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Abstract

An f-sensitivity distance oracle for a weighted undirected graph G(V, E) is a data struc-
ture capable of answering restricted distance queries between vertex pairs, i.e., calculating
distances on a subgraph avoiding some forbidden edges. This paper presents an efficiently
constructible f -sensitivity distance oracle that given a triplet (s, t, F ), where s and t are
vertices and F is a set of forbidden edges such that |F | ≤ f , returns an estimate of the
distance between s and t in G(V, E \ F ). For an integer parameter k ≥ 1, the size of the
data structure is O(fkn1+1/k log (nW )), where W is the heaviest edge in G, the stretch
(approximation ratio) of the returned distance is (8k − 2)(f + 1), and the query time is
O(|F | · log2 n · log log n · log log d), where d is the distance between s and t in G(V, E \ F ).

Our result differs from previous ones in two major respects: (1) it is the first to consider
approximate oracles for general graphs (and thus obtain a succinct data structure); (2)
our result holds for an arbitrary number of forbidden edges. In contrast, previous papers
concern f -sensitive exact distance oracles, which consequently have size Ω(n2). Moreover,
those oracles support forbidden sets F of size |F | ≤ 2.

The paper also considers f -sensitive compact routing schemes, namely, routing schemes
that avoid a given set of forbidden (or failed) edges. It presents a scheme capable of
withstanding up to two edge failures. Given a message M destined to t at a source vertex
s, in the presence of a forbidden edge set F of size |F | ≤ 2 (unknown to s), our scheme
routes M from s to t in a distributed manner, over a path of length at most O(k) times
the length of the optimal path (avoiding F ). The total amount of information stored in
vertices of G is O(kn1+1/k log (nW ) log n). To the best of our knowledge, this is the first
result obtaining an f -sensitive compact routing scheme for general graphs.

1 Introduction

The problems: This paper considers succinct data structures capable of supporting efficient
responses to distance sensitivity queries on an undirected graph G(V,E) with edge weights ω. A
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distance sensitivity query (s, t, e) requires finding, for a given pair of vertices s and t in V and a
forbidden edge e ∈ E, the distance (namely, the length of the shortest path) between u and v in
G(V,E \ {e}).
An f -sensitivity distance oracle is a generalized version of the distance sensitivity data structure,
in which instead of a single forbidden edge e, the query may include a set F of size at most f of
forbidden edges. In response to a query (s, t, F ), the data structure has to return the distance
between s and t in G(V,E \ F ).

An approximate distance oracle with stretch k is a data structure that can answer an approximate
distance query between two given nodes in a short time. The returned approximate distance is
required to be at least the actual distance between the given nodes and at most k times the
distance between them.

Combining all the ingredients together, an f -edge sensitivity approximate distance oracle with
stretch k of the graph G is a data structure that for any edge set F ⊆ E of size at most f can
answer an approximate distance queries with a stretch k for the graph G \ F . In other words,
given a set of forbidden edges F such that |F | ≤ f and a pair of nodes s and t, the data structure
can return in short time an approximate distance d′ for the distance d(s, t, G \F ) between s and
t in G \F , where d(s, t, G \F ) ≤ d′ ≤ k · d(s, t, G \F ). Note that for a possible failure of the set
F ⊆ E, it could be that the two given nodes are disconnected in G \ F , in which case the data
structure is required to return “infinity”.

For certain natural applications in communication networks, one may be interested in more than
just the distance between s and t in G(V,E \F ). In particular, an f -sensitivity routing protocol is
a distributed algorithm that, for any set of forbidden (or failed) edges F , enables the vertex s to
route a message to t along a shortest or near-shortest path in G(V,E \F ) in an efficient manner
(and without knowing F in advance). In addition to route efficiency, it is desirable to optimize
also the amount of memory stored in the routing tables of the nodes, possibly at the cost of lower
route efficiency, giving rise to the problem of designing f -sensitivity (or fault-tolerant) compact
routing schemes.

The current paper addresses the design of f -sensitivity distance oracles and f -sensitivity compact
routing schemes in a relaxed setting in which approximate answers are acceptable. The main
results of the paper are summarized by the following theorems. Throughout, our underlying
undirected graph G has edge weights ω ∈ [1,W ], m = |E| and n = |V |. For two vertices s and t
in G, denote by dist(s, t, G \ F ) the distance between s and t in G(V,E \ F ).

Theorem 1.1 Let f, k ≥ 1 be integer parameters. Let F ⊂ E be a set of forbidden edges, where
|F | ≤ f . There exists a polynomial-time constructible data structure Sens Or(G,ω, f, k) of size
O(fkn1+1/k log (nW )), that on getting a query s, t ∈ V returns in time O(|F | · log2 n · log log n ·
log log d) a distance estimate d̃ satisfying d ≤ d̃ ≤ (8k− 2)(f +1) · d, where d = dist(s, t, G \F ).

Theorem 1.2 There exists a 2-sensitive compact routing scheme that given a message M at
a source vertex s and a destination t, in the presence of a forbidden edge set F of size at
most 2 (unknown to s), routes M from s to t in a distributed manner over a path of length
at most O(k · dist(s, t, G \ F )). The total amount of information stored in the vertices of G is
O(kn1+1/k log (nW ) log n).
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Related work: In [22], Demetrescu et al. showed that it is possible to preprocess a directed
weighted graph in Õ(mn2) time1 to produce a data structure of size O(n2 log n) capable of
answering 1-sensitivity distance queries (with a forbidden edge or vertex) in O(1) time. The
algorithm of [22] also works when the input contains a forbidden vertex instead of an edge. In
two recent consecutive papers, Karger and Bernstein improved the preprocessing time for 1-
sensitivity queries, first to O(n2

√
m) [14] and later to Õ(mn) [15]. The size and the query time

remain unchanged.

In [26], Duan and Pettie presented an algorithm for 2-sensitivity queries (with 2 forbidden edges
or vertices), based on a polynomial time constructible data structure of size O(n2 log3 n) that is
capable of answering 2-sensitivity queries in O(log n) time. The authors of [26] comment that
their techniques do not seem to extend beyond forbidden sets of size 2, and that even a solution
to the 3-sensitivity problem involving a data structure of size Õ(n2) does not seem in reach.

In contrast, the current paper dodges the barrier of [26] and handles forbidden sets F of size
greater than 2 by adopting the natural approach of considering approximate distances instead
of exact ones. This approach is used for many “shortest paths” problems. The most notable
examples are in efficient computation of approximate “all pairs” distances [10, 38, 28, 3, 25],
spanners [46, 47, 18, 11], distance oracles [54, 48, 12] and compact routing schemes [53, 47].

In the approximate setting, when no forbidden edges are considered, distance oracles were intro-
duced by Thorup and Zwick [54]. They have shown that it is possible to preprocess a weighted
undirected graph G(V,E) into a data structure of size O(n1+1/k) that is capable of answering
distance queries in O(k) time, where the stretch (multiplicative approximation factor) of the
returned distances is at most 2k−1. As mentioned above, in our work we show that it is possible
to preprocess a weighted undirected graph in polynomial time and to produce a data structure
of size O(fkn1+1/k log (nW )) that answers f -sensitivity approximate distance queries (s, t, F ) for
|F | ≤ f in O(|F | · log2 n · log log n · log log d) time, where d is the distance between s and t in
G \ F and W is the heaviest edge in G, and the stretch of the returned distance estimate is
(8k − 2)(f + 1). We assume throughout that edges in G have weight at least 1.

Thus, by considering approximate distances instead of exact ones, our f -sensitivity distance
oracle not only solves a more general sensitivity problem but also does it with considerably lower
space requirements. In fact, for constant values of k that are significantly larger than the fault
parameter f , the stretch of our f -sensitivity distance oracle is the same as in the distance oracles
of [54], while its size remains comparable to that of [54].

Very recently, and independently of our work, Khanna and Baswana [39] presented an approx-
imate distance oracle construction for unweighted graphs with a single vertex failure. More
precisely, they have shown how to construct a data structure of size O(kn1+1/k/ǫ4) that answers
an approximate distance query in time O(k) and stretch (2k − 1)(1 + ǫ) under a single vertex
failure. They have also shown how to find the corresponding approximate shortest path in op-
timal time. We stress that in this work we consider multiple edge faults. Our proof techniques
differ significantly from those of [39]. The case of distance oracles that support multiple vertex
faults remains open. In [17] we have presented a fault tolerant spanner that supports also vertex
failures.

The f -sensitivity distance oracle is closely related to the fundamental problem of dynamic main-
tenance of all pairs of shortest paths with worst case update time. Demetrescu and Italiano [21],

1Here and throughout, the Õ(·) notation hides logarithmic factors in n.
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in a major breakthrough, obtained an algorithm with Õ(n2) amortized update time and O(1)
query time. Their algorithm was slightly improved by Thorup [51]. In the restricted case of
unweighted undirected graphs, Roditty and Zwick [50] showed that for any fixed ǫ, δ > 0 and
every t ≤ m1/2−δ, there exists a fully dynamic algorithm with an expected amortized update
time of Õ(mn/t) and worst-case query time of O(t). The stretch of the returned distances is at
most 1 + ǫ. Thorup [52] presented the only non-trivial algorithm with a worst case update time.
The cost of each update is O(n2.75).

A large gap between the worst case and amortized update times exists also for the problem of
dynamic connectivity of undirected graphs, where the best worst case update time is O(

√
n) [29]

and the best amortized update time is O(log2 n) [37].

A connectivity oracle is a data structure that given a set F ⊆ E of size at most f and a pair of
nodes s and t can answer in short time if s and t are connected in G\F . Pǎtraşcu and Thorup [42]
considered the connectivity problem in a restricted model where all the deleted edges are first
deleted in a batch, and queries are answered next. They showed that it is possible to preprocess
a given undirected n-vertex graph G(V,E) with m edges in polynomial time and obtain a data
structure of size O(m) that allows responding to connectivity queries in O(f log2 n log log n)
worst-case time after a batch of f arbitrary edge deletions.

The design of compact routing schemes has also been studied extensively, focusing on the tradeoffs
between the size of the routing tables and the stretch of the resulting routes. For a general
overview of this area see [34, 45]. Following a sequence of improvements [47, 4, 7, 20, 27],
the first tradeoff between the total size of the routing tables and the stretch of the resulting
routing scheme, for general unweighted network topologies, was obtained by Peleg and Upfal
[47]. Weighted networks were first considered by Awerbuch et al. [4] who obtained, for every
integer k ≥ 1, a routing scheme that uses Õ(n1/k) space at each vertex, with a stretch factor
dependent on k. A better tradeoff was subsequently obtained by Awerbuch and Peleg [7], and
efficient schemes for specific values of k were obtained in [20, 27]. The best currently known
tradeoffs are due to Thorup and Zwick [53], who present a general routing scheme that uses
Õ(n1/k) space at each vertex with a stretch factor of 2k− 1 (using handshaking). Corresponding
lower bounds were established in [47, 31, 33, 54].

Fault-tolerant label-based distance oracles and routing schemes for graphs of bounded clique-
width are presented in [19]. Given a graph G, a preprocessing stage assigns labels to the vertices
of G, so that given the labels of a source vertex s, a destination vertex t, and a set F of forbidden
vertices or edges, the scheme efficiently calculates the shortest path between s and t that avoids
F (or just its length). For an n-vertex graph of tree-width or clique-width k, the constructed
labels are of size O(k2 log2 n). We are unaware of previous results in the literature concerning
fault tolerant compact routing schemes for general graphs.

Fault tolerant communication patterns were studied extensively in a variety of contexts, such
as data link protocols [35, 30, 1], message transfer over unreliable processors [36], and reliable
communication in dynamically changing networks [5, 32, 2]. However, in these studies the goal
usually focused on ensuring successful eventual communication, and no attempts were made to
optimize the required memory resources or the resulting route lengths.

Fault-tolerance was examined also in the context of other communication patterns, such as broad-
cast (see, e.g., [44] and the references therein). For a general survey of fault-tolerant broadcasting
and gossiping see [43]. For instance, broadcasting with malicious (or Byzantine) transmission
failures in the bounded fault model was studied, e.g., in [8, 24], and in the probabilistic failure
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model, where links or nodes might malfunction at random (independently) on each communi-
cation round, in [9, 13, 16]. In the latter papers, failures were assumed permanent and were
distributed randomly once for the entire communication process. On the other hand, broadcast-
ing with randomly distributed malicious transmission failures on a line were studied in [40, 44].
Omission transmission failures in the probabilistic model were investigated, e.g., in [23, 44].

Proof techniques: Our results on both f -sensitivity distance oracles and f -sensitivity routing
schemes are based at their core on a well known tree cover paradigm used implicitly in [7]
and further developed in [6, 18, 49] (see [45]). In this paradigm, given an undirected graph
G one constructs a succinct collection of trees that cover the graph G multiple times, once
for every different scale of distances. The resulting collection of trees has several properties.
Primarily, their union acts as a spanner, and thus preserves distances of the original graph up to
a multiplicative factor. More important for our constructions, the collection of trees preserves
local neighborhoods in an approximate manner as well. Namely, for every vertex v and every
distance ρ there is a tree T in the tree cover that includes the entire ρ-neighborhood Bρ(v) of v,
i.e., all vertices of distance ρ from v. Moreover, the path in T between v and any neighbor u in
Bρ(v) is of length proportional to ρ. This last property lends itself naturally to our setting.

For distance oracles, given two vertices s and t, one needs to find the smallest scale factor ρ such
that both s and t are in the tree including Bρ(s). This is done by constructing a connectivity
oracle for each tree T , which enables to answer whether s and t are indeed connected in T . For
routing schemes, for small values of ρ and upwards, the scheme attempts to route from s to t
in the tree containing Bρ(s); eventually once ρ is approximately the distance between s and t,
the routing will succeed. The challenge addressed in this paper is to adapt these ideas to the
f -sensitivity setting.

Our construction of f -sensitivity distance oracles enhances the tree cover paradigm in two re-
spects. First, in order to answer queries that involves forbidden edges, one must preprocess each
tree into an appropriate connectivity oracle, namely, one that takes forbidden edges into account.
To this end, we use a slight variation to the f -sensitivity connectivity oracle proposed recently
by Pǎtraşcu and Thorup [42]. Their oracle maintains a dynamic data structure which is updated
for each edge deletion. A connectivity query is answered using the updated data structure. For
our construction we need a slightly modified data structure. More precisely, we need a static
data structure that given a set F ⊆ E of size at most f and a pair of nodes s and t, can answer
if s and t are connected in G \ F , where the faulty sets F for two consecutive queries could be
very different. Therefore, we slightly modify the construction of [42] to get our needs. Given a
set F ⊆ E of size at most f and a pair of nodes s and t, we update the data structure of [42]
to handle the failure of the set of edges F , we then answer the connectivity query between s
and t using the updated data structure. When updating the data structure we “remember” the
changes made to the data structure and after answering the query we undo all these changes.

However, this alone does not suffice, as the oracle of [42] requires space which is linear in the
number of edges in the graph, whereas we are interested in a data structure that is as small as
possible. To reduce the size of the oracle of [42] we use the notion of connectivity preserver as
will be explained later. Combining these elements with a few additional new ideas leads to the
new data structure proposed here.

We now turn to provide a high-level description of our construction of f -sensitivity routing
schemes. The challenge at this point lies in identifying additional suitable information to be
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stored at the vertices of the tree cover that will allow successful routing between a given vertex
s and its destination t even if a forbidden edge is encountered. The case of a single forbidden
edge is relatively simple. Each edge e in each tree T of the tree cover, if declared as forbidden,
disconnects the tree into two connected components. Hence to route from one component to
the other, all we need to do is store at the endpoints of e information concerning an alternate
recovery edge (if such exists) that connects between the components. This will suffice for routing
in the 1-sensitivity case, without significantly increasing the stored information. However, it
is not hard to verify that this will not suffice once two or more edges may be forbidden. For
example, an edge acting as backup for the first forbidden edge may indeed be itself forbidden.
A naive solution to this point would involve storing for each edge in T several backup edges, one
for any other edge in T . However, this will increase our storage significantly.

Very roughly speaking, to overcome this point, we associate with each edge of T a carefully
chosen constant number of backup edges. We then prove, via case analysis, that our choice of
backup edges allows successful routing in the presence of 2 edge faults. The crux of our analysis
method lies in the structure of our case analysis, which governs the properties needed in the
backup edges we choose. It is natural to consider the general case of routing in the presence of f
faults for f ≥ 3. Our current proof techniques do not seem to extend to this case, the difficulty
being the structural design of a case analysis allowing to chose a succinct set of backup edges for
each edge in T .

The remainder of the paper is organized as follows. In Section 2 we prove Theorem 1.1. In
Section 3 we prove Theorem 1.2.

2 f-sensitivity distance oracle

Let G(V,E) be an undirected graph with edge weights ω. We assume throughout that ω(e) ∈
[1,W ] for every edge e. For an edge set F and two vertices s, t ∈ V , let dist(s, t, G \ F ) be the
distance between s and t in G \ F (= G(V,E \ F )). In this section we describe the f -sensitivity
distance oracle and prove Theorem 1.1.

We start by presenting the construction of the f -sensitivity distance oracle Sens Or(G,ω, f, k).
We then proceed to describe how to answer distance queries of type (s, t, F ).

2.1 Constructing the f-sensitivity distance oracle

Construction overview: Our construction is based on a novel combination of three ingredi-
ents. The first ingredient is a tree cover for the given graph G. The tree cover we use is the
skeletal representation of undirected graphs presented in [45, 6, 18]. The second ingredient is
the connectivity oracle recently presented in [42]. Finally, the third is a simple construction of
a sparse subgraph that preserves connectivity with up to f failures. This sparse subgraph was
used also in [55, 41]. We start by describing the ingredients that we use. We then present our
data structure, which is constructed using a suitable combination of the above three ingredients.

Tree covers: Let G(V,E) be an undirected graph with edge weights ω, and let ρ, k be two
integers. Let Bρ(v) = {u ∈ V | dist(u, v,G) ≤ ρ} be the ball of vertices of distance ρ from v. A
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tree cover TC(G,ω, ρ, k) is a collection of rooted trees T = {T1, . . . , Tℓ} in G, with root r(T ) for
every v ∈ T , such that:

(i) For every v ∈ V there exists a tree T ∈ T such that Bρ(v) ⊆ T .

(ii) For every T ∈ T and every v ∈ T , dist(v, r(T ), T ) ≤ (2k − 1) · ρ.

(iii) For every v ∈ V , the number of trees in T that contain v is O(k · n1/k).

Proposition 2.1 ([6, 18, 45]) For any ρ and k, one can construct TC(ρ, k) in time Õ(mn1/k).

Connectivity oracles: Our second primitive is Conn Or(G,ω), a connectivity oracle that
given a set F ⊂ E of forbidden edges and a pair of nodes s and t can answer efficiently whether
s and t are connected in G \F . The properties of the connectivity oracle of [42] are summarized
in the following proposition. We use a slight variation of that construction, discussed after the
proposition.

Proposition 2.2 ([42]) There exists a polynomial time constructible data structure Conn Or(G,ω)
of size O(m), that given a set of forbidden edges F ⊂ E of size f and two vertices s, t ∈ V , replies
in time O(f log2 n log log n) whether s and t are connected in G \ F .

Using the data structure presented in [42] “as is” allows us to answer only a single query. That
is, in the process of answering a query (s, t, F ) the connectivity data structure undergoes certain
changes, which prevent us from using it to answer a new query (s′, t′, F ′), asking whether s′ and
t′ are connected in G \ F ′. However, this is a simple technical limitation, caused by the change
of the connectivity data structure, and it can be overcome by employing a rollback mechanism
that after each query (s, t, F ) rewinds the changes made to the connectivity data structure until
it returns to its original form. This rewinding operation will take time proportional to the query
time of the data structure on (s, t, F ), and does not effect the original query time stated in [42].
It is now possible to query the structure again using a different set of forbidden edges.

Fault tolerant connectivity preserver: Notice that the size of the data structure Conn Or
is O(m). This is necessary in [42] as the size of the forbidden edge set is not known in advance.
However, this is not the case in the sensitivity problem, where the size of the forbidden edge set
is known in advance. Hence we would like to get a data structure whose size is independent of
the number of edges in the graph. To this end, we need to use a sparse representation of the
graph G, that has the same connectivity as G itself for any set of f forbidden edges. This is
exactly what our last ingredient is used for. We use an edge fault tolerant connectivity preserver
H = Conn Pres(G,ω, f), i.e., a subgraph of G(V,E) such that s and t are connected in H \ F
iff they are connected in G \ F for every two vertices s, t ∈ V and any subset F ⊆ E of size at
most f . Our fault tolerant connectivity preserver has the following properties.

Proposition 2.3 Let G(V,E) be an undirected graph. There exists a subgraph H = Conn Pres(G,ω, f)
of G of size O(fn) such that for every subset F ⊆ E, |F | ≤ f and every two vertices s, t ∈ V ,
s and t are connected in H \ F iff they are connected in G \ F . The subgraph H can be built in
time O(fm).

7



It was shown in [55, 41] how to construct fault-tolerant connectivity preservers with the desired
properties. A closely related problem is the k-edge witness problem studied in [56]. The k-edge
witness problem is to preprocess a given graph G so that given a set of k edges S and two
nodes u and v, it is possible to answer in a short time whether S is a separator of u and v in
G. Roughly speaking, a fault-tolerant connectivity preserver can be constructed by iteratively
identifying a spanning forest for G, adding its edges to H, and then removing its edges from G.
For completeness, we now describe the construction of the fault-tolerant connectivity preserver.
The algorithm, given formally in Figure 1, consists of f + 1 iterations. Let EPR be the set of
edges added to the subgraph so far (initialized to be empty). In each iteration, the algorithm
builds a spanning forest for the graph G \ EPR. At the end of each iteration we add the edges
of the current forest to EPR. After the last iteration, we return H(V,EPR), which is the required
fault tolerant connectivity preserver.

Algorithm Conn Pres(G(V,E), f)

EPR ← ∅
for i = 1 to f + 1 do:

Construct a spanning forest F for the graph G\EPR

Add the edges of F to EPR.
Return H ← (V,EPR)

Figure 1: Our algorithm for constructing an f -edge fault tolerant connectivity preserver

As the algorithm collects f + 1 spanning forests, each of at most n− 1 edges, the total number
of edges in the resulting subgraph is O(fn).

We now show that H indeed satisfies the desired properties.

Lemma 2.4 For every subset F ⊆ E, where |F | ≤ f , and every two nodes s, t ∈ V , if s and t
are connected in G′ = (V,E \F ) then they are also connected in the subgraph H ′ = (V,EPR \F ).

Proof: Consider a subset F ⊆ E, where |F | ≤ f . Let H = (V,EPR) be the subgraph returned
by Algorithm Conn Pres. Consider two nodes s and t connected in G′ by a path P . Our goal
is to show that s and t are also connected in H ′. For that, it suffices to show the following.

Claim: H ′ contains an alternative path for each edge e ∈ E \ F that is not included in the
subgraph H.

To see why the claim suffices, we show how an alternative path for P in H ′ can be constructed
by traversing edges in P or their corresponding detours in H ′. Namely, if an edge e of P is also
in H (and thus in H ′, as e /∈ F ), then we traverse e. If e 6∈ H, then we use the alternative path
in H ′ connecting the endpoints of e given by the claim. It follows that there is a path from s to
t in H ′.

To prove the claim, let Hi be the subgraph added during the ith iteration. Note that the edges of
Hi are disjoint for 1 ≤ i ≤ f +1. The edge e was not included in each iteration i for 1 ≤ i ≤ f +1.
Therefore, each Hi contains an alternate path. Hence, H contains f +1 disjoint alternative paths
for the edge e. As |F | ≤ f , at most f of those paths are disconnected by the faults in F , so there
must be at least one alternative path left in H ′ = H \ F . 2
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Our construction: We now turn to describe our construction of Sens Or(G,ω, f,K), where
K = (8k − 2)(f + 1) for integers k and f . (The motivation for using this seemingly odd stretch
parameter will become clear shortly.)

Our construction involves log (nW ) iterations, where W is the weight of the heaviest edge in G
(hence the diameter of G is at most nW ). Each iteration deals with a certain scale of distances
in the graph G. More specifically, iteration i addresses distances that are at most 2i in G. Each
iteration builds a set of connectivity oracles. Each such oracle will be used to answer connectivity
queries on a certain subgraph of G. As we will see shortly, the subgraph for each oracle is specified
in two stages, the first defines the vertex set, and the second defines the edge set. We now present
our construction for iteration i.

Let Hi be the set of heavy edges in G (of weight ω(e) > 2i). Let Gi be G \ Hi. It is easy to
see that any two vertices that are connected in G by a shortest path of length at most 2i are
still connected in Gi by the same path. For reasons that will become clear shortly, we use the
graphs Gi as a base for our construction in iteration i. We start by defining the vertex set of
our connectivity oracles. Namely, let TCi = TC(Gi, ω, 2i, k). For each tree T ∈ TCi we build a
connectivity oracle on the vertices V (T ) of T . This completes our first stage.

For the second stage, we define the edges to be considered in the connectivity oracle corresponding
to T ∈ TCi. Let Gi|T be the subgraph of Gi induced on the vertices of T . Constructing the
connectivity oracle on the edges of Gi|T actually suffices for our construction. However, as the
connectivity oracle uses space that is linear in the number of edges, it is too costly to use it directly
on Gi|T . Thus to save space, we consider a sparse representation of Gi|T that still satisfies our
needs. This sparse representation is exactly the fault tolerant connectivity preserver discussed
above. Namely, let Conn PresT = Conn Pres(Gi|T , ω, f) be a fault tolerant connectivity
preserver for Gi|T . The subgraph Conn PresT is what we use for the connectivity oracle that
corresponds to T .

Our data structure includes a connectivity oracle Conn Or(Conn PresT , ω), or simply Conn OrT ,
for each T ∈ TCi. In addition, for each v ∈ V we compute and store a pointer to the tree
Ti(v) ∈ TCi containing B2i(v). This completes our construction for iteration i.

Lemma 2.5 The structure Sens Or(G,ω, f,K) is of size O(fkn1+1/k log (nW )).

Proof: For a tree T , the size of Conn PresT is O(f |V (T )|). Therefore the size of Conn OrT

is also O(f |V (T )|). We get that the total size stored for all the connectivity oracles is

log (nW )∑

i=1

∑

T∈TCi

O(f |V (T )|) = f

log (nW )∑

i=1

O(k · n1+1/k) = O(fkn1+1/k log (nW )) .

In addition, for each node v and for each 1 ≤ i ≤ log (nW ), we store a pointer to the tree Ti(v),
which can be bounded by O(n log (nW )). 2

2.2 Answering queries using the f-sensitivity distance oracle

Answering queries: Given a query (s, t, F ) to our data structure, the oracle operates as
follows. For each i from 1 to log(nW ), it checks if s is connected to t in the induced graph
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Algorithm Query(s, t, F )

For i← 1 to log(nW )
if Conn QTi(s)

(s, t, F ) = true, then return K · 2i−1

Return ∞

Figure 2: Algorithm for answering an f -sensitivity distance query

Gi|Ti(s) after the set F of forbidden edges is excluded from it. Recall that Gi is the subgraph of
G containing all edges of weight at most 2i. This is done by querying the connectivity oracle
Conn OrTi(s) of Ti(s) with (s, t, F ). Recall that Ti(s) contains all vertices in B2i(s). If s and t
are connected, the oracle returns the value K · 2i−1, otherwise it proceeds to the next i value. If
no such i exists, it returns ∞. The formal code is given in Figure 2.

We now show that given a query, the oracle indeed returns a distance estimate that is within a
multiplicative factor of K from dist(s, t, G \F ). Theorem 1.1 then follows by the lemmas below.

Lemma 2.6 (Correctness) The f -sensitivity distance query algorithm returns an estimate that
is within a multiplicative factor of K from dist(s, t, G \ F ).

Proof: We prove the correctness of the query algorithm in two stages. First, we show that if
d = dist(s, t, G \F ) and i = ⌈log d⌉, then Conn QTi(s)

(s, t, F ) returns true. Next, we show that
if i is the first iteration in which Conn QTi(s)

(s, t, F ) is true, then indeed there is a path between
s and t in G \ F whose length is at most K · 2i−1.

Let P be a shortest path that connects s and t in G \ F . Note that 2i−1 < d = |P | ≤ 2i. By our
definitions, this implies that P is also included in Gi. Moreover, as we define Ti(s) to contain
the ball of radius 2i centered at s, it follows that all the vertices of P belong to Ti(s). Hence, P
is included in Gi|Ti(s) \ F .

As P is a path in Gi|Ti(s) \ F , it holds that s and t are connected in Gi|Ti(s) \ F . The subgraph
Conn PresTi(s) is a fault tolerant connectivity preserver, that is, the graph Conn PresTi(s) \F
preserves the connectivity information of Gi|Ti(s)\F . The actual connectivity query is handled by
issuing the query (s, t, F ) to the connectivity oracle Conn OrTi(s). Since s and t are connected
in Conn PresTi(s) \ F , the connectivity oracle must return a positive answer indicating that s
and t are connected in Gi|Ti(s) \F . The returned distance estimate is K · 2i−1. As |P | > 2i−1, the
stretch of the distance estimate is at most K.

We now turn to the second stage. Notice that since we are using a connectivity oracle on top of
a tree cover, it might be that a positive indication is returned before reaching the ith iteration,
which contains the shortest path. We therefore need to show that if j < i is the first iteration in
which Conn QTj(s)

(s, t, F ) is true, then indeed there is a path in G \ F between s and t whose

length is at most K · 2j−1. Let T = Tj(s) \ F . It is easy to see that T is a forest with at most
f +1 trees. Let T1, . . . , Tf+1 be the trees of this forest. The depth of Tj(s) is at most (2k−1) ·2j,
hence, the same holds for the trees T1, . . . , Tf+1. From the connectivity oracle we know that s
and t are connected in Gj|Tj(s) \ F . Let P be a path between s and t in Gj|Tj(s) \ F . We now
show that there indeed exists a path (that may differ from P ) between s and t in Gj|Tj(s) \ F of
length at most K · 2j−1.

We decompose the path P into at most f + 1 subpaths in the following way. Let x1 = s and
assume that x1 ∈ Tr, for some Tr ∈ {T1, T2, . . . , Tf+1}. We define y1 to be the farthest vertex
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from x1 of P that is still in Tr. The vertex x2 is the first vertex after y1 in P , and y2 is again the
farthest vertex (in the direction of t) from x2 of P that is in the same tree as x2. We continue in
a similar manner until we reach t. We denote by P (xr, yr) the subpath of P between xr and yr.
We get that

P = P (x1, y1) · (y1, x2) · P (x2, y2) · · · (yℓ−1, xℓ) · P (xℓ, yℓ) ,

where s = x1 and t = yℓ. In order to bound the length of P , let us create an alternate path P ′

by replacing every subpath P (xr, yr) of P with the shortest path between xr and yr in the tree
that contains them both. Figure 3 illustrates the alternate path P ′. It holds that P ′ is also in
Gj|Tj(s)\F . Notice that any subpath P (xr, yr) is replaced by a path of length at most 2·(2k−1)·2j.
In addition, as P is a path in Gj|Tj(s) \ F , each edge of P is of weight at most 2j. This implies
that the path P ′ is of length at most 2(f + 1)(2k − 1) · 2j + f · 2j ≤ (4k − 1) · (f + 1) · 2j. Since
the shortest path is of length at least 2i−1, where i > j, we get a stretch of K = (8k− 2) · (f +1),
as required. 2

t

s=s

t=

1x

y1

x2

y2

x3

3y

(a) (b)

Figure 3: (a) A tree Ti(s) of depth at most (2k− 1)2i, where the broken red edges fail. After the
failure of the two broken edges, there are three connected subtrees, of depth at most (2k − 1)2i

each. (b) The emphasized path represents the modified path P ′.

Next, we analyze the running time of the query procedure.

Lemma 2.7 The f -sensitivity distance query (s, t, F ) can be implemented to return a distance
estimate in time O(|F | · log2 n · log log n · log log d), where d = dist(s, t, G \ F ).

Proof: In each iteration of the query process, the most time-consuming step is invoking the
connectivity oracle, which takes O(|F | · log2 n · log log n) time. The query algorithm can stop
on the first iteration in which the connectivity oracle returns true. Hence, in a straightforward
implementation of the query algorithm, as given in Figure 2, there will be at most O(log d)
iterations. The total running time in this case is O(|F | · log2 n · log log n · log d). It is possible,
however, to reduce the query time to O(|F | · log2 n · log log n · log log d) as follows.

Let i0 be the first iteration on which the connectivity oracle returns true and let j = ⌈log d⌉.
By the definition of the tree cover used by our construction, it follows that for every iteration
after the jth iteration, the connectivity oracle query must also return true. Hence, instead of
looking for the first iteration in which the connectivity oracle returns true, we can perform a
binary search for an index k such that the connectivity oracle returns true for iteration k and
false for iteration k − 1.
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To perform our binary search efficiently, we first need to find an upper bound on i0, the value
of the first iteration on which the connectivity oracle returns true. This can be done by simply
checking if Conn QTi(s)

(s, t, F ) is true for i = 1, 2, 4, 8, . . . . As our query is true on any index
larger than j = ⌈log d⌉, we find an index i for which Conn QTi(s)

(s, t, F ) is true in at most
log j iterations. It is not hard to verify that the index i found in this way satisfies i0 ≤ i ≤ 2j.
Thus our binary search involves at most O(log j) iterations, yielding a total running time of
O(|F | · log2 n · log log n · log log d). 2

Combining Lemmas 2.5, 2.6, and 2.7 with a slight change of parameters concludes the proof of
Theorem 1.1.

3 2-sensitive compact routing schemes

In this section we present an f -sensitive routing scheme for the case of two forbidden edges (i.e.,
f = 2) and prove Theorem 1.2.

Let s, t ∈ V and assume that a message is to be routed from s to t. Throughout this section,
assume the forbidden edge set F contains two edges, denoted by e1 and e2. Loosely speaking,
the routing process we suggest is similar in nature to the f -sensitivity query process described in
Section 2. That is, our routing scheme involves at most ⌈log (nW )⌉ iterations. In each iteration
i, an attempt is made to route the message from s to t in the graph Gi|Ti(t)\F using the tree Ti(t)
augmented with some additional information to be specified below. (Note that in each iteration
i, the routing attempt is made on the tree Ti(t) instead of Ti(s); the reason for this will be made
clearer later on.) If the routing is unsuccessful, the scheme proceeds to the next iteration. The
routing process ends either when the message reaches its destination or after a failure in the final
iteration.

Let P be a shortest path between s and t in G \ F , and let i = ⌈log |P |⌉. As argued before, P
is included in Gi|Ti(t) \ F . To prove that our routing scheme succeeds, it suffices to prove that
it finds a path of length proportional to |P | when the routing is done on the augmented tree
Ti(t). Throughout this section, any standard tree routing operation is preformed by using the
tree routing scheme of Thorup and Zwick [53]. That scheme uses (1 + o(1)) log2 n-bit label for
each node. These labels are the only information required for their routing scheme and no other
data is stored. In addition, the routing decision at each node takes only constant time.

Note that the routing scheme of [53] may assign a node t a different label LT (t) for each tree
T ∈ TCi it belongs to. In order to enable a node s to route a message to a node t over some tree
T , it should be familiar with the label LT (t). Naively, for each node t we could concatenate all
labels assigned to t in all trees T ∈ TCi it participates in, and use the concatenated string as the
new label of t. However, this could lead to prohibitively large labels. Therefore, for each node
t, we concatenate only the labels given to t for the trees Ti(t) for 1 ≤ i ≤ log (nW ) (and some
indication on which tree is Ti(t)). Therefore, the attempts to route from s to t are made over the
trees Ti(t) instead of Ti(s). The size of each node label is O(log (nW ) · log n). In addition, for
every tree T and every node v ∈ T , v stores the original label LT (v). Each such label is of size
O(log n), therefore, we get an additional O(log n) factor on the amount of information stored in
the vertices. Now consider iteration i where the node s tries to route a message to t over Ti(t).
Then s first checks if it belongs to Ti(t); if not, then it proceeds to the next iteration, and so on.
In what follows, we assume that the first successful i equals ⌈log |P |⌉, where P is the shortest
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path connecting s and t in G \ F . However, as in the previous section, it might be the case
that s ∈ Tj(t) for j < i. This situation is only in our favor, and follows the exact same analysis
presented below.

3.1 Warm up: 1-sensitive routing

As a first step, we present a simple routing scheme that allows routing in the case of a single
forbidden edge. Let i ∈ {1, . . . , log(nW )}. Consider the tree cover of Section 2 and let T ∈ TCi.
We first specify the information stored in the routing table of vertices in T . We then specify our
routing procedure.

Each edge e = (u, v) in T , if declared as forbidden, disconnects the tree into two connected
components. Let Tu(e) (respectively, Tv(e)) be the component that contains u (resp., v). As the
route may need to cross from one component to the other, our data structure needs to store at
each such edge e some additional information that will allow this task. Specifically, a recovery
edge of e is any edge e′ of G that connects Tu(e) and Tv(e). Let rec(e) be an arbitrary recovery
edge of e. If such an edge does not exist, then rec(e) is undefined. The edge rec(e) is stored in
both nodes u and v, where node u stores the edge rec(e) together with the endpoint of rec(e)
that’s in Tu(e) and node v stores rec(e) together with the endpoint of rec(e) that’s in Tv(e).

We now show how to route a message from s to t when the edge e = (u, v) ∈ E is forbidden
for use. Let P be a shortest path between s and t in G \ {e}. Let i = ⌈log |P |⌉, and let
T = Ti(t). It suffices to present a scheme that enables routing between s and t in T using the
auxiliary information specified above. Initially, the scheme attempts to route the message from
s to t using the edges of T alone. If e is not on the routing path, then the message reaches its
destination and we are done. Otherwise, e = (u, v) is on this routing path and w.l.o.g. assume
that the message encounters the forbidden edge while at u. At this point, the scheme uses the
information stored at u. First, notice that P is included in Gi|T \ {e} and thus there exists
a recovery edge rec(e) in Gi|T . By our construction, u has stored the endpoint of rec(e) in
the connected component Tu(e) of u. Thus, u can now route the message towards this endpoint.
Then the message can use rec(e) to cross from Tu(e) to Tv(e) and finally the message can continue
on its original route to t.

The depth of T is at most 2(k − 1)2i, therefore the depths of both Tu(e) and Tv(e) are also at
most 2(k − 1)2i. In our routing scheme, starting from s we will first route to u, which may take
at most 4(k−1)2i steps (twice the depth). Then from u we route to the endpoint of rec(e) in the
connected component Tu(e), which can also be done along a path of length at most 4(k − 1)2i.
The message then crosses from to Tv(e) using rec(e). Note that rec(e) ∈ Gi|T is of weight at
most 2i. The routing is continued in Tv(e), and again the path obtained from routing in Tv(e) is
of length at most 4(k− 1)2i. It follows that the entire route is of total length (12(k− 1) + 1) · 2i.

As already mentioned before, our routing scheme may involve at most log (nW ) iterations. In
each failed iteration j, it may also need to inform s about this failure, therefore the length of
the path obtained in such an iteration should be multiplied by 2. Consider the first iteration i
where the routing succeeds. The total length of the path is at most

i−1∑

j=1

2 · (12k − 11) · 2j + (12k − 11) · 2i ≤ 3 · (12k − 11) · 2i = (36k − 33) · 2i .
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As the original distance from s to t in G \ {e} is at least 2i−1, the total length of the path is at
most (72k − 66)dist(s, t, G \ {e}).

Theorem 3.1 There exists a 1-sensitive compact routing scheme that given a message M at the
source vertex s and a destination t, in the presence of a forbidden edge e (unknown to s), routes
M from s to t in a distributed manner over a path of length at most (72k−66)dist(s, t, G\{e}).
The total amount of information stored in vertices of G is O(kn1+1/k log (nW ) log n).

3.2 2-sensitivity routing

We now turn to describe our 2-sensitivity routing scheme. Let T ∈ TCi, where i ∈ {1, . . . , ⌈log nW ⌉}.
Each edge e = (u, v) ∈ T , if declared as forbidden, disconnects the tree into two connected
components. Let Tu(e) (respectively, Tv(e)) be the component that contains u (resp., v). As the
route may need to cross from one component to the other, our data structure needs to store at
each such edge e some additional information that will allow this task. Specifically, a recovery
edge of e is any edge e′ of G that connects Tu(e) and Tv(e). We define for each edge e in T a
recovery edge rec(e). For the sake of the analysis, and to slightly simplify the routing phase,
assume that the edges of the graph are sorted in some order 〈e1, . . . , em〉, and for every edge e,
rec(e) is chosen to be a recovery edge ei of e such that i is minimal. We say that ei < ej when
i < j.

In order to handle two failures, we need to store additional information (i.e., additional recovery
edges) in the routing tables of vertices in T . We show that the total number of recovery edges
needed is within a constant factor from the size of T .

Consider the recovery edge rec(e) = (u′, v′) of the edge e. The edge rec(e) connects the subtrees
Tu(e) and Tv(e) where u′ ∈ Tu(e) and v′ ∈ Tv(e). Denote by P (u, u′) (respectively, P (v, v′))
the path connecting u and u′ (respectively, v and v′) in the tree Tu(e) (respectively, Tv(e)), and
denote the entire alternative path for e = (u, v) by P (e) = P (u, u′) · (u′, v′) · P (v′, v).

Throughout this section, assume the two failed edges are e1 = (u1, v1) and e2 = (u2, v2). Clearly,
if both e1 and e2 are not in T then we can just route on T . Hence, we only have to consider the
case when T contains the failed edges.

We first consider the case that only one of the failed edges is in T . Assume, w.l.o.g., that
e1 ∈ T and that e2 /∈ T . Notice that T ∪ {rec(e1)} \ {e1, e2} is composed of two connected
components only when rec(e1) = e2. To overcome this it suffices to store for each edge e ∈ T
an additional recovery edge. Then, in the scenario described above, where rec(e1) = e2 and
T ∪{rec(e1)}\{e1, e2} is not connected, we simply use the additional recovery edge of e1 and we
are guaranteed not to encounter additional faulty edges along the rest of the route. Note that if
there is only one edge that can serve as a recovery edge for e1 and this edge is faulty, then it is
not possible to route from s to t on Gi|T \ {e1, e2}. To summarize this case, for each edge e we
store two recovery edges (if exist).

We now consider the case that both e1, e2 ∈ T . Let rec(e1) = (u′

1, v
′

1) and rec(e2) = (u′

2, v
′

2). If
the edge e2 is not on the alternative path P (e1) = P (u1, u

′

1) · (u′

1, v
′

1) ·P (v′

1, v1) of e1 and s and t
are connected in Gi|T \ {e1, e2} then rec(e1) and rec(e2) suffice to route from s to t. The reason
is that it is always possible to bypass e1 using its alternative path P (e1). Therefore, the routing
from s to t never gets stuck when reaching e1. When the edge e2 is encountered on the routing
path it is bypassed using P (e2) = P (u2, u

′

2) · (u′

2, v
′

2) · P (v′

2, v2). If the edge e1 is on P (e2), it is
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Figure 4: (a) A schematic description of an s − t route where the failed edge e1 is encountered
twice. (b) The resulting route on the tree. Note that the alternate path P (e1) does not always
have to be followed blindly; rather, it can be “shortcut” whenever the necessary information is
readily available.

bypassed (again) using P (e1), which does not contain e2. This situation is depicted in Figure
4. The situation that e1 is not on P (e2) is symmetric. Therefore, it is only left to consider the
situation in which both e1 is in P (e2) and e2 is in P (e1).

This implies that rec(e1) = rec(e2). To see this, notice that since P (e2) contains e1 the recovery
edge rec(e2) is also a recovery edge for e1, and similarly rec(e1) is also a recovery edge for e2.
Since we have chosen the recovery edges to be minimal with respect to a given ordering, it must
be the case that rec(e1) = rec(e2). Now since e1 is in P (e2), e2 is in P (e1) and rec(e1) = rec(e2) it
must be that P (e1)∪{e1} = P (e2)∪{e2}. To deal with this case, we store for e1 (and similarly, for
each edge e ∈ T ) two additional recovery edges recu1

(e1) and recv1
(e1). The purpose of recu1

(e1)
(recv1

(e1)) is to handle an edge fault on P (u1, u
′

1) (P (v1, v
′

1)). We choose recu1
(e1) such that

it will allow to bypass as many edges on P (u1, u
′

1) as possible. More specifically, consider the
path from u1 to any other recovery edge that differs from rec(e1). This path has some common
prefix with P (u1, u

′

1) (which is possibly empty). For recu1
(e1), we choose the recovery edge of e1

that minimizes the length of this common prefix, that is, if recu1
(e1) = (û, v̂) then the common

prefix of P (u1, u
′

1) and P (u1, û) is the minimal possible. The recovery edge recv1
(e1) is defined

analogously with respect to P (v1, v
′

1).

Next, we show how to route based on this information. Assume the failure of the set of edges
{e1, e2}, and consider the task of routing from s to t. Let T ∈ TCi, for i ∈ {1, . . . , ⌈log nW ⌉},
be the tree on which s tries to route its message.

The simplest case is when the message reaches t and no forbidden edges were encountered on
the route. So now consider the case where the message encounters the edge e1 = (u1, v1) on its
route (the case where e2 is encountered first is clearly symmetric).

We now describe how it is possible to route from s to t when e1 is in P (e2), e2 is in P (e1) and
rec(e1) = rec(e2) = e′ = (u′, v′) using the additional information. The message first encounters
the edge e1 = (u1, v1) on its route. If the recovery edge rec(e1) does not exist than t cannot be
reached using T . If rec(e1) = (u′, v′) exists then the message is routed towards u′ on P (u1, u

′). It
uses (u′, v′) and continues to route from v′ toward t on P (v′, v1). Notice that at some stage along
the path P (u1, u

′) · (u′, v′) ·P (v′, v1), the edge e2 is encountered. Since rec(e1) = rec(e2) = e′ it is
not possible to bypass e2 using rec(e2). There are two possible cases to consider here. The first
is when the edge e2 is on the path P (u1, u

′) and the second is when the edge e2 is on the path
P (v1, v

′). Notice that it is possible to distinguish between the two cases when e2 is encountered
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simply by checking whether the edge rec(e1) was already traversed.

Consider the first case, where e2 is on P (u1, u
′) and assume that v2 is the endpoint of e2 that is

connected to u1. There are three subtrees in T \ {e1, e2}. Let T1 be the subtree containing u1

and v2. Let T2 be the subtree containing u2 and u′ and let T3 be the subtree containing v′ and
v1. Note that if t ∈ T , then it must be that t ∈ T3, as the routing scheme on T tries to send the
message from s to t using e1 = (u1, v1) which implies that t is not in the subtree T1 ∪ T2 ∪ {e2}
that contains u1. Moreover, as we assume that we first encounter e1 on the path from s to t in
T , it holds that s is in T1.

We first try to use the edge recu1
(e1). Recall that this edge was chosen such that the path leading

to it from u1 has the minimal possible common prefix with P (u1, u
′). Therefore, if there is a

recovery edge r̃ = (ũ, ṽ) with endpoint ũ in T1 and ṽ in T3, then clearly recu1
(e1) = (u′′, v′′) must

be such an edge. To see this, assume towards contradiction, that the path P (u1, u
′′) contains

the edge e2. Note that the path P (u1, ũ) contains fewer edges in common with P (u1, u
′) than

the path P (u1, u
′′), in contradiction to the minimality of P (u1, u

′′). Therefore, if the subtree T1

contains an edge leading to T3, using the edge recu1
(e1) we can reach to the subtree T3 containing

t. See Figure 5(a) for illustration.
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Figure 5: (a) The edge e2 is on the path P (u1, u
′) and the edge recu1

(e1) is used. (b) The edge
e2 is on the path P (u1, u

′) and the edge recv2
(e2) is used.

The more involved subcase is when for every recovery edge r̃ = (ũ, ṽ) of e1, the path P (u1, ũ)
contains the edge e2, or in other words, there is no edge connecting the subtree T1 with the
subtree T3 (except the faulty edge e1). In this case, our only “chance” to reach t on the tree T is
by passing through the trees T1, T2 and finally T3 in this order. Notice that to connect between
T2 and T3 we can use the edge rec(e1). Using ideas similar to those presented above, we show
that it is possible to reach T2 from T1, and thus the additional information that we have saved
will allow us to reach t.

Consider the case that there is a path between s and t in G|T \ {e1, e2}. In this case, as s is
in T1 and there are no edges in G|T between T1 and T3 it must be the case that there is an
edge between T1 and T2. Let r̃ = (ũ, ṽ) be such an edge. Now, by the definition of recv2

(e2)
we may conclude that recv2

(e2) also connects between T1 and T2 (otherwise we would obtain a
contradiction to the minimality condition in the definition of recv2

(e2)). Therefore, we can use
recv2

(e2) to reach the subtree T2 and then use rec(e2) = rec(e1) = e′ to reach the desired subtree
T3 that contains t (see Figure 5(b)).
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Finally, the analysis of the second case in which the edge e2 is on the path P (v1, v
′) is similar to the

analysis of the first case. Recall that in this case we assume that rec(e1) = rec(e2) = e′ = (u′, v′)
and that e2 is on the path P (v1, v

′). We also assume that we encounter e2 while trying to route
from v′ to t The subgraph T \ {e1, e2} contains three connected subtrees. Let T1 be the subtree
containing u1, T2 be the subtree containing v2 and T3 be the subtree containing both v1 and u2.
Here, we assume that v2 is the endpoint of e2 closest to v′. As in previous case, we first try to
use the edge recv1

(e1), whose goal is to bypass as many edges as possible in P (v1, v
′). Using the

same arguments as before, if the subtree T1 contains an edge leading to T3, then recv1
(e1) must

be such an edge and we can reach the subtree containing t (see Figure 6(a)).
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Figure 6: (a) The edge e2 is on the path P (v1, v
′) and the edge recv1

(e1) is used. (b) The edge
e2 is on the path P (v1, v

′) and the edge recu2
(e2) is used.

So now consider the more involved subcase where for every recovery edge r̃ = (ũ, ṽ) of e1, the
path P (v1, ṽ) contains the edge e2, or in other words, there is no edge connecting the subtree T1

with the subtree T3. Again, as before, our only “chance” to reach t is by passing through the
trees T1, T2, and T3 in that order, where we use the edge rec(e1) to get from T1 to T2.

Consider the case that there is a path between s and t in G|T \ {e1, e2}. In this case, as s is
in T1 and there are no edges in G|T between T1 and T3 it must be the case that there is an
edge between T2 and T3. Let r̃ = (ũ, ṽ) be such an edge. Now, by the definition of recu2

(e2)
we may conclude that recu2

(e2) also connects between T2 and T3 (otherwise we would obtain a
contradiction to the minimality condition in the definition of recu2

(e2)). Therefore, we can use
rec(e2) = rec(e1) = e′ to reach T2 and recu2

(e2) to reach the desired subtree T3 that contains t.
(see Figure 6(b)).

We now turn to analyze the total stretch obtained by our routing scheme.

Lemma 3.2 The resulting routing scheme has maximum stretch O(k).

Proof: Let T ∈ TCi, for i ∈ {1, . . . , ⌈log nW ⌉}, be the tree on which s tries to route its message.
The depth of T is at most 2(k − 1)2i, therefore any path between two nodes on the tree T is of
length at most 4(k − 1)2i (twice the depth).

Our routing scheme first tries to route from s to t (this path is of length at most 4(k − 1)2i).
The route changes whenever the message encounters some unexpected “deviation event”. For
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instance, such an event occurs when we encounter some faulty edge e1 = (u1, v1). In this case
we try to route from u1 to rec(e1), and again some deviation event may occur (in this case the
deviation events that may occur are either encountering another faulty edge or reaching rec(e1)).
Each such event changes the path on which we are currently route on the tree T . It’s not hard
to verify (using a detailed case analysis) that the number of such events in our routing scheme
is bounded by a small constant (details omitted). Thus, the total length of the route followed in
iteration i is at most c · k · 2i for some constant c.

In addition, our routing scheme may involve at most log (nW ) iterations. Consider the first
iteration i where the routing succeeds. The total length of the path is at most

i∑

j=1

c · k · 2j = O(k · 2i) .

The lemma follows as the exact distance from s to t in G \ {e1, e2} is at least 2i−1. 2

All in all, for each edge e = (u, v) ∈ T , both endpoints u and v store three additional edges,
rec(e), recu(e) and recv(e). Theorem 1.2 follows.
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