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Abstract this problem in a variety of ways: deleting incomplete en-

The analysis of incomplete data is a long-standing challengelfi§S: filling in incomplete entries based on the most similar
practical statistics. When, as is typical, data objects are represe@gplete entry (*hot deck imputation”); filling in incomplete
by points in R?, incomplete data objects correspond to affifghtries with the sample mean (“mean substitution”); or using
subspaces (lines aA-flats). With this motivation we study the@ l€arning algorithm or criterion (EM, max likelihood) to in-
problem of finding theminimum intersection radius(£) of a f€r & missing entry [15]. All of these are attempts to cope
set of lines orA-flats £: the leastr such that there is a ball €oncurrently with two difficulties: (1) The statistical rela-
of radius intersecting every flat inC. Known algorithms for tionship between the present and missing data is usually not
finding the minimum enclosing ball for a point set (or clusteringMOWn. This precludes a universal answer to which approach
by several balls) do not easily extend to higher-dimensional fid MOst statistically sound. (2) There is a combinatorial ex-
primarily because “distances” between flats do not satisfy tREPSion inherent in trying out all candidate assignments to
triangle inequality. In this paper we show how to restore geomet}€ Missing values. The present paper offers a new approach
(i.e., a substitute for the triangle inequality) to the problem, throudf the problem of incomplete data: an approach rooted in the
a new analog of Helly's theorem. This “intrinsic-dimensiong€0ometry of the data set.

Helly theorem states: for any famil§ of A-dimensional convex From the computational point of view, a data item with
sets in a Hilbert space, there exit + 2 sets£’ C £ such representative features is typically represented by a point in
that~(£) < 2r(£’). Based upon this we present an algorither1 each.dimension corresponding toa f?ature; frgqgeqtly
that computes 41 + ¢)-core setl’ C £, |£/| = O(A*/e2), One ob_talns good r_esults_by approximating the 5|m|!ar|ty
such that the ball centered at a poinwith radius (1 + &)r(£’) of two items by their Euclidean distance, after choosing a
intersects every element df. The running time of the algorithm 900d scaling of the axes. The most elementary form of
is O(n®*+'dpoly(1/z)). For the case of lines or line Segmemgata analysis for such a data set is to find the smallest ball
(A = 1), the (expected) running time of the algorithm can gat approximates the data set, whether in terms of the sum
improved toO (nd poly(1/¢)). We note that the size of the corddf distances to the center of the ball, maximum distance
set depends only on the dimension of the input objects andi9sthe center, etc. An immediate generalization is to find
independent of the input sizeand the dimensiod of the ambient & SMall number of balls (a “clustering” of the data) which

space. between them cover the points (different interpretations of
“cover” lead to the well-knowrk-median problemk-center
1 Introduction problem, etc.). There is copious work on these problems in

One of the great challenges in computational theory is the g)‘(? machine learning and algorithms literature.
9 9 P y A data item that is lacking information about one or

traction of patterns from massive and high-dimensional data . .
e . : more features corresponds to a line or a flaRffy whose
sets. A common difficulty associated with such data sets is L o .
dll?rnensmn is the number of missing features. There is no
i

that entries are incomplete—a few questions are left blag . L . L
. . ; ; fdl culty in assigning a distance between two such flats; it is
on a questionnaire; weather records for a region omit the fig-

ures for one weather station for a short period because aply the distance between the nearest points on the flats.

o ; o we can seek to cluster the flats so as to minimize some
malfunction; stock exchange data is absent for one stock on

; L ective function. Right away there is a major difficulty:
one day because of a trading suspension; and so forth. FP \lA/tances" between flats do not satisfy the triangle inequal-

should we process the partial data? Statisticians approac : . . o
P P P ﬁly. he problem is not that the triangle inequality is slightly
_ o violated, but thahorelaxation of it holds. No matter how far
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In this paper we initiate work on data analysis for convelimensional convex object§, for any0 < A < d, as
sets of low dimension inside an ambient space of possilibjlows: if every subset oA +2 convex objects of dimension
high dimension. Specifically, we assume each input obj@ttmostA in a Hilbert space are within distaneeof some
is a convex subset of a flat of dimensidnwithin a Hilbert point, then all of the objects are within distange of
space. For the existence theorems, this space may be infisitene point. This result is optimal in the sense that there
dimensional, while for the algorithmic statements, we taksist configurations in which angx + 1 convex objects of
it to be R¢ for a value ofd that we shall consider to bedimension at most\ in R¢ have a minimum intersection
much higher thad\. Our measure of the similarity amongstadius that is strictly smaller thaty2 of that of £. We calll
a collection of convex setg is the minimum intersection this result the intrinsic-dimension Helly theorem:
radius r(£), the leastr such that there is a ball of radius
r intersecting every flat iC. The center of the optimum THEOREM 1.1. (INTRINSIC-DIMENSION HELLY THEOREM)
ball (selected arbitrarily in the degenerate case that itAer anyn convex sets of dimension at mdstin a Hilbert
not unique) is termed theminimum intersection centand Space.. = {{1,/a,--- ,{,}, there existA + 2 setsL’ C L
denoted:(£). Intuitively this center is the best explanatioguch thatr(£) < 2r(L’).
of the incomplete input data; the minimum intersection . ,
radius captures how well this center fits the data, in the seNi€ that when~ = 0 (i.e, when the sets of intersect),
that every incomplete data item can dEmpletedo a point Theqrgm 1.1 d|rectly generalizes Helly's theprem (except
within that distance of the center. Significantly, thereforf1at it is weaker byl in the case that the ambient space is

our model makes a functional prediction for reconstructi finite dimensiond, andA = d). The implications of the
missing data: among all points of the flat, use that whi€heorem to the analysis of incomplete data are immediate:
is closest toc(£). Thus in addition to the role of ourdiven a collectionC of n convex sets of dimension at most

model in learning aggregate properties of the data set, it afso@ 2-@Pproximation of the minimum intersection radius
provides an inference mechanism about the missing featfb& results from enumerating all subsets of £ of size
of individual records. A + 2 and determining the largest£’). Actually as will

Our approach can also be described under the shBpeSeen later, the implici:f_)(nA”_dpoly(A))-runtimg can
replaced by an algorithm with expected running time

fitting framework [1], where one asks for a shape, a poiﬁg(A 1o A) 4 and a suitable center fa(not generally equal

in our case, that best fits the input set, lines or flats, under A -
some criterion. to ¢(L’)) is identified as part of the same process.

The core of our contribution is to show a way to restore  N€Xt, we provide a method to achieve an approximation

geometry to the problem of analyzing incomplete data, @ti0 of 1 + ¢ (for anye > 0) for the minimum intersection

spite of the failure of the triangle inequality. This restoratidi@dius- A subseL’ C L is said to be am-core set, Wlith
goes through a variant of Helly’s theorem. Suppose we bi§gFPect tor(£L), if the minimum intersection radius(L’)

up each line or flat to a cylinder or a slab that encloses afff £ a@pproximates-(£) within a multiplicative factor of

the points within distancefrom ¢. Helly’s theorem says that®: 1heorem 1.1 says that whehis a set of lines ind-

if every d + 1 of these have a common intersection, then &jmensional Euclidian space, one can fineteore set’’ of

of them have a common intersection. In other words, HellP&€3; and in general, i consists ofA-dimensional convex
theorem restores geometry because if every subcollectiorgis: there exists zcore setl’ of sizeA + 2. For general
d+ 1 out of then “data flats” are within distance of some Values ofa =1+ = and forL consisting ofA-dimensional

> .
“explanation point”, then all of the lines are within distance f1ats in R?, we show that for any > 0 there exists a
r of an explanation point. (1 + £)-core set of siz&D(A*/e2). Here and throughout

As it stands, however, this chain of reasoning is tdBe paper we assume that each convex set can be represented
weak. The dimension of the ambient spadgis typically by a constant number of constraints. Such a core set can be

o1 A :
of the order of hundreds or thousands, much larger tHgnd in timeO(n +1,dp013’(1/5))' For the case of lines
the maximum dimensiom of the individual data items. (& = 1), the running time of the algorithm can be improved

We redress this gap by developing a version of Hellyi@ O(ndpoly(1/¢)). Notice that the size of thed + ¢)-core
theorem that takes into account the low dimension of the s&g$ Only depends onandA, and is independent of the total
involved. Beginning with the case of lineA (= 1), we show MPUtn Or the dimension of the ambient space.

that if every3 of the n “data lines” are within distance of To the best of our knowledge, this is the first work
some “explanation point” then all of the lines are within to address core sets for collectiodsthat consist ofA-

distance2r of some explanation point. Notice that we ardimensional convex sets. We summarize the core set result
now free of the “extrinsic” dimension of the ambient spacBY the following two theorems:
and depend only on the intrinsic dimensionality, = 1,

of the data sets. This result can be extended to Any THEOREM 1.2. (1 4 ¢)-CORE SET FOR LINE SEGMENTS

Lete > 0. Let L be a set of lines or line segments



{¢1,...,¢,} in RY, There exist a subsel’ C L of size The study of core sets for points can not be directly
O(1/£?) such thatr(£')(1 + &) > r(L£). The setl’ applied to core sets for lines or flats. For a set of lines or
and a centerc, such that the ball centered atof radius flats, there is no natural definition of “convex hull”. Our
+e)r intersects all lines or line segments i) can core set algorithms for lines or flats are more related wit
1 LY)i Il1i li ih Igorithms for li fl lated with
be found in expected tin®@(nd poly(1/z)). the incremental core set algorithm for poirfisn R¢ with
respect to the radius of the minimum enclosing ball [8],
THEOREM1.3. (1 +¢)-CORE SET§ Lete > 0. LetL be \hich is described as follows. The algorithm starts with
a;et of convex sets of dimensiom\, £ = {45172- -»€n}, N 5" pheing a pair of furthest away points and computes the
R ./There exist a subset C EIOf sizeO(A*/e*) such that minimum enclosing ball of". If all the points are included
r(£9)(1+e) = r(L). The ser’ and a center, such that the i the minimum enclosing ball enlarged by a factot bt-<),
ball centered at of fﬁd'US(lAJrlE)?”(ﬁ ) intersects all sets in then s is a core set. Otherwise, a point outside the enlarged
L, can be found in im&(n>*!d poly(1/e)). ball is added toS’. It can be shown that for each step, the
As described above, the main focus of this paper is tha%jlus of the mmm;um enclosing 2""” of is mcreaseq by
: . . a factor of1 + O(e*). After O(1/c*) steps, the algorithm
near-optimal representation of a set of incomplete data e ) . e
) ) . . erminates. However, there is a major difficulty to apply
tries (A-flats) by a single ball of minimal radius. Naturally,, . : o ’ o
o ) . this algorithm for a set of lineg: there is a situation where
this is only the first step toward a more comprehensive the%r . : L . : .
: . N adding each extra line, the minimum intersection radius
that should provide algorithms fofusteringincomplete data , -
. - . of the current subsef’ stays the same but the minimum
entries by providing several balls of small radius, at least on

. : , .
of which intersects each of thd-flats. It is easy to see thatm?ersectlon radius of’, (L"), is still far away from the

minimizing this radius is NP-hard, from the NP-hardn real valuer(£). A substantial part of this paper is devoted

ess . !
of the k-center problem for points. Our work already im:EO showing that a carefully selectgd set of two'h.nes (or

: o% + 1, more generallyA-flats) can improve the minimum
intersection radius substantially.

2-approximatek-clustering ofn lines. Due to space limita- We also note that there has been work on “clustering
bp 9 ' P o&nts with lines” [3, 5, 10], where one finds a set of lines

tions, the details are omitted from this extended abstract %such that the set of cylinders with radinsind axis as the
will appear in the full version of the paper. lines of £ covers all the input point§. The problem we

1.1 Related work Clustering and shape fitting problemssm_d){,In this paper can be_ phrased as clustermg lines with a
oint”. There does not exist an obvious connection between

on points have been actively studied in recent years. e ) .
i ‘ . . _thése two problems as a natural duality does not exist.

of the powerful techniques is to devise a core set, i.e., a

small subset of representative poirftsof S such that the

optimization problems o8’ is a good approximation to the

optimal solution orS [1]. Precisely, a subs&t’ is a(1 + ¢)-

core setofS if (1+¢)u(S’) > u(S), whereu is a monotonic

1.2 Organization The remainder of the paper is organized
as follows. We start with a few preliminaries in Section 2.
In Section 3 we present the proof of Theorem 1.1. In
. . Section 4 we present the proof of Theorem 1.2. The proof
measure function. Agarwadt al. provided a framework . L :

. . . of Theorem 1.3 is very similar to that of Theorem 1.2, and is
for computing a(1 + ¢)-core set for a set of pointS in ketched i . imitati h f of
R? with respect to many measure functions that depend %r?tc edin Secpon > Dug to space limitations the proof o
the extent of the point set, such as diameter, width, radiva"c of our claims are omitted.
of the minimum enclosing ball, and volume of the smalleﬁt
enclosing box [2]. The basic idea is to find a subset of ) _
points of sizeO(1/20(9) whose convex hull approximatesVe genote by3,(c) a ball centered ata centewith radiusr
the convex hull ofS. For some of the problems such as tH8 R®. We denote byi(., ) the Euclidean distance function.

minimum enclosing ball or ellipsoid, there is an increment&he distance between two pointsy is also written agpq|.
algorithm that computes &l + c)-core set of size thal peryirion 2.1, A A-flat in a Hilbert space is aA-

depends only o [8, 7, 13, 14]. Thus one can apply bruteginensional affine subspace. The dimension of a convex set
forth algorithms on the small core s&tand obtain efficient j, 5 Hilpert space is the least dimension of any flat contain-
approximation algorithms for the optimization problems g it.

S. Indeed, many geometric optimization problems such a

minimum enclosing ball k-clustering, and various shapeDEFINITION 2.2. The minimum intersection balB(L) of
fitting problems can be solved efficiently by using a smadl collection of convex set§ in a Hilbert space is defined
core set[4, 8,9, 10, 11, 13, 14]. However, to the best of dorbe (one of) the minimum radius balls that intersects all
knowledge, no work has been done on devising a core settf@ sets. The center of the minimum intersection ball is
lines or flats with respect to a natural quality measure.  called theminimum intersection centedenoted as:(L).

Preliminaries, definitions and notation



The radius of the minimum intersection ball is called the
minimum intersection radiysdenoted as-(£). Namely,
B(L) = By()(c(L)).

DEFINITION 2.3. (1 + ¢)-CORE SET) Let £ be a set of
convex sets in a Hilbert space. A subgétof £ is said to
be a(1 + ¢)-core set w.r.t. the minimum intersection radius
of Lifr(L) < (14 e)r(L).

] . o ] ) Figure 1: Proof of the reduction from the minimum intersection
We begin by noting that the minimum intersection raadius ofn sets to that of\ + 2 sets.

dius and center of can be found in polynomial time up to

an absolute erraf using convex programming. The proof of . )
the following lemma appears in the Appendix. COROLLARY 3.1. For any n convex sets of dimension at

mostA in a Hilbert space,. = {{1,¢s,--- ,¢,}, if every
LEMMA 2.1. LetL be a set ofs convex sets with dimensior® + 2 sets inL intersect, then all sets id intersect.
at mostA in R%. ¢(£) andr(L£) can be computed to an ab- )
solute precision > 0intimeO(y/n(d?+d?nA) log(n/s)). THEOREM3.1. (OPTIMALITY) ForanyA, there exist a set

of n convex set€ = {/4, ..., ¢, } such that for every subset
3 Intrinsic-dimension Helly theorem L' C L of size less thark + 2 it holds thatr(L£) > 2r(L’).
We now prove Theorem 1.1. Proof. For any A, consider the (A + 1)-
Proof. For each(A + 2)tuple i = {i,...,ins2)} in dimensional S'mp'e§+2 Namely, the selaii = =
{1,...,n}, let B; be the minimum intersection ball of thet(P1:- - Pat2) | 2555 pi = 1}. Our setst; will be
subset; = {£;,,..., 4., } centered at point;, and letr; subsets of2 1, of dimensionA. [£] = A +2. Fori = 1to
be the radius of3;. A + 2, definel; = {(pl, R ,pA+2) € Qat1 ‘ pi = 0} Itis

Let the largest radius among ths ber. Now we claim N0t hard to verify that every subsét C £ of sizeA +1 has
that we can find a ball of radius- that intersects all the & NON-empty intersection — i; ¢ L' then the unit vector
sets inC. Consider the set; and denote by; the set of With ‘1" in the 7'th coordinate is inf’. Thusr(L’) = 0.
points on¢; with distance no more thadr from ¢;. That s, However, the sets i do not have a common intersection.
I = {p € t1]d(p,£;) < 2r}. I; is convex, sincd; is the r(£) >0. o At .
intersection of two convex objects, the getand the set of  Since this construction lies i™", the only choice of
points of distancer from ¢;. Notice thatl; is a convex set parameters for which Theorem 1.1 is not tight is the obvious
of dimensionA in ¢;. case ofA = d.

Consider any(A + 1)-tuplei’ = {iy,...,ia41} in

2 n}. Now we claim that the correspondinty + 1 Theorem 1.1 indicates a straightforward algorithm to

find a 2-approximation to the minimum intersection radius

sets{I;,,..., 1., } have non-empty intersection. Lebe by simolv taking th . dius of 4l + 2 |
the (A + 2)-tuple obtained froni’ by adding an additional y simply ta. Ing the maximum radius o dih + )-Fup es
index of value 1, namely = {1,i1,...,ins1}. By the of sets that includé;. One can improve the running time

above discussion we have that< r. Let ¢; be the center of of this naive algorithm (_a nd actually give an alternative
the minimum intersection baﬂ?i_of L;. Letc; be the point proof to Theorem 1.1) using the methodology of ‘LP-type’

on the set/; that is closest t@;. As the pointc; is within programming (e.g. [16]) ta®(%1°¢2)nd. The proof of the

distancer from all sets inZ;, we have that the poinf is following lemma is given in the Appendix.
within distance2r from all the sets inZ;. This implies that
ciisin; forall j € i'. See Figure 1.

Since for any(A + 1)-tuplei’ = {i1,...,ia+1} the
corresponding) + 1 convex setd; have non-empty inter-
section, and these sets are embedded imXtdmensional
set/y, by Helly's Theorem [12] all the set5;, 2 < j < n
have a non-empty intersection. Now ¢dbe a point irﬂj 1,

2 < j < n. The ball centered at with radius2r intersects 4 (1+¢)-core setfor lines or line segments )
all n sets of~. The proof of Theorem 1.2 we present shortly strongly builds

upon the notion of &1 + ¢)-approximate intersection center
The case of = 0 is closest in form to the original Helly > 0. In what follows we definél + ¢)-approximate in-
theorem: tersection centers, and state Theorem 4.1 which addresses a

LEMMA 3.1. Let L be a set oh convex sets with dimension
at mostA in R¢. Let?¢ € £. The minimum radius ball
B,.(c) that covers the set§ with centerc on ¢, and a set
L' ={l,...,lat2} C L for whichr(£) < 2r(L’) can be
found in expected timgP (2108 8) .,



certain property of these centers. We then prove TheoremRr8of. [Theorem 1.2] Letz > 0. Throughout this proof

based on Theorem 4.1. In what follows we will assume thate assume that is sufficiently small. In what follows we

L is a set ofn lines. The general case in whighalso in- present an algorithm for finding’. Our algorithm is greedy

cludes line segments is proven in a very similar manner aaatd strongly builds upon Theorem 4.1. For aSetlet ¢’ be

is given in detail in the Appendix. the axis of the cylinder of radiugr(L£’) which contains the
collection of (1 + £2/50%)-approximate intersection centers

DEFINITION 4.1. A (1+¢)-approximate intersection balf of £’.

a setL in d-dimensional Euclidean space is a ball of radius  Roughly speaking, the main idea of our algorithm is

(1 + ¢)r(£) that intersects all sets if. The center of a as follows. We start out by picking a subset©f of size

(1 + ¢)-approximate intersection ball is called @ + <)- 3 according to Lemma 3.1. For these lines it holds that

approximate intersection centéie denote by’ (£) the set ar(L’) > r(L£) wherea = 2. This is a good starting point,

of (1 4 ¢)-approximate intersection centers 6f but we still need to reduce the valueabove to(1 + ). We
do this in a series of steps. In each step, a line or two are
OBSERVATION 4.1. For any setC, C.(L) is convex. added to£’ and « reduces by a factor ofl — 1£2/502).

Hence, afterO(1/¢?) such steps we are in a situation in
DEFINITION 4.2. Let/ be a line inR?. A cylinder of radius \which (1+&)r(£') > r(£) and we are done. The second
r with axis/ in R is defined as the set of pointsikf which  part of the theorem (regarding efficiency matters) will follow
are of distance at mostfrom /. from the detailed description of the algorithm.

We first focus on an iteration of the algorithm. Lét

THEOREM4.1. C.(£) is included in a cylinder of radius pe the subset defined by the algorithm so far. d.et (L)
25¢/er(£) with axis parallel to one of the set§ € L. pe the minimum intersection center 6f, and let¢’ be the
Moreover this axis passes througfc). axis of the cylinder of radiugr(£’) which contains the

collection of(1 + 2 /50%)-approximate intersection centers

The proof of Theorem 4.1 is based 0Rf /. Recall from Theorem 4.1 thét passes throughand
Lemma 4.1 4.2 43. The proofs of the Lemmas angdnarallel to one of the sets ify.

Theorem 4.1 are non-trivial and rather technical; they appear |t the pall centered at of radius(1 + ¢)r(£’) intersects
in the Appendix. £, halt and output the se¥’. Otherwise, if there exists a line
¢ € Lsuchthat (L' U{l}) > (1+€2?/50%)r(L") add/ to L'

LEMMA 4.1. Suppose is a minimum intersection center oy proceed in an additional iteration of the algorithm (see
a set of linesC andp is a (1 + €)-approximate intersection .o mark at the end of the proof).

center,|cp| > ay/er(£), then there exists a line € £ such We are now in a situation that for every lifies £ the
that the angle betweehiand the intervakp is bounded by 4,5 of the minimum intersection ball @f U {¢} is very
arcsin(v'2 +¢/a). close to the radius of the minimum intersection ball&f
namely,r(£' U {¢}) < (1 +&%/50%)r(L’), this implies that
the center of the minimum intersection ball 6f U {¢} is
in the 5r(L’) cylinder around’. In this case, we use the

LEMMA 4.2. For a set of A + 1 orthogonal vectors
{v1,v9,--- ,uay1} and aA-flat £ in R4+, there must be

a vectory; such that the angle between and/ is at least i /45 find apair of lines that when added t6’ will
arcsin(1/vA +1). increaser(L') substantially. For each ling € £\ £’ we

now compute a certain intervé) on ¢’. Namely, we define
I; to be the set of points on ¢’ such that the ball of radius
(14 ¢)r(L’) centered at intersects the sets it U {¢;}. It

With Theorem 4.1, we now prove Theorem 1.2, Thlg not hard to verify that for each ling this interval is not

idea is similar with the construction of @ + ¢)-core set emp/ty. Indeed, con§|der the m|n|mur2n |nt2ersec/t|o_n ce¢11er
) ; N ) of L/ U {l;}. Asr(L' U{l}) < (1+¢2/50%)r(L'), i.e..c
P’ for a set of pointsP in R* such that the radius of the. 5 1en2 . ;- v
minimum enclosing ball of? is bounded by(1 + ¢) times Is a(l + /50 )—apprquate center Qt , it follows from
heorem 4.1 that the distancedjffrom ¢’ is at most r(L’).

. e ) . T
that of P [8]. Th? .baS'C idea n [8] s to add a point noE?onsider the projection off onto the line?’. Denote this
covered by the minimum enclosing ball of the current coré !

U ) .
set such that the minimum radius is increased substantif(yojecuon by ;. It now follows that the ball of radius

. 2 2 / / /
However, a direct application of this idea does not work for * 5/2, + /50 ).T(E.) S 1+ ‘E,)T(E ) centered at;
. X . . oversL’' U {¢;}, which implies that] € I,.
the case of lines. One can find a scenario where adding a line . . g .
If for all pairs of lines?; and ¢; the corresponding

can not improve the minimum intersection radius. We will . ) .
. . X intervals intersect, then by Helly theorem, there is a point
show that a careful selection of two lines can always increase

the minimum intersection radius by a substantial factor ¢ n the intersection of all the intervals. This implies that the

LEMMA 4.3. C.(£) does not include a2-dimensional
square with side lengthy/zr(L).



ball of radius(1 + ) (L") centered at’ covers all the lines References

and we may halt the algorithm and output the 8et
Finally, if there are two lineg; and ¢; with corre-

sponding intervals that do not intersect, then we claim thft] P. Agarwal, S. Har-Peled, and K. R. Varadarajan. Geomet-

r(L'U{l;,0;}) > (14 €%/50%)r(L") and we may add both

¢; and/; to £" and proceed in an additional iteration of the
algorithm (see remark at end of proof). Assume for contra-

diction thatr(£' U {¢;,¢;}) < (14 %/50%)r(L’) and letc*
be the minimum intersection center 6fU {/;,¢;}. As the

ball of radius(1 + £2/50%)r(L’) centered at* also covers [

L' it follows that the distance af* from /' is at most;r(L’).
As before, consider the projection @f onto the line/’. De-
note this projection by’. It now follows that the ball of
radius(1 + § + €2/50%)r(L") < (1 +¢)r(L’) centered at
¢’ coversC' U {¢;,¢;}. This implies that the point’ is in
the intervals/; and; corresponding td; and¢;, which is a
contradiction.

We still need to show, given a new sét how to find
c(L'), r(£') and the axist’ of C.2/502(L"). Computing

c(L") andr(L") can be done (with sufficient precision) in

timed poly(1/¢) using Lemma 2.1 (here we use the fact th

the total dimension of the lines involved in the computatio
is independent off). Regarding the liné’, by Theorem 4.1 [7]

we know that¢’ is parallel to one of the lines i’ and
passes through = ¢(L£’). In the upcoming iteration of our
algorithm, we may try each and every linefh (a constant

number) and run the additional iteration with that center. As

we halt our algorithm, or proceed to add lines46 only

if certain conditions hold. We are sure to encounter these

conditions once we have chosen the correctfine

5 (1 + ¢)-core set for convex sets of dimensiog A

The algorithm in the previous section can be extended to

the general case of convex sets with dimension at mgst

resulting in the proof of Theorem 1.3. As in the previous0]
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6 Appendix Detailed proof is omitted form this extended abstract and will

Proof. [Lemma 2.1] We can formulate this problem byPpear in the full version of the paper. Roughly speaking
convex programming. Assumeis a point inR? andr is the proofs follow the line of proof used in proving that the
the intersection radius af with respect toC. Each convex Minimum enclosing ball of a set of points is an LP-type
set/; has dimension at most and is represented as followsProblem. _ o _ _

¢; is in aA-dimensional spac#;, which has origin(® and Claim 1: the combinatorial dimensiorof (H,w) is

is spanned by: unit vectorsgg.i), j=1,---,A. Therefore, A + 1. This follows essentially from the argument that

o ) A (@@ 0 the A dimensional flat/ the minimum enclosing ball
each point irY; can be represented byf) + 375" AJ°b”, of points has an exact coreset of siz2e+ 1. Claim

Where)\;i) is a scalar. Insidé;, the convex set; is specified 2: Monotonicity and Locality, follow by the definition of
by m; convex constraintgf;i)(/\(i)) <0G =1, ,my W Claim 3: Violation testand Basis Computation We

hereA® — D1 Wi find the mini . . _present an algorithm which given a set of constradtsf
whereA™ = {A;"}. We can find the minimum intersectioryj,o _ A | 2 "finds the value ofv(G) along with abasis

radius and center af by solving the following optimization for G. Here we use the fact that finding the minimum

problem: covering ball ofk convex sets irk? dimensions can be done
intimeexp(O(klogk)) (see for example [16]), we also need
a few additional ideas that tie this problem with our basis
computation problem.

minr
st. 1> |lc—ol — Zle )\Y)ggz)ﬂ ,1<4i<n;
APO0)<0,1<j<mi1<i<n. ,
Proof. [Lemma 4.1] We take a point on c¢p that moves
This is a convex optimization problem. The total number affinitesimally away frome towardsp. We argue that there
variables isnA + d + 1. The total number of constraintsnust be a line/ € £ such thatd(c,/) = r(£) and the
is N +n, whereN = >".m; = O(n). Thus one can distance from a point on cp to ¢ is non-decreasing, when
find the solution up to precisiofi > 0 in time O((N + t moves infinitesimally frome to p on ¢p. Otherwise, the
n)(nA + d)3log(n/d)), by using a generic interior pointdistances from to all the lines inC are strictly less than(£)
method [6]. A more careful analysis by exploring thehent moves infinitesimally away from. This contradicts
sparsity of matrices shows a better bound on the running timigh the fact that-(£) is the minimum intersection radius.
O(y/n(d? + d?nk)log(n/d)). The details are omitted here. ~ Now suppose for the liné € £, the distance front to
¢ stays the same, whermoves infinitesimally away from.
Proof. [Lemma 3.1] Let£ be a set ofn convex sets of Then it must be thaip is parallel with¢. Therefore the angle
dimensionA in R%. Let/ € L. In what follows we study petweer? andcp is zero. The claim is true.
the problem of finding the minimum radius ball covering |f the distance fromt to ¢ is strictly increasing when
L with center on¢. We show that this problem falls in thet moves infinitesimally away from, the distancei(t, ¢) is
abstract framework of so called ‘LP-type’ problems, and cafonotonically increasing asmoves linearly frome to p.
be solved by the randomized algorithm of [16] in expectédbw we bound the angle betweep and/ as follows. The
running time2© (412 2)nd, The algorithm of [16] not only pointp is a(1 + )-approximate intersection centef,L) <
finds the minimum radius ball (sa#,(c) centered at of q(p,¢) < (1+¢)r(L). We denote by’ the line that is parallel
radiusr) coveringL with center orY, it also returns a subsetwith ¢ and goes through center Let ¢ be the point ort for
L' of £ of size A + 1 such that the minimum radius ballhich pq perpendicular td, |pq| = d(p,¢) < (1+¢)-7(L).
coveringL’ with center orY is alsoB,.(c). This implies that Let ¢ be the point ort’ for which ¢¢’ is perpendicular td’,
r(£) < 2r(L" U L). Indeed,r > (L), andr(L' U L) > |q¢'| = d(c,£) = r(L). Finally, lets be the point or? for
L 25) otherwise by projecting onté and using the triangle which cs is perpendicular td, |cs| = d(c¢,¢) = r(L). See
inequality one could find a ball of radius less tharthat Figure 2.
coversL’ with center orv. Let H be the hyperplane with normak that passes
We now sketch the proof that the problem at hand is #iroughc¢, and letS be the (closed) half space defined by
LP-type problem. Throughout our proof we use the notatidi that does not includé The segmentp (not includingc)
of [16] freely. Our problem is defined by a coupl&,w) is either entirely contained if or entirely contained in the
where H is the set of constraints corresponding to each sstmplement ofS. We now claim thecp is in S. Consider
in £, andw is the function on subsets of H which returns the ball B of radiusr(£) arounds. The pointc is on the
the minimum radius ball covering sets corresponding-to boundary of bothB and S. And the segmentp does not
with center or¥ (ties broken using a lexicographic order oimtersect the interior oB. Otherwise there would be a point
£). For various technical reasons we alteras to satisfy on cp of distance less than(£) to s. This can only happen
basis regularity(as described in [16]). To use the framework cp isin S.
outlined in [16] it suffices to prove the following claims. If p is in S, the inner angle of the triangl&pq’q at




b
]
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Figure 3:The set of(1 + ¢)-approximate centerS. (£) does not
include a2-dimensional square with side length/= - r(L£).

- Also |ua| = |ub| = 5y/er(L). By a similar argument as in
Lemma 4.1, the angle fromito the lineua (ub) is at most
Figure 2:If the distance between an approximate cepterthe minimum arcsin(Q\/m/@ < 7/4, a contradiction.
t?enterc? is more tham\/g -r(L), then there exists a line whose angle to Thus,d(u,?) < r(£), for any line¢ € £. We conclude
line cp is bounded byresin(v2 + £/). that v is an intersection center of with radius less than
r(L£). This gives a contradiction to the definitionaf’).

vertexq', Zpq'q > /2. Thus, Proof. [Theorem 4.1] We first study the case where the set
of minimum intersection centers is included in a finite radius

lpd'| < Ipql? — laq'|? ball centered at the origin. Then the set of approximate
<r(L)y/(1+e)2—-1= r(g)\/m, intersection centers is also included in a finite radius ball.

_ _ . Let ¢ be a minimum intersection center. Denote jyhe
On the other hand?,’_ls perpend_lcular to both thehrqe]’.and approximate center such thatp| is maximal. If [cp| <
the linepg. Thus!’ is perpendicular to the plane defined byo,/zr(£), then the approximate centers are inside a ball
the trianglepq’q. This implies that/pq’c = m/2. Therefore with radius20+/zr(£) centered at, and thus included in
any cylinder with axis through and radiu0 L). The
VETE (L) Y cy g ver(o)

! . .
sin /peq’ = lpd'| < = V271 ¢/a. claim is true.
|pe| ay/e-r(L) If |cp| > 20+/er(L), we claim that the cylinder with axis
Thus the angle betweed and line cp is Zpeg' < cp and radiu0,/er (L) includesC. (£). Assume otherwise,
arcsin(v2 ¥ /) — there must be an approximate centewith distance more
' than 20,/er(£) away from the linecp. Denote byq the
Proof. [Lemma 4.2] Without loss of generality, we caréeflection point ofp on the linecp, |cq| = |cp|. Since

assume that;’s are the unit vectors along tHe+ 1 axes p is the furthest away approximate center froprthus the
and ¢ passes through the origin. We take the unit normiojections of the other approximate centers on the dine
vectorv of £. Then the angle between and/, denoted by fall inside line segmenpg. Now we consider the triangle
0;,ism/2— 0}, wheref’, is the angle between vectarsand Avcp. By the convexity o (£), all the points insidehvep
v. In order to minimizemax; §; = max; arcsin(sin0;) = are(1+-¢)-approximate centers. We claim that there must be
max; arcsin(cos #]) = max; arcsin(v; - v), one chooses @ 2-dimensional squarg with side lengthb./er(£) inside
v = (1,1,---,1)/v/k+1. Thus we havemax;#; > XOvcp. Take the middle point of the line segmept denoted
arcsin(1/v/k + 1). ass. |es| > 104/er(L). Take the point’ on line segments
cv andwvp such that the projection of on the linecp is s.
Proof. [Lemma 4.3] Assume that there is a squétevith Now we argue that a square of side lengtfier(£) with s
side lengths/cr (L) insideC.(£). Denote byu the center as one corner and a portion of line segmenas one of the
of R, anda,b,c,d the four points on the boundary suclides must be completely insidecvp. If the projections of
that ua, ub, uc, ud are perpendicular to the four sides Bf  on the linecp lies on the segmenp, as shown in Figure 4
respectively, see Figure Jua| = |ub| = |uc| = |ud| = (i), then the length ofs’ is at leastl0/zr(L). ThusAcss’
5v/er(L)/2. must haveR completely inside. If the projection of v on
Now we claim that for any liné € £, d(u,?) < r(£). the linecp lies on the segmeni;, as shown in Figure 4 (ii),
Assume otherwise, there is a liiec £ such thatd(u,f) > the length ofss’ is at least+/er(L£). Again it is not hard to
r(L). We observe that when we move a pdiontinuously verify that the squaré is completely insideA cup.
from u to a or fromu to ¢, at least in one case the distance Thus we can find a squarB inside Avcp with side
d(t, £) is monotonically increasing. Similarly for nodési. length 5./er(£), as shown in Figure 4. This implies a
We take such two vectors, say, ub. The vectorsia, ubare contradiction by Lemma 4.3. Thus the cylinder with axis
perpendicular to each other. Furthermarg,are both inside and radiug0+/er(L£) includes all the approximate centers.
C.(L), sod(a,l) < (1 +e)r(L), d(b,l) < (14 e)r(L). For alinet; € £, we find the lineZ; that is parallel with



@ (ii)

Figure 4:If |cp| > 204/ - (L) and the cylinder with axisp and radiu0./z - r(£) does not include all the approximate centers, we
can find a squar® inside Avcp with side lengthb/z - r(L).

¢; and goes through. We claim that one of the cylindersthe approximate centers.

with axis ¢, and radius25+/r(£L) includesC.(£). Recall

that ¢ is the reflection point ofp on the linecp and the Proof. [Theorem 5.1] The proof is similar to the proof of
projections of the other approximate centers on the dine Theorem 4.1 and is based on the analogs of the Lemmas 4.1,
fall inside line segmenpg. Let « satisfy|cp| > av/er(L), 4.3, stated as follows. We first start with the case of line
by Lemma 4.1 there is a liné € £ such that the anglesegments.

between? and the linecp is arcsin(v/2 + ¢/«). Take?' to

be the line througle which is parallel with?. The distance LEMMA 6.1. Suppose: is a minimum intersection center
frompto ¢’ is at most(L£)+/2¢ + 2. Thus the distance fromof a set£ of lines or line segments anglis a (1 + ¢)-
any point on the line segmept to line ¢ is no more than approximate intersection centefgp| > ay/er(L), o >
r(£)v/2¢e + €2, by simple geometry. Take any approximat2y/2 + ¢, then there exists a line or line segmént £ such
centert”, assume its projection to linep is ¢, and the that the angle betweefiand the intervakp is bounded by
projection oft on line ¢’ is t'. The distance from” to ¢/ arcsin(v/2 +¢/(a — 2v/2 + ¢€)).

is
d(t”, 0" <dt",t)+d(t,t") Proof. For the case of line segments, the proof is basically
<20v/er(L) +r(L)v2e + &2 the same as Lemma 4.1. We can assume without loss of
< 25 /er(L). generality that the closest point(q) to ¢ (p) on £ is not

. . . . . the endpoints of the line segment. If otherwise, we can
Thus the c_yImderwﬂh axig’ an<_j radiug5+/er(L) includes find a p?)inté on the line segmen«tp such thaté is the
the collection of(1 + )-approximate centers. furthest point frome on cp such thaté's closest point on

o ¢ is still s. Notice thatr(£) < d(¢,¢) < (1 + ¢)r(L).
Since the distancé(t, ) is monotonically increasing, as
moves frome to p, the inner angle ofAécw at ¢ is at least
/2. Thus|eé| < /(14+¢€)2 —1r(L) = /(24 ¢e)er(L).
Similarly, one can find the corresponding pojiton ép.
Ipp| < v/ (2 + e)er(L). Thus|cp| > (a—2v/2 + &)/er(L).
Figure 5:There is a cylinder with axis parallel with one of the lineSlow we follow the arguments in the case of lines. The
in £ and radiu5./er(£) that includes the collection dfl + ¢)- angle betweeid andcp is bounded byrcsin(v/2 + ¢/(a —
approximate intersection centers. 2v/2 +¢)).

If the set of minimum intersection centers is not inkEMMA 6.2. Suppose is a minimum intersection center of
cluded in a finite radius ball, then all the lines are parallel,set£ of convex sets with dimension at mdstandp is a
and the cylinder that includes all the approximate centéiis+ ¢)-approximate intersection centdep| > av/er(L),
must have a axis parallel with the lines ifh(otherwise it « > 24/2 + ¢, then there exists a convex gete L such
can not cover the minimum intersection centers). Thustlifat the angle betweefiand the intervakp is bounded by
there is an approximate centeoutside the cylinder with ra- arcsin(v/2 + /(o — 2v/2 + €)).
dius25./cr(L), by a similar argument as above we can find
a square with side length more thay'er(£) completely in- Proof. The proof is very similar to the proof of Lemma 4.1
sideC.(L£). By using Lemma 4.3 we have a contradictiorand 6.1. There is a convex get £ such thati(c, ¢) = (L),
Thus the cylinder with axis that equals the line of the mini{p, ¢) < (1 + ¢)r(£) andd(t,¢) > 1 monotonically non-
mum intersection centers and raditis,/er(£) includes all decreasing as moves fromc to p. Let s be the point or?



closest tac andq the point on¢ closest top. Now we know flat spanned by g1, p2ge, -+, Pi—1Gi—1, Pit1di+1s

that|cs| = r(£) and|pq| < (1 +¢)r(L). PAa+19a+1 and width34/e(A + 1)3r(L)
If s and ¢ are the same point, then the inner an- o _ _
gle of Ascp at vertexc is at leastr/2. Thus|cp| < Proof. [Theorem 1.3] The basic idea is the same as in

Nsp2 —es]2 < \/(2+¢e)er(£). Thusa < /2+¢, Theorem 1.2. We first focus on the existence of a small size

which is a contradiction. core set. We start witl\ + 2 sets£’ C L according to

If s areq are different, we note that the line segmerftheorem 1.1suchthaff) < a-r(£), o = 2. Lete = ¢(L')
sq is completely inside, due to the fact that is convex. be the minimum intersection center 6f and¢’ be the axis
Further, as a point moves oncp from ¢ to p, the distance Of the slab that contains the collection @f + m)
betweent and the line segmenty is non-decreasing. By approximate intersection centers ©f for some constang
Lemma 6.1, the linegp andsq have a small angle. Thus thén Theorem 5.1. Defind; to be a subset of such that a
angle betweenp and/ is no more thaarcsin(y/2 + ¢/(a— pointp € I; has distance at mogt +<)r(L’) away from the
2v/2+¢)). setsC' J{¢;}. i € L\ L.

If among allZ;, everyA + 1 of them have a non-empty
LEMMA 6.3. C.(£) does notinclude &\ +1)-dimensional intersection, theif, I; # 0, by Helly’s theorem. Thus the
cube with side length /(A + 1)r(L£), for a constanty >  ball with radius(1 + )r(£’) centered at a point € (), I;

612+ €. intersects with every set i and we are done( is the core
set).
Proof. Suppose otherwise, there isA + 1)-dimensional If there areA + 1 sets(y, {2, - -+ , a1 Such that their

cube R with side lengthy,/s(A + 1)r(£) inside C.(£). corresponding set§;, j = 1,---,A + 1 do not have a
Denote byu the center of this cub&. Again, we claim common intersection, then it can be verified in the same
that d(u,?) < r(L£) for any ¢ € L, which contradicts way as in Theorem 1.2 that(L'(J{/1,--- ,lat1}) >
with the definition ofr(£). Now suppose that there is g1 + m)r([/). Thus we add all the sets, j =

convex set! € L such thatd(u,f) > r(£), we argue a 1 ... A +1,to£’ and go to the next iteration.
contradiction. By Lemma 62, we can fllZiKH— 1 Orthogonal ThUS, for each iteration’ at modt + 1 sets are added
vhectorslof |engthy\/€(Ah+ 1)r(£)/2rc]:enteredaz_nsuch that to £’ and the valuen is decreased by a factor ¢l —
2
Eh:r?;rgizf(etweeggc vec):to<r Zzsiff /nviéfm)o r_?r?lrse _2452(24?)3 ). After O(A3/2) steps, there ar@(A*/e?) sets
WATL/2—2v/2%< v in £’ such that(£) < (1 +¢)r(L').
contradicts with Lemma 4.2. This concludes our proof for the existence of the-c)-

core set for convex sets of dimension at mdst For

Finally we show, with the above lemmas we can pro algorithm to compute this core set, notice that the axis
our Theorem. In this final step, given a minimal inte of the slab containing’.(£’) is not known. Thus we
section center, we find a set of pairgpi,q1), (p2,42), will try each A + 1 tuples of the remaining sets af at

, (Pa+1,9a+1) In the following way. p1, ¢; are the fur- each iteration. We will terminate our algorithm once no
thest pairs of points irC.(£) such that the line segmentA + 1 tuple will increase the minimum intersecting radius
p1q1 intersectse. po,q2 are the furthest pairs of points(significantly). The running time of the algorithm follows
in C.(£) such that the line segmeptq, is perpendicu- from the same arguments as in Theorem 1.2. A center
lar to thel-flat spanned by, ¢;. Similarly, p;, q; are the such that the ball of radiugl + ¢)r(£’) intersects all sets
furthest pairs of points irC.(£) such that the line seg-in £ can be found using Lemma 2.1 (convex programming).
mentp;g; is perpendicular to thei — 1)—f|at spanned by The careful reader may have noticed that the running time of
{p1,q1,p2,q2, - ,pi-1,qi—1}. Defined; = |p;qi|. Now our algorithm for general is greater than that implied by
we claim that at least for oné < i < A + 1, di < standard convex programming (Lemma 2.1). Indeed this is
Bv/e(A+1)3r(L), for some constant. the case, however, in our algorithm in addition to returning

Suppose otherwiseii > fy/e(A+1)3r(L) for 1 < anapproximate center we also return the coresét whose
i < A+ 1. Now consider the convex polytogéspanned by existence should be viewed as the main contribution of this
the points{p1, g1, p2, G2, - ,PA+1,9a+1}. By the convex- Theorem.
ity of C-(L), all the points in the interior of are(1 + ¢)-
approximate centers. Thus one can then find\a+ 1)-
dimensional cube with side length,/e(A + 1)r(£) inside
P, with v > 64/2 +¢. The details are omitted here. By
Lemma 6.3 we have a contradiction.

Thusd; < B/e(A+1)3r(L) for somei. There-

fore C.(L) can be enclosed in A-slab with axis as the



