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Abstract

Programming object interactions is at the heart of object-oriented programming. To improve reusability of
the interactions, it is important to program object interactions generically. We present two tools that fa-
cilitate programming of object interactions. StructureBuilder, a commercial tool, achieves genericity with
respect to data structure implementations for collections, following ideas from generic programming, but
focussing only on the four most important actions add, delete, iterate and find that are used to translate
UML interaction diagrams into code. The focus of StructureBuilder is to generate efficient code from inter-
action schemata that are an improved form of interaction diagrams. DJ, a new research prototype intended
for fast prototyping, achieves genericity with respect to the UML class diagram by dynamic creation of
collections based on traversal specifications.

1 Introduction
The Unified Modeling Language (UML [BRJ96]) defines 9 kinds of diagrams, listed in Figure 1, to help in
the construction, analysis and comprehension of object-oriented programs. Of those diagrams, this paper
focuses on one important kind: object-interaction diagrams. Class diagrams give the static view of how
classes relate to each other. Object-interaction diagrams give the dynamic view of how a program organizes
the interaction of instances of these classes to perform specific functions. Design tools (like Rational Rose
[S98], StructureBuilder [SB], etc.) make it possible to generate code from class diagrams; and visualization
tools make it possible to construct object-interaction diagrams by tracing the execution of the program (e.g.,
Program Explorer [LN95]).

Performing the translations in the opposite direction is possible albeit more complex. For class diagrams it
is not that hard. By parsing the class code, or using reflection capabilities, a class diagram can be produced
by means of reverse engineering (e.g., the on-going work at MIT on generating object models from Java
[J99]). Indeed, with Java and other object-oriented languages, it has become possible to map class diagrams
to code and vice versa. For object-interaction diagrams, however, there is a key difficulty. There is not
enough information in the interaction diagram to do the job. One can try to overcome this difficulty and
construct code by abstracting over execution patterns [DLWV98] in object-interaction diagrams. But this
would require a working program to begin with. In this paper, we show an incremental direct technique for
moving from an interaction diagram to code.
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1.1 Motivation

Diagrammatic notations must be very precise to express the design accurately and yet imprecise enough to
permit different implementations. Interaction diagrams are no exception. What makes interaction diagrams
useful is that they contain enough information to embody the essential aspects of the object interaction but
not too much to become identical to code. The challenge addressed in this work is in specifying interaction
diagrams in sufficient detail so that code can be generated, while maintaining the essential simplicity, which
is necessary for human communication.

The technique presented in this paper lets you start from an object-interaction diagram and generate actual
Java code from it. In working towards this goal, we use the following guidelines:

• The generated code captures just the sequence diagram. The user is expected (and enjoys the freedom)
to add additional code which embodies the application logic not captured within the sequence diagram.

• We made a simple generalization of messages. Instead of thinking of messages as just method calls, we
treated them as code fragments. This allows us to treat iterations and conditionals as messages. It also
allows us to capture common data structure manipulations in actions, that we call: add, delete, iterate
and find. By parameterizing these actions with properties we found that we were able to capture most of
the common usage patterns. These actions embody and convey what they do at a high level, and fit very
well into the sequence diagram paradigm. On the other hand, the properties associated with these ac-
tions contain enough detail to generate the code. We call descriptions comprising of such actions:
interaction schemata.

What is so striking about this approach is that an interaction schema conveys an overview of the function in
a manner that is easy to understand. The details of the data structure are abstracted away from the user. The
properties of each of these actions on the other hand contain the details of what it takes to implement the
interaction schema. You can experiment with different class diagrams and different data structures. Interac-
tion diagrams facilitate communication between software developers. Most software development will be
done in teams and these teams are going to change over time. Using class and interaction diagrams that are
guaranteed to be current is an excellent way to communicate what the program does.

 In the rest of this paper, we identify the missing information required to convert an interaction diagram to
code. We explain why it is so difficult to generate code from a sequence diagram, and list what we believe
the programmer does inside his head when converting an interaction diagram into code. We demonstrate
two approaches implemented in two tools. The first tool generates large parts of your program for you.
Furthermore the parts that are generated relate to object interaction and tend to be more tedious and error
prone. This approach can eliminate many errors in these parts. Therefore, it opens up the possibility of
writing highly reliable programs. The process of incremental development is critical to good software de-
velopment. The second tool uses the Java Generic Library and a traverse action in combination with a
domain specific language for object traversal.

2 A Library System Example
Consider a library system whose design is given by the class diagram in Figure 2 using the UML notation.
The edges represent associations. The Library  class is associated with the Book and User classes, which in
turn are associated with the Copy class. An edge marked with * indicates zero-to-many relationships, but
the implementer is free to choose which collection type to use to realize the association. The roles books
and users (the labels on the arrows from Library to Book and User) suggest that a Library  instance con-
tains multiple Book instances and multiple User instances. The arrow directions indicate the direction of the
references. However, one can imagine an implementation in which, e.g., the Book or the User instances
point to the Library  instance, or an implementation in which external objects model the associations.



                 

Figure 2

For the purpose of this illustration, nevertheless, all of the associations are assumed to be implemented as in
memory structures. Since the library may have multiple copies of a book, each book contains multiple Copy
instances. Each User instance contains multiple instances of Copy, one for each (copy of a) book that is
checked out by that user (the borrows role). Each User also holds a collection of copies: the ones that are
ready to be picked up (the holds role). Each Copy instance references a single Book instance. The zero-to-
many relationships are implemented using the basic Java collections: Vector and Hashtable. Note that the
thrust of this paper would be unaffected whether different collection types were used or whether a persis-
tence mechanism such as a database is employed.

2.1 Returning a Book

Consider now a sequence diagram for the library system. For clarity, we shall concentrate only on sequence
diagrams, but the technique described is applicable also to collaboration diagrams and other kinds of object-
interaction diagrams. Sequence diagrams illustrate how objects of these classes are used for specific func-
tions. Note that it is not necessary to specify a class diagram prior to creating a sequence diagram. However,
as you iterate over the design, you will begin filling in the class diagram as you continue to refine your se-
quence diagram.

The sequence diagram in Figure 3 shows the details of checking in (i.e., returning) a book by a user. First
we find a user with the specified uid. Then we remove the copy from the user's list of borrowed books. Next
we access the book of the removed copy, and remove the first user from the reservation queue. Finally, we
add the removed copy to the holds list of the reserver and notify him.

Note that a number of data structure operations are hidden behind several of the messages. For instance, the
message find  will operate on the data member library.users. It will iterate through the collection looking
for the appropriate user.



                 

Figure 3

2.2 Going from Interaction Diagram to Code

First, we must figure out from where the objects come, and locate the origin of the objects library , book,
user, copy and reserver. Looking at the diagram, we can deduce that library  is the object which the
method is called on and corresponds to the this object in the method. On the other hand, it is not immedi-
ately clear how user, book and copy objects were accessed. The creator of the interaction diagram knows
that user is an object which is discovered by find , book is the object returned by getBook, and that copy is
the object which is returned by remove. But we don't.

Second, we must figure out how objects are transported. It isn't clear from the sequence diagram how these
objects are passed around between different methods. This is a tedious task for the programmer.

However, the problem is even harder than just being an issue of a programmer not being diligent in main-
taining interaction diagrams. Interaction diagrams support the notion of iteration and conditionals;
therefore, objects of an interaction diagram are subject to the same scoping and visibility rules that pro-
grammers encounter in programming languages. Indeed, it is easy to construct interaction diagrams, which
violate these rules and therefore cannot be used to generate correct code.

Iterations and conditionals limit the visibility of new objects within their scope. This is true when writing
code and remains true within interaction diagrams. Any access to such objects outside the scope is illegal.
Since sequence diagrams describe collaboration of multiple objects that may be of different types, the code
for  implementing a collaboration spans multiple classes. Therefore, method parameters and return variables
enable those variables to be visible within the appropriate method.

Third, we must fill in the missing details. There are many details that may be missing from sequence dia-
grams:

- The iteration specified in an interaction diagram does not contain enough information. Frequently, it-
erations are over a collection of objects. Interaction diagrams generally do not specify what that object
is. Often iterations are subject to conditions, e.g., iterate over all elements in a collection that meets
certain constraints.

- The method calls need to have parameters and return types. Conditionals need boolean expressions.



                 

- Interaction diagrams typically show the method call stack. Generally there is additional code that a
user needs to write. Often sequence diagrams contain the overall structure of the method calls but do
not contain all the code. It is up to the user to decide how much of the method logic he wants to show
in the sequence diagram.

3  Formalizing Interactions
We introduce interaction schemata. An interaction schema is a textual description of object-interaction.
From interaction schemata you can generate complete executable code.

Now we represent sequence diagrams as interaction schemata. An interaction schema contains enough de-
tails to deal with variable scoping, variable transportation and to generate the complete code.

Interaction schemata are represented as a list of actions. Each message of an interaction-diagram can be
translated mechanically into one or more actions. Each action is either of the following form:

 [ interactor Æ interactor Æ ...]. actionName( exp1, exp2, ...)
    return ( type1 retexp1, type2 retexp2, ...) { ...}

or a conditional or a looping action. A regular method call is the simplest form of an action. Its arguments
and return types correspond to the method signature. The interaction path is of the form [ interactor1 Æ
interactor2 Æ ...] where interactor1 is an object in the interaction diagram and interactor2 is an instance
variable of interactor1, and so on. Note that some actions such as conditional and looping actions can con-
tain other actions. The scope of each returned variable is limited to being inside the innermost enclosing
conditional or iterative action.

For example, if we have a sequence diagram of the form:

it would be represented in terms of actions as:

a.m1() {
b.m2()

}

A conditional message of the form:

would be represented in terms of actions as:

if (test) {
a.m1();

}



                 

As we alluded to earlier we have defined additional actions which allow us to capture certain common data
structure manipulations. These actions are iterate, find, add, and remove. These actions are defined on
collection types and the generated code is appropriate for the type of collection.

Now let us look at the action description of the checkIn method:

Library.checkIn(UID uid, Copy copyId)

It takes as inputs a uid and a copyId. The uid identifies the borrower and the copyId identifies the copy of
the book being returned.

The following sequence of actions describes the program. Each of the actions takes as input a set of expres-
sions, which are the properties associated with them, and which serve to parameterize the generated code.
Properties for many of these actions are shown after the interaction schema. We have added comments to
each of the actions to assist the reader in understanding the interaction schema.

Library.checkIn(UID uid , Copy copyId )
{

// Find the user with the specified uid
    [library Æusers Æuid].find(uid' current == uid )
        return  (User users' current  as  theUser)

// Remove the copy with the specified copyid
[theUser Æborrows ÆcopyId].remove(copyId' current  == copyId )

        return  (Copy borrows'current  as  theCopy)

// Call method on copy
[theCopy].getBook()

        return  (Book book as theBook)

// Find the first user who is on the reserve collection
[theBook Æreserves].remove(reserves' index == 0)

        return  (User reserves' current  as theReserver)

// Conditional action
if  (theReserver != null) {

// Add this copy to the reservers hold list
[theReserver Æholds].add(theCopy)

// Call method on reserver
[theReserver].notify(theCopy);

}
}

3.1 Object Transportation

In order to translate the schema into code, the issue of object transportation must be resolved. For example,
the action

[theUser Æborrows ÆcopyId].remove(copyId' current  == copyId)
        return  (Copy borrows'current  as  theCopy)

leads to the generation of the method checkIn in the classes Library , User, and Copy (Figures 4a, 4b, and
4c show the generated code.) The value copyId needs to be passed into the methods checkIn from the main
method checkIn in Library . This is an example of an external transportation across actions, i.e., between
methods which where generated from different actions. Transportation can also occur internally. Internal
transportation refers to the passing of an object to several generated methods within a single action.



                 

There are many delicate issues in-
volved in object transportation. The
object name may change. Multiple
objects may need to be returned
through a single method requiring
the use of wrappers (if the language
does not support multiple return
values.) Conditionals within actions
can lead to unexpected transporta-
tion.

There are two approaches to trans-
lating to code. StructureBuilder, a
Java design tool, takes a code gen-
eration approach, in which code is
generated for each instance of each
action, and method signatures are
updated to perform object trans-
portation. DJ [DJ99], a research
project at Northeastern University,
takes a generic approach, in which
traversal specifications are adapted
to be used with predefined generic
algorithms in the Java Generic Li-
brary [JGL], and  reflection is used
to customize the traversals at run-
time. DJ also provides important
traverse actions (traverse, gather,
fetch, etc.) to support the Visitor
Design pattern [GOF] without the
problem of structure hardening.

3.2 StructureBuilder: A
Code Generation Ap-
proach

When code is generated there are a
number of issues to consider:

• The actions themselves can em-
body method calls because not
all of the objects that they act
upon are accessible in the
method specified. In a interac-
tion diagram, the programmer
would explicitly specify the
method necessary. Structure-
Builder, on the other hand will
automatically generate a method
call if necessary.

• When methods are generated, it
is necessary for objects to be
transported correctly to the generated methods. It is also necessary for generated objects to be trans-
ported back. StructureBuilder will generate methods with the correct signature and return type.

Figure 4b: Method Generated in class Library

/**
 * @param uid
 * @param copyId
 * @SBGen Generated Method (2)
 */
void  checkIn(UID uid, Copy copyId)
{
  // SBgen: Action Find User in users (2)
  User user = null ;
  Object tmpKey;
  Enumeration i = users.keys();
    while (i.hasMoreElements()) {
      tmpKey = i.nextElement();
      user = (User)users.get(tmpKey);
      if  (user.uid==uid)
        break ;
    }

  // SBgen: End Find
  // SBgen: Call generated method on User (-3)
  Copy copy = user.checkIn(copyId);

  // SBgen: Action Execute method on Copy (4)
  Book book = copy.getBook();

  // SBgen: Call generated method on Book (-5)
  User resUser = book.checkIn();

  // SBgen: Action If (6)
  if  (resUser != null ) {
    // SBgen: Call generated method on User (-7)
    resUser.checkIn0(copy);

    // SBgen: Action Execute method on User (8)
    resUser.notify(copy);
  }
  // SBgen: End If (6)
}

Figure 4a: Method Generated in class Book

/** @SBGen Generated Method (2), created by Li-
brary.checkIn(UID, Copy) (Library.2,-5)   */
User checkIn()
{
  // SBgen: Action Remove User from reserves (5)
  User resUser = null ;
  int  size = reserves.size();
  if  (size > 0) {
    resUser = reserves.elementAt(0);
    reserves.removeElementAt(0);
  }

  // SBgen: End Remove
  // SBgen: Return resUser
  return  resUser;
}



                 

Notice, however, that this is simply
an implementation issue. Normally
the programmer sets up his method
signatures so that scoping issues are
dealt with appropriately. Indeed, we
could bypass the whole issue of
object transportation by leaving it
up to the programmer to specify the
method signature completely.

3.3 DJ: A Generic Ap-
proach

The DJ tool [DJ99] provides an
alternative technique to implement
actions by making them more ge-
neric. The first observation of DJ is
to note that actions like add, find,
delete etc. also appear in Generic
Programming (GP) as generic algo-
rithms or as methods of container
interfaces [MS94, JGL]. Therefore
DJ attempts to reuse those generic
algorithms. The second observation
of DJ is that traversal-visitor style
programming is a frequently recur-
ring pattern and therefore DJ offers
a traverse action that simplifies tra-
versal visitor style programming.

class ClassGraph {Object traverse(Object o, TravSpec s, Visitor v);}

ClassGraph-objects are constructed from the Java programs (either in compiled or source form). TravSpec-
objects (traversal specifications [L96]) encapsulate a domain-specific language for navigation through ob-
ject structures and visitor-objects define what needs to be done on top of the traversal. The third observation
of DJ is that traversal specifications are an ideal ingredient for Generic Programming lifting the level of
genericity by an order of magnitude.

Generic Programming (GP) is about expressing algorithms with minimal assumptions about data abstrac-
tions, and vice versa, thus making them as interoperable as possible. A second goal of GP is to lift a
concrete algorithm to as a general level as possible without losing efficiency. In GP, the algorithms are pa-
rameterized by iterators and data structures are connected to the algorithms using iterators as connectors. In
Demeter [L96], algorithms are parameterized by traversal specifications and data structures are connected
to the algorithms using traversal specifications as connectors. A good way to integrate GP and Demeter is to
view traversal specifications as “superiterators” and to have a conversion function that translates a traversal
into an iterator that gives access to collection methods  (e.g., find, select, findIf) of some generic library
such as the Java Generic Library. The goal is to reuse the useful work done in GP and not to reinvent many
of the operations already provided by GP. Given a class graph classGraph, a traversal specification sg and
an object og, we can create a container TGC(classGraph,sg,og) which can be used as argument for many
generic algorithms such as forEach, lexicographicalCompare, mismatch, accumulate, count, countIf, reject,
select, adjacentFind, detect, every, find, findIf,  some, etc. The generic algorithms operate directly on og
without creating a new collection object duplicating the information in og.

Figure 4c: Methods Generated in class User

/** @SBGen Generated Method (2), created by Li-
brary.checkIn(UID, Copy) (Library.2,-3)   */

Copy checkIn(Copy copyId)
{
  // SBgen: Action Remove Copy from borrows (3)
  Copy copy = null ;
  int  i, size = borrows.size();
  for  (i=size-1; i>=0; i--) {
    Copy tmpVar = (Copy)borrows.elementAt(i);
    if  (tmpVar.getId() == copyId) {
      copy = tmpVar;
      borrows.removeElementAt(i);

      // SBgen: Begin actions (3)
      // SBgen: End actions (3)
      break ;
  }
  // SBgen: End Remove
  // SBgen: Return copy
  return  copy;
}

/** @SBGen Generated Method (3), created by Li-
brary.checkIn(UID, Copy) (Library.2,-7)   */

void  checkIn0(Copy copy)
{
  // SBgen: Action Add Copy to holds (7)
  holds.addElement(copy);

  // SBgen: End Add
}



                 

In Figure 5, we demonstrate the DJ approach by rewriting the interaction schema for checkIn in DJ.
Method checkIn is for class Library. We annotate the Java code with the interaction schema to show the
correspondence between the two. FieldEquals extends UnaryPredicate from JGL.

The fourth and final observation of DJ is that sequence diagrams can be automatically generated from DJ
code to facilitate the understanding of the code at various levels of details. In our current implementation,
DJ does no generation or pre-processing of user code.

4 Related Work and Conclusions
This paper describes a new technique for object-oriented programming, which can lead to the production of
much higher quality software, and to significantly quicker development. This technique uses interaction
schemata and has been implemented in StructureBuilder, a development tool for Java Programming, from
Tendril Software [SB]. DJ [DJ99] provides additional genericity and ease of maintenance but a slower im-
plementation based on Java Reflection.

The origins of this technique are in a decade long research program at Northeastern University on Adaptive
Programming called the Demeter Project [L96]. Like Demeter, StructureBuilder internally views the pro-

Figure 5: The checkIn method in DJ

void  checkIn(UID uid, Copy copyId)
{
    // [library Æusers Æuid].find(uid' current  == uid)
    //   return (User users' current  as user)
    Container LibraryToUserContainer = new TraversalGraph(
        Main.classGraph,
        new TravSpec(“From Library to User”).container(this));
    User user = Finding.findIf(
        LibraryToUserContainer, new FieldEquals("uid",uid));

    if  (user == null )
        return ;
    // [user Æborrows ÆcopyId].remove(copyId'current == copyId)
    //   return (Copy borrows'current as copy)
    Container UserToCopyContainer = new TraversalGraph(
        Main.classGraph,
        new TravSpec("From User through borrows to Copy").container(user));
    Copy copy = Finding.findIf(
        UserToCopyContainer, new FieldEquals("copyId",copyId));

    if  (copy == null )
        return ;
    Removing.remove(UserToCopyContainer,copy);
    // [copy ÆbookÆreserves].remove(reserves'index == 0)
    //   return (User reservers'current as reserver)
    Container CopyToUser = new TraversalGraph (…) ;

    Container UserToCopyHoldsCont = new TraversalGraph(
        Main.classGraph,
        new TravSpec("From User through holds to Copy").container(user));
    User reserver =
       (User)CopyToUser.remove(CopyToUser.elements());
    if  (reserver != null ) {
        //[reserver Æholds].add(copy)
        UserToCopyHoldsCont.add(copy);

        //[reserver].notify(copy);
        reserver.notify(copy);
    }
}



                 

gramming process in terms of navigating through the object model. This view of thinking of objects as a
network and providing for their transportation is of what a large part of the programming task consists.
Even though programmers don’t always conceptualize their task in these terms, this is an essential aspect of
virtually all programming. Indeed, object oriented programming is an attempt to organize this network of
objects and to provide programmers with rules on how they might access the network.

Generic actions address two important problems in software development. First, tangling of object collabo-
ration code. We have shown how object collaborations can be more easily expressed using generic actions.
Each generic action describes a multi-object collaboration in a succinct way. A generic action cross-cuts the
class structure and it is easy to read because all relevant information is part of the generic action and not
spread out across several classes and tangled with lots of other code [HL95, K+97]. Second, maintaining
UML interaction diagrams is tedious during evolution of the class structure. Generic actions are structure-
shy and fairly robust under changing class structures.
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