
Versionable, Branchable, and Mergeable Application State ∗

David H. Lorenz1,2 †

1Open University, Raanana 43107, Israel
2Technion–Israel Institute of Technology,

Haifa 32000, Israel
dhlorenz@cs.technion.ac.il

Boaz Rosenan3

3University of Haifa,
Mount Carmel,

Haifa 31905, Israel
brosenan@gmail.com

Abstract
NoSQL databases are rapidly becoming the storage of
choice for large-scale Web applications. However, for the
sake of scalability these applications trade consistency for
availability. In this paper, we regain control over this trade-
off by adapting an existing approach, version control (VC),
to application state. By using VC, the data model is defined
by the application and not by the database. The consistency
model is determined at runtime by deciding when to merge
and with whom. We describe the design of a VC system
named VERCAST that provides fine-grained control over the
consistency model used in maintaining application state.

Categories and Subject Descriptors D.2.7 [Software En-
gineering]: Distribution, Maintenance, and Enhancement—
Version control; H.2.4 [Database Management]: Systems—
Distributed databases.

General Terms Design.

Keywords Source control management (SCM); Version
control (VC); Git; Optimistic replication; NoSQL; Consis-
tency; Availability; Conflict resolution; Transactions.

1. Introduction
Imagine a magic show in the two-dimensional world of
Flatland [1]. The magician, appearing to be a triangle, says
the magic word “threedimensionality,” and suddenly, in front

∗ This research was supported in part by the Israel Science Foundation
(ISF) under grant No. 1440/14 and by an Open University Research Grant
No. 502672.
†Work done in part while visiting the Faculty of Computer Science,
Technion—Israel Institute of Technology.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
Onward! 2014, October 20–24, 2014, Portland, OR, USA.
Copyright c© 2014 ACM 978-1-4503-3210-1/14/10. . . $15.00.
http://dx.doi.org/10.1145/2661136.2661151

of the amazed audience, his body gets disfigured until he
takes the shape of a circle. He says the magic word again and
becomes smaller and smaller, until his body vanishes into
thin air. Then a tiny triangle appears on stage, growing back
into the magician’s original size. To a Flatland resident, this
might look like magic, but for us this is just a cone rotating
and moving in space.

In this work we say the word “threedimensionality” to
persistent application state. Abstractly, application state can
be considered a data store implementing a two dimensional
mapping,

σ : key × time→ value

in which stored values are indexed by key and vary over
time. In practical distributed network implementations, how-
ever, the trade-off between consistency and availability man-
ifests to the user as what could be considered unexpected
behavior of the data store. We show that this problem may
be resolved by introducing a third dimension, placing the
state of an application under version control (VC) [22]. In
the NoSQL world this might look like magic, but in the soft-
ware engineering world this is just like source control man-
agement (SCM) [18].1

1.1 Consistency vs. Availability
Consider an on-line booking system, similar to the one used
for SPLASH.2 Two participants from two different cities
may attempt to book on-line the last discounted hotel room
at roughly the same time. What should the system do if dur-
ing these simultaneous booking attempts the network be-
tween the two data centers handling the two requests become
temporarily disconnected?

For handling such a case, the developers of the booking
system have a choice. One option is to design the system
for consistency, the default choice when using a relational
database. In such a case, at least one of the users will be
notified that the booking system is temporarily unable to
book the room, and asked to try again later. However, this

1 The term SCM is also known as source code management, revision con-
trol, and version control (VC).
2 The example is adapted from Sadalage et al. [19].

29

option is sometimes unacceptable. In the modern world of
e-commerce, “customers should be able to view and add
items to their shopping cart even if disks are failing, network
routes are flapping, or data centers are being destroyed by
tornadoes.” [8]

Another, more business-appropriate option is to prefer
availability, a choice made possible by choosing certain
NoSQL databases [19]. In such a case, the booking system
will optimistically approve both booking requests. At some
point, after communication is restored, the system will dis-
cover that the same room has been double-booked, and shall
issue a cancellation note to one of the customers apologizing
for the mix-up. This option may be satisfactory in case the
business environment is flexible enough. However, what if
the customer already booked a nonrefundable flight know-
ing he or she would have a place to stay? As one is often
reminded by one’s fiancée, there are times in life where one
needs to commit.

This trade-off between consistency and availability of
stored values is expressed by the CAP theorem [12]. In
practical terms, CAP states that, at the event of a network
partition (P), a key-value store σ that is replicated across the
network can remain either consistent (C) or available (A)
but never both [19]. Our “mental model” expects σ (κ, τ)
to retrieve exactly one value for a particular κ ∈ key and
τ ∈ time. However, at the event of a network partition,
σ (κ, τ) seems to have either more than one value (when
consistency is compromised in favor of availability), or no
value at all (when availability is compromised to ensure
consistency), which is surprising and unexpected.

1.2 Could We Be Living in Flatland?
The reason σ (κ, τ) does not always provide exactly one
value is that σ has an implicit third dimension: a replica.
That is, each time one consults the store, one actually con-
sults a replica of the store. The store’s implementation hides
these replicas from the user, and attempts to keep the various
replicas in sync. Unfortunately, keeping them in perfect sync
is sometimes impossible due to network failures, or unde-
sired due to synchronization latencies. As a result, the store
can be unavailable or inconsistent at times.

Making replica an explicit parameter of a three dimen-
sional mapping,

σ : key × time× replica→ value

can redress this issue, returning a single, definite value
v = σ (κ, τ, ρ), where ρ represents the replica. Unfortu-
nately, supplying the replica as an argument is mostly im-
practical. Replication is often considered an internal imple-
mentation detail not exposed to users. Moreover, for opti-
mization reasons, the data store may need to dynamically
choose a replica based on location or load considerations.
For these reasons and others, actual databases take different
measures for hiding the replica, keeping the user trapped in
a two-dimensional Flatland-like world.

1.3 The Missing Dimension
In this paper we suggest a practical way to make the third
dimension explicit in a way that will make sense to users, as
it is already handled in a different field of software, namely,
source control management (SCM).

Returning to the booking system example, the source
code of the booking system itself can also be considered
replicated data that is distributed across machines and global
locations. For example, the developers of the booking sys-
tem may be collaborating on the code from distant loca-
tions. The network they use is the same Internet used to run
the application, and prone to suffer from the same failures.
Interestingly, network failure may temporarily delay soft-
ware integration across development sites, but not hold back
the software development all together. This is thanks to dis-
tributed SCM tools, that, on the one hand, allow each devel-
oper to work on a private own copy of the source code, un-
interrupted by other developers or by network failures; and,
on the other hand, allow synchronization in form of merges.
This begs the question: could an SCM-like system provide
the same kind of freedom for application state?

What makes SCM so powerful is its three dimensional
nature. Like data stores, it has a key dimension (file path)
and a time dimension (version number). However, it also
has a branch dimension, which can be considered a “vir-
tual” replica dimension. Indeed, SCM systems are typi-
cally queried using all three dimensions. In many SCM sys-
tems (both distributed and multi-site), a branch belongs to a
replica. In Git, for example, the master branch in one replica
is a different branch than another replica’s master. In such
systems, specifying the three coordinates of key, time and
branch implies key, time and replica, and uniquely identifies
a version.

SCM is a special case of VC [22]. In this paper we use
the term VC more broadly than SCM to denote version-
able content of any kind, not limited to source code. VC
can be as simple as keeping track of history, allowing the
retrieval of past versions, but it becomes much more useful
when branching and merging capabilities come to play. For
the purposes of this paper, VC refers to the whole bunch,
branching and merging included.

2. Background
In this section we provide necessary background on the
problem domain. The reader that is familiar with NoSQL
may wish to skip this section.

2.1 SQL vs. NoSQL
For many years, relational databases [7] dominated the
database landscape for nearly any kind of application. They
had everything: a well defined data model based on well es-
tablished mathematical principles, a wide selection of open-
source and commercial implementations that guaranteed the
right performance for the right price, and to top it all, strong

30

standards, such as ODBC and SQL, which made it possi-
ble for users to migrate from one database to another with
relative ease.

However, relational databases fail to scale with the Web.
Today, NoSQL databases are often considered the paradigm
of choice for many emerging applications [19]. While rela-
tional databases are required (by standardization) to be fully
consistent, NoSQL databases allow different levels of con-
sistency, which in turn, allows different levels of availabil-
ity and performance. However, this variety comes with no
standardization whatsoever. Each NoSQL database offers its
own data model, consistency model, and API (Application
Programming Interface).

2.2 Data and Consistency Models
NoSQL databases are often classified by their data model
into four main categories [19]:

Key-value Store: a database that stores opaque values un-
der keys.

Wide-column Store: a database that stores data in cells
with two keys: a row key and a column key.

Document Store: a database that stores documents such as
JSON (JavaScript Object Notation) objects and often al-
lows partial update or retrieval of such documents, as
well as indexing documents based on their content.

Graph Database: a database that stores graphs, which are
highly efficient in finding nodes and paths on a graph
(e.g., finding mutual friends in a social network).

NoSQL databases can also be classified by their consistency
model. Roughly speaking, they can be divided into three
categories:

Sequential: a database in which, as in relational databases,
operations are performed sequentially with regards to
the entire database. ACID (Atomicity, Consistency, Iso-
lation, Durability) transactions are often used to achieve
this sequentiality. Examples include Neo4J [24] and other
graph databases.

Strongly Consistent (SC): a database in which each opera-
tion is performed atomically with regards to a subset of
the database (such as a row, or a document). No order can
be assumed between operations on different such subsets.
Examples include BigTable [6] and MongoDB [2].

Eventually Consistent (EC): a database that guarantees an
order on operations, given that enough time has passed
between them. In particular, when updating a database
entry κ to some value x, and then querying κ, the queried
value is guaranteed to be equal to x only if enough time
has passed between the update operation and the query,
and if no other update has been performed to κ during
that time. Examples include Dynamo [8] and Cassan-
dra [11].

2.3 Tight Coupling Between the Models
In many NoSQL databases, the API is tightly coupled with
both the data and consistency models. For example, Mon-
goDB, supporting SC, guarantees atomic changes on doc-
uments. To facilitate this, it provides a language for trans-
mitting reified modification requests to the server. This lan-
guage (part of the MongoDB API) is tightly coupled with the
MongoDB data model on the one hand, and its SC behavior,
on the other hand. As a consequence, application developers
need to choose a database (and hence, a consistency model)
at an early stage of development. Afterwards, moving from
one NoSQL database to another is hard, since the data model
and API are unique to each database. This is in contrast to re-
lational databases, where application development can start
with one database (typically, simple and cheap), and grad-
ually migrate to another (more expensive) database without
making fundamental changes to the software, that already
“speaks” SQL.

3. Motivating Example
Let us consider an alternative implementation for the book-
ing system discussed in Sect. 1. Assume it runs (like many
such systems) on many unrelated Web servers that are scat-
tered in different data centers all over the world. Unlike most
Web applications, these servers do not store their state on a
common database, but rather, each Web server stores its state
in a deep hierarchy of directories and text files on its local
disk. Let us assume that for the purpose of storing vacancies
in hotel rooms we use the following path:

/hotels/〈country〉/〈state〉/〈city〉/〈hotel〉/〈room〉
where 〈room〉 is a file consisting of lines of the form:
〈date〉: 〈customer〉. For example, the file

/hotels/US/OR/Portland/Marriott/1405

represents the availability of room 1405 in the Marriott
Downtown Waterfront Hotel in Portland, OR. If the file has
the following content:

1 2014−10−19:
2 2014−10−20: Boaz Rosenan

3 2014−10−21: Boaz Rosenan

4 2014−10−22: Boaz Rosenan

5 2014−10−23: Boaz Rosenan

6 2014−10−24: Boaz Rosenan

7 2014−10−25:

it means that the room has been booked by Boaz Rosenan
for the duration of SPLASH’14, and is vacant for one night
before and after.

Since each server stores information on its own file sys-
tem, information cannot be shared across servers. To solve
this problem (typically solved by a shared database), we will
use a VC system. Specifically, we will use Git [5].

Let us assume that after each change, each server com-
mits the modified files to the local repository (git commit

31

-a). Each server has a list of the other servers, and every few
seconds it picks a peer at random and pulls changes from that
peer (git pull). Git’s pull operation merges changes com-
mitted by the peer to the local file system. This serves the
purpose of an eventually consistent database (EC, Sect. 2.2):
if no conflicts are present, a change made on one server
will eventually propagate to all other servers. It also features
the main advantage of EC databases: a failure in one of the
servers, or in the network connection between them, will not
harm the availability of the service, just its consistency.

3.1 Conflict Resolution
Now assume Boaz Rosenan and David Lorenz try to book
the same hotel room at roughly the same time. Here “roughly
the same time” means that the server serving Boaz did not
get an update about David’s booking from the server serving
David, before committing Boaz’s booking, and vice versa.
In such a case, sometime down the road when both changes
eventually meet on a certain server, a merge conflict is iden-
tified by Git, and the git pull operation fails. When that
occurs, Git can report the names of the conflicting files, e.g.,
git status would list the conflicting files as both modified.
Inside each conflicting file, Git marks the conflict in the text,
in a similar manner to other SCMs. Using git annotate

we can determine the ID of the local change that caused the
conflict.

Our application will resolve the conflict by first undoing
the merge (git reset --hard) and then rolling back the
local change that caused it by calling git revert with the
change ID. This will undo the change by applying the op-
posite change. Pulling from that same peer will not conflict
anymore. All that is left to do is to notify the user whose
booking was canceled (either Boaz or David) of the need to
reserve a different hotel room. We can use the commit com-
ment in Git to convey the information of what needs to be
done when commits are reverted.

3.2 Who Decides?
The conflict resolution mechanism described in Sect. 3.1
should run on all servers, since any server may experience
conflicts. However, we can designate a particular server to
be the “decider.” When one books a hotel room on the file
system of that decider server, the booking is guaranteed.

One example of how this can be implemented is by giving
each server s a unique number u (s), e.g., some hashing of
its IP address. When a conflict between two servers s1 and
s2 is identified, if u (s1) < u (s2), s1 wins, and s2 needs
to roll-back its change. Otherwise, s2 wins, and s1 needs to
roll-back. The server smin for which u (smin) is the smallest
value across all servers is the decider.

Now assume, for those customers who need to know
for sure (e.g., those of us who need to buy nonrefundable
airline tickets), we add a special button in the booking page:
“Get confirmation now.” When a user pushes this button,
the server handling the request opens a connection to the

decider server, and asks it to pull changes from it. If the
pull operation succeeds without conflicts, the user is notified
that the booking is confirmed. If a conflict occurs, the user
is notified immediately. If the decider server is unavailable
for some reason (and that may happen because, after all, we
are counting on a single server here), the user is told the
reservation could not be confirmed, and asked to try again
later.

Some EC databases provide similar behavior, by support-
ing tunable consistency [11]. Tunable consistency states that
for each read or write operation, the user may decide how
many replicas should be contacted before considering the
operation successful. A confirmation button can be imple-
mented over such a NoSQL database by making an update
to the room availability data, requiring all replicas to be con-
tacted. If we do so, any conflict will be discovered before
the operation completes. Of course, any replica residing on
a computer to which we have no connection will cause a
temporary failure, just like when using Git.

3.3 All or Nothing Group Booking
So far we demonstrated with VC features similar to the
ones we have in state-of-the-art NoSQL databases (up to
performance, obviously). But we can do better.

Imagine we wish to allow customers to book more than
a single room. The rationale is to allow groups to travel
together, booking several rooms in a single hotel, or allowing
travelers to book rooms in different hotels, along the path of
their trip. If one of the rooms is unavailable, the entire order
should be canceled.

To support this, we allow users to modify any number of
files. The server will commit the changes to Git in a single
git commit operation. This way these changes will be a
part of the same commit, with the same commit ID. If a
conflict occurs, the same conflict resolution applies, only
that this time it would undo all changes in all files involved
in that commit.

Achieving group booking in a typical NoSQL database
is much harder. In many such databases, each change to a
data element (document, row, value, etc.) stands on its own.
Group booking cannot be done atomically, and it is possible
for an observer to see at a certain point in time some of
the rooms booked, and some vacant. Moreover, if a conflict
occurs in booking one of the rooms, all the bookings that
were already done must be undone. An observer may see a
room being booked and then immediately unbooked.

In the VC solution described here, we solved the group
booking problem by introducing transactions, a concept
largely abandoned by NoSQL databases [19]. These trans-
actions are similar in some ways to their ACID counterparts
in relational databases: they are Atomic, Consistent and Iso-
lated, all thanks to the atomicity of Git merges. However,
they are not Durable. A transaction can be undone after
having been committed successfully. In return, commits are
done locally and therefore fast, unlike two-phase commits

32

in the ACID world, which involve all replicas. Durability,
of course, can be achieved by contacting the decider server.
Once committed successfully to the decider, our transaction
will not be undone. The advantage we have here over rela-
tional databases and ACID transactions is that here we have
the power: we can decide when we want to wait for the de-
cider server and when we are willing to take our chances;
when we want certainty at the risk of unavailability; and
when availability is critical, and we are willing to risk hav-
ing our updates reverted.

3.4 Summary
While Git could handle the state of a simple booking system,
SCM systems like Git are designed for source code projects,
sized in Megabytes. They are not appropriate in real-life ap-
plications for persisting application state sized in Terabytes
or even Petabytes [14]. Git, like many SCM systems, merges
text files on a line-by-line basis. This forced us to design the
booking example in a way that each line stands on its own,
with files representing rooms and lines representing nights.
In real-life booking systems, however, booking is not done
to particular rooms but rather to room types. What matters
in these systems is the total number of rooms available of
each type. If Git had support for versionable objects, e.g.,
counters, our job could have been much easier.

4. Solution Domain
In this section we review the building blocks needed for
designing a VC system intended for application state.

4.1 Versionable Objects and Patches
In SCM systems, the term versionable objects typically
refers to files and directories. Many of these systems hold
a single version of each object in the user’s file system. This
version is usually called the working version (denoted w).
When the user commits changes to a file or a directory tree,
the SCM compares (diffs) the working version w with the
latest committed version v1 of the object, creating a patch
δ = w−v1. Patches represent changes or differences (deltas)
in the state of the repository. Applying patch δ to v1 will re-
sult in version v2, which is identical to the working version
w = v1 + δ = v2.

When we consider versionable application state, we refer
to versionable objects more loosely than SCM, and they can
take any shape or form. However, we do not hold a working
version. Instead, the application creates patches directly, and
applies them to the state. This means that we do not need
to define a diff operation on objects, just transformation
operations, detailing how patches are applied to objects.

Reversibility and Commutativity Versionable objects can
be compared to objects in OOP, with patches acting as mes-
sages. However, versionable objects must fulfill two require-
ments, namely: reversibility and commutativity (Fig. 1). We
expect patches to be invertible and their application to ver-

v1

v2

δ δ̄

(a) Reversibility

v0

v1 v2

v3

δ1

δ2

δ2

δ1

(b) Commutativity

Figure 1: Required properties of versionable objects

sions reversible (Fig. 1a). That is, if v1 + δ = v2, we expect
that there exists a patch δ̄ = inv(δ) computed based on δ
alone, such that v2 + δ̄ = v1. A patch therefore needs to con-
tain not just the information needed to perform the change
expected from it (postconditions), but also the information
needed to calculate its inverse (preconditions) [22].

For example, consider an atom object, which contains
some opaque value. Since the value is opaque, the only way
we can modify it is by replacing it. Consider a set patch
that replaces the atom’s content. To allow modification, we
need the set patch to contain the new value we would like to
store. To support inverting the patch, the patch also needs to
contain the value we are replacing. If we wish to replace the
value 1 with 3, our patch can be written as: δ = set 〈1, 3〉.
The inverse patch can be easily calculated: δ̄ = set〈3, 1〉.
In case the application of the patch cannot be reversed,
i.e., when the preconditions do not hold, the transformation
cannot be performed. We consider such a failure as a conflict.

A patch δ2 is said to be independent of patch δ1 with
respect to version v0, if v0 + δ1 + δ2 = v3 and v0 + δ2 = v2
can both be applied without conflict. In such a case we
require commutativity (Fig. 1b), i.e., that v0 + δ2 + δ1 = v′3
can also be applied without conflict, and that v′3 = v3.
Note that commutativity implies that patch independence is
a symmetric property, i.e., δ1 is independent of δ2 if and only
if δ2 is independent of δ1.

As a counter-example to this requirement let us consider
an object that represents a number and accepts four patches:
δ1 which increments the number, δ2 which doubles it, and
their inverses δ̄1 and δ̄2. It is obvious that for any valid state
(i.e., any number) any of the four patches can be applied
without conflict, and that the object satisfies the reversibil-
ity property. However, the commutativity property does not
hold. Applying δ1 and δ2 in a different order will result in a
different state. Therefore, such an object is not considered to
be a valid versionable object.

4.2 Persistent Trees
Woelker [25] points out that three systems (Git, CouchDB,
and Clojure), while being three different sorts of things (an
SCM, a NoSQL database, and a programming language,
respectively), have at least one thing in common: they all

33

use persistent trees. A fully persistent tree [16] is a tree
comprising immutable nodes. Once a tree node has been
created, it is never changed. Instead, changes to the tree
are performed by path copying, a technique that involves
copying all nodes along the path from the modified node to
the root, thus creating a new tree. The old and the new trees
share all nodes except those on the updated path.

Operations on persistent trees typically have the same
big-O time complexity as their non-persistent counterparts,
but they make non-destructive updates. For CouchDB, as
well as other NoSQL databases, persistent trees offer a way
to look at snapshots of the database as of a certain time.
This is needed to implement Multi Version Concurrency
Control (MVCC), which is common in the NoSQL world.
For functional programming languages (such as Clojure),
persistence is required by the nature of the language. Clojure
also uses this property to implement MVCC [13], in order to
support Software Transactional Memory (STM) [21].

Persistent Trees for VC Git uses persistent trees to repre-
sent the repository’s directory structure. Git holds an internal
key-value store, where objects (representing files and direc-
tories) can be retrieved by a unique ID. Git uses SHA-1 hash
of the content of an object as its key. Directories reference
subdirectories and files by storing their hash. If the content
of a file changes, its hash value changes. This way, the di-
rectory containing it needs to change (update of the hash),
and therefore its own hash changes. Eventually, the root di-
rectory’s hash values changes. This hash of the new root be-
comes the ID of the new version.

The use of persistent trees provides Git with an efficient
way to store and retrieve multiple versions of the same direc-
tory tree. Unlike many other SCMs that store a single version
of each file along with patches that can lead to all other ver-
sions, Git holds snapshots of all versions. When a patch is
applied (by performing a commit), a new root is created, and
its ID is stored. From this point on, retrieving that version is
as simple as traversing the directory tree from that root.

Similar to files and directories in Git, general versionable
objects can also be stored in a persistent tree. Each object
version v can have a unique version ID, [v], that is derived
from its value (e.g., by using a hash function). Object ver-
sions may reference versions of other objects by specifying
their version ID. This way, a version ID [v] does not only
specify a concrete version v of an object, but rather it also
specifies concrete versions for all objects in its underlying
sub-tree.

An important special case is the root object, which repre-
sents the entire application state. The version ID of the root
object represents the version of the entire state. For the rest
of this section, we discuss only the state of the root object.

4.3 Version Graphs and Merging
We define the version graph of an application as a directed
graph whose vertexes are all the versions taken by its root

LCA

v2v1

vm

∆2

∆1

∆1

∆2

Figure 2: Merging v1 and v2 into vm

object, and its edges represent the patches that caused the
transformation between these versions. If we were to use
a relational database to maintain our application state, our
version graph would have been linear due to its sequential
nature. However, since we allow patches to be applied to any
version, our version graph becomes more complex. Version
graphs are represented in different ways in different SCM
systems, but their common primary role is to support merges.

The algorithm we need for merging application state is
somewhat different than that commonly used in SCM sys-
tems. Typically, SCM systems perform merges by first iden-
tifying the effected files, and then performing three-way tex-
tual merges on these files. This method is inapplicable for
our purposes, because we use general objects rather than text
files.

The first step in merging two versions v1 and v2 of the
application state is finding their lowest common ancestor
(LCA) in the version graph (Fig. 2). The edges marked ∆1

and ∆2 in Fig. 2 indicate the paths from the LCA to v1
and v2, respectively, that exist in the version graph before
the merge. The next step is to apply to v1 all the patches
in the path ∆2. If no conflicts occur, the resulting version,
vm, is the result of applying to the LCA all patches in both
∆1 and ∆2. To record the merge in the version graph we
add the two dotted lines, indicating both the patches that we
applied during the merge, and the patches we would have
applied had we chosen to apply ∆1 on top of v2 instead. The
correctness of this last step follows from the commutativity
requirement. The choice of the direction in which to apply
the patches (apply ∆2 to v1 or ∆1 to v2) is arbitrary, since
both will yield the same merged version at the absence of
conflicts.3

4.4 Branches
One concept that we ignored so far is the notion of the
current version. Obviously, a good VC system can cope with
any number of current versions. For example, it is common
that when working on a software project, each developer
has a private version of the product, each feature and each
project has an integration version, there is a staging version

3 We extend this algorithm to handle conflicts in Sect. 7.2.

34

User Interface

VERCAST
ctx

Storage

Versionable Classes

external interface

programming interface

Figure 3: VERCAST interfaces

and, of course, a released version. In modern VC systems
each of these current versions is a head or a tip of a branch.

Branches can be seen as directed paths on a version graph.
In Git, branches are stored as mutable pointers to versions of
the tree.4 At any given point in time, for every branch, Git
holds a single head version. When a patch is applied to a
branch, it is actually applied to the tree version the branch
points to. Then, if no conflicts are detected, the branch head
is updated with the new version.

5. VERCAST

VERCAST is a VERsion Controlled Application STate frame-
work. It is a VC system designed for managing versionable,
branchable, and mergeable application state. VERCAST has
two interfaces (Fig. 3). Its programming interface (Sect. 5.1)
lets application developers implement versionable classes
needed for constructing versionable applications. Its exter-
nal interface (Sect. 5.2) lets clients interact with the appli-
cation state (queries and modification), as well as perform
synchronizations.5

5.1 Programming Interface
Versions are snapshots of versionable objects. Each version
is thus an instance of a versionable class. The verionable
class provides a constructor for producing an initial version,
and transformer methods [15] for handling various patches.
For example, Fig. 4 illustrates a class definition for a ver-
sionable Counter.

Syntactically, a construction of a version has the form:

r ← C.init (ctx , args)

4 They are actually mutable pointers to commits, which point to the root of a
tree and to the previous commit. This structure in necessary for tracking the
history of a branch. We do not need history tracking for our discussion, so
we can ignore the commit level and treat branches as if they point directly
to the tree.
5 The external interface is typically used by the application’s user interface,
but can also be used by other external interfaces, such as interfaces to other
systems.

where C is a class, ctx is a context (Sect. 5.1.2), and args
is an argument list. For example, the Counter constructor in
Fig. 4 takes a context ctx, an initial value val, and a Boolean
flag bounded telling the counter whether or not it should
conflict once its value drops below 0. It initializes the value

and bounded instance variables with their respective values.
An invocation of a transformer method has the form:

r ← v.t (ctx , δ, u)

where v is a version, t is a method name, ctx is a context,
δ is a patch to be applied, and u is a Boolean flag determin-
ing whether to apply or “unapply” δ (i.e., apply δ̄). In the
Counter class, the get method simply returns the value of the
counter. Based on the u flag, the add method either adds to
or subtracts from the counter a given value.

5.1.1 Transformation Semantics
VERCAST interprets changes to the state of version v as a
creation of a new version v′ rather than a modification of the
existing version v. Semantically, a transformer method is a
functional mapping T of the form:

(v′, r, c, E)← T (v, δ, u)

where v is the version of the object before applying the
patch δ. It returns a quadruple comprising the version v′

of the object after applying δ (or δ̄), the result r returned
by the patch (could be nil), a Boolean flag c that indicates
whether or not the transition conflicted, and an effect set E
of patches.

Effect Set The effect set allows objects to communicate
changes to the global state of the application, effecting ob-
jects they have no direct reference to. They are needed for
binding a change in one place in the tree to other places.6

5.1.2 Context
To maintain their pure functional semantics, constructors
and transformer methods are not permitted to interact with
code not under VC. VERCAST provides such constructors
and transformer methods with a context, which is an object
serving as a single entry point for all the interactions they
are allowed to make. As such, it serves two purposes. One
purpose is to maintain the state of the transformation, hold-
ing the conflict flag c and the effect set E. The other purpose
is providing a portal to the repository, for construction and
manipulation of other objects.

A context, ctx, supports the following operations:

1. [v0] ← ctx .init(C, args): returns the ID of an initial
version v0 of an object of class C, based on arguments
args .

2. ([v′] , r)← ctx .trans([v] , δ): applies patch δ to v, return-
ing both the ID of the resulting version v′ and the result r.

6 We show a usage example in Sect. 7.1.

35

1 class Counter:
2 variables: value, bounded;
3 constructor init(ctx,val,bounded)
4 this.value ← val;
5 this.bounded ← bounded;
6 method add(ctx,δ,u):
7 if (u)
8 then this.value ← this.value − δ.amount
9 else this.value ← this.value + δ.amount;

10 if (this.bounded ∧ this.value < 0)
11 then ctx.conflict();
12 method get(ctx,δ,u):
13 return this.value;

Figure 4: Versionable Counter

3. ctx .conflict(): reports that a conflict has been encoun-
tered.

4. ctx .effect(δ): adds δ to the effect set of the current tran-
sition.

5.1.3 Application State as a Persistent Tree
The application will typically organize its objects in a form
of a persistent tree (Sect. 4.2). Patches originating from user
interaction will be directed to the application’s root object,
invoking one of its methods. This method will propagate
the patch to one of the child objects, using ctx .trans (). The
context will then call one of the child object’s methods,
which will propagate the call through the tree until a leaf is
reached. In case of a query, the return value will typically
be returned as-is all the way back to the root. In case of
mutation (modification), the invoked methods will update
the state of each object along the path with the new value
or new child version ID. This will cause the framework to
create a new version of each object, and eventually, a new
version of the root.

5.1.4 Hotel Booking Example
Fig. 5 shows an example of a versionable Hotel class, rep-
resenting the availability of rooms in a single hotel. Its
constructor receives a map, rooms, mapping a room type
(single, double, or suite) to an integer specifying how
many of those types of rooms the hotel has. It is also given
initial and nights that define the range of dates (by some
enumeration) that are open for booking. It initializes an array
of counters for each room type, one counter per day. Since
all counters in the array are initialized to the same value, we
can create just one counter and provide its version ID to the
array’s constructor. The array will initialize all of its entries
with this ID.

The book method receives a patch δ comprising a room
type, a date range and an amount of rooms, and builds
a patch δ3 to be applied to the relevant array. We use a
JSON-like notation to represent a patch, with a _type field

1 class Hotel:
2 variables: rooms,initial,vacancy;
3 constructor init(ctx,rooms,initial,nights)
4 this.initial ← initial;
5 this.vacancy ← map();
6 for type ∈ rooms.keys() let
7 counter ← ctx.init(Counter,rooms[type],true);
8 in
9 this.vacancy[type] ← ctx.init(Array,nights,counter);

10 end
11 method book(ctx,δ,u)
12 let
13 δ1 ← {
14 _type: add,
15 amount: −(δ.numRooms) };
16 δ2 ← {
17 _type: applyRange,
18 from: this.initial + δ.start,
19 to: this.initial + δ.end,
20 patch: δ1 };
21 δ3 ← u? inv(δ2): δ2;
22 in
23 (this.vacancy[δ.roomType], _) ←
24 ctx.trans(this.vacancy[δ.roomType],δ3);
25 end

Figure 5: Versionable Hotel

specifying which method should be invoked. The patch δ3
is constructed in three steps. First, we construct a patch δ1
that can be applied to a counter for decrementing the amount
of rooms we would like to reserve. Second, we construct a
patch δ2 that can be applied to an array, for applying δ1 to
a range of its entries. Finally, if u is true, we invert patch
δ2 using the inv utility function. The book method applies
the resulting patch δ3 on the array corresponding to the
requested room type. The array version ID is then updated
in the map. Note that Hotel does not explicitly check for
conflicts. When constructing the counters it sets bounded to
true, so that they will conflict when overbooked. As a result,
invoking a book patch on a Hotel will conflict if the hotel
does not have enough rooms at the specified dates.

A single hotel is obviously just one piece of the full ap-
plication state. In the following we will assume that the full
state of the application is represented by a versionable map,
where hotels and possibly other data elements are referenced
by unique keys. We will assume that the map responds to all
patches that contain a _key field by propagating them to the
corresponding object.

5.2 External Interface
The external interface is intended for the parts of the system
not under VC. This interface lets the application and its users
query and change the application’s state, as well as control

36

its consistency vs. availability trade-off using transactions
and synchronization.

VERCAST’s external interface supports the following op-
erations:

1. [v0] ←init(C,A): similar to the init method described in
Sect. 5.1. Typically, used to initialize the full application
state.

2. ([v2] , r) ←trans([v1] , δ): similar to the trans method
described in Sect. 5.1, but can also take a transaction
object (see #7 below) in place of [v1], in which case it
will update it with patch δ.

3. fork(β, [v0]): creates a new branch named β, starting at
initial version v0.

4. [vh] ←head(β): returns the last known head (tip) of
branch β. It does not synchronize and may yield a some-
what stale head, but offers high availability.

5. s ←push(β, [v]): merges the version v to the head of
branch β, and updates the head atomically. Returns sta-
tus s which may be one of the following: success if all
goes well, conflict if a merge conflict was encountered,
or unavailable if the server holding β’s head was un-
available. In the latter two cases, the branch head is not
updated.

6. [vm]←pull([v1] , β): merges v1 with the head of branch β,
yielding the resulting version ID. pull is supposed to al-
ways succeed. It uses the highly-available head method
to access β’s head, and in case of a merge conflict, it
resolves it by preferring β (Sect.7.2).

7. t ←beginTransaction([v0]): returns an empty transaction
object t, that corresponds to version v0 of the application
state.

8. [v] ←commit(t): commits transaction t: applies all its
underlying patches as a single patch to the transac-
tion’s v0. Returns the resulting version ID. Note that it
only replays previously applied patches, and therefore
will not conflict.

Fig. 6 shows how this API can be used to implement a part
of the user interface of the booking application. Recall that
we would like to support group booking. For this reason, we
would like to have a user-level object similar to a shopping
cart, where users can add one or more bookings, and then
book them all together. If one or more of the rooms cannot
be reserved, the entire order is to be canceled.

To implement this, Fig. 6 lists three functions that are
to be called in response to three kinds of user interactions:
creating a new cart, requesting a room in a specific hotel,
and booking everything. Creating a cart is done by creating
a transaction object, based on the head of some branch β0.
Recall the head function returns the last known head, so it
can run very fast, at the expense of providing a somewhat

1 procedure newChart()
2 t ← beginTransaction(head(β0))
3

4 procedure addToCart(hotelID,roomType,start,end)
5 let
6 δ ← {
7 _type: book,
8 _key: hotelID,
9 roomType: roomType,

10 numRooms: 1,
11 start: start,
12 end: end}
13 in
14 try
15 t ← trans(t, δ);
16 on conflict
17 print(”No rooms available”);
18 end
19 end
20

21 procedure book(β)
22 [v] ← commit(t);
23 case push(β, [v]) of
24 ”success” =>
25 print(”Booking successful”);
26 ”conflict” =>
27 print(”Rooms are not available”);
28 ”unavailable” =>
29 print(”Cannot confirm. Please try again later”);
30 end

Figure 6: External API usage example

old version. The branch that we choose here, β0, is the
application’s main branch.

When the user books a room in a specific hotel, we create
a patch for that hotel, and add the hotel key to the _key

field, so that the map holding the full application state could
forward this patch to the right Hotel instance. If the hotel is
already fully booked, this transition conflicts and the user
is notified. Otherwise, the patch is added to the transaction
object.

When the user finally wants to seal the deal, the trans-
action is committed. This replays all the patches in a sin-
gle operation. To make it visible to other users (and hence,
to make the reservations take effect) we push the state to
a certain branch. The function book takes the branch name
as a parameter. Indeed, in different scenarios we would like
to use different branches. Because the push operation re-
quires atomic updates, the operation needs to be performed
where the branch is maintained, so typically, we would like
to choose our branch βn based on locality and availability.
However, if we need immediate confirmation and are willing
to wait for it and risk unavailability, we would like to use the
decider branch, β0.

37

User Interface

Branch Layer

Version Graph

Object Layer
ctx

SC

Graph

EC
Cache

Versionable Classes

external interface

programming interface

Figure 7: VERCAST layered architecture

For now we do not describe how the different branches
are synchronized. We return to that later, in Sect. 7.3.

6. Design and Implementation
In this section we discuss the design and implementation
status of VERCAST.

6.1 Architecture
VERCAST’s design has a layered architecture, comprising
three layers, each of which uses a different type of NoSQL
database (Fig. 7):

Object layer The object layer implements the program-
ming interface (Sect. 5.1). It works with individual objects,
that together construct the full application state. It handles
storing versions in persistent storage (which can be an EC
data-store) and caching them for fast access.

Version graph layer The version graph layer works with
the application’s root object, and hence handles the full ap-
plication state. It maintains a version graph (Sect. 4.3). Its
main role is to support merges by finding, for two versions in
the graph, the LCA, and the path from the LCA to each ver-
sion needed for the merge algorithm. It uses a graph database
that is expected to work efficiently even for large graphs.

Branch layer The branch layer implements VERCAST’s
external interface and tracks individual branches. A branch
holds a notion of a current state in form of a mutable variable
holding a version ID. This value needs to be maintained as a
single value (per branch) regardless of which physical server
serves it. To accommodate this, we use a SC datastore, that
supports atomic updates.

6.2 Optimizations
The need to store every version of every object and the need
to re-apply patches during merges may incur a high overhead
in terms of both disk space, I/O operations and computation.
To minimize this overhead we apply several optimizations.
To improve merge performance we cache transition results in
the object layer. If a transition that already occurred needs to
be performed again (typically, as part of a merge), we fetch
the resulting version from the cache.

To avoid storing all versions of all objects, we use the
inherent redundancy VC has to offer. VERCAST has access
to both the content of each version, and the patches that
constructed it. Storing the content of all versions is good for
read performance but bad for write performance and disk
space consumption. Storing only the patches require much
less disk space and improves write performance, but requires
calculating the state of each object by applying patches on
top of each other when performing read operations.

To balance between these two representations, we take a
combined approach. First, we cache recently accessed ob-
ject versions, for fast reads. Second, we split the state of the
application into pieces we call buckets. Buckets are limited
in both space and time. They are limited in both the number
of objects they contain (a sub-tree of the application state
rooted at a single object), and in the time-frame they repre-
sent (a certain number of versions of the bucket’s root ob-
ject). On disk, we store for each bucket its initial state (full
object content), and the patches that are needed to transform
it to all its other versions.

When reading a version, we first look it up in the cache.
If not there, we extract the bucket that contains it, by read-
ing the initial versions into the cache, and then applying
the patches to the bucket’s root version. The bucket size be-
comes an important parameter for tunning performance, as it
determines the balance between disk and CPU consumption.

6.3 Implementation Status
A prototype implementation of VERCAST in Javascript over
Node.JS is in progress.7 At the time of writing this paper,
our implementation consists of 1593 lines of Javascript code,
backed by 157 unit tests. We implemented the three layers
discussed in Sect. 6.1, including the optimizations discussed
in Sect. 6.2. Unit-tests verify, among other things, the merg-
ing algorithm (Sect 4.3) and the conflict resolution algorithm
(Sect. 7.2). Currently, the prototype implementation does not
access any real database. Instead, to facilitate unit tests, we
have in-memory stubs that implement the interface desig-
nated for the storage associated with each layer. The imple-
mentation includes several generic data structures that are
useful as basic building blocks for applications, e.g., atom,
counter, array and map.8

7 https://github.com/brosenan/vercast
8 The hotel booking example discussed in this paper is not included in the
repository at this point.

38

https://github.com/brosenan/vercast

7. Discussion
Next, we discuss some of the considerations that led to our
design.

7.1 Database or Software Framework?
An important design decision we made was to implement
VERCAST as a software framework that application devel-
opers can use to implement user-defined versionable classes.
This is in contrast to an alternative design where one pro-
vides a fixed set of versionable storage primitives, and user
code manipulates these primitives from the outside. Such an
approach would resemble a database supporting VC on its
values.

We now describe a scenario where the latter design will
fail. Imagine we wish to provide our hotel booking system
the capability of listing all hotels with vacancies in a certain
city on a certain day. One approach would be to go through
all hotels in the desired city and find the ones for which the
counter corresponding to that day contains a positive value.
Unfortunately, in cities with many hotels this can take a long
time. A more appropriate approach would be to maintain,
for each city and each day, a set of available hotels. This
practice of holding redundant information in a database to
accommodate fast query is called de-normalization, and is
common practice in large-scale applications, especially in
conjunction with NoSQL databases [10]. When some hotel
vacancy counter reaches zero for one or more dates, the
application removes that hotel from the sets corresponding
to these dates.

Now imagine a scenario where there are initially two
available rooms in a hotel. Two users in two remote geo-
graphic locations book a room simultaneously. Some time
afterwards, the two transactions performed by the two users
merge. Because two rooms were available, these transactions
do not conflict, and the reservation of both users is con-
firmed. The question is, now that the number of vacancies
got down to zero, will the hotel be removed from the set of
available hotels?

If we chose the option of using storage primitives (or a
database with VC), the code that decides whether to remove
the hotel from the set executes twice, as response to each
user’s booking. Because each user made the booking when
there were two available rooms, neither one of the execu-
tions would remove the hotel. The merge operation will not
remove the hotel either, because it is performed between two
sets that contain the hotel.

However, if we placed this logic in a versionable class
such as the Hotel class in Fig. 5, the code that decides
whether or not to remove the hotel from the set would run
three times: once per each booking (with vacancies going
down from 2 to 1), and a third time during the merge, when
one of the patches is re-applied on top of the other. In this
last application, the number of vacancies will go from 1 to
0, causing the hotel to be removed from the set.

1 let
2 δq ← {
3 _type: applyRange,
4 from: this.initial + δ.start,
5 to: this.initial + δ.end,
6 patch: {_type: get} };
7 (_,vacancies) ← ctx.trans(δq);
8 in
9 for i ∈ 0 . . .size(vacancies) do

10 if vacancies[i] = 0
11 then let δe ← {
12 _type: remove,
13 _key: (this.city,
14 δ.roomType,
15 this.initial + i),
16 item: this.name };
17 in
18 ctx.effect(δe);
19 end
20 end

Figure 8: De-normalization example

In VERCAST, such logic can be implemented using the
effect set. For example, the code in Fig. 8 can be added to
the book method of the Hotel class. This code first fetches
the counter values for all effected counters, and then, for
each counter that reached 0 emits an effect patch that will
remove the hotel’s name from the set identified by the tupple
(city name, room type, date).9

7.2 Merge Conflict Resolution
Conflicts are inherent in VC. In order to allow large appli-
cations to be built around VC, we need a systematic way of
handling merge conflicts.

Avoiding Conflicts Undoubtedly, the best way to handle
merge conflicts is to avoid them altogether. Data structures
such as Conflict-free Replicated Data Types (CRDTs) [20]
have well-defined behavior when merging two instances,
and therefore, they never conflict. With VERCAST, we can
implement similar conflict-free objects. One example is the
counter in Fig. 4, with bounded set to false.

Resolving Conflicts In some cases, such as the hotel book-
ing example, conflicts are used to assure the system state re-
mains intact. This gives rise to the need for a robust conflict
resolution algorithm.

Fig. 9 depicts how conflicts are resolved in VERCAST.
Recall that the pull operation defined in the external interface
(Sect. 5.2) resolves conflicts by preferring the version it takes
as second argument (which we call the superior, denoted
as vs in Fig. 9) over its first argument (which we call the

9 This code assumes we initialized two extra member variables: name con-
taining the name of the hotel, and city, containing the name of the city the
hotel is located in.

39

LCS

vi vs

vmv2

vm2

∆i

∆̄c
i ; ∆s

∆s

∆n
i∆2

∆2

∆̄c
i ; ∆s

Figure 9: Conflict resolution

inferior, denoted vi). The underlying merge operation, as
described in Sect. 4.3, attempts to apply the patches ∆i that
constructed vi, on top of vs. If some of them conflict, they
are ignored, and the merged version (vm) is achieved by
only applying ∆n

i , the non-conflicting subset of ∆i. When
recording the merge, the edge from vs to vm records the
patches that were actually applied, and the edge from vi
to vm records vi’s defeat: it first contains the inverse of all
conflicting patches ∆c

i in ∆i (in reverse order), and then the
patches that constructed vs.

When a second merge is being performed (in this case,
between vm and v2, a descendant of vi), the decision to
roll-back ∆c

i remains in place. Even if v2 is superior in the
second merge, the first patches it will need to apply are ∆̄c

i ,
undoing ∆c

i .
The correctness of this algorithm (in particular, the cor-

rectness of the label of the edge from vi to vm) can be proven
by induction on the length of ∆i.

7.3 Eventual Consistency
We showed how merged versions maintain the decision as to
which patches need to be undone. However, for any two con-
flicting versions v1 and v2, two possible merged versions can
be produced: one preferring v1, and the other preferring v2.
Eventual consistency [4] requires that each conflict shall al-
ways be resolved the same way. In VERCAST, we cannot
guarantee that random merges will always result in the same
decisions, but we can guarantee that each conflict is resolved
only once.

In applications such as the hotel booking example, where
eventual consistency is required, we can apply hierarchy to
branches (as we did in Sect. 3.2), where each branch has
exactly one parent, except for the root branch (β0) that has
none. We can assure that each conflict is resolved only once
if we allow pull operations to only be performed from a
direct ancestor. This way, conflicts are always resolved by
preferring the parent. For example, the algorithm in Fig. 10
will complete the hotel booking example by adding propaga-

1 while true let
2 β ← choose a non-root branch at random;
3 βp ← β’s parent in the hierarchy;
4 [v] ← pull(head(β), βp);
5 in
6 push(β, [v]);
7 push(βp, [v]);
8 end

Figure 10: Patch propagation sequence

tion between branches, assuring eventual consistency. This
is quite similar to the pull/push, or update/commit sequence
that is common when working with SCM systems. Note that
we ignore the status returned by both push operations. If
a conflict is encountered, it will be resolved the next time
around. If a branch is temporarily unavailable, we will auto-
matically try again later.

8. Related Work
Finally, we compare VERCAST to the state-of-the-art.

8.1 Optimistic Replication
Our work falls under the category of optimistic replication, a
collection of methods in distributed systems designed to pro-
vide some consistency guarantees without the use of locks.
The first important work in the field, with respect to persis-
tent state, was Bayou [23], a distributed system that gave its
users the view of a single relational database, where in fact
it consisted of multiple instances, synchronizing by sending
each other SQL updates. The system used complex algo-
rithms to ensure the correct order of applying these updates,
and often needed to undo an redo changes, to get the order
right. Bayou turns to the user to provide conflict resolution
methods. In comparison, in our work the user defines how
objects respond to change in general, and does not have to
worry about merge conflicts. For that, we use a general algo-
rithm (Sect. 7.2).

More recent work includes Conflict-free Replicated Data
Types (CRDTs) [20], Cloud Types [4] and Isolation Types [3].
While different in purpose and in the design decisions that
led to their conception, these are all data types designed to
hold concurrent replicas of data, with well-defined merging
behavior. These solutions focus on providing primitives such
as counters, sets and maps. To achieve a fully mergeable
state applications are expected to construct their state based
on these primitives. Unfortunately, creating custom types is
considered hard [26, Sect. 2.2.1]. In comparison, in our work
we allow such primitives to be provided by the framework
and as software libraries, but we also allow users to imple-
ment their own versionable classes, such as the versionable
Hotel class (Fig. 5). This is essential for maintaining the in-
tegrity of the state when de-normalizing the data (Sect. 7.1).
The key idea that makes custom objects practical in our

40

model is that in our model objects only need to define their
behavior in response to patches applied to them. Specifically,
objects do not need to specify a merging behavior. VERCAST
implements merges by applying patches to objects, based on
a version graph (Sect. 4.3). In fact, version graphs can be
seen as a generalization of revision diagrams [3] used in the
implementation of isolation and cloud types. VERCAST’s
branch hierarchy model (Sect. 7.3) provides similar guaran-
tees (eventual consistency), but is still more permissive than
revision diagrams.

It is worth mentioning that Cloud Types implement a
transaction mechanism similar to our own. Their yield oper-
ation bundles some updates together in a transaction, guar-
anteeing atomicity. Their flush operation adds forced syn-
chronization, similar to our pulling from and pushing to β0.
However, because merges are designed in Cloud Types to al-
ways succeed, it is hard to tell how they can fail gracefully,
e.g., in the conflict scenario described in Sect. 3.

8.2 Operational Transformations
Operational Transformations (OT) [9] are a method that al-
lows concurrent edits to documents, implemented in systems
such as Google Drive and Apache Wave (formerly, Google
Wave). The idea is that in order to support concurrent up-
dates, updates must take the form of patches. When describ-
ing changes to a document, these patches must reference lo-
cations in the document, such as line numbers. However,
since concurrent updates may move parts of the document
(e.g., inserting a line may shift all following line numbers),
re-applying the original patches will not work as expected.
OT proposes to transform all patches to be applied based on
patches already applied to the state.

In VERCAST we currently do not support OT. As a re-
sult, a patch addressing an object that moved will conflict.
Finding ways in which OT can be introduced to VERCAST
to provide good support for document-like state is a topic for
future work.

8.3 NoSQL over Git
A somewhat complementary approach to our own, taken by
some practitioners [14, 17], involves using an existing SCM
to store data, similar to our example in Sect. 3. The approach
presented by Keepers [14] uses Git’s internals directly to
maintain a persistent tree similar to the one in our design.
However, he reports a performance hard limit derived from
the need to store each new version on disk. This hard limit
makes his solution inadequate for large datasets. In our work
we start where they left off, and provide a solution that en-
dures large amounts of data and rapid modifications. We
achieve that by using heavy-duty NoSQL databases for stor-
age, in concert with the optimization described in Sect. 6.2.

9. Conclusion
In this paper we present an approach in which version con-
trol techniques can provide application developers with fine-

grained control over the consistency model used in maintain-
ing application state. This allows developers to explicitly ex-
press their preferences regarding the CAP [12] consistency
vs. availability trade-off. We discuss how placing the state of
applications under VC can be made practical. For concrete-
ness, we describe a design of a system we name VERCAST.

A significant benefit of the approach is in relieving appli-
cation developers from needing to choose a priori a NoSQL
database. Currently, due to the lack of standardization in the
NoSQL world, and the tight coupling between consistency
models, data models and APIs, application developers need
to choose a NoSQL database for each task at an early stage.
Moreover, they must get it right upfront. The price of mi-
grating from one database to another is high, and gets higher
as the software grows in size.

By using VC, the data model is defined (either directly or
through a software library) by the application and not by the
database. The consistency model is determined at runtime
by deciding when to merge and with whom. Application
developers do not have to rely on choices made by NoSQL
database developers: VERCAST invests the power in their
hands.

While we focused on VC as a way to control CAP trade-
offs, there are other advantages to the use of VC for main-
taining application state. One such advantage is in improving
usability of client/server applications, and mainly of Web ap-
plications, by making modifications non-destructive. When
a Web application stores state in a database, any modifica-
tion to a record destroys the previously stored value. Fea-
tures such as history tracking or even an undo/redo stack re-
quire special treatment on the infrastructure level, and are
not common in applications in general.

VC can fundamentally change this. When using VC,
modifications are stored as new versions, and do not destroy
previous versions. Users can view the state of the system at
any historical date, or ask to roll-back to that state. This can
support undo and redo operations in any application with
very little effort on the developers’ part.

VC can also offer the same benefits SCM provides soft-
ware development teams. Client/server applications are used
today for a wide range of uses, some of which are cre-
ative work that involves entire teams. Two examples are con-
tent management, with systems such as WordPress or Me-
diaWiki, and requirement management (or application life-
cycle management), with systems such as Rational DOORS.
Both tasks require cooperation between people, and the con-
tent that goes into these systems often involve a significant
investment. VC can offer a better protection of the invest-
ment in the sense that any change is reversible, and work
can continue from any point in history. VC can also enable
better collaboration in the sense that each developer can see
a consistent view of the state on his or her own branch, and
integration can be done at the time of their choosing using
explicit merges.

41

References
[1] E. A. Abbott. Flatland: A Romance of Many Dimensions.

Seeley & Company, 1884.

[2] K. Banker. MongoDB in Action. Manning Publications Co.,
Greenwich, CT, USA, 2011.

[3] S. Burckhardt, A. Baldassin, and D. Leijen. Concurrent pro-
gramming with revisions and isolation types. In Proceedings
of the 25th Annual ACM SIGPLAN Conference on Object-
Oriented Programming Systems, Languages, and Applica-
tions (OOPSLA’10), pages 691–707, Reno/Tahoe, Nevada,
USA, Oct. 2010. ACM SIGPLAN Notices 45(10) Oct. 2010.

[4] S. Burckhardt, M. Fähndrich, D. Leijen, and B. P. Wood.
Cloud types for eventual consistency. In Proceedings of the
26th European Conference on Object-Oriented Programming
(ECOOP’12), number 7313 in Lecture Notes in Computer
Science, pages 283–307, Beijing, China, June 2012. Springer.

[5] S. Chacon. Pro Git. Expert’s voice in software development.
Apress, Berkeley, CA, USA, 2009.

[6] F. Chang, J. Dean, S. Ghemawat, W. C. Hsieh, D. A. Wallach,
M. Burrows, T. Chandra, A. Fikes, and R. E. Gruber. Bigtable:
A distributed storage system for structured data. ACM Trans.
Comput. Syst., 26(2):4:1–4:26, June 2008.

[7] E. F. Codd. A relational model of data for large shared data
banks. Communications of the ACM, 13(6):377–387, 1970.

[8] G. DeCandia, D. Hastorun, M. Jampani, G. Kakulapati,
A. Lakshman, A. Pilchin, S. Sivasubramanian, P. Vosshall,
and W. Vogels. Dynamo: Amazon’s highly available key-
value store. In Proceedings of the 21st ACM SIGOPS Sym-
posium on Operating Systems Principles (SOSP’07), pages
205–220, Stevenson, WA, Oct. 2007. ACM SIGOPS Operat-
ing Systems Review 41(6) Dec. 2007.

[9] C. A. Ellis and S. J. Gibbs. Concurrency control in groupware
systems. In Proceedings of the 1989 ACM SIGMOD Inter-
national Conference on Management of Data (SIGMOD’89),
pages 399–407, Portland, Oregon, USA, 1989. ACM SIG-
MOD Record 18(2) June 1989.

[10] E. Evans. Cassandra by example. http://www.rackspace.
com/blog/cassandra-by-example/, 2010. [Online; ac-
cessed 17-July-2013].

[11] D. Featherston. Cassandra: Principles and application. Uni-
versity of Illinois at Urbana-Champaign, 2010. http://

d2fn.com/cassandra-cs591-su10-fthrstn2.pdf.

[12] S. Gilbert and N. Lynch. Brewer’s conjecture and the feasi-
bility of consistent, available, partition-tolerant web services.
ACM SIGACT News, 33(2):51–59, 2002.

[13] R. Hickey. Clojure: Refs and transactions. http://

clojure.org/refs, 2014. [Online; accessed 18-June-
2014].

[14] B. Keepers. Git: the NoSQL database.
https://speakerdeck.com/bkeepers/git-the-nosql-

-database/, 2012. [Online; accessed 15-March-2014].

[15] D. H. Lorenz and J. Vlissides. Designing components ver-
sus objects: A transformational approach. In Proceedings
of the 23th International Conference on Software Engineer-
ing (ICSE’01), pages 253–262, Toronto, Canada, May 12-19
2001. IEEE Computer Society.

[16] C. Okasaki. Purely Functional Data Structures. Cambridge
University Press, 1999.

[17] R. Pollock. We need distributed revision/version con-
trol for data. http://blog.okfn.org/2010/07/12/

we-need-distributed-revisionversion-control-for-
-data/, 2010. [Online; accessed 19-March-2014].

[18] M. J. Rochkind. The source code control system. IEEE Trans.
Software Eng., 1(4):364–370, 1975.

[19] P. J. Sadalage and M. Fowler. NoSQL distilled: a brief guide to
the emerging world of polyglot persistence. Addison-Wesley,
2012.

[20] M. Shapiro, N. Preguiça, C. Baquero, and M. Zawirski.
Conflict-free replicated data types. In Stabilization, Safety,
and Security of Distributed Systems, pages 386–400. Springer,
2011.

[21] N. Shavit and D. Touitou. Software transactional memory. In
Proceedings of the 14th Annual ACM SIGACT-SIGOPS Sym-
posium on Principles of Distributed Computing (PODC’95),
pages 204–213, Ottawa, Ontario, Canada, Aug. 1995. ACM.

[22] W. Swierstra and A. Löh. The semantics of version control.
In Proceedings of the 2014 ACM International Symposium on
New Ideas, New Paradigms, and Reflections on Programming
& Software (Onward! 2014), Portland, OR, USA, Oct. 2014.
ACM.

[23] D. B. Terry, M. M. Theimer, K. Petersen, A. J. Demers, M. J.
Spreitzer, and C. H. Hauser. Managing update conflicts in
bayou, a weakly connected replicated storage system. In Pro-
ceedings of the 15th ACM SIGOPS Symposium on Operat-
ing Systems Principles (SOSP’95), pages 172–182, Copper
Mountain Resort, Colorado, Dec. 1995. ACM SIGOPS Op-
erating Systems Review 29(5) Dec. 1995.

[24] J. Webber. “Wavefront” workshop: A programmatic introduc-
tion to Neo4j. In Proceedings of the 3rd International Confer-
ence on Systems, Programming, and Applications: Software
for Humanity (SPLASH’12), page 217, Tucson, AZ, USA,
Oct. 2012. ACM.

[25] M. Woelker. Persistent trees in git, Clojure and CouchDB.
http://eclipsesource.com/blogs/2009/12/13/

persistent-trees-in-git-clojure-and-couchdb-
-data-structure-convergence/, 2009. [Online;
accessed 14-March-2014].

[26] M. Zawirski, A. Bieniusa, V. Balegas, S. Duarte, C. Ba-
quero, M. Shapiro, and N. M. Preguiça. SwiftCloud: Fault-
tolerant geo-replication integrated all the way to the client
machine. Technical Report INRIA/RR–8347, Inria Rocquen-
court Research Centre, Paris, France, Aug. 2013. CoRR,
abs/1310.3107, Oct. 2013.

42

http://www.rackspace.com/blog/cassandra-by-example/
http://www.rackspace.com/blog/cassandra-by-example/
http://d2fn.com/cassandra-cs591-su10-fthrstn2.pdf
http://d2fn.com/cassandra-cs591-su10-fthrstn2.pdf
http://clojure.org/refs
http://clojure.org/refs
http://blog.okfn.org/2010/07/12/we-need-distributed-revisionversion-control-for
http://blog.okfn.org/2010/07/12/we-need-distributed-revisionversion-control-for
-data/
http://eclipsesource.com/blogs/2009/12/13/persistent-trees-in-git-clojure-and-couchdb
http://eclipsesource.com/blogs/2009/12/13/persistent-trees-in-git-clojure-and-couchdb
-data-structure-convergence/

