
Crosscutting Revision Control System

Sagi Ifrah David H. Lorenz
Open University of Israel

Dept. of Mathematics and Computer Science
1 University Rd., P.O.Box 808, Raanana 43107, Israel.

sagiy@cslab.openu.ac.il, lorenz@openu.ac.il

Abstract—Large and medium scale software projects often
require a source code revision control (RC) system. Unfortu-
nately, RC systems do not perform well with obliviousness and
quantification found in aspect-oriented code. When classes are
oblivious to aspects, so is the RC system, and the crosscutting
effect of aspects is not tracked. In this work, we study
this problem in the context of using AspectJ (a standard
AOP language) with Subversion (a standard RC system). We
describe scenarios where the crosscutting effect of aspects
combined with the concurrent changes that RC supports can
lead to inconsistent states of the code. The work contributes
a mechanism that checks-in with the source code versions
of crosscutting metadata for tracking the effect of aspects.
Another contribution of this work is the implementation of a
supporting Eclipse plug-in (named XRC) that extends the JDT,
AJDT, and SVN plug-ins for Eclipse to provide crosscutting
revision control (XRC) for aspect-oriented programming.

Keywords-revision control; version control; aspects

I. INTRODUCTION

From the beginning of Aspect-Oriented Software Develop-
ment (AOSD) [12], [15], the question “[h]ow do I know what
aspect affects my code?” [19] has been asked, and partially
resolved by enhancements made to the Integrated Devel-
opment Environment (IDE) for supporting Aspect-Oriented
Programming (AOP) [21].

The AspectJ Development Toolkit (AJDT) [7], an Eclipse
plug-in for AspectJ [20], for example, visualizes the “cross-
cutting effect” of aspects by displaying markers on a vertical
ruler in the editor, to denote advice, inter-type declarations
(itds), annotations, and soften exceptions. When rolling the
mouse cursor over the markers, a hint message with addition
information is displayed. However, there is no support in
AJDT for tracking these markers in previous versions of
the software. Consequently, it is difficult to discover which
aspects advised previous versions of a class. It is especially
difficult to compare two versions and review any changes to
the crosscutting effect.

Viewing a previous version (“history”) and comparing ver-
sions (“diff ”) are two of several classic operations provided
by a Revision Control (RC) system. Use of RC systems is
common in organizations that develop code, and is often
integrated with the IDE. Indeed, the Eclipse IDE provides a
GUI for common RC services. In Eclipse, diff displays the
text of the compared revisions of the file, highlighting the

differences in a Compare view. However, the Compare view
displays neither AJDT markers (advice, itds, annotations,
soften exceptions) nor JDT markers (breakpoints, tasks,
warnings, etc.). Needless to say, there is no support for
comparing markers.

A. AOP and Revision Control Systems

Many RC systems follow the tradition of Source Code
Control System (SCCS) [25] in managing revisions of pro-
grams as (text) documents organized in files (e.g., RCS [26]).
They store and display (textual) differences between succes-
sive revisions. They also offer facilities for merging parallel
revisions by reconciling the differences. However, AOP
by nature defies these principles. First, concerns crosscut
the file structure. Second, obliviousness [16] leaves certain
crosscutting effects undetected in the (textual) display of
files and changes. Third, quantification [17] may escape
version dependency management.

For example, let C be a versioned class, and let A be a
versioned aspect that advises C. Let C ′ and A′ be newer
versions of C and A, respectively. Assume that revision v1
comprises the set of files {C,A}; and that revision v2
comprises the set of files {C,A′}. Assume that revision v′2
comprises the set of files {C ′, A}, modified in parallel to
revision v2; and that revision v3 comprises the files {C ′, A′},
by merging revisions of v2 and v′2. Let ∆ (v1, v3) denote the
“delta” between the two revisions v1 and v3.

In RC systems, inspecting ∆ (v1, v3) typically amounts
to displaying diff (C,C ′) and diff (A,A′), where diff is
an external tool for comparing two text files. However,
thanks to obliviousness, A′ may have an effect on (the
woven behavior of) C ′ that is not visible in diff (C,C ′).
Similarly, thanks to quantification, A′ may have an effect
on C ′ that is not visible in diff (A,A′). Let eff (A,C) denote
the “invisible” crosscutting effect that A has on C. Since
neither eff (A,C) nor eff (A′, C ′) are observable in code,
the difference between eff (A,C) and eff (A′, C ′) is, too, not
observable. In addition, eff (A′, C) and eff (A,C ′) may be of
interest but are also “invisible.”

B. Contribution

This work introduces XRC, which stands for Crosscutting
Revision Control. XRC is an approach (backed up by a

978-1-4673-1067-3/12/$31.00 c© 2012 IEEE ICSE 2012, Zurich, Switzerland321

Authorized licensed use limited to: Technion Israel Institute of Technology. Downloaded on March 08,2021 at 14:21:01 UTC from IEEE Xplore. Restrictions apply.

prototyped tool) for better supporting revision control of
AOP programs. Intuitively, the core idea of XRC is to
persist to the RC system the otherwise transient eff (A,C),
as crosscutting metadata (XMD) associated with C. This,
combined with new RC and IDE capabilities for displaying
and comparing the XMD, provides crosscutting revision
control for AOP programs that is currently lacking.

The general problem of applying RC to XMD may be
broken down into four sub-problems: metadata persistence,
metadata comparison, versioned metadata display (viewing
a previous version and displaying the differences), and
integration with the software development process.

As a proof-of-concept, we prototyped an XRC Eclipse
plug-in for AspectJ and Subversion (SVN). Specifically, the
plug-in provides:
• Persistent representation of metadata. The XRC plug-

in maintains the XMD and checks it in with the source
code files.

• Diff engine for metadata comparison. Since the cross-
cutting effect is often not visible in the code, the plug-in
introduces a semantic diff that is XMD-aware.

• Visual means for versioned metadata display. Markers
and hint messages are currently ignored by the RC
system and by the IDE compare tool. The XMD plug-
in introduces new visual markers and new means to
visually display a comparison and present the XMD
differences with the compared files.

• RC–IDE Integration. A traditional RC system treats the
file as the unit of revision. However, XMD by essence
crosscuts the file structure. For example, the XMD may
change, while the code in the file remains unchanged.
This requires adapting the RC–IDE processes for save,
build, check-in, display version, compare versions, etc.

The inherent difficulty in bridging RC and IDE services
for AOP stems from their respective biases. Traditional
IDE support for AOP is associated with the build process
(compilation) in order to provide the necessary weaving
information, while RC systems are associated with the
storing and retrieving of unwoven files and are ignorant of
any weaving information.

We provide a solution for AOP-related XMD. However,
the solution can be generalized to handle metadata that rep-
resents other kinds of markers. Support for save, compare,
and display of metadata might be useful for errors and
warnings as well, or any other metadata that is associated
with the source code.

II. PROBLEM ILLUSTRATED

To illustrate the problem and its consequences, consider a
bank account application, comprising an Account class with
several methods, among them a method named withdraw.
A developer might misspell the name of the method as
“withdrow” (“o” instead of “a”).

Figure 1: diff between [Rev:413] and [Rev:412]. No markers are
shown despite the existence of an aspect that advises “withdrow”
in [Rev:412].

A. Being Unaware of an Aspect (Scenario II-A)

Suppose that another developer notices the typo and in the
next revision, Account′, corrects the spelling everywhere,
except for an occurrence in the code of an aspect (named
BlackListAdvice), a reasonable oversight when using the
rename refactoring tool in Eclipse. This oversight will often
go unnoticed. On comparing the class source code to its
previous versions, diff (Account,Account′), the only visual
difference is the spelling correction. Figure 1 depicts the
Compare view, comparing Account with Account′. There
is no indication that the crosscutting effect has changed.
Actually, there is no visible reason to expect a different
behavior when executing the method.

Hopefully, if we were to use JUnit or the like, a test might
now fail and yield an error (otherwise this bug would be very
hard to discover). In Figure 2a, Account is shown with the
typo:

1) AJDT markers indicate the aspect’s crosscutting effect.
2) JUnit runs successfully, indicated by a green bar. A

limited user was identified, and the account has $50.
In Figure 2b, Account is shown after correcting the typo:

1) There is no indication of the aspect’s effect. Seem-
ingly, everything is fine. Note that also the Project
view shows no warnings or errors, since it is perfectly
legal for an aspect not to advise any method.

2) JUnit fails, indicated by a red bar. A withdraw that
should have been rejected was committed successfully.

322

Authorized licensed use limited to: Technion Israel Institute of Technology. Downloaded on March 08,2021 at 14:21:01 UTC from IEEE Xplore. Restrictions apply.

(a) With the typo “withdrow” in the method name. (b) After correcting the typo in the method name.

Figure 2: Account code displayed in Eclipse with the AJDT plug-in.

public class LimitedUserTester{
@Test
public void withdraw(){
String user = "black Mamba";
Account account = new Account(user, 50);
BlackList.getInstance().add(user);
account.withdraw(50);//expect to display error,

//and avoid the withdraw.
System.out.println("balance of "
+account.getOwner()
+" is "+account.getBalance());

assertTrue(account.getBalance()==50);
}

}

Listing 1: LimitedUserTester class after the fix.

However, inspecting the test code (Listing 1) provides no
indication as to why the test has failed, or, for that matter,
as to why the test passed in the first place. We only see that
a user was added to the black-list, and somehow withdraw
should have been blocked with an error. There is nothing to
assist the developer in finding and fixing the bug. There is
no indication (in the IDE) of any aspect advising the code.
Should we discover the aspect that ceased to advise, only
then the mysterious bug might be revealed.

B. Fixing Only the Aspect (Scenario II-B)

Alternatively, suppose that the typo was fixed in
the BlackListAdvice aspect (but not in the advised
classes), and that the aspect was checked in. Consequently,
BlackListAdvice ceases to advise Account, resulting in an
error that, similarly to the previous scenario, is not observed
when inspecting the class Account or its revisions.

A similar scenario could occur in concurrent development.
Assume two developers, Sagi and Dave, participate in a
project. Sagi works on a Logic domain that is not a cross-
cutting concern, while Dave is responsible for the Security
domain, which is a crosscutting concern. Dave deletes an
aspect or changes a pointcut that causes some target in the
Logic domain to stop being advised. Dave checks-in his
code. Sagi might then find out that his code is broken. It
could be difficult for him to discover the reason for the
problem, since he does not have a way to identify aspects
that advised the previous version but stopped advising the
current version of his class.1

C. Consequences

RC systems play an important role in supporting a healthy
software development process. Loss of RC support has

1Incidentally, this scenario was the motivation for this research.

323

Authorized licensed use limited to: Technion Israel Institute of Technology. Downloaded on March 08,2021 at 14:21:01 UTC from IEEE Xplore. Restrictions apply.

negative consequences on the entire software development
processes.

1) Loss of Code Review: Code inspection [13] or code
review [11], [18] refers to the ability to examine the source
code, in order to inspect correctness or to investigate failure.
However, Scenario II-A illustrates that viewing the previous
version of Account (a version that worked) does not reveal
the complete behavior of withdraw.

2) Loss of Change Control: Before code is checked in,
it is considered good practice to have the code reviewed
by another programmer (“review before merge” policy [2],
[24]). This practice keeps the RC system “safe” with rela-
tively stable code, since all checked-in changes have been
reviewed. However, altering the behavior of a class through
an aspect occurs without change control on the affected
class. When an aspect is checked in, the RC system does not
ask for approval, nor does the RC system require to check in
the affected classes. These classes thus escape code review
and bypass change control.

In Scenario II-A, Account was developed prior to
BlackListAdvice. When BlackListAdvice was added and
checked in, loss of change control occurred from the
Account class point of view. In Scenario II-B, after cor-
recting the BlackListAdvice aspect, there was no need to
check in the Account class, and therefore loss of change
control occurred again.

3) Loss of Code Evolution Tracking: Loss of change
control might lead also to loss in evolution tracking. A
change to an aspect that advises a class does not require
to check in that class. If the class is not checked in, it
has no version for that change, which makes evolution
especially difficult to track. In Scenario II-B, after the aspect
BlackListAdvice ceased to advise Account, it was checked
in but Account was not. The changes to the woven behavior
of Account is thus an evolution that went unnoticed. Note
that Figure 1 does not expose the change in the behavior
of Account.

Even when the aspects that advise the versioned classes
are known, the order of the changes might be obscure.
For AOP code, the evolution of a class is not necessarily
sequential. Without aspects, every change to the class is
checked in through consecutive versions. It is clear that
the change did not affect previous versions. With aspects,
the versions of the classes and aspects are independent and
they evolve in parallel. Even with timestamps and version
numbers that expose the check-in order, still one cannot
determine the actual history.

For example, assume that an aspect A advises a class C
and both {A,C} were checked in, then evolved to {A′,C ′}
and checked in again, and then evolved to {C ′′, A′′}. View-
ing the history, if the check-in order was A → C ′ → A′, one
cannot tell if C ′ worked with A or with A′. If the check-
in order was A′→C ′→A′′, one cannot tell if C ′ worked
with A′ or A′′.

Even when “everything” about the aspects that advise
the versioned classes is known, the changes to the class
might be spread over many versioned aspects and classes.
Tracking the changes without tool support is a difficult and
tedious task that requires navigating through multiple files
back and forth. The Eclipse Compare view, for example, will
no longer display all the changes in a single view.

4) Loss of Reversion to a Stable Revision: RC systems
help to locate and revert to a previous stable version.
However, due to loss of code evolution tracking, it becomes
more difficult to find a stable point in the history to revert
to.

5) Loss of Team Development Support: RC systems
enable several developers to check out and modify the
same class, and then merge and resolve conflicts on check-
in. However, when different developers work on different
aspects that advise the same class, the RC system is unaware
of the potential conflicts. The aspects will be checked in with
no errors or warnings from the RC system, since they are in
different files. Conflicting changes will be discovered during
build (in case of a failure), or during deep code review, or
at runtime.

III. SOLUTION AND IMPLEMENTATION

The main requirement for crosscutting revision con-
trol (XRC) is adding revision control support for the cross-
cutting metadata (XMD). The root of the problem is that
the RC system is unaware of the XMD. An instance of the
problem is that the Eclipse IDE with the AJDT and SVN
plug-ins does not manage, store, or display the XMD.

To provide revision control for XMD, there is a need to
represent, persist, compare, and display XMD. The required
components for the solution are:

1) An abstract data type (ADT) for representing XMD,
and the ability to associate and store the XMD with a
source code file.

2) A diff engine that enables comparing the XMD of two
files (or two versions of the same file).

3) Visual enhancements that enable displaying markers
(e.g., markers that the Java editor displays for advice)
when comparing Java source files and when viewing
a previous version.

4) RC–IDE integration that, together with the other com-
ponents, provides a mechanism for saving, comparing,
and displaying XMD.

We implemented an XRC plug-in for Eclipse that demon-
strates the feasibility of the approach. The XRC plug-in
extends JDT and AJDT, and uses the SVN plug-ins for
Eclipse to provide the XRC solution.

A. Crosscutting Metadata (XMD)

In Section I we denoted by eff (A,C) the crosscutting
effect of A on C. Since C might be advised by multiple

324

Authorized licensed use limited to: Technion Israel Institute of Technology. Downloaded on March 08,2021 at 14:21:01 UTC from IEEE Xplore. Restrictions apply.

aspects, its XMD sums to:

XMD(C) =
⋃

A

eff (A,C)

where A ranges over all aspects in the project. Similarly,

XMD(A) =
⋃

C

eff (A,C)

where C ranges over all classes in the project. It should
be noted that XMD(C) and XMD(A) include concrete in-
formation, such as the line numbers of specific pieces of
advice and effected program elements. For conciseness and
for symmetry considerations, we focus in this paper mainly
on XMD(C). Hereafter, we call the metadata that we want
to preserve XMD information or simply XMD.

1) AJDT metadata: The AJDT plug-in displays XMD
information visually using markers and hint messages in the
Eclipse editor. Internally, AJDT represents the XMD with a
map ADT:

Map < int, List < IRelationship >>

A key in this map represents a line number in the source
code. A value in this map is a list of IRelationship objects,
where IRelationship is an interface defined in AJDT. An
implementation of IRelationship contains the relevant data
of a single piece of advice: source, target list, name, and
kind of the advice. This map is the XMD in AJDT.

2) XRC metadata: The XMD that XRC writes to and
reads from the RC system is essentially the AJDT XMD,
enriched with data that XRC requires: the version of the
advising aspect, a flag in case the advising aspect was
modified locally and differs from its version in the RC
system repository, and the details of the parent in a declare
parents advice.

B. Diff Engine

The diff engine takes the XMD of two class versions,
compares them, and returns a data structure with the differ-
ences. Comparing only the markers is obviously not good
enough, because the same icon might represent different
kinds of advice or advice from different aspects.

A simple straightforward comparison would be to com-
pare the pieces of advice per line, and mark the differences.
However, this solution gives false positive results. For ex-
ample, adding a single empty line at a beginning of a class,
checking it in, and comparing it with its previous version
will flag all the advice as being different from the previous
version. A developer will have to inspect each one of them
just to conclude that the crosscutting effect stayed the same.

Comparing the pieces of advice sorted according to their
line number may still give false positive results, e.g., for a
piece of advice that is moved before another piece of advice.
In order to avoid such false positives, a piece of advice that
has moved from one line to another with the same content is

considered unchanged. This is adapted from ldiff [4], [5],
an enhanced line differencing tool that is capable of tracking
text that was moved to another line, thereby distinguishing
line additions and deletions from line modifications.

Each line has a list of IRelationship, each comprising
multiple targets that the piece of advice affects. The XRC
diff engine compares XMD(C) with XMD(C ′) by first
“flattening” the data, then computing the differences, and
finally “inflating” the result back into a format that Eclipse
understands:

diff (XMD(C),XMD(C ′)) = d∆ (bXMD(C)c , bXMD(C ′)c)e
For this, XRC uses two methods that translate the XMD
representation required for display to the representation
required for comparison, and back:
• flatten : XMD → Set < IRelationship >,

denoted b�c, takes an XMD object, and returns a
Set < IRelationship > based on the IRelationship ob-
jects in the XMD. It breaks each IRelationship with
multiple targets into single-target IRelationship objects,
and removes the line numbers.

• inflate : (XMD, Set < IRelationship >) →
XMD, denoted d�e, takes an XMD object, and a
Set < IRelationship >. It constructs and returns a new
XMD with the IRelationship objects from the input set
restored to their original structure and line numbers,
accumulating targets of the same line to a list in order
for Eclipse to be able to use the data for displaying the
XMD.

C. Visual Enhancements

1) AJDT Markers and Rulers: AJDT displays the mark-
ers in the editor, via a ruler to the left of the source, as shown
in Figure 2a. Table I summarizes the AJDT marker types,
sub-types, and their icons. A marker represents a relationship
between the class being edited in the editor and the aspects
that advise it (or vice versa, a relationship between the
aspect being edited in the editor and the classes it advises).
Since one implies the other, the table reflects a symmetry in
both the marker types and their icons. AJDT also provides
navigation from the aspect to the class and vice versa via a
pop-up menu, by clicking on a marker. AJDT markers are
created and updated on build.

2) XRC Markers and Rulers: In order to display the
differences in a Compare view, we use rulers similar to the
one used in the editor. For this, we extended the Eclipse
JDT infrastructure to provide support for rulers in a Compare
view. A side benefit of this effort is that these rulers can also
be used for other tasks that involve displaying markers in the
Compare view. On a ruler, named advice-ruler, we display
the AJDT markers, and use a changed advice highlight
marker (Table II) to emphasize the differences. This marker
changes the background of a marker that has changed, and
can thus be visually superimposed over existing markers.

325

Authorized licensed use limited to: Technion Israel Institute of Technology. Downloaded on March 08,2021 at 14:21:01 UTC from IEEE Xplore. Restrictions apply.

Table I: AJDT Markers.
Marker type on Class Marker type on Aspect Subtype Icon on Class Icon on Aspect

Advised by Advises

before before_advice source_before_advice

after after_advice source_after_advice

around around_advice source_around_advice

advice advice source_advice

extension itd source_itd

Aspect declarations Declared on

implementation itd source_itd

declare a member itd source_itd

declare a method itd source_itd

warning warning source_itd

error error source_itd

Annotated by Annotates N/A itd source_itd

Soften by Soften N/A itd source_itd

Table II: XRC Markers.
Marker type on Class Subtype Icon on Class

Changed advice highlight N/A changedadvice

Changed advice
add add2

remove remove2

modified modified2f

On a second ruler, named diff-ruler, inspired by the
obsolete AJDT Crosscutting Comparison view [6] (reviewed
in Section V-B1), we mark the nature of the change. Two
addition markers, add and remove (Table II), are used to
indicate advice addition and removal, respectively. A fourth
marker, named modified (Table II), is used to warn the
programmer that the advising aspect (for the marked advice)
is not a versioned one, but its state was nonetheless modified
when the advised class was checked in.

To understand the need for the modified marker consider
the following scenario. Let C be a versioned class. Let A
be a versioned aspect that advises C. Let A′ be a modified
version of A that was not checked in yet, but advises C dif-
ferently than A. Suppose C is being reviewed and checked-
in as C ′, with the metadata that represents eff (A′, C).
Let A′′ be a modified version of A′ that advises C differently
than A or A′. A′′ is checked in, while A′ was never checked
in. This scenario leads to a situation that the metadata of C
is allegedly deceptive. diff (C,C ′) will display the modified

marker, since A′ is unattainable, and it can only hint on A
as its predecessor. The modified marker helps distinguishing
between the situation where the version of the aspect is
known and trusted, and the situation where it is unknown
and only the previous version of the aspect that has been
checked in is known.

D. RC–IDE Integration
XRC is integrated with the IDE and modifies its save,

build, check-in, history, and compare processes.
1) Save: Save is done in three steps:
• Execute JDT’s save process. When the developer saves

a file, the JDT’s save process runs, and at some point
XRC gains control over the save process.

• Extract and save the markers. XRC extracts the markers
from the file into a Serializable object, and saves it in
the RC system as a property associated with the file.

• Create and register an AJBuildListener for the saved
resource. An AJBuildListener is created and registered
for the file, in order to handle it on the next build.

2) Build: Build is done in four steps:
• Execute JDT’s and AJDT’s build processes. XRC works

in post build, when the models in JDT and AJDT are
already updated. XRC hooks to the postAJBuild hook
by using AJBuildListener. The listeners are registered
when saving a file.

• Find affected files. XRC compares the XMD of the file
with its predecessor, and analyzes which of the affected
files differ.

• Extract and enhance the XMD. For each affected file,
XRC uses JDT and AJDT to find the AJDT XMD and

326

Authorized licensed use limited to: Technion Israel Institute of Technology. Downloaded on March 08,2021 at 14:21:01 UTC from IEEE Xplore. Restrictions apply.

enhances it with the XRC XMD (adding parent details,
target revisions, etc.).

• Write the XMD. XRC writes the enhanced XMD as
a property of the working copy of the file. The file
is then marked as dirty (SVN marks the file as dirty
automatically when its properties are modified).

3) Check-in: SVN supports version properties per file. A
file might have properties and SVN stores them with the file.
From the SVN point of view, modifications to the properties
are similar to modifications to the file, and the properties are
checked in with the file. XRC exploits this feature to attach
metadata to the file, letting this metadata be versioned with
the file.

4) Display a Previous Version: When reading a file from
the RC system, XRC reads the XMD from the properties of
the file, and displays the markers accordingly.

5) Compare Versions: When comparing two previous
versions:
• Execute JDT’s compare process. When the developer

compares files with a “.java” or “.aj” extension,
XRC takes control over the compare process.

• Read the XMD. XRC reads the XMD for each of the
compared versions.

• Run the diff engine. The diff engine compares the
XMD, and returns an object with the differences.

• Create and display the markers. XRC creates markers
according to the differences. The markers are assigned
to the advice-ruler and to the diff-ruler, on each side of
the Compare view.

IV. EVALUATION

The magnitude of the problem in practical settings can be
learned from related studies. Ferrari et al. [14], for example,
conducted an exploratory analysis of twelve releases of three
medium-sized real-word aspect-oriented systems taken from
different application domains. Their analysis examined how
obliviousness influences the presence of faults in evolving
aspect-oriented programs. They found that obliviousness
facilitates the emergence of faults under software evolu-
tion conditions. Their analysis confirmed, with statistical
significance, that “the lack of awareness between base and
aspectual modules tends to lead to incorrect implementa-
tions” [14].

To regain crosscutting awareness, XRC enables integrated
RC support for crosscutting metadata. To assess the ability
and efficiency of XRC in tracking down inconsistency
problems, we performed coverage tests and examined the
behavior of XRC on several small examples qualitatively as
well as on a larger open-source project. AJHotdraw [10] is
an aspect-oriented refactoring of JHotDraw, a relatively large
and well-designed open source Java framework for technical
and structured 2D graphics. We reviewed the AJHotdraw
code with XRC, including: modifying, checking-in, viewing
previous versions, and comparing versions of aspects and

Figure 3: diff between [Rev:413] and [Rev:412] with XRC. In
comparison with Figure 1, markers are displayed and compared.

classes. We noticed no apparent degradation in performance
and we confirmed that the overall user experience is consis-
tent with that of JDT.

A. Comparing Two Advised Versions

Revisiting the scenarios presented in Section II but this
time with the Eclipse plug-in for XRC, comparing the
Account to its previous version immediately reveals that
something is different with the advice (Figure 3). Rolling
the mouse cursor over the marker shows a hint message
stating that the BlackListAdvice aspect ceased to advise.

B. Viewing an Advised Revision from SVN History

With the Eclipse plug-in for XRC, markers are displayed
also for old versions of Account. In Figure 4, the selected
title tab confirms that we are looking at [Rev:320] of
MyClass. The figure displays a variety of markers that
represent XMD. Note that without the XRC plug-in, none of
these markers would have been displayed in the left toolbar.

C. Regaining RC Support for SW Development Processes

1) Regaining Code Review: Viewing a previous version
of Account with XRC now displays every advice that
affected that version. The hint messages help understand the
way the code used to work.

2) Regaining Change Control: Repeating Scenario II-B
with XRC, once the BlackListAdvice aspect is fixed, the
XMD of the Account class is updated during build and
flags the class for check-in. A code review of Account will
probably expose the bug before check-in. However, even a

327

Authorized licensed use limited to: Technion Israel Institute of Technology. Downloaded on March 08,2021 at 14:21:01 UTC from IEEE Xplore. Restrictions apply.

Figure 4: Viewing an old version [Rev:320] of a class retrieves
the XMD from SVN and displays the AJDT markers in the left
toolbar.

check-in without fixing the bug will distinguish the previous
version that worked from the new version that does not work.

3) Regaining Code Evolution Tracking: With XRC, the
developer has to check-in the Account class whenever the
aspect is modified. This check-in enables tracking code
evolution. The diff in Figure 3 shows the change in the
behavior of Account. On both sides of the Compare view,
a marker indicates that an aspect ceased to advise. Rolling
the mouse cursor over the marker displays a more detailed
hint message that explains why.

4) Regaining Reversion to Stable Revision: Checking-in
a revision of Account also helps to later identify a stable
revision to be checked-out.

5) Regaining Team Development Support: When change
control is regained, the RC system will detect and prevent
overlapping changes to the XMD of a class, without first
resolving all conflicts.

D. Threats to Validity

While the findings in Ferrari et al.’s study [14] indicate a
need for a tool like XRC, a user study would be needed to
assess the effectiveness of the XRC plug-in as a productivity
tool in practice. Analyzing what percentage of the faults
reported in the study [14] could supposedly be avoided had
XRC been used is also a topic for future work.

The XRC tool was built and tested to work with a specific
RC system and IDE, namely: SVN version 1.6.3, Eclipse

version 3.7 (Indigo), and AJDT version 2.1.3. However, the
approach should be applicable in general, and plug-ins can
be implemented for other RC systems or for persisting other
sorts of metadata.

A limitation of the approach is that the change control
provided via XRC depends on the build process to keep
the XMD up-to-date. Recall that AJDT updates its markers
on build, and XRC is based on AJDT. Consequently, build
must be done before check-in. Eclipse requires to perform
team > cleanup for a project or a folder in order to
synchronize changes with the SVN. This should be done
after build, and before code reviews, in order to gain the
XRC change control.

However, this limitation can be minimized by setting auto-
build in the Eclipse configuration (which is also the default
setting in Eclipse). XRC does not require saving the woven
classes. For each file, it only persists the source and its
relevant XMD, so it is efficient in terms of space require-
ments. Getting the metadata requires a single read from the
RC system. The recommended development process is thus:
save, build (if auto-build configuration is not set), review
all the changes, and check in all the files that have been
changed.

V. RELATED WORK

A. AspectJ Development Toolkit

The AJDT Eclipse plug-in adds to the IDE new capa-
bilities for visualizing crosscutting effects. It computes the
crosscutting metadata and introduces markers that hint about
eff (A,C) when editing C or A. Eclipse uses a vertical ruler
in the editor in order to display these markers. Additional
hint messages are displayed when rolling the mouse cursor
over the markers. However, these markers are not saved with
the file and thus not checked-in with revisions of C or A.
AJDT displays this information only for the current version.
When viewing previous versions of C and A, the markers
(which are likely to be different, since different versions of
aspect could advise different versions of classes) are not
shown.

AJDT uses advice markers in order to display crosscutting
metadata in the current version. We reuse the AJDT markers
in order to display the same kind of metadata also for
viewing a previous version and for displaying the diff of
two versions. We added in the Compare view a ruler and
designated markers for the purpose of displaying the essence
of the change.

B. Obsolete Features of AJDT

Interestingly, early versions of AJDT did include facili-
ties for crosscutting comparison and changes, which were
eventually removed.

328

Authorized licensed use limited to: Technion Israel Institute of Technology. Downloaded on March 08,2021 at 14:21:01 UTC from IEEE Xplore. Restrictions apply.

1) Crosscutting Comparison (Obsolete Feature): A
Crosscutting Comparison capability was part of the
AJDT 1.2.1 and 1.3 releases. Crosscutting Comparison en-
abled a developer to take a snapshot of the crosscutting
relationships in the project, save it to a file, and then compare
the snapshot with the relationships present in a later version
of the project. The results of the comparison were displayed
in a special designated view [6].

In AJDT 1.6.1, the crosscutting model enhancements and
the internal representation of the crosscutting model became
redundant and removed in order to improve the performance
of the edit, save, and build operations. The Crosscutting
Comparison functionality and view relied on the model that
was removed, and thus abandoned.

In comparison to XRC, the AJDT Crosscutting Com-
parison obsolete feature had the following disadvantages.
First, the Crosscutting Comparison view lacked consistency
with the Eclipse Compare view, and did not integrate the
display of differences with the Compare view. Second, it
managed all the relationships of the project in a single file.
Specifically, it did not allow one to save or examine the
differences per class or per aspect. Third, it required to save
snapshots manually. Fourth, it did not support the enhanced
crosscutting model of Eclipse. Eclipse version 3.4 and higher
requires AJDT version 1.6.1 or higher, which no longer
supports this functionality.

2) Crosscutting Changes (Obsolete Feature): AJDT 1.5
introduced another relevant feature, named Crosscutting
Changes. With this feature, advice markers were highlighted
when the crosscutting effect has changed, such as when a
method is advised for the first time, or when there has been
a change in the set of places affected by some advice. The
reference point for the comparison could be chosen using a
drop-down menu on the Crosscutting Comparison view. The
possible choices were: to use the last build (of any type),
the last full build, or a crosscutting map file in the project.
This feature has been abandoned as well, in favor of the
crosscutting model enhancements in AJDT 1.6.1.

The Crosscutting Changes feature relied on the Crosscut-
ting Comparison, which is obsolete. In comparison to XRC,
it did not support the resolution of versioned classes and
aspects from a RC system.

C. Specialized Differencing Tools

Many semantic differencing tools enhance the simple diff
textual comparison tool for the purpose of tracking software
evolution. Some analyze the RC repository to better detect
high level structural changes (e.g., UMLDiff [27]), infer
systematic changes (e.g., LSdiff [22], [23]), or even rec-
ommend adaptive changes for keeping up with the software
evolution (e.g., SemDiff [8], [9]). In contrast, XRC adds
to the RC system repository new XMD information, which
is readily available in the IDE but not tracked. This extra

information may help mining tools and programmers detect
more crosscutting inconsistencies and avoid potential bugs.

D. Crosscutting Configuration Management
TOFRA [1] is a tool that addresses the problem of con-

figuration management (CM) in the context of Crosscutting
Frameworks (CFs) [3]. CFs are aspect-oriented frameworks
that handles a single crosscutting concern. One or more
CFs may be weaved with the application, and CFs might
be reused across different applications. TOFRA’s support
for version control in CF-based development focuses on
managing the dependencies among versioned CFs and ver-
sioned applications. In comparison, XRC provides actual RC
support for developing AOP applications, integrated with the
IDE and the RC system.

VI. CONCLUSION

Traditional RC systems predate AOP, and external diff
tools, code history views, and other elements of the RC sys-
tem and its integration with the IDE were never fully adapted
to AOP. Since software product development, medium or
large, requires revision control, the lack of appropriate
support is an obstacle that hinders the use of AOP.

This work introduces crosscutting revision control—a
novel approach and a supporting Eclipse XRC plug-in—that
improves the revision control of AOP code. The XRC plug-
in for Eclipse provides the essential means for persisting,
comparing, and displaying crosscutting metadata (XMD).
The XMD is maintained and checked-in with the code. The
persisted XMD is then used by the Eclipse IDE to mark with
marginal icons the effect of aspects on previous versions
of the code and to indicate whether or not that effect has
changed.

XRC reintroduces RC to the aspect-oriented software
development process, and identifies the gap that RC systems
should bridge in order to improve RC support for evolving
aspect-oriented programs. The approach, however, is not
limited to AOP. It may be applied to breakpoints, warnings,
and other markers and metadata.

ACKNOWLEDGMENT

We thank Gennady Agranov, Shai Koenig, Oren Mishali,
Boaz Rosenan, and the anonymous reviewers for their useful
comments. This research was supported in part by the Israel
Science Foundation (ISF) under grant No. 926/08.

REFERENCES

[1] M. M. Arimoto, M. I. Cagnin, and V. V. de Camargo. Version
control in crosscutting framework-based development. In
Proceedings of the 23rd Annual ACM Symposium on Ap-
plied Computing (SAC’08), pages 753–758, Fortaleza, Ceara,
Brazil, 2008. ACM Press.

[2] A. Begel and B. Simon. Novice software developers, all
over again. In Proceedings of the 4th International Workshop
on Computing Education Research (ICER’08), pages 3–14,
Sydney, Australia, 2008. ACM Press.

329

Authorized licensed use limited to: Technion Israel Institute of Technology. Downloaded on March 08,2021 at 14:21:01 UTC from IEEE Xplore. Restrictions apply.

[3] V. V. de Camargo and P. C. Masiero. A pattern to design
crosscutting frameworks. In Proceedings of the 23rd Annual
ACM Symposium on Applied Computing (SAC’08), pages
759–764, Fortaleza, Ceara, Brazil, 2008. ACM.

[4] G. Canfora, L. Cerulo, and M. Di Penta. Ldiff: an enhanced
line differencing tool. In Proceedings of the 31st International
Conference on Software Engineering (ICSE’09), pages 595–
598, Vancouver, Canada, May 2009. IEEE Computer Society.

[5] G. Canfora, L. Cerulo, and M. Di Penta. Tracking your
changes: A language-independent approach. IEEE Software,
26(1):50–57, 2009.

[6] M. Chapman. AOP@Work: New AJDT releases ease AOP de-
velopment. http://www.ibm.com/developerworks/java/library/
j-aopwork9/, Aug. 2005.

[7] A. Clement, A. Colyer, and M. Kersten. Aspect-oriented
programming with AJDT. In J. Hannemann, R. Chitchyan,
and A. Rashid, editors, Proceedings of the Workshop on
Analysis of Aspect-Oriented Software, Darmstadt, Germany,
July 2003. ECOOP’03.

[8] B. Dagenais and M. P. Robillard. Recommending adaptive
changes for framework evolution. In Proceedings of the 30th

International Conference on Software Engineering (ICSE’08),
pages 481–490, Leipzig, Germany, May 2008. ACM Press.

[9] B. Dagenais and M. P. Robillard. Recommending adaptive
changes for framework evolution. ACM Trans. Softw. Eng.
Methodol., 20(4):19:1–19:35, Sept. 2011.

[10] A. van Deursen, M. Marin, and L. Moonen. AJHotDraw:
A showcase for refactoring to aspects. In Proceedings
of the AOSD’05 Workshop on Linking Aspect Technology
and Evolution (LATE’05), Chicago, IL, USA, Mar. 2005.
AOSD’05, ACM Press.

[11] S. G. Eick, C. R. Loader, M. D. Long, L. G. Votta, and
S. A. Vander Wiel. Estimating software fault content before
coding. In Proceedings of the 14th International Conference
on Software Engineering (ICSE’92), pages 59–65, Melbourne,
Australia, June 1992. ACM Press.

[12] T. Elrad, R. E. Filman, and A. Bader. Aspect-oriented
programming. Comm. ACM, 44(10):29–32, Oct. 2001.

[13] M. E. Fagan. Design and code inspections to reduce errors in
program development. IBM Systems Journal, 15(3):182–211,
1976.

[14] F. Ferrari, R. Burrows, O. Lemos, A. Garcia, E. Figueiredo,
N. Cacho, F. Lopes, N. Temudo, L. Silva, S. Soares,
A. Rashid, P. Masiero, T. Batista, and J. Maldonado. An
exploratory study of fault-proneness in evolving aspect-
oriented programs. In Proceedings of the 32nd International
Conference on Software Engineering (ICSE’10), pages 65–74,
Cape Town, South Africa, May 2010. ACM Press.

[15] R. E. Filman, T. Elrad, S. Clarke, and M. Akşit, editors.
Aspect-Oriented Software Development. Addison-Wesley,
Boston, 2005.

[16] R. E. Filman and D. P. Friedman. Aspect-oriented pro-
gramming is quantification and obliviousness. In P. Tarr,
L. Bergmans, M. Griss, and H. Ossher, editors, Proceedings
of the OOPSLA 2000 Workshop on Advanced Separation of
Concerns. Department of Computer Science, University of
Twente, The Netherlands, 2000.

[17] R. E. Filman and D. P. Friedman. Aspect-oriented program-
ming is quantification and obliviousness. In Filman et al.
[15], pages 21–35.

[18] M. Höst and C. Johansson. Evaluation of code review
methods through interviews and experimentation. Journal of
Systems and Software, 52(2-3):113–120, June 2000.

[19] M. Kersten. AO tools: State of the (AspectJ) art and open
problems. In M. C. Chu-Carroll, G. C. Murphy, S. Clarke,
J. Estublier, A. Finkelstein, B. Harrison, and E. Newman,
editors, Proceedings of the OOPSLA 2002 Workshop on
Tools for Aspect-Oriented Software Development, Seattle,
Washington, 2002.

[20] G. Kiczales, E. Hilsdale, J. Hugunin, M. Kersten, J. Palm, and
W. Griswold. An overview of AspectJ. In Proceedings of the
15th European Conference on Object-Oriented Programming
(ECOOP’01), number 2072 in Lecture Notes in Computer
Science, pages 327–353, Budapest, Hungary, June 18-22
2001. Springer Verlag.

[21] G. Kiczales, J. Lamping, A. Mendhekar, C. Maeda, C. Lopes,
J.-M. Loingtier, and J. Irwin. Aspect-oriented programming.
In Proceedings of the 11th European Conference on Object-
Oriented Programming (ECOOP’97), number 1241 in Lec-
ture Notes in Computer Science, pages 220–242, Jyväskylä,
Finland, June 9-13 1997. Springer Verlag.

[22] M. Kim and D. Notkin. Discovering and representing system-
atic code changes. In Proceedings of the 31st International
Conference on Software Engineering (ICSE’09), pages 309–
319, Vancouver, Canada, May 2009. IEEE Computer Society.

[23] A. Loh and M. Kim. LSdiff: a program differencing tool to
identify systematic structural differences. In Proceedings of
the 32nd International Conference on Software Engineering
(ICSE’10), pages 263–266, Cape Town, South Africa, May
2010. ACM Press.

[24] B. O’Sullivan. Making sense of revision-control systems.
Queue, 7(7):30:30–30:40, Aug. 2009.

[25] M. J. Rochkind. The source code control system. IEEE Trans-
actions on Software Engineering, SE-1(4):364–470, 1975.

[26] W. F. Tichy. RCS – a system for version control. Softw.
Pract. Exper., 15(7):637–654, July 1985.

[27] Z. Xing and E. Stroulia. UMLDiff: an algorithm for object-
oriented design differencing. In ASE ’05: Proceedings of
the 20th IEEE/ACM International Conference on Automated
Software Engineering, pages 54–65, Long Beach, CA, USA,
Nov. 7-11 2005. ACM Press.

330

Authorized licensed use limited to: Technion Israel Institute of Technology. Downloaded on March 08,2021 at 14:21:01 UTC from IEEE Xplore. Restrictions apply.

