
Could No-Code Be Code?
Toward a No-Code Programming Language for

Citizen Developers

Assaf Avishahar-Zeira
assaf@too.so�ware

TOO.Software
Bnei Atarot 6099100, Israel

David H. Lorenz
lorenz@openu.ac.il

Dept. of Mathematics and Computer Science
Open University of Israel
Ra’anana 4353701, Israel

Abstract

By 2030 for each filled position in Software Engineering, two
positions would remain unfilled. This already apparent loss
of productivity has the software industry scrambling to fill
the missing positions with citizen developers—technical peo-
ple with little or no programming skills—whowould be using
No-Code platforms to program various software solutions
in specific domains. However, currently available platforms
have fairly limited abstractions, lacking the flexibility of a
general purpose programming language.
To break the No-Code abstraction barrier, a very simple

yet expressive general purpose No-Code programming lan-
guage might provide citizen developers with an alternative
to domain-specific No-Code platforms. Unfortunately, these
requirements seem contradictory. Making a language very
simple and specific might render it crippled, thus limited to a
certain domain of problems. Conversely, making a language
very expressive and general, might render it too complicated
for citizen developers.
In this work we argue that a multi-paradigm minimalist

approach can bridge the gap between simplicity and expres-
siveness by including only abstractions considered intuitive
to citizens. As a concrete proof-of-concept, we present a
general purpose programming language designed for citizen
developers that is on the one hand very powerful and on the
other hand very simple. In fact, this language is so simple
that the entire development is accomplished by flowcharts
using mouse actions only, without typing a single line of
code, thus demonstrating a general purpose No-Code pro-
gramming language candidate for citizen developers.

Permission to make digital or hard copies of part or all of this work for

personal or classroom use is granted without fee provided that copies are

not made or distributed for profit or commercial advantage and that copies

bear this notice and the full citation on the first page. Copyrights for third-

party components of this work must be honored. For all other uses, contact

the owner/author(s).

Onward! ’23, October 25–27, 2023, Cascais, Portugal

© 2023 Copyright held by the owner/author(s).

ACM ISBN 979-8-4007-0388-1/23/10.

h�ps://doi.org/10.1145/3622758.3622893

CCS Concepts: • Software and its engineering→ Visual

languages; Multiparadigm languages.

Keywords: Citizen Developers, Golang, No-Code Software
Development, Projectional Editing, Programming Language
Design.

ACM Reference Format:

Assaf Avishahar-Zeira and David H. Lorenz. 2023. Could No-Code

Be Code? Toward a No-Code Programming Language for Citi-

zen Developers. In Proceedings of the 2023 ACM SIGPLAN Inter-

national Symposium on New Ideas, New Paradigms, and Reflec-

tions on Programming and Software (Onward! ’23), October 25–27,

2023, Cascais, Portugal. ACM, New York, NY, USA, 17 pages. h�ps:

//doi.org/10.1145/3622758.3622893

1 Introduction

Today and for the foreseeable future, the supply of profes-
sional programmers cannot meet the demand for software
engineers [5]. SlashData,1 a leading analyst company in the
developer economy, projects a total number of 45 million
software engineers globally by year 2030. The U.S. Labor
Department further estimates a shortage of 85 million en-
gineers by that time, meaning that for each filled position
two would remain unfilled, and that because of this shortage
companies may lose $8.4 trillion in revenue.
This shortage in programmers is pushing the software

industry toward No-Code tools that enable software develop-
ment by novice programmers and even non-programmers,
generally referred to as citizen developers [29] (hereafter,
citizens). These No-Code tools keep the promise of creat-
ing a solution without typing code, but they are by far less
expressive than a full blown general purpose programming

language (GPL), lacking any pretension to be Code.
In fact, No-Code tools resemble hardware more than soft-

ware development, missing the most important property of
software being “soft.” In order to retain the “softness” prop-
erty, they must be expressive like a programming language;
that is, beCode. At the same time theymust be simple enough
for citizens; that is, to also beNo-Code. This begs the question:
could No-Code be Code?

1h�ps://www.slashdata.co

This work is licensed under a Creative Commons Attribution 4.0 Interna-

tional License.

106

http://creativecommons.org/licenses/by/4.0/
https://orcid.org/0009-0001-3446-2452
https://orcid.org/0000-0001-7921-2265
https://doi.org/10.1145/3622758.3622893
https://doi.org/10.1145/3622758.3622893
https://doi.org/10.1145/3622758.3622893
https://www.slashdata.co

	Abstract
	1 Introduction

