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ABSTRACT
Normally, Aspect-Oriented Programming (AOP) is used for plug-
ging and not for unplugging. Aspects (concerns) are weaved into a
system, thus providing a modularized way to add crosscutting fea-
tures to a base program. For example, given a base program without
logging and given a logging aspect, the AOP weaver produces from
the untangled code an executable with the desired crosscutting log-
ging behaviors. The benefit is that the logging code is modularized,
e.g., you can easily activate or deactivate logging. However, what
if a legacy system written without AOP technology already con-
tains logging functionality hard-coded in the base program? How
do you deactivate logging then? In this paper, we explore the use
of AOP for writing aspects that transform exiting hard-coded calls
into plugs that can be used to retarget the client to use other sub-
components. Applying AOP for unplugging has potential usage in
connection with components. You are given a monolithic system.
You apply AOP to non-intrusively decouple the system’s compo-
nents. You may then replace some of the legacy components with
alternative third-party components.

1. AOP FOR UNPLUGGING
Consider a client that is strongly coupled with a component ��� , for
which third-party alternatives, ���	�
������������
��� , exist. Presumably,
������� � ����������� � present a spectrum of trade-offs for the client to
choose from, e.g., on certain methods, ��� or ��� may be more effi-
cient than � � . Suppose that the client calls methods � � , ��� , and
� � directly on ��� , and that � � and � � were developed indepen-
dently by third-parties and provided without their source code [13].
AOP [4] can help to selectively unplug the client from certain calls
to � � , and plug those calls back into ��� or ��� (Figure 1).

Normally, one would need to change the code of the client or the
code of the components. Changing the client code is intrusive and
the result is not retargetable. Changing the component is also un-
desired, because it will affect other clients too. Moreover, it may
be impossible to change a third-party component.

Instead one can employ AOP to achieve pluggability. We first
motivate this approach using the standard logging example in As-
pectJ [6, 3]. In Section 2 we illustrate this approach for the complex
case of retargeting a client of reflection in Java [1].

1.1 Logging Unplugged
The components of the system may already be coupled and their
code tangled. Consider a legacy system where the client code (class�
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Figure 1: Retargeting

Tangled in Listing 1) is tangled with the logging code (hard-coded
calls to System.out.println). Using AOP, we can separate them,
providing the following benefits:

1. Ability to activate or deactivate the logging code.

2. Ability to modify the logging, e.g., spell check the messages
before printing, or translating the messages to a different lan-
guage.

3. Ability to add to the message reflective information from the
join point, e.g., line number (lexical information), receiver’s
type (static information), or receiver’s identify (dynamic in-
formation).

4. Ability to transform explicit-invocation to event-based im-
plicit invocation, thus allowing pluggability in a component
builder.

The “decoupling” Unlogger aspect (Listing 2) uses an around
advice to divert calls from println to Logger.log (Listing 3).1

The Logger class (Listing 3) extends TextEventNotifier (List-
ing 5), providing interested TextListeners (Listing 4) with the
logging message as a java.awt.event.TextEvent event. Thus,
transforming the explicit invocation of log into implicit invoca-
tion [10] of textValueChanged.

As a result, adding a TRANSCEIVER [7] component between the
client and the logging facility, e.g., a spell checker (Listing 6), can
be easily achieved.

1We assume knowledge of AspectJ [3].



Listing 1: Tangled.java

package program;

public class Tangled {

public void method1() {
System.out.println("method 1 is called");
}

public void method2() {
System.out.println("method 2 is called");
}

public void method3() {
System.out.println("method 3 is called");
}

public static void main(String[] args) {
Tangled t = new Tangled();
t.method1();
t.method2();
t.method3();
}
}

Listing 2: Unlogger.java

package aspects;
import connector.Logger;
import connector.TextEventNotifier;

aspect Unlogger {

void around(String message,Object source):
call(void java.io.PrintStream.println(String))
&& args(message) && target(source) {
logger.log(message,source);

}

public static TextEventNotifier
getTextEventNotifier() {

return Unlogger.aspectOf().logger;
}

private Logger logger = new Logger();
}

Listing 3: Logger.java

package connector;

public class Logger extends TextEventNotifier {

public void log(String message,Object source) {
LogTextEvent event = new LogTextEvent(message,

source);
fireTextEvent(event);
}
}

Listing 4: TextListener.java

package connector;
import java.awt.event.TextEvent;

public class TextListener implements java.awt.
event.TextListener {

public void textValueChanged(TextEvent e) {
System.out.println(e.paramString());

}
}

Listing 5: TextEventNotifier.java

package connector;
import java.awt.event.TextEvent;
import java.awt.event.TextListener;
import java.util.Vector;

public class TextEventNotifier {

public void addTextListener(TextListener listener
) {

if (!listeners.contains(listener)) listeners.add
(listener);

}

public void removeTextListener(TextListener
listener) {

listeners.remove(listener);
}

void fireTextEvent(TextEvent event) {
for (int i=0;i<listeners.size();i++)
((TextListener)listeners.get(i)).

textValueChanged(event);
}

private Vector listeners = new Vector();
}

Listing 6: SpellChecker.java

package connector;
import java.util.Vector;
import java.awt.event.TextListener;
import java.awt.event.TextEvent;

public class SpellChecker
extends TextEventNotifier
implements TextListener {

public void textValueChanged(TextEvent e) {
String checked = spellCheck(e.paramString());
LogTextEvent event = new LogTextEvent(checked,e.

getSource());
fireTextEvent(event);
}

private String spellCheck(String str) {
// spell checking omitted
return str;
}
}



Listing 7: MetaClient.java (Core reflection)

import java.util.Vector;
import java.lang.reflect.Field;

class MetaClient {

public Object[] getFields(Object host) {
if (host==null) return null;
Vector result = new Vector();
collectFields(host.getClass(),result,host);
return result.toArray();
}

private void collectFields(Class cl,Vector result
,Object host) {

if (cl==null) return;
Field[] declared = cl.getDeclaredFields();
for(int i=0;i<declared.length;i++)
try{
result.add(declared[i].get(host));
} catch (IllegalAccessException e) {}
collectFields(cl.getSuperclass(),result,host);
}
}

Listing 8: MetaClient.java (Mirrored reflection)

import java.util.Vector;
import edu.neu.ccs.mirror.java.lang.Class;
import edu.neu.ccs.mirror.java.lang.reflect.*;

class MetaClient {

public Object[] getFields(Object host) {
if (host==null) return null;
Vector result = new Vector();
collectFields(Class.getClass(host),result,host);
return result.toArray();
}

private void collectFields(Class cl,Vector result
,Object host) {

if (cl==null) return;
Field[] declared = cl.getDeclaredFields();
for(int i=0;i<declared.length;i++)
try{
result.add(declared[i].get(host));
} catch (IllegalAccessException e) {}
collectFields(cl.getSuperclass(),result,host);
}
}

2. RETARGETING REFLECTION
For a more complex non-trivial example, consider the MetaClient
code (Listing 7)—a client of reflection [11, 12, 9].

A first step to achieve pluggable reflection [8] is to convert from
core to a mirrored reflection by changing the imports, and by chang-
ing host.getClass() to Class.getClass(host). Making the
transition to mirrored reflection is required because classes in the
java.lang.reflect package and the java.lang.Class class
are final and because only the JVM can instantiate these classes.
The mirrored reflection has a default implementation, which falls
back on Java [1] Core Reflection to provide the reflective informa-
tion. Basically, it acts as a wrapper [2] of Java Core Reflection (for
an overview see [8]).
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Figure 2: Retargeting a client of reflection

For the remainder of the paper, we shall assume that the client code
is written against edu.neu.ccs.mirror.java.lang.Classand
edu.neu.ccs.mirror.java.lang.reflect.*. The corrected
code of MetaClient is shown in Listing 8.

2.1 Goal
Given a client that uses the mirrored reflection component �!� , the
goal in this example is to non-intrusively retarget the client to use
alternative providers of meta-information, ��� and ��� (Figure 2).
Specifically, let � � be a source code repository capable of provid-
ing static class-level reflective information. Assume �"� has com-
plete static information but no dynamic information. That is, � �
implements the reflection interface on top of a source-code repos-
itory; � � presents an alternative component to ��� for class-level
functionality; but ��� cannot provide information which is not avail-
able statically in the source code.

Let ��� be an object store capable of providing dynamic object-
level reflective information, such as values of fields. Assume � �
has complete dynamic information but very limited static informa-
tion. For example, the type of each object (i.e., the name of its
class) is known in ��� , but the inheritance hierarchy in unknown.
That is, ��� presents an alternative component to � � for object-
level functionality; but ��� has incomplete static information, and
the limited static information it has is associated with the dynamic
functionality.

Next, we show that aspects can retarget clients of �!� to use either
��� or ��� or both as an alternative source of meta-information.

2.2 Retargeting class-level reflective calls to ���
Class objects are the gateway to class-level reflective informa-
tion. There are exactly two methods in the reflection API that allow
clients to obtain a handle to a Class object, namely:

1. Class.forName(str, #$#�# );

2. Class.getClass(obj).

Two aspects do the job of retargeting:

classstore.ForName (Listing 9). Given a class name, the method
Class.forName(str, #$#�# ) returns the Class instance for
the class named str . Since classes are represented in the
source-code repository, class names can be mapped to a cor-
responding class representation in ��� by the method Class-

Repository.forName(name). The around advice found



Listing 9: classstore.ForName.java

package edu.neu.ccs.mirror.retarget.classstore;
import edu.neu.ccs.mirror.java.lang.reflect.*;
import edu.neu.ccs.mirror.java.lang.Class;
import edu.neu.ccs.mirror.repository.

ClassRepository;

aspect ForName {

Object around(String name):
&& call(public static Class Class.forName(String

,..))
&& args(name) {

try{
// return ClassRepository % based Class instance
return ClassRepository.forName(name);
} catch (Exception e) {
return proceed(name);
}

}
}

Listing 10: classstore.GetClass.java

package edu.neu.ccs.mirror.retarget.classstore;
import edu.neu.ccs.mirror.java.lang.reflect.*;
import edu.neu.ccs.mirror.java.lang.Class;

aspect GetClass {

Class around(Object obj):
&& call(public static Class Class.getClass(

Object))
&& args(obj) {

try{
Class cl = proceed(obj);
// return ClassRepository % based Class instance
return Class.forName(cl.getName());
} catch (Exception e) {
return proceed(obj);
}

}
}

in classstore.ForName intercepts calls to Class.for-
Name(name) and redirects them to ClassRepository.for-
Name(name) to return a ClassRepository-based Class
instance instead.

classstore.GetClass (Listing 10). Given an object obj, the
method Class.getClass(obj) returns a Class instance
corresponding to the type of obj. Here, the source code
repository cannot be used directly, because it has no knowl-
edge of run-time values. Therefore, in the around advice,
calls to Class.getClass(obj) are forwarded to the default
underlying reflective mechanism via proceed(obj). How-
ever, the class instance returned by proceed(obj) needs to
be converted to the ��� -based class representation. This is ac-
complished by extracting the class name and using Class-
.forName(String). Like the calls in the base program, the
call to Class.forName(String) in Listing 10 is also inter-
cepted by the classstore.ForName aspect. Consequently,
the desired class representation in � � (ClassRepository-

Listing 11: objectstore.GetClass.java

package edu.neu.ccs.mirror.retarget.objectstore;
import edu.neu.ccs.mirror.java.lang.reflect.*;
import edu.neu.ccs.mirror.java.lang.Class;
import edu.neu.ccs.mirror.aspects.internal.Type;
import edu.neu.ccs.mirror.aspects.internal.Value;
import edu.neu.ccs.mirror.aspects.internal.Store;

aspect GetClass {

Object around(Object obj):
&& call(public static Class Class.getClass(

Object))
&& args(obj) {
// obtain internal representation for host
Value val = Store.getValue(obj);
// obtain internal host type
Type type = val.getType();
// return Class provided by forName
return Class.forName(type.getName());
}
}

based Class instance) is returned.

2.3 Retargeting object-level reflective calls to �"�
Object-level introspection is provided in reflection via two meth-
ods:

1. Field.get(obj)

This method reflects the object graph by mapping the re-
ceiver Field meta-object and the argument obj object to
the value of the corresponding field in obj.

2. Class.getClass(obj)

Finding the type of an object using the static method Class-
.getClass(obj) in ��� (which is the equivalent to obj-
.getClass() in core reflection.)

Two aspects do the job of retargeting:

objectstore.GetClass (Listing 11). The GetClass aspect in-
tercepts calls to Class.getClass(Object). The mapping
from objects to their class names that is supported by the ob-
ject store can be utilized in Class.getClass(Object). To
achieve that, Class.getClass(Object) is implemented
in two steps. First, the class name of the object argument
is found in � � . Second, the returned class name is used
in Class.forName(String name, #
#�# ) to provide the de-
sired result.

objectstore.FieldGet (Listing 12). The FieldGet aspect in-
tercepts calls to Field.get(Object). The object store has
complete object-level reflective information. Therefore, The
around advice in the FieldGet aspect simply retrieves the
information from the object store.

Note that we only retarget calls, but the underlying classes are the
same, i.e., we only replaced the functionality. The client still uses
� � but two specific pieces of functionality are performed by ���
(class names of objects, and values of fields.)



Listing 12: objectstore.FieldGet.java

package edu.neu.ccs.mirror.retarget.objectstore;
import edu.neu.ccs.mirror.java.lang.reflect.*;
import edu.neu.ccs.mirror.java.lang.Class;
import edu.neu.ccs.mirror.aspects.internal.Store;
import edu.neu.ccs.mirror.aspects.internal.

ObjectReference;
import edu.neu.ccs.mirror.aspects.internal.

ReferenceType;

aspect FieldGet {

Object around(Field field,Object host):
call(Object Field.get(Object))
&& args(host)
&& target(field) {
// obtain aspectual store representation for host
ObjectReference internalHost =
(ObjectReference)Store.getValue(host);

// convert field to edu.neu.ccs.mirror.aspects.internal.Field
ReferenceType enclosingType =
(ReferenceType)Store.getType(field.

getDeclaringClass().getName());
edu.neu.ccs.mirror.aspects.internal.Field

internalField =
enclosingType.getDeclaredField(field.getName())

;
// obtain value from aspectual repository
return internalField.getFieldValue(internalHost)

.getObjectVal();
}
}

2.4 Aspect Composition
There are two independent third-party components: classstore
and objectstore. Each component comes with two aspects, which
must be applied in concert: ForName and classstore.GetClass
are always used together; similarly, objectstore.GetClass and
FieldGet are always used together. The two pairs of aspects, how-
ever, are designed to work independently.

The combined effect of applying the two components concurrently
is particularly interesting, because

& their aspects target the same set of join points: both class-

store.GetClass and objectstore.GetClass indepen-
dently advise calls to Class.getClass(Object);

& classstore.ForName intercepts calls to Class.forName
not only in the base program, but also in the objectstore-
.GetClass and in the classstore.GetClass aspects.

Generally, there are two explicit mechanisms powering aspect in-
teraction.

Advising join points within another aspect’s advice One possi-
ble scenario is that calls to Class.getClass(Object) in
the base program are intercepted by the objectstore.Get-
Class aspect. That aspect first looks up the argument object
class name in the object store. Then, the Class instance
is obtained from Class.forName(String) and returned.
When both the class and the object store aspects are applied
simultaneously, the call to Class.forName(String) is al-

ways intercepted by the classstore.ForName. This col-
laboration guarantees that the objectstore.GetClass as-
pect correctly returns the ClassRepository-based Class
instance.

Proceeding to another aspect’s advice The second scenario is the
dominance of classstore.GetClass over objectstore-
.GetClass. In this case, calls to Class.getClass(Object)
trigger the around advice in classstore.GetClass. The
collaboration is achieved by calling proceed for forward-
ing the control to the around advice in objectstore.Get-
Class, which in turn executes as explained above and cor-
rectly returns a ClassRepository-based Class instance.

In sum, handling Class.getClass(Object) calls involve the func-
tionality of both � � and � � , unplugging ��� completely.

3. CONCLUSION
This paper presented the use of AOP to weave plug points into
monolithic code, allowing componentization (unplugging) of ap-
plication code.

Using the well known AOP example of logging, we illustrated that
aspects can be applied for untangling rather than entangling. Using
the reflection example, we have demonstrated that a naive client
does not realize that it uses a different source of meta-information.
The client thinks it is using ��� and is unaware that it is in fact
using ��� and ��� . Moreover, ��� doesn’t realize that it uses ��� ;
and ��� doesn’t know that it uses ��� . This is crucial for achieving
pluggability.

The benefit of having a mirrored reflection and the implementation
of pluggable reflection without AOP techniques are explained else-
where [8]. In [5] we illustrate that AOP can serve as an object store
which can offer an alternative source of dynamic meta-information.
In this paper, we build on these two works and show that AOP can
also help in implementing pluggable reflection.

More generally, aspects can help unplug even strongly coupled
components and help retarget calls to alternative third-party com-
ponents. There are various degrees of coupling. If the client uses
the implementation directly, the two are strongly coupled. If both
rely only on interfaces—it is a weak coupling: client and imple-
mentation may evolve separately as long as the interface doesn’t
change. In component-based programming, interfaces are discov-
ered using introspection and adaptation allowing also third-party
components to be connected. Aspects could help migrate strongly
coupled components to pluggable components.

By drawing on the code-transformation abilities of AOP, we showed
that the established techniques (as found in AspectJ) can be used to
transform in “the other way” from the aspectually woven to the un-
woven (unplugged) code. This idea may be even more useful then
AOP in its usual form: this unusual transform approach can help to
normalize and refactor existing code.
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