	�	�	�	��	�	�	�	�	�	��	�	�	�	�	�	��	�	�	�	�	�	��	�	�	�	�	�	��	�	�	�	�	�	��	�	�	�	�	�	��	�	�	�	�	�	��	�	�	�	�	�	��	�	�	�	�	�	��	�	�	�	�	�	��	�	�	�	�	�	��	�	�	�	�	�	��	�	�	�	�	�	��	�	�	�	�	�	��	�	�	�	�	�	��	�	�	�	�	�	��	�	�	�	�	�	��	�	�	�	�	�	��	�	�	�	�	�	��	�	�	�	�	�	��	�	�	�	�	�	��	�	�	�	�	�	��	�	�	�	�	�	��	�	�	�	�	�	�

	
	
	
	
	
	

	
	
	
	
	
	

	
	
	
	
	
	

	
	
	
	
	
	

	
	
	
	
	
	

	
	
	
	
	
	

	
	
	
	
	
	

	
	
	
	
	
	

	
	
	
	
	
	

	
	
	
	
	
	

	
	
	
	
	
	

	
	
	
	
	
	

	
	
	
	
	
	

	
	
	
	
	
	

	
	
	
	
	
	

	
	
	
	
	
	

	
	
	
	
	
	

	
	
	
	
	
	

	
	
	
	
	
	

	
	
	
	
	
	

	
	
	
	
	
	

	
	
	
	
	
	

	
	
	
	
	
	

	
	
	
	
	
	

	
	
	
	
	
	

	
	
	
	
	
	

�	�	�	�	�	�	�	�	�	�	�	�	�	��	�	�	�	�	�	�	�	�	�	�	�	�	��	�	�	�	�	�	�	�	�	�	�	�	�	��	�	�	�	�	�	�	�	�	�	�	�	�	��	�	�	�	�	�	�	�	�	�	�	�	�	��	�	�	�	�	�	�	�	�	�	�	�	�	��	�	�	�	�	�	�	�	�	�	�	�	�	��	�	�	�	�	�	�	�	�	�	�	�	�	��	�	�	�	�	�	�	�	�	�	�	�	�	��	�	�	�	�	�	�	�	�	�	�	�	�	��	�	�	�	�	�	�	�	�	�	�	�	�	��	�	�	�	�	�	�	�	�	�	�	�	�	��	�	�	�	�	�	�	�	�	�	�	�	�	�

�	�	�	�	�	�	�	�	�	�	�	�	�	��	�	�	�	�	�	�	�	�	�	�	�	�	��	�	�	�	�	�	�	�	�	�	�	�	�	��	�	�	�	�	�	�	�	�	�	�	�	�	��	�	�	�	�	�	�	�	�	�	�	�	�	��	�	�	�	�	�	�	�	�	�	�	�	�	��	�	�	�	�	�	�	�	�	�	�	�	�	��	�	�	�	�	�	�	�	�	�	�	�	�	��	�	�	�	�	�	�	�	�	�	�	�	�	��	�	�	�	�	�	�	�	�	�	�	�	�	��	�	�	�	�	�	�	�	�	�	�	�	�	��	�	�	�	�	�	�	�	�	�	�	�	�	��	�	�	�	�	�	�	�	�	�	�	�	�	�

��

��

ARM

CRM

RI � RI �

AI � AI �

Figure 1: Aspectual Reflection

1

2 AOP on Top of Reflection

Historically, the seeds of AOP are founded in metaobject
protocols (MOPs) [6] and open implementations (OIs).
This fact gave rise to the point of view that reflection is
the underlying basis for AOP. Under this view, AOP fa-
cilitates disciplined meta-programming, utilizing MOPs
[17]. Indeed, AOP can be implemented as an interface to
the underlying MOP functionality (AI �) as exemplified
by AspectS.

AspectS is a framework for general-purpose AOP in
the Squeak/Smalltalk environment [9]. AspectS supports
AOP by means of general Smalltalk meta-programming
without any language extensions. Based on concepts of
AspectJ, AspectS extends the Smalltalk MOP to accom-
modate the aspect modularity mechanism.

2.1 Pointcut designators over MOP

AspectS makes use of the full Smalltalk MOP to enumer-
ate join-point descriptors. In the following advice method,
the pointcut is determined by asking class Morph for all of
its subclasses including itself (#withAllSubclasses),
selecting the ones that have implemented a method named
#mouseEnter: (#includesSelector:), and then col-
lecting join-point descriptors referring to the class imple-
menting #mouseEnter: and the #mouseEnter: selector
itself.

AsMorphicMousingAspect �
adviceMouseEnter

�
AsBeforeAfterAdvice

qualifier: (AsAdviceQualifier attributes:
{ #receiverClassSpecific. })

pointcut: [
Morph withAllSubclasses
select: [:each |
each includesSelector: #mouseEnter:]
thenCollect: [:each |
AsJoinPointDescriptor
targetClass: each
targetSelector: #mouseEnter:]]

beforeBlock:
[:receiver :arguments :aspect :client |
self showHeader: ’>>> MouseENTER >>>’
receiver: receiver
event: arguments first]

Not only is the Smalltalk MOP expressive enough to de-
scribe the pointcut, but for the Smalltalk reader the de-
scription is also very clear and precise. In comparison,
even the experienced Java programmer may find it diffi-
cult to always predict the declarative meaning of a point-
cut designator in AspectJ [16].

2.2 Advice over MOP
AspectS makes use of block method wrappers, special
wrappers that allow to plug-in block contexts for addi-
tional behavior. For each kind of advice there is a match-
ing method wrapper implementation. Method wrappers
[3] allow the introduction of code that is executed before,
after, or instead of an existing method 1.

According to the attributes stated in an advice qualifier,
a method wrapper is configured with one or more activa-
tion blocks. Each activation block (closure) is provided
with the aspect instance associated with the wrapper, and
the base level activation context (base sender) that allows
access to not only the receiver of the message, but to the
whole chain of activation contexts (Smalltalk’s stack).

For example, the following method returns an activa-
tion block from the AspectS framework that evaluates to
the true object if the base-level receiver is an instance
previously made known to the aspect:

AsMethodWrapper class �
receiverInstanceSpecificActivator

�
[:aspect :baseSender |

| result |
result � aspect
hasReceiver: baseSender receiver.
aspect � baseSender � nil.
result] copy fixTemps

Method wrappers override #valueWithReceiver:

arguments: from CompiledMethod. Each wrapper
class provides an individual implementation. The follow-
ing listing shows that of AsHandlerWrapper, a wrapper
that will be placed by a handler advice in front of another
compiled method to add additional computation to be ex-
ecuted if exceptions signalled:

AsHandlerWrapper �
valueWithReceiver: anObject
arguments: anArrayOfObjects

| client active |
client � thisContext baseClient.
active � self isActive.�
[

self clientMethod
valueWithReceiver: anObject
arguments: anArrayOfObjects.

] on: self exception do: [:ex |
active
ifTrue: [self handlerBlock copy fixTemps
valueWithArguments: {
anObject.

1A method wrapper replaces an entry in a class’ method dictionary
(a compiled method or another method wrapper), adds behavior to the
method invocation, and eventually invokes the wrapped method itself.

2

anArrayOfObjects.
self aspect.
client.
ex. }]

ifFalse: [ex pass]]

2.3 Trade-offs of using MOP

The less invasive a new feature is, the less difficult its in-
teraction with other features. The benefit of implementing
AOP on top of reflection (AI �) is that it is does not en-
tail changes at the language level, not even changes to the
standard lookup process. There is no language extension
required to introduce the aspect modularity construct. The
aspect modularity construct can be provided via an API to
a framework for coordinated meta-programming.

By design, AspectS prevents from changing Smalltalk.
Instead of introducing new language constructs, AspectS
utilizes the expressiveness of Smalltalk itself as a pointcut
language. As an alternative to modifying Squeak’s stan-
dard lookup process, AspectS employs method wrappers
to change the objects that the lookup mechanism returns.
Unfortunately, this in not possible with Java/AspectJ.

AI � also allows more flexible control over aspects. In
contrast to systems like AspectJ, weaving and unweaving
in AspectS happens dynamically at runtime, on-demand,
employing metaobject composition.

However, even if a language posses a rich MOP, certain
limitations remain. While AspectS provides AspectJ-like
concepts, it is limited due to the limitations of Smalltalk
reflection. AspectS was designed to allow the expression
of aspects with join-points that match the design center of
Smalltalk: objects and message sends between objects.
Smalltalk, however, is not solely built on the message
send metaphor, but also allows return statements and di-
rect variable access: access to temporary, instance, class,
and class instance variables. While Smalltalk’s MOP
makes it easy to affect message sends, manipulating vari-
able access is impossible just through metaobject compo-
sition.

There are also performance issues related to efficiency
[7]. Although, mixins in Smalltalk [1], optimistic opti-
mization in Java [17], and other techniques can alleviate
this problem to some extent.

Not all languages support a MOP rich enough to enable
AOP. Java Core Reflection, for example, is not a MOP
and therefore AspectJ cannot be implemented by a Java
library as AspectS is implement in Squeak. AspectJ uses
preprocessing techniques, which is not strictly reflection-
based RI 2.

2But the generated code uses RI.

3 Reflection on top of AOP
In this Section we underscore the observation that AOP
can be the basis for RI. Even if the base OO language
does not provide RI � , the AOP language can still build
one on top of its ARM (RI �). We illustrate this first for
object-level and then for class-level structural reflection.

3.1 Object-level reflection

Consider the manner in which one can access the field
fname of an object host using Java Core Reflection:

try {
host.getClass()
.getDeclaredField(fname).get(host);

} catch(IllegalAccessException iae) {
System.out.println("Illegal field access

: "
+ iae.getMessage());

} catch(NoSuchFieldException nsfe) {
System.out.println("Field not found: "
+ nsfe.getMessage());

}

We can access the field using AOP without using reflec-
tion by, e.g.,

FieldInspector.aspectOf(host).get(fname);

where reflection is simulated with the
FieldInspector aspect:

import java.util.HashMap;
aspect FieldInspector
pertarget(initialization(
(!FieldInspector).new(..))) {

before(Object newValue): set(* *.*)
&& args(newValue) {
fields.put(thisJoinPoint
.getSignature().getName(),newValue);

}
public Object get(String name) {
return fields.get(name);

}
private HashMap fields = new HashMap();

}

In the above aspect, pertarget guarantees that
every object ever created is associated on initializa-
tion with an instance of the FieldInspector as-
pect. FieldInspector.hasAspect(target) is al-
ways true, and aspectOf(host) is always defined. For
simplicity, FieldInspector assumes field names to be
unique (and ignores the issue of overridden fields) and
(similar to RI �) boxes primitive values in objects (ignor-
ing default value initialization).

3

The FieldInspector example illustrates that it is
possible to provide reflective information about every
field of every object without having core reflection. This
example can be extended to provide complete structural
reflection on the object-level resulting in the AOP-based
RI (RI �). RI � could even expose structural information
beyond what RI � normally offers. For example, run-time
profiling information (e.g., how many times a particular
method was executed) is not a part of RI � , but can be
easily provided using AOP.

3.2 Class-level reflection
To complete the picture, we need to also explore reflection
over a class structures. Consider the manner in which one
can find a superclass of a class C using Java Core Reflec-
tion API (RI �):

C.class.getSuperclass();

Similar to the case with object-level reflection, we can
also simulate class-level reflection. We can find the super-
class using AOP without using RI � by, e.g.,

ClassHierarchy.getSuperclass(C.class)

where the class-level structural reflection is simulated
with the aspect ClassHierarchy:

import java.util.HashMap;
aspect ClassHierarchy
percflow(call(
(!ClassHierarchy).new(..))) {

before(): initialization(
(!ClassHierarchy).new(..)) {
Class descClass =

thisJoinPointStaticPart
.getSignature().getDeclaringType();

hierarchy.put(descClass,superClass);
superClass = descClass;

}
private static HashMap hierarchy =
new HashMap();

public static Class getSuperclass(
Class desc) {
return (Class)hierarchy.get(desc);

}
private Class superClass;

}

The ClassHierarchy aspect maintains a hash-map
hierarchy, which reflects all the classes instantiated di-
rectly or indirectly. In comparison, RI � reflects on classes
that were loaded to the JVM 3 therefore accounting for
a larger set of classes. Once AspectJ allows byte-code

3With Java Core Reflection, one cannot reflect on classes until they
are loaded to the JVM.

level weaving, advising the java.lang.ClassLoader

class would eliminate this minor distinction (e.g., using
an around advice on the loadClass method).

Another approach is to extend existing AOP model with
a mechanism of statically executable advice [11]. Such a
mechanism would furnish a complete picture of the class
structure statically. RI � could then expose more struc-
tural meta information than RI � does today.

3.3 Tradeoffs
In the introspection sense, RI � is as complete as RI � ,
although the lack of statically executable advice in cur-
rent AOP implementations limits their reflective capabil-
ities. RI � and RI � have performance-space tradeoffs.
MOP and Reflection usually entail considerable perfor-
mance overhead [7] since they handle (traverse and con-
vert) the internal representation of a meta-information.
RI � displays improved performance by directly access-
ing the meta-information via the hash-map. For the same
reasons, however, RI � is less economical than RI � , since
RI � caches everything, it actually duplicates the internal
information.

With RI � , the overhead is adjustable: we have con-
trol over what to reflect, i.e., we can reflect only on se-
lected join points (classes, objects, etc). RI � is not con-
figurable. RI � is available regardless of whether or not
it is used. It always uses one source of meta-information
(its internal representation) and is tightly coupled to its
implementation [?]. In contrast, aspect-based RI � can
be (un)pluggable allowing better composability. Further-
more, it gives opportunities to increase compile and run-
time efficiency by unplugging RI � when not needed or
not in use.

The join point model provided by AspectJ puts cer-
tain limitations on AspectJ-based RI � . The join point
interface does not provide comprehensive static infor-
mation (e.g., poor reflective abilities over Java inter-
faces). Furthermore, the org.aspectj.lang.reflect
.MethodSignature join point interface (which cor-
responds to the java.lang.reflect.Method class
in Java) lacks certain meta-method capabilities, e.g.,
invocation-by-signature (which is provided in RI �). Nev-
ertheless, the gap between RI � and RI � is bridgeable.
Statically executable advice along with improved lexical
a join point model would eliminate these problems.

4 AOP and Reflection Interaction
From a software engineering perspective, AspectJ has
limited aspectual (incomplete static information) and re-
flective capabilities (bound by Java Core Reflection),
which limits its area of applicability. In this Section,

4

we explore opportunities to overcome these limitations by
combining aspectual and reflective features of AspectJ in
unexpected ways.

4.1 Reflection within advice
Compile-time weaving promoted by AspectJ in contrast
with AspectS dynamic weaving approach gives better
run-time performance though less flexibility. Using RI �
within AspectJ’s advice could improve aspects run-time
flexibility.

An example below illustrates this idea. As-
pect Notifier, shown at the listing invokes static
no-argument methods (listeners) using RI � method-
invocation technique. The basis for a method selection is
equality between method name and the name of the join
point target class. Notice, that aspect Notifier knows
nothing about ClassListeners class (or even if such a
class exists).

Further development of this approach would allow dy-
namically (de)attach functionality to advised join points
providing limited run-time aspects weaving [5, 2].

However, it is possible to get the same functionality as
the example provides without using RI � . But that would
entail a dedicated aspect and advice for each method re-
sulting in a loss of a dynamic flexibility.

class ClassObserver {
static void A() {
System.out.println("A Listener");

}
static void C() {
System.out.println("C Listener");

}
}

aspect Notifier {
before(Object targ): within(!Notifier)
&& call(* *(..)) && target(targ) {
try {
String className =
targ.getClass().getName();

Class.forName("ClassListeners")
.getDeclaredMethod(className,null)
.invoke(null,null);

} catch (Exception e) {}
}
}

4.2 Generative aspects
Some tasks that rely on structural meta-information can-
not be done with either RI � or AI � 4. Consider a

4In the context of Java/AspectJ

lexical style guideline for OO program coding, which
states that call-sites within a method should only target
instance-variable classes of the enclosing class and argu-
ment classes of the method. This style rule is a simplified
variant of the Class Form of the Law of Demeter [?], and
detecting violations of this rule is polynomial and requires
only static structural metal-information. The reason the
style rule cannot be checked with only RI � is that it does
not expose call-sites within method code. In a related
AOSD’03 paper [11] we also prove that it is impossible
to check such rules in AspectJ. Specifically, we consider
the following aspect:

abstract aspect Violation {
abstract pointcut Violation;
declare warning: Violation: "Violation";

}

where Violation refers to the style rule violation. In-
deed, there is no way to avoid an if pointcut primitive in
the pointcut designator instantiating Violation for the
above style rule. But the if pointcut primitive is not stat-
ically determinable and therefore inappropriate in for the
declare warning construct.

It is also impossible to perform a complete check
dynamically, because at run-time not all class meta-
information is available; and, moreover, not all method
calls are covered. This holds independently of whether
we use RI � within the aspect or not.

However, reflection can be employed to generate an as-
pect that does implement the Violation aspect success-
fully using the generateAspect method shown in List-
ing 1.5 Listing 3 shows the generated aspect for a partic-
ular class hierarchy: the code listings for class A is shown
in Listing 2; classes B, C, D, and interface I are omitted.

Listing 1: Aspect generator

public void generateAspect(StyleRule rule)
{

FileWriter writer = null;
try{
writer = new FileWriter(fileName);
writer.write("aspect LoDViolation

extends Violation {\n");
List declarations = rule.

getPointcutDeclarations();
for (int i=0;i<declarations.size();i++)
writer.write((String)declarations.get(

i)+"\n");
writer.write("pointcut LoD(): "+rule.

getRulePointcut()+";\n");
writer.write("pointcut Violation(): !

LoD();\n");
writer.write("}");

5This does not contradict our statement in [11].

5

} catch(Exception e) {
e.printStackTrace();

} finally {
try {writer.close();} catch(Exception

exc) {}
}

}

Listing 2: A.java

class A {
C c=new C();
B b=new B();
void foo() {

foo();
c.foo();
b.foo(c);
D d=new D();
d.foo(); // style rule violation

}
}

Listing 3: LoDViolation.java

aspect LoDViolation extends Violation {
pointcut Global(): within(*) && call

(* *.*(..));
pointcut A(): within(A) && call(* (!(B

|| C)).*(..));
pointcut A_foo(): withincode(* A.foo())

&& call(* (!(A)).*(..));
pointcut B(): within(B) && call(* (!(I))

.*(..));
pointcut B_foo_C(): withincode(* B.foo(C)

) && call(* (!(B || C)).*(..));
pointcut C(): within(C) && call(* *.*(..)

);
pointcut C_foo(): withincode(* C.foo())

&& call(* (!(C)).*(..));
pointcut D(): within(D) && call(* *.*(..)

);
pointcut D_foo(): withincode(* D.foo())

&& call(* (!(D)).*(..));
pointcut LoD(): (Global() && ((A() && (

A_foo())) || (B() && (B_foo_C()))
|| (C() && (C_foo())) || (D() && (

D_foo()))));
pointcut Violation(): !LoD();

}

5 Conclusion
In a nutshell, this paper heightens the awareness that CRM
and ARM are alternative providers of computational re-
flection (Figure 2). Both CRM and ARM exhibit aspec-
tual and reflective features. AOSD approaches differ in

the features they use. AspectS combines the aspectual and
reflective features of the Smalltalk MOP. AspectJ com-
bines the reflective features of Java with new aspectual
features.6

CRM ARM

Computational
Reflection

Conceptual level

Mechanism level

Language level

Feature level

AspectJ RaspectAspectS Smalltalk

AI

�
RI

�
AI

�
RI

�

Figure 2: Computational Reflection Space

The leftmost feature-level hexagon in Figure 2 denotes
the implementation of an aspectual interface over reflec-
tion, namely AI � , as was demonstrated in Section 2. The
rightmost hexagon in Figure 2 denotes the implementa-
tion of a reflection API over AOP, namely RI � , as was
demonstrated in Section 3. The two center hexagons, RI �
and AI � , represent the traditional implementation of re-
flection and AOP.

Figure 2 also maps the space of AOSD languages. Pure
OOP languages, like Smalltalk, utilize just the reflective
features of CRM. Analogously, a pure AOP languages
would be one that utilizes just aspectual features. In the
figure, we propose a novel Raspect language, which uti-
lizes only the reflective features of ARM.

We have identified, analyzed, and provided examples
of explicit aspectual support in CRM and explicit reflec-
tive support in ARM, and illustrated (Sections Section 2
and Section 4) AOP and Reflection interaction in AspectS
and AspectJ from a practical software engineering per-
spective. Understanding the software engineering trade-
offs could also impact future language design and imple-
mentation.

References
[1] L. Bak, G. Bracha, S. Grarup, and R. Griesemer.

Mixins in strongtalk. In B. Magnusson, editor, The
Inheritance Workshop at ECOOP 2002, Málaga,
Spain, June11 2002. ECOOP 2002.

6The mapping of other AOSD languages, e.g., Demeter, DJ, Compo-
sition Filters, HyperJ, and Fred, is omitted, but would be an interesting
question for discussion in the workshop. . .

6

[2] J. Baker and W. Hsieh. Runtime aspect weav-
ing through metaprogramming. In Proceedings of
the 1 ��� International Conference on Aspect-Oriented
Software Development, pages 86–95, Enschede, The
Netherlands, Apr. 2002. AOSD 2002, ACM Press.

[3] J. Brant, B. Foote, R. E. Johnson, and D. Roberts.
Wrappers to the rescue. In E. Jul, editor, Pro-
ceedings of the 12 ��� European Conference on
Object-Oriented Programming, number 1445 in
Lecture Notes in Computer Science, pages 396–417,
Brussels, Belguim, July 20-24 1998. ECOOP’98,
Springer Verlag.

[4] S. Chiba. Load-time structural reflection in java.
In E. Bertino, editor, Proceedings of the 14 ��� Euro-
pean Conference on Object-Oriented Programming,
number 1850 in Lecture Notes in Computer Science,
pages 313–336, Cannes, France, June 12-16 2000.
ECOOP 2000, Springer Verlag.

[5] P.-C. David, T. Ledoux, and N. M. N. Bouraqadi-
Saâdani. Two-step weaving with reflection using
aspectj. In Proceedings of the 16 ��� Annual Con-
ference on Object-Oriented Programming Systems,
Languages, and Applications, Tampa Bay, Florida,
Oct. 14-18 2001. OOPSLA’01, ACM SIGPLAN No-
tices 36(11) Nov. 2001.

[6] J. d. R. G. Kiczales and D. G. Bobrow. The Art of
the Metaobject Protocol. The MIT Press, 1991.

[7] Y.-G. Guéhéneuc. Overall impression on the
AOP workshop. http://www.yann-gael.
gueheneuc.net/Work/Publications/
Documents/Trip+rep%ort+AOP+
Workshop01.doc.pdf, May 2001.

[8] R. Hirschfeld. AspectS—aspect-oriented program-
ming with Squeak. In M. Aksit, M. Mezini, and
R. Unland, editors, Architectures, Services, and Ap-
plications for a Networked World, number 2591 in
Lecture Notes in Computer Science. Springer Ver-
lag, 2002.

[9] D. Ingalls, T. Kaehler, J. Maloney, S. Wallace, and
A. Kay. Back to the future: The story of squeak, a
practical smalltalk written in itself. In Proceedings
of the 12 ��� Annual Conference on Object-Oriented
Programming Systems, Languages, and Applica-
tions, pages 318–326, Atlanta, Georgia, Oct. 5-9
1997. OOPSLA’97, Addison-Wesley.

[10] G. Kiczales, E. Hilsdale, J. Hugunin, M. Kersten,
J. Palm, and W. G. Griswold. An overview of As-
pectJ. In J. L. Knudsen, editor, Proceedings of the

15 ��� European Conference on Object-Oriented Pro-
gramming, number 2072 in Lecture Notes in Com-
puter Science, pages 327–353, Budapest, Hungary,
June 18-22 2001. ECOOP 2001, Springer Verlag.

[11] K. Lieberherr, D. H. Lorenz, and P. Wu. A case
for statically executable advice: Checking the Law
of Demeter with AspectJ. In Proceedings of the
2 ��� International Conference on Aspect-Oriented
Software Development, pages 40–49, Boston, Mas-
sachusetts, Mar. 17-21 2003. AOSD 2003, ACM
Press. To Appear.

[12] K. J. Lieberherr, I. Holland, and A. J. Riel. Object-
oriented programming: An objective sense of style.
In N. K. Meyrowitz, editor, Proceedings of the
3 � � Annual Conference on Object-Oriented Pro-
gramming Systems, Languages, and Applications,
pages 323–334, San Diego, California, Sept. 1988.
OOPSLA’88, ACM SIGPLAN Notices 23(11) Nov.
1988.

[13] C. V. Lopes and G. Kiczales. Recent developments
in AspectJ. In S. Demeyer and J. Bosch, editors,
Object-Oriented Technology. ECOOP’98 Workshop
Reader, number 1543 in Lecture Notes in Com-
puter Science, pages 398–401. Workshop Proceed-
ings, Brussels, Belguim, Springer Verlag, July 20-24
1998.

[14] D. H. Lorenz and J. Vlissides. Pluggable reflec-
tion: Decoupling meta-interface and implementa-
tion. Technical Report NU-CCS-02-10, College
of Computer and Information Science, Northeastern
University, Boston, MA 02115, Sept. 2002. To ap-
pear in International Conference on Software Engi-
neering, 2003.

[15] P. Maes. Concepts and experiments in computa-
tional reflection. In N. K. Meyrowitz, editor, Pro-
ceedings of the 2 ��� Annual Conference on Object-
Oriented Programming Systems, Languages, and
Applications, pages 147–155, Orlando, Florida, Oct.
4-8 1987. OOPSLA’87, ACM SIGPLAN Notices
22(12) Dec. 1987.

[16] T. Skotiniotis, K. Lieberherr, and D. H. Lorenz. As-
pect instances and their interactions. Unpublishded,
2003.

[17] G. Sullivan. Aspect-oriented programming using re-
flection and metaobject protocols. Communications
of the ACM, 44(10):95–97, 2001.

7

