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Abstract

The analysis of incomplete data is a long-standing challenge in
practical statistics. When, as is typical, data objects are represented
by points in Rd, incomplete data objects correspond to affine
subspaces (lines or∆-flats). With this motivation we study the
problem of finding theminimum intersection radiusr(L) of a
set of lines or∆-flats L: the leastr such that there is a ball
of radius r intersecting every flat inL. Known algorithms for
finding the minimum enclosing ball for a point set (or clustering
by several balls) do not easily extend to higher-dimensional flats,
primarily because “distances” between flats do not satisfy the
triangle inequality. In this paper we show how to restore geometry
(i.e., a substitute for the triangle inequality) to the problem, through
a new analog of Helly’s theorem. This “intrinsic-dimension”
Helly theorem states: for any familyL of ∆-dimensional convex
sets in a Hilbert space, there exist∆ + 2 setsL′ ⊆ L such
that r(L) ≤ 2r(L′). Based upon this we present an algorithm
that computes a(1 + ε)-core setL′ ⊆ L, |L′| = O(∆4/ε2),
such that the ball centered at a pointc with radius(1 + ε)r(L′)
intersects every element ofL. The running time of the algorithm
is O(n∆+1d poly(1/ε)). For the case of lines or line segments
(∆ = 1), the (expected) running time of the algorithm can be
improved toO(nd poly(1/ε)). We note that the size of the core
set depends only on the dimension of the input objects and is
independent of the input sizen and the dimensiond of the ambient
space.

1 Introduction

One of the great challenges in computational theory is the ex-
traction of patterns from massive and high-dimensional data
sets. A common difficulty associated with such data sets is
that entries are incomplete—a few questions are left blank
on a questionnaire; weather records for a region omit the fig-
ures for one weather station for a short period because of a
malfunction; stock exchange data is absent for one stock on
one day because of a trading suspension; and so forth. How
should we process the partial data? Statisticians approach
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this problem in a variety of ways: deleting incomplete en-
tries; filling in incomplete entries based on the most similar
complete entry (“hot deck imputation”); filling in incomplete
entries with the sample mean (“mean substitution”); or using
a learning algorithm or criterion (EM, max likelihood) to in-
fer a missing entry [15]. All of these are attempts to cope
concurrently with two difficulties: (1) The statistical rela-
tionship between the present and missing data is usually not
known. This precludes a universal answer to which approach
is most statistically sound. (2) There is a combinatorial ex-
plosion inherent in trying out all candidate assignments to
the missing values. The present paper offers a new approach
to the problem of incomplete data: an approach rooted in the
geometry of the data set.

From the computational point of view, a data item withd
representative features is typically represented by a point in
Rd, each dimension corresponding to a feature; frequently
one obtains good results by approximating the similarity
of two items by their Euclidean distance, after choosing a
good scaling of the axes. The most elementary form of
data analysis for such a data set is to find the smallest ball
that approximates the data set, whether in terms of the sum
of distances to the center of the ball, maximum distance
to the center, etc. An immediate generalization is to find
a small number of balls (a “clustering” of the data) which
between them cover the points (different interpretations of
“cover” lead to the well-knownk-median problem,k-center
problem, etc.). There is copious work on these problems in
the machine learning and algorithms literature.

A data item that is lacking information about one or
more features corresponds to a line or a flat inRd, whose
dimension is the number of missing features. There is no
difficulty in assigning a distance between two such flats; it is
simply the distance between the nearest points on the flats.
So we can seek to cluster the flats so as to minimize some
objective function. Right away there is a major difficulty:
“distances” between flats do not satisfy the triangle inequal-
ity. The problem is not that the triangle inequality is slightly
violated, but thatno relaxation of it holds. No matter how far
apart linesa andc are, there is always a lineb that intersects
both. This problem defeats many existing algorithmic ap-
proaches for “clustering”-type tasks, and for good reason—
the geometry seems, in a genuine sense, to be absent. What
does it mean to cluster lines, if “a resemblesb” and “b re-
semblesc” imply nothing at all abouta resemblingc?



In this paper we initiate work on data analysis for convex
sets of low dimension inside an ambient space of possibly
high dimension. Specifically, we assume each input object
is a convex subset of a flat of dimension∆ within a Hilbert
space. For the existence theorems, this space may be infinite-
dimensional, while for the algorithmic statements, we take
it to be Rd for a value ofd that we shall consider to be
much higher than∆. Our measure of the similarity amongst
a collection of convex setsL is the minimum intersection
radius r(L), the leastr such that there is a ball of radius
r intersecting every flat inL. The center of the optimum
ball (selected arbitrarily in the degenerate case that it is
not unique) is termed theminimum intersection centerand
denotedc(L). Intuitively this center is the best explanation
of the incomplete input data; the minimum intersection
radius captures how well this center fits the data, in the sense
that every incomplete data item can becompletedto a point
within that distance of the center. Significantly, therefore,
our model makes a functional prediction for reconstructing
missing data: among all points of the flat, use that which
is closest toc(L). Thus in addition to the role of our
model in learning aggregate properties of the data set, it also
provides an inference mechanism about the missing features
of individual records.

Our approach can also be described under the shape
fitting framework [1], where one asks for a shape, a point
in our case, that best fits the input set, lines or flats, under
some criterion.

The core of our contribution is to show a way to restore
geometry to the problem of analyzing incomplete data, in
spite of the failure of the triangle inequality. This restoration
goes through a variant of Helly’s theorem. Suppose we blow
up each line or flat̀ to a cylinder or a slab that encloses all
the points within distancer from `. Helly’s theorem says that
if every d + 1 of these have a common intersection, then all
of them have a common intersection. In other words, Helly’s
theorem restores geometry because if every subcollection of
d + 1 out of then “data flats” are within distancer of some
“explanation point”, then all of then lines are within distance
r of an explanation point.

As it stands, however, this chain of reasoning is too
weak. The dimension of the ambient space,d, is typically
of the order of hundreds or thousands, much larger than
the maximum dimension∆ of the individual data items.
We redress this gap by developing a version of Helly’s
theorem that takes into account the low dimension of the sets
involved. Beginning with the case of lines (∆ = 1), we show
that if every3 of then “data lines” are within distancer of
some “explanation point” then all of then lines are within
distance2r of some explanation point. Notice that we are
now free of the “extrinsic” dimension of the ambient space,
and depend only on the intrinsic dimensionality,∆ = 1,
of the data sets. This result can be extended to any∆-

dimensional convex objectsL, for any 0 ≤ ∆ ≤ d, as
follows: if every subset of∆+2 convex objects of dimension
at most∆ in a Hilbert space are within distancer of some
point, then all of the objects are within distance2r of
some point. This result is optimal in the sense that there
exist configurations in which any∆ + 1 convex objects of
dimension at most∆ in Rd have a minimum intersection
radius that is strictly smaller than1/2 of that ofL. We call
this result the intrinsic-dimension Helly theorem:

THEOREM 1.1. (INTRINSIC-DIMENSION HELLY THEOREM)
For any n convex sets of dimension at most∆ in a Hilbert
space,L = {`1, `2, · · · , `n}, there exist∆ + 2 setsL′ ⊂ L
such thatr(L) ≤ 2r(L′).

Note that whenr = 0 (i.e., when the sets ofL intersect),
Theorem 1.1 directly generalizes Helly’s theorem (except
that it is weaker by1 in the case that the ambient space is
of finite dimensiond, and∆ = d). The implications of the
theorem to the analysis of incomplete data are immediate:
given a collectionL of n convex sets of dimension at most
∆, a 2-approximation of the minimum intersection radius
of L results from enumerating all subsetsL′ of L of size
∆ + 2 and determining the largestr(L′). Actually as will
be seen later, the implicitO(n∆+2d poly(∆))-runtime can
be replaced by an algorithm with expected running time
2O(∆ log ∆)nd and a suitable center forL (not generally equal
to c(L′)) is identified as part of the same process.

Next, we provide a method to achieve an approximation
ratio of 1 + ε (for anyε > 0) for the minimum intersection
radius. A subsetL′ ⊆ L is said to be anα-core set, with
respect tor(L), if the minimum intersection radiusr(L′)
of L′ approximatesr(L) within a multiplicative factor of
α. Theorem 1.1 says that whenL is a set of lines ind-
dimensional Euclidian space, one can find a2-core setL′ of
size3; and in general, ifL consists of∆-dimensional convex
sets, there exists a2-core setL′ of size∆ + 2. For general
values ofα = 1 + ε and forL consisting of∆-dimensional
flats in Rd, we show that for anyε > 0 there exists a
(1 + ε)-core set of sizeO(∆4/ε2). Here and throughout
the paper we assume that each convex set can be represented
by a constant number of constraints. Such a core set can be
found in timeO(n∆+1dpoly(1/ε)). For the case of lines
(∆ = 1), the running time of the algorithm can be improved
to O(nd poly(1/ε)). Notice that the size of the(1 + ε)-core
set only depends onε and∆, and is independent of the total
inputn or the dimension of the ambient space.

To the best of our knowledge, this is the first work
to address core sets for collectionsL that consist of∆-
dimensional convex sets. We summarize the core set result
by the following two theorems:

THEOREM 1.2. ((1 + ε)-CORE SET FOR LINE SEGMENTS)
Let ε > 0. Let L be a set of lines or line segments



{`1, . . . , `n} in Rd. There exist a subsetL′ ⊆ L of size
O(1/ε2) such thatr(L′)(1 + ε) ≥ r(L). The setL′
and a centerc, such that the ball centered atc of radius
(1 + ε)r(L′) intersects all lines or line segments inL, can
be found in expected timeO(ndpoly(1/ε)).

THEOREM 1.3. ((1 + ε)-CORE SETS) Let ε > 0. LetL be
a set of convex sets of dimension≤ ∆, L = {`1, . . . , `n}, in
Rd. There exist a subsetL′ ⊆ L of sizeO(∆4/ε2) such that
r(L′)(1+ε) ≥ r(L). The setL′ and a centerc, such that the
ball centered atc of radius(1 + ε)r(L′) intersects all sets in
L, can be found in timeO(n∆+1d poly(1/ε)).

As described above, the main focus of this paper is the
near-optimal representation of a set of incomplete data en-
tries (∆-flats) by a single ball of minimal radius. Naturally,
this is only the first step toward a more comprehensive theory
that should provide algorithms forclusteringincomplete data
entries by providing several balls of small radius, at least one
of which intersects each of the∆-flats. It is easy to see that
minimizing this radius is NP-hard, from the NP-hardness
of the k-center problem for points. Our work already im-
plies an initial result in this area: using our core set method,
there is a straightforward̃O(nk)-time algorithm to obtain a
2-approximatek-clustering ofn lines. Due to space limita-
tions, the details are omitted from this extended abstract and
will appear in the full version of the paper.

1.1 Related work Clustering and shape fitting problems
on points have been actively studied in recent years. One
of the powerful techniques is to devise a core set, i.e., a
small subset of representative pointsS′ of S such that the
optimization problems onS′ is a good approximation to the
optimal solution onS [1]. Precisely, a subsetS′ is a(1 + ε)-
core set ofS if (1+ε)µ(S′) ≥ µ(S), whereµ is a monotonic
measure function. Agarwalet al. provided a framework
for computing a(1 + ε)-core set for a set of pointsS in
Rd with respect to many measure functions that depend on
the extent of the point set, such as diameter, width, radius
of the minimum enclosing ball, and volume of the smallest
enclosing box [2]. The basic idea is to find a subset of
points of sizeO(1/εO(d)) whose convex hull approximates
the convex hull ofS. For some of the problems such as the
minimum enclosing ball or ellipsoid, there is an incremental
algorithm that computes a(1 + ε)-core set of size that
depends only onε [8, 7, 13, 14]. Thus one can apply brute-
forth algorithms on the small core setS′ and obtain efficient
approximation algorithms for the optimization problems on
S. Indeed, many geometric optimization problems such as
minimum enclosing ball,k-clustering, and various shape
fitting problems can be solved efficiently by using a small
core set [4, 8, 9, 10, 11, 13, 14]. However, to the best of our
knowledge, no work has been done on devising a core set for
lines or flats with respect to a natural quality measure.

The study of core sets for points can not be directly
applied to core sets for lines or flats. For a set of lines or
flats, there is no natural definition of “convex hull”. Our
core set algorithms for lines or flats are more related with
the incremental core set algorithm for pointsS in Rd with
respect to the radius of the minimum enclosing ball [8],
which is described as follows. The algorithm starts with
S′ being a pair of furthest away points and computes the
minimum enclosing ball ofS′. If all the points are included
in the minimum enclosing ball enlarged by a factor of(1+ε),
thenS′ is a core set. Otherwise, a point outside the enlarged
ball is added toS′. It can be shown that for each step, the
radius of the minimum enclosing ball ofS′ is increased by
a factor of1 + O(ε2). After O(1/ε2) steps, the algorithm
terminates. However, there is a major difficulty to apply
this algorithm for a set of linesL: there is a situation where
by adding each extra line, the minimum intersection radius
of the current subsetL′ stays the same but the minimum
intersection radius ofL′, r(L′), is still far away from the
real valuer(L). A substantial part of this paper is devoted
to showing that a carefully selected set of two lines (or
∆ + 1, more generally,∆-flats) can improve the minimum
intersection radius substantially.

We also note that there has been work on “clustering
points with lines” [3, 5, 10], where one finds a set of lines
L such that the set of cylinders with radiusr and axis as the
lines ofL covers all the input pointsS. The problem we
study in this paper can be phrased as “clustering lines with a
point”. There does not exist an obvious connection between
these two problems as a natural duality does not exist.

1.2 Organization The remainder of the paper is organized
as follows. We start with a few preliminaries in Section 2.
In Section 3 we present the proof of Theorem 1.1. In
Section 4 we present the proof of Theorem 1.2. The proof
of Theorem 1.3 is very similar to that of Theorem 1.2, and is
sketched in Section 5. Due to space limitations the proof of
some of our claims are omitted.

2 Preliminaries, definitions and notation

We denote byBr(c) a ball centered at a centerc with radiusr
in Rd. We denote byd(., .) the Euclidean distance function.
The distance between two pointsp, q is also written as|pq|.
DEFINITION 2.1. A ∆-flat in a Hilbert space is a∆-
dimensional affine subspace. The dimension of a convex set
in a Hilbert space is the least dimension of any flat contain-
ing it.

DEFINITION 2.2. The minimum intersection ballB(L) of
a collection of convex setsL in a Hilbert space is defined
to be (one of) the minimum radius balls that intersects all
the sets. The center of the minimum intersection ball is
called theminimum intersection center, denoted asc(L).



The radius of the minimum intersection ball is called the
minimum intersection radius, denoted asr(L). Namely,
B(L) = Br(L)(c(L)).

DEFINITION 2.3. ((1 + ε)-CORE SET) Let L be a set of
convex sets in a Hilbert space. A subsetL′ of L is said to
be a(1 + ε)-core set w.r.t. the minimum intersection radius
ofL if r(L) ≤ (1 + ε)r(L′).

We begin by noting that the minimum intersection ra-
dius and center ofL can be found in polynomial time up to
an absolute errorδ using convex programming. The proof of
the following lemma appears in the Appendix.

LEMMA 2.1. LetL be a set ofn convex sets with dimension
at most∆ in Rd. c(L) andr(L) can be computed to an ab-
solute precisionδ > 0 in timeO(

√
n(d3+d2n∆) log(n/δ)).

3 Intrinsic-dimension Helly theorem

We now prove Theorem 1.1.

Proof. For each(∆ + 2)-tuple i = {i1, . . . , i∆+2} in
{1, . . . , n}, let Bi be the minimum intersection ball of the
subsetLi = {`i1 , . . . , `i∆+2} centered at pointci, and letri
be the radius ofBi.

Let the largest radius among theri’s ber. Now we claim
that we can find a ball of radius2r that intersects all the
sets inL. Consider the set̀1 and denote byIj the set of
points on`1 with distance no more than2r from `j . That is,
Ij = {p ∈ `1|d(p, `j) ≤ 2r}. Ij is convex, sinceIj is the
intersection of two convex objects, the set`1 and the set of
points of distance2r from `j . Notice thatIj is a convex set
of dimension∆ in `1.

Consider any(∆ + 1)-tuple i′ = {i1, . . . , i∆+1} in
{2, . . . , n}. Now we claim that the corresponding∆ + 1
sets{Ii1 , . . . , Ii∆+1} have non-empty intersection. Leti be
the (∆ + 2)-tuple obtained fromi′ by adding an additional
index of value 1, namelyi = {1, i1, . . . , i∆+1}. By the
above discussion we have thatri ≤ r. Let ci be the center of
the minimum intersection ballBi of Li. Let c′i be the point
on the set̀ 1 that is closest toci. As the pointci is within
distancer from all sets inLi, we have that the pointc′i is
within distance2r from all the sets inLi. This implies that
c′i is in Ij for all j ∈ i′. See Figure 1.

Since for any(∆ + 1)-tuple i′ = {i1, . . . , i∆+1} the
corresponding∆ + 1 convex setsIj have non-empty inter-
section, and these sets are embedded in the∆ dimensional
set`1, by Helly’s Theorem [12] all the setsIj , 2 ≤ j ≤ n
have a non-empty intersection. Now leto be a point in

⋂
j Ij ,

2 ≤ j ≤ n. The ball centered ato with radius2r intersects
all n sets ofL.

The case ofr = 0 is closest in form to the original Helly
theorem:

`j

ci

Ij
`1 c′i

Figure 1: Proof of the reduction from the minimum intersection
radius ofn sets to that of∆ + 2 sets.

COROLLARY 3.1. For any n convex sets of dimension at
most∆ in a Hilbert space,L = {`1, `2, · · · , `n}, if every
∆ + 2 sets inL intersect, then all sets inL intersect.

THEOREM 3.1. (OPTIMALITY ) For any∆, there exist a set
of n convex setsL = {`1, . . . , `n} such that for every subset
L′ ⊆ L of size less than∆ + 2 it holds thatr(L) > 2r(L′).

Proof. For any ∆, consider the (∆ + 1)-
dimensional simplex. Namely, the setΩ∆+1 =
{(p1, . . . , p∆+2) |

∑∆+2
i=1 pi = 1}. Our sets`i will be

subsets ofΩ∆+1 of dimension∆. |L| = ∆+2. Fori = 1 to
∆ + 2, define`i = {(p1, . . . , p∆+2) ∈ Ω∆+1 | pi = 0}. It is
not hard to verify that every subsetL′ ⊆ L of size∆+1 has
a non-empty intersection — if̀i 6∈ L′ then the unit vector
with ‘1’ in the i’th coordinate is inL′. Thusr(L′) = 0.
However, the sets inL do not have a common intersection.
r(L) > 0.

Since this construction lies inR∆+1, the only choice of
parameters for which Theorem 1.1 is not tight is the obvious
case of∆ = d.

Theorem 1.1 indicates a straightforward algorithm to
find a 2-approximation to the minimum intersection radius
by simply taking the maximum radius of all(∆ + 2)-tuples
of sets that includè1. One can improve the running time
of this naive algorithm (and actually give an alternative
proof to Theorem 1.1) using the methodology of ‘LP-type’
programming (e.g. [16]) to2O(∆ log ∆)nd. The proof of the
following lemma is given in the Appendix.

LEMMA 3.1. LetL be a set ofn convex sets with dimension
at most∆ in Rd. Let ` ∈ L. The minimum radius ball
Br(c) that covers the setsL with centerc on `, and a set
L′ = {l1, . . . , l∆+2} ⊆ L for whichr(L) ≤ 2r(L′) can be
found in expected time2O(∆ log ∆)nd.

4 (1 + ε)-core set for lines or line segments

The proof of Theorem 1.2 we present shortly strongly builds
upon the notion of a(1+ε)-approximate intersection center,
ε > 0. In what follows we define(1 + ε)-approximate in-
tersection centers, and state Theorem 4.1 which addresses a



certain property of these centers. We then prove Theorem 1.2
based on Theorem 4.1. In what follows we will assume that
L is a set ofn lines. The general case in whichL also in-
cludes line segments is proven in a very similar manner and
is given in detail in the Appendix.

DEFINITION 4.1. A (1+ε)-approximate intersection ballof
a setL in d-dimensional Euclidean space is a ball of radius
(1 + ε)r(L) that intersects all sets inL. The center of a
(1 + ε)-approximate intersection ball is called a(1 + ε)-
approximate intersection center. We denote byCε(L) the set
of (1 + ε)-approximate intersection centers ofL.

OBSERVATION 4.1. For any setL, Cε(L) is convex.

DEFINITION 4.2. Let ` be a line inRd. A cylinder of radius
r with axis` in Rd is defined as the set of points inRd which
are of distance at mostr from `.

THEOREM 4.1. Cε(L) is included in a cylinder of radius
25
√

εr(L) with axis parallel to one of the sets̀i ∈ L.
Moreover this axis passes throughc(L).

The proof of Theorem 4.1 is based on
Lemma 4.1 4.2 4.3. The proofs of the Lemmas and
Theorem 4.1 are non-trivial and rather technical; they appear
in the Appendix.

LEMMA 4.1. Supposec is a minimum intersection center of
a set of linesL andp is a (1 + ε)-approximate intersection
center,|cp| ≥ α

√
εr(L), then there exists a linè∈ L such

that the angle betweeǹand the intervalcp is bounded by
arcsin(

√
2 + ε/α).

LEMMA 4.2. For a set of ∆ + 1 orthogonal vectors
{v1, v2, · · · , v∆+1} and a∆-flat ` in R∆+1, there must be
a vectorvj such that the angle betweenvj and ` is at least
arcsin(1/

√
∆ + 1).

LEMMA 4.3. Cε(L) does not include a2-dimensional
square with side length5

√
εr(L).

With Theorem 4.1, we now prove Theorem 1.2. The
idea is similar with the construction of a(1 + ε)-core set
P ′ for a set of pointsP in Rd such that the radius of the
minimum enclosing ball ofP is bounded by(1 + ε) times
that of P ′ [8]. The basic idea in [8] is to add a point not
covered by the minimum enclosing ball of the current core
set such that the minimum radius is increased substantially.
However, a direct application of this idea does not work for
the case of lines. One can find a scenario where adding a line
can not improve the minimum intersection radius. We will
show that a careful selection of two lines can always increase
the minimum intersection radius by a substantial factor.

Proof. [Theorem 1.2] Letε > 0. Throughout this proof
we assume thatε is sufficiently small. In what follows we
present an algorithm for findingL′. Our algorithm is greedy
and strongly builds upon Theorem 4.1. For a setL′, let `′ be
the axis of the cylinder of radiusε2r(L′) which contains the
collection of(1 + ε2/502)-approximate intersection centers
of L′.

Roughly speaking, the main idea of our algorithm is
as follows. We start out by picking a subset ofL′ of size
3 according to Lemma 3.1. For these lines it holds that
αr(L′) ≥ r(L) whereα = 2. This is a good starting point,
but we still need to reduce the valueα above to(1 + ε). We
do this in a series of steps. In each step, a line or two are
added toL′ and α reduces by a factor of(1 − 1

2ε2/502).
Hence, afterO(1/ε2) such steps we are in a situation in
which (1 + ε)r(L′) ≥ r(L) and we are done. The second
part of the theorem (regarding efficiency matters) will follow
from the detailed description of the algorithm.

We first focus on an iteration of the algorithm. LetL′
be the subset defined by the algorithm so far. Letc = c(L′)
be the minimum intersection center ofL′, and let`′ be the
axis of the cylinder of radiusε2r(L′) which contains the
collection of(1 + ε2/502)-approximate intersection centers
of L′. Recall from Theorem 4.1 that`′ passes throughc and
is parallel to one of the sets inL′.

If the ball centered atc of radius(1 + ε)r(L′) intersects
L, halt and output the setL′. Otherwise, if there exists a line
` ∈ L such thatr(L′∪{`}) ≥ (1+ε2/502)r(L′) add` toL′
and proceed in an additional iteration of the algorithm (see
remark at the end of the proof).

We are now in a situation that for every line` ∈ L the
radius of the minimum intersection ball ofL′ ∪ {`} is very
close to the radius of the minimum intersection ball ofL′,
namely,r(L′ ∪ {`}) < (1 + ε2/502)r(L′), this implies that
the center of the minimum intersection ball ofL′ ∪ {`} is
in the ε

2r(L′) cylinder around̀ ′. In this case, we use the
axis `′ to find a pair of lines that when added toL′ will
increaser(L′) substantially. For each linèi ∈ L \ L′ we
now compute a certain intervalIi on `′. Namely, we define
Ii to be the set of pointsx on `′ such that the ball of radius
(1 + ε)r(L′) centered atx intersects the sets inL′ ∪ {`i}. It
is not hard to verify that for each linèi this interval is not
empty. Indeed, consider the minimum intersection centerc∗i
of L′ ∪ {`i}. As r(L′ ∪ {`}) < (1 + ε2/502)r(L′), i.e.,c∗i
is a(1 + ε2/502)-approximate center ofL′, it follows from
Theorem 4.1 that the distance ofc∗i from `′ is at mostε2r(L′).
Consider the projection ofc∗i onto the line`′. Denote this
projection by c′i. It now follows that the ball of radius
(1 + ε/2 + ε2/502)r(L′) ≤ (1 + ε)r(L′) centered atc′i
coversL′ ∪ {`i}, which implies thatc′i ∈ Ii.

If for all pairs of lines `i and `j the corresponding
intervals intersect, then by Helly theorem, there is a point
c′ in the intersection of all the intervals. This implies that the



ball of radius(1 + ε)r(L′) centered atc′ covers all the lines
and we may halt the algorithm and output the setL′.

Finally, if there are two lines̀ i and `j with corre-
sponding intervals that do not intersect, then we claim that
r(L′ ∪ {`i, `j}) ≥ (1 + ε2/502)r(L′) and we may add both
`i and`j to L′ and proceed in an additional iteration of the
algorithm (see remark at end of proof). Assume for contra-
diction thatr(L′ ∪ {`i, `j}) < (1 + ε2/502)r(L′) and letc∗

be the minimum intersection center ofL′ ∪ {`i, `j}. As the
ball of radius(1 + ε2/502)r(L′) centered atc∗ also covers
L′ it follows that the distance ofc∗ from `′ is at mostε2r(L′).
As before, consider the projection ofc∗ onto the linè ′. De-
note this projection byc′. It now follows that the ball of
radius(1 + ε

2 + ε2/502)r(L′) ≤ (1 + ε)r(L′) centered at
c′ coversL′ ∪ {`i, `j}. This implies that the pointc′ is in
the intervalsIi andIj corresponding tòi and`j , which is a
contradiction.

We still need to show, given a new setL′ how to find
c(L′), r(L′) and the axis̀ ′ of Cε2/502(L′). Computing
c(L′) and r(L′) can be done (with sufficient precision) in
timed poly(1/ε) using Lemma 2.1 (here we use the fact that
the total dimension of the lines involved in the computation
is independent ofd). Regarding the linè′, by Theorem 4.1
we know that`′ is parallel to one of the lines inL′ and
passes throughc = c(L′). In the upcoming iteration of our
algorithm, we may try each and every line inL′ (a constant
number) and run the additional iteration with that center. As
we halt our algorithm, or proceed to add lines toL′ only
if certain conditions hold. We are sure to encounter these
conditions once we have chosen the correct line`′.

5 (1 + ε)-core set for convex sets of dimension≤ ∆
The algorithm in the previous section can be extended to
the general case of convex sets with dimension at most∆,
resulting in the proof of Theorem 1.3. As in the previous
section, the proof of Theorem 1.3 uses the notion of a(1+ε)-
approximate intersection center. In what follows we state
Definition 5.1 and Theorem 5.1. The proofs can be found in
the Appendix.

DEFINITION 5.1. Let` be a convex set with dimension≤ ∆
in Rd. A slab of radiusr with axis` in Rd is defined as the
set of points inRd which are of distance at mostr from `.

THEOREM 5.1. The set of(1 + ε)-approximate intersec-
tion centers of a collectionL of convex sets with dimen-
sion at most∆, Cε(L), is included in a∆-slab of width
β
√

ε(∆ + 1)3r(L), for some constantβ.
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[8] M. Bǎdoiu, S. Har-Peled, and P. Indyk. Approximate clus-
tering via core-sets. InSTOC ’02: Proceedings of the thiry-
fourth annual ACM symposium on Theory of computing, pages
250–257, New York, NY, USA, 2002. ACM Press.

[9] S. Har-Peled and S. Mazumdar. On coresets fork-means and
k-median clustering. InSTOC ’04: Proceedings of the thirty-
sixth annual ACM symposium on Theory of computing, pages
291–300, New York, NY, USA, 2004. ACM Press.

[10] S. Har-Peled and K. Varadarajan. Projective clustering in high
dimensions using core-sets. InSCG ’02: Proceedings of the
eighteenth annual symposium on Computational geometry,
pages 312–318, New York, NY, USA, 2002. ACM Press.

[11] S. Har-Peled and Y. Wang. Shape fitting with outliers.SIAM
J. Computing, 33:269–285, 2003.
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6 Appendix

Proof. [Lemma 2.1] We can formulate this problem by
convex programming. Assumec is a point inRd andr is
the intersection radius ofc with respect toL. Each convex
set`i has dimension at most∆ and is represented as follows.
`i is in a∆-dimensional spaceBi, which has origino(i) and
is spanned byk unit vectors~b(i)

j , j = 1, · · · , ∆. Therefore,

each point iǹ i can be represented byo(i) +
∑∆

j=1 λ
(i)
j

~b
(i)
j ,

whereλ(i)
j is a scalar. InsideBi, the convex set̀i is specified

by mi convex constraintsf (i)
j (λ(i)) ≤ 0, j = 1, · · · ,mi,

whereλ(i) = {λ(i)
j }. We can find the minimum intersection

radius and center ofL by solving the following optimization
problem:

min r

s.t. r ≥ ||c− o(i) −∑∆
j=1 λ

(i)
j

~b
(i)
j || , 1 ≤ i ≤ n ;

f
(i)
j (λ(i)) ≤ 0 , 1 ≤ j ≤ mi, 1 ≤ i ≤ n .

This is a convex optimization problem. The total number of
variables isn∆ + d + 1. The total number of constraints
is N + n, whereN =

∑
i mi = O(n). Thus one can

find the solution up to precisionδ > 0 in time O((N +
n)(n∆ + d)3 log(n/δ)), by using a generic interior point
method [6]. A more careful analysis by exploring the
sparsity of matrices shows a better bound on the running time
O(
√

n(d3 + d2nk) log(n/δ)). The details are omitted here.

Proof. [Lemma 3.1] LetL be a set ofn convex sets of
dimension∆ in Rd. Let ` ∈ L. In what follows we study
the problem of finding the minimum radius ball covering
L with center oǹ . We show that this problem falls in the
abstract framework of so called ‘LP-type’ problems, and can
be solved by the randomized algorithm of [16] in expected
running time2O(∆ log ∆)nd. The algorithm of [16] not only
finds the minimum radius ball (sayBr(c) centered atc of
radiusr) coveringL with center oǹ , it also returns a subset
L′ of L of size∆ + 1 such that the minimum radius ball
coveringL′ with center oǹ is alsoBr(c). This implies that
r(L) ≤ 2r(L′ ∪ `). Indeed,r ≥ r(L), andr(L′ ∪ `) ≥
r(L)

2 otherwise by projecting ontò and using the triangle
inequality one could find a ball of radius less thanr that
coversL′ with center oǹ .

We now sketch the proof that the problem at hand is an
LP-type problem. Throughout our proof we use the notation
of [16] freely. Our problem is defined by a couple(H, w)
whereH is the set of constraints corresponding to each set
in L, andw is the function on subsetsG of H which returns
the minimum radius ball covering sets corresponding toG
with center oǹ (ties broken using a lexicographic order on
`). For various technical reasons we alterw as to satisfy
basis regularity(as described in [16]). To use the framework
outlined in [16] it suffices to prove the following claims.

Detailed proof is omitted form this extended abstract and will
appear in the full version of the paper. Roughly speaking
the proofs follow the line of proof used in proving that the
minimum enclosing ball of a set ofn points is an LP-type
problem.

Claim 1: the combinatorial dimensionof (H, w) is
∆ + 1. This follows essentially from the argument that
in the ∆ dimensional flat` the minimum enclosing ball
of n points has an exact coreset of size∆ + 1. Claim
2: Monotonicityand Locality, follow by the definition of
w. Claim 3: Violation testand Basis Computation. We
present an algorithm which given a set of constraintsG of
size≤ ∆ + 2, finds the value ofw(G) along with abasis
for G. Here we use the fact that finding the minimum
covering ball ofk convex sets ink2 dimensions can be done
in timeexp(O(k log k)) (see for example [16]), we also need
a few additional ideas that tie this problem with our basis
computation problem.

Proof. [Lemma 4.1] We take a pointt on cp that moves
infinitesimally away fromc towardsp. We argue that there
must be a linè ∈ L such thatd(c, `) = r(L) and the
distance from a pointt on cp to ` is non-decreasing, when
t moves infinitesimally fromc to p on cp. Otherwise, the
distances fromt to all the lines inL are strictly less thanr(L)
whent moves infinitesimally away fromc. This contradicts
with the fact thatr(L) is the minimum intersection radius.

Now suppose for the linè ∈ L, the distance fromt to
` stays the same, whent moves infinitesimally away fromc.
Then it must be thatcp is parallel with`. Therefore the angle
betweeǹ andcp is zero. The claim is true.

If the distance fromt to ` is strictly increasing when
t moves infinitesimally away fromc, the distanced(t, `) is
monotonically increasing ast moves linearly fromc to p.
Now we bound the angle betweencp and` as follows. The
pointp is a(1 + ε)-approximate intersection center,r(L) <
d(p, `) ≤ (1+ε)r(L). We denote bỳ′ the line that is parallel
with ` and goes through centerc. Let q be the point oǹ for
whichpq perpendicular tò, |pq| = d(p, `) ≤ (1 + ε) · r(L).
Let q′ be the point oǹ ′ for which qq′ is perpendicular tò′,
|qq′| = d(c, `) = r(L). Finally, let s be the point oǹ for
which cs is perpendicular tò, |cs| = d(c, `) = r(L). See
Figure 2.

Let H be the hyperplane with normalcs that passes
throughc, and letS be the (closed) half space defined by
H that does not includè. The segmentcp (not includingc)
is either entirely contained inS or entirely contained in the
complement ofS. We now claim thecp is in S. Consider
the ballB of radiusr(L) arounds. The pointc is on the
boundary of bothB andS. And the segmentcp does not
intersect the interior ofB. Otherwise there would be a point
on cp of distance less thanr(L) to s. This can only happen
if cp is in S.

If p is in S, the inner angle of the triangle4pq′q at
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Figure 2:If the distance between an approximate centerp to the minimum
centerc is more thanα

√
ε · r(L), then there exists a line whose angle to

line cp is bounded byarcsin(
√

2 + ε/α).

vertexq′, ∠pq′q ≥ π/2. Thus,

|pq′| ≤
√
|pq|2 − |qq′|2

≤ r(L)
√

(1 + ε)2 − 1 = r(L)
√

2ε + ε2.

On the other hand,̀′ is perpendicular to both the lineqq′ and
the linepq. Thus`′ is perpendicular to the plane defined by
the trianglepq′q. This implies that∠pq′c = π/2. Therefore

sin∠pcq′ =
|pq′|
|pc| ≤

√
2ε + ε2 · r(L)
α
√

ε · r(L)
=
√

2 + ε/α.

Thus the angle betweeǹ and line cp is ∠pcq′ ≤
arcsin(

√
2 + ε/α).

Proof. [Lemma 4.2] Without loss of generality, we can
assume thatvi’s are the unit vectors along thek + 1 axes
and ` passes through the origin. We take the unit normal
vectorv of `. Then the angle betweenvj and`, denoted by
θj , isπ/2− θ′j , whereθ′j is the angle between vectorsvj and
v. In order to minimizemaxi θi = maxi arcsin(sin θi) =
maxi arcsin(cos θ′i) = maxi arcsin(vi · v), one chooses
v = (1, 1, · · · , 1)/

√
k + 1. Thus we havemaxi θi ≥

arcsin(1/
√

k + 1).

Proof. [Lemma 4.3] Assume that there is a squareR with
side length5

√
εr(L) insideCε(L). Denote byu the center

of R, and a, b, c, d the four points on the boundary such
that ua, ub, uc, ud are perpendicular to the four sides ofR
respectively, see Figure 3.|ua| = |ub| = |uc| = |ud| =
5
√

εr(L)/2.
Now we claim that for any linè ∈ L, d(u, `) < r(L).

Assume otherwise, there is a line` ∈ L such thatd(u, `) ≥
r(L). We observe that when we move a pointt continuously
from u to a or from u to c, at least in one case the distance
d(t, `) is monotonically increasing. Similarly for nodesb, d.
We take such two vectors, say~ua, ~ub. The vectors~ua, ~ub are
perpendicular to each other. Furthermore,a, b are both inside
Cε(L), sod(a, `) ≤ (1 + ε)r(L), d(b, `) ≤ (1 + ε)r(L).

c
u

d

a

b

Figure 3:The set of(1 + ε)-approximate centersCε(L) does not
include a2-dimensional square with side length12

√
ε · r(L).

Also |ua| = |ub| = 5
√

εr(L). By a similar argument as in
Lemma 4.1, the angle from̀to the lineua (ub) is at most
arcsin(2

√
2 + ε/5) < π/4, a contradiction.

Thus,d(u, `) < r(L), for any line` ∈ L. We conclude
that u is an intersection center ofL with radius less than
r(L). This gives a contradiction to the definition ofr(L).

Proof. [Theorem 4.1] We first study the case where the set
of minimum intersection centers is included in a finite radius
ball centered at the origin. Then the set of approximate
intersection centers is also included in a finite radius ball.
Let c be a minimum intersection center. Denote byp the
approximate center such that|cp| is maximal. If |cp| ≤
20
√

εr(L), then the approximate centers are inside a ball
with radius20

√
εr(L) centered atc, and thus included in

any cylinder with axis throughc and radius20
√

εr(L). The
claim is true.

If |cp| > 20
√

εr(L), we claim that the cylinder with axis
cp and radius20

√
εr(L) includesCε(L). Assume otherwise,

there must be an approximate centerv with distance more
than 20

√
εr(L) away from the linecp. Denote byq the

reflection point ofp on the linecp, |cq| = |cp|. Since
p is the furthest away approximate center fromc, thus the
projections of the other approximate centers on the linecp
fall inside line segmentpq. Now we consider the triangle
4vcp. By the convexity ofCε(L), all the points inside4vcp
are(1+ε)-approximate centers. We claim that there must be
a 2-dimensional squareR with side length5

√
εr(L) inside

4vcp. Take the middle point of the line segmentcp, denoted
ass. |cs| > 10

√
εr(L). Take the points′ on line segments

cv andvp such that the projection ofs′ on the linecp is s.
Now we argue that a square of side length5

√
εr(L) with s

as one corner and a portion of line segmentsc as one of the
sides must be completely inside4cvp. If the projections of
v on the linecp lies on the segmentcp, as shown in Figure 4
(i), then the length ofss′ is at least10

√
εr(L). Thus4css′

must haveR completely inside. If the projections of v on
the linecp lies on the segmentcq, as shown in Figure 4 (ii),
the length ofss′ is at least5

√
εr(L). Again it is not hard to

verify that the squareR is completely inside4cvp.
Thus we can find a squareR inside4vcp with side

length 5
√

εr(L), as shown in Figure 4. This implies a
contradiction by Lemma 4.3. Thus the cylinder with axiscp
and radius20

√
εr(L) includes all the approximate centers.

For a line`i ∈ L, we find the linè ′
i that is parallel with
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Figure 4:If |cp| > 20
√

ε · r(L) and the cylinder with axiscp and radius20
√

ε · r(L) does not include all the approximate centers, we
can find a squareR inside4vcp with side length5

√
ε · r(L).

`i and goes throughc. We claim that one of the cylinders
with axis `′i and radius25

√
εr(L) includesCε(L). Recall

that q is the reflection point ofp on the linecp and the
projections of the other approximate centers on the linecp
fall inside line segmentpq. Let α satisfy|cp| > α

√
εr(L),

by Lemma 4.1 there is a linè ∈ L such that the angle
betweeǹ and the linecp is arcsin(

√
2 + ε/α). Take`′ to

be the line throughc which is parallel with̀ . The distance
fromp to `′ is at mostr(L)

√
2ε + ε2. Thus the distance from

any point on the line segmentpq to line `′ is no more than
r(L)

√
2ε + ε2, by simple geometry. Take any approximate

center t′′, assume its projection to linecp is t, and the
projection oft on line `′ is t′. The distance fromt′′ to `′

is
d(t′′, `′) ≤ d(t′′, t) + d(t, t′)

≤ 20
√

εr(L) + r(L)
√

2ε + ε2

≤ 25
√

εr(L).

Thus the cylinder with axis̀′ and radius25
√

εr(L) includes
the collection of(1 + ε)-approximate centers.

q′

p′

`′

t′
t

20
√

εr(L)

q

t′′

√
2ε + ε2r(L)

c p

Figure 5:There is a cylinder with axis parallel with one of the lines
in L and radius25

√
εr(L) that includes the collection of(1 + ε)-

approximate intersection centers.

If the set of minimum intersection centers is not in-
cluded in a finite radius ball, then all the lines are parallel,
and the cylinder that includes all the approximate centers
must have a axis parallel with the lines inL (otherwise it
can not cover the minimum intersection centers). Thus if
there is an approximate centerv outside the cylinder with ra-
dius25

√
εr(L), by a similar argument as above we can find

a square with side length more than5
√

εr(L) completely in-
sideCε(L). By using Lemma 4.3 we have a contradiction.
Thus the cylinder with axis that equals the line of the mini-
mum intersection centers and radius25

√
εr(L) includes all

the approximate centers.

Proof. [Theorem 5.1] The proof is similar to the proof of
Theorem 4.1 and is based on the analogs of the Lemmas 4.1,
4.3, stated as follows. We first start with the case of line
segments.

LEMMA 6.1. Supposec is a minimum intersection center
of a setL of lines or line segments andp is a (1 + ε)-
approximate intersection center,|cp| ≥ α

√
εr(L), α >

2
√

2 + ε, then there exists a line or line segment` ∈ L such
that the angle betweeǹand the intervalcp is bounded by
arcsin(

√
2 + ε/(α− 2

√
2 + ε)).

Proof. For the case of line segments, the proof is basically
the same as Lemma 4.1. We can assume without loss of
generality that the closest points (q) to c (p) on ` is not
the endpoints of the line segment. If otherwise, we can
find a point ĉ on the line segmentcp such thatĉ is the
furthest point fromc on cp such thatĉ’s closest point on
` is still s. Notice thatr(L) < d(ĉ, `) ≤ (1 + ε)r(L).
Since the distanced(t, `) is monotonically increasing, ast
moves fromc to p, the inner angle of4ĉcw at c is at least
π/2. Thus|cĉ| ≤

√
(1 + ε)2 − 1r(L) =

√
(2 + ε)εr(L).

Similarly, one can find the corresponding pointp̂ on ĉp.
|pp̂| ≤

√
(2 + ε)εr(L). Thus|ĉp̂| ≥ (α−2

√
2 + ε)

√
εr(L).

Now we follow the arguments in the case of lines. The
angle betweeǹ andcp is bounded byarcsin(

√
2 + ε/(α −

2
√

2 + ε)).

LEMMA 6.2. Supposec is a minimum intersection center of
a setL of convex sets with dimension at most∆ andp is a
(1 + ε)-approximate intersection center,|cp| ≥ α

√
εr(L),

α > 2
√

2 + ε, then there exists a convex set` ∈ L such
that the angle betweeǹand the intervalcp is bounded by
arcsin(

√
2 + ε/(α− 2

√
2 + ε)).

Proof. The proof is very similar to the proof of Lemma 4.1
and 6.1. There is a convex set` ∈ L such thatd(c, `) = r(L),
d(p, `) ≤ (1 + ε)r(L) andd(t, `) > 1 monotonically non-
decreasing ast moves fromc to p. Let s be the point oǹ



closest toc andq the point oǹ closest top. Now we know
that|cs| = r(L) and|pq| ≤ (1 + ε)r(L).

If s and q are the same point, then the inner an-
gle of 4scp at vertex c is at leastπ/2. Thus |cp| ≤√
|sp|2 − |cs|2 ≤

√
(2 + ε)εr(L). Thus α ≤ √

2 + ε,
which is a contradiction.

If s are q are different, we note that the line segment
sq is completely insidè , due to the fact that̀ is convex.
Further, as a pointt moves oncp from c to p, the distance
betweent and the line segmentsq is non-decreasing. By
Lemma 6.1, the linescp andsq have a small angle. Thus the
angle betweencp and` is no more thanarcsin(

√
2 + ε/(α−

2
√

2 + ε)).

LEMMA 6.3. Cε(L) does not include a(∆+1)-dimensional
cube with side lengthγ

√
ε(∆ + 1)r(L), for a constantγ ≥

6
√

2 + ε.

Proof. Suppose otherwise, there is a(∆ + 1)-dimensional
cubeR with side lengthγ

√
ε(∆ + 1)r(L) inside Cε(L).

Denote byu the center of this cubeR. Again, we claim
that d(u, `) < r(L) for any ` ∈ L, which contradicts
with the definition ofr(L). Now suppose that there is a
convex set̀ ∈ L such thatd(u, `) ≥ r(L), we argue a
contradiction. By Lemma 6.2, we can find∆ + 1 orthogonal
vectors of lengthγ

√
ε(∆ + 1)r(L)/2 centered atu such that

the angle between each vector to the convex set` is no more
thanarcsin(

√
2+ε

γ
√

∆+1/2−2
√

2+ε
) ≤ arcsin(1/

√
∆ + 1). This

contradicts with Lemma 4.2.

Finally we show, with the above lemmas we can prove
our Theorem. In this final step, given a minimal inter-
section centerc, we find a set of pairs(p1, q1), (p2, q2),
. . . , (p∆+1, q∆+1) in the following way. p1, q1 are the fur-
thest pairs of points inCε(L) such that the line segment
p1q1 intersectsc. p2, q2 are the furthest pairs of points
in Cε(L) such that the line segmentp2q2 is perpendicu-
lar to the1-flat spanned byp1, q1. Similarly, pi, qi are the
furthest pairs of points inCε(L) such that the line seg-
ment piqi is perpendicular to the(i − 1)-flat spanned by
{p1, q1, p2, q2, · · · , pi−1, qi−1}. Definedi = |piqi|. Now
we claim that at least for one1 ≤ i ≤ ∆ + 1, di ≤
β
√

ε(∆ + 1)3r(L), for some constantβ.
Suppose otherwise,di > β

√
ε(∆ + 1)3r(L) for 1 ≤

i ≤ ∆+1. Now consider the convex polytopeP spanned by
the points{p1, q1, p2, q2, · · · , p∆+1, q∆+1}. By the convex-
ity of Cε(L), all the points in the interior ofP are(1 + ε)-
approximate centers. Thus one can then find a(∆ + 1)-
dimensional cube with side lengthγ

√
ε(∆ + 1)r(L) inside

P , with γ ≥ 6
√

2 + ε. The details are omitted here. By
Lemma 6.3 we have a contradiction.

Thus di ≤ β
√

ε(∆ + 1)3r(L) for some i. There-
fore Cε(L) can be enclosed in a∆-slab with axis as the

flat spanned byp1q1, p2q2, · · · , pi−1qi−1, pi+1qi+1, · · · ,
p∆+1q∆+1 and widthβ

√
ε(∆ + 1)3r(L).

Proof. [Theorem 1.3] The basic idea is the same as in
Theorem 1.2. We first focus on the existence of a small size
core set. We start with∆ + 2 setsL′ ⊆ L according to
Theorem 1.1 such thatr(L) ≤ α·r(L), α = 2. Letc = c(L′)
be the minimum intersection center ofL′ and`′ be the axis
of the slab that contains the collection of(1 + ε2

4β2(∆+1)3 )-
approximate intersection centers ofL′ for some constantβ
in Theorem 5.1. DefineIi to be a subset of̀′ such that a
pointp ∈ Ii has distance at most(1+ε)r(L′) away from the
setsL′⋃{`i}, `i ∈ L \ L′.

If among allIi, every∆ + 1 of them have a non-empty
intersection, then

⋂
i Ii 6= ∅, by Helly’s theorem. Thus the

ball with radius(1 + ε)r(L′) centered at a pointc′ ∈ ⋂
i Ii

intersects with every set inL and we are done (L′ is the core
set).

If there are∆ + 1 sets`1, `2, · · · , `∆+1 such that their
corresponding setsIj , j = 1, · · · , ∆ + 1 do not have a
common intersection, then it can be verified in the same
way as in Theorem 1.2 thatr(L′⋃{`1, · · · , `∆+1}) ≥
(1 + ε2

4β2(∆+1)3 )r(L′). Thus we add all the sets̀j , j =
1, · · · , ∆ + 1, toL′ and go to the next iteration.

Thus, for each iteration, at most∆ + 1 sets are added
to L′ and the valueα is decreased by a factor of(1 −

ε2

2β2(∆+1)3 ). After O(∆3/ε2) steps, there areO(∆4/ε2) sets
in L′ such thatr(L) ≤ (1 + ε)r(L′).

This concludes our proof for the existence of the(1+ε)-
core set for convex sets of dimension at most∆. For
an algorithm to compute this core set, notice that the axis
`′ of the slab containingCε(L′) is not known. Thus we
will try each ∆ + 1 tuples of the remaining sets ofL at
each iteration. We will terminate our algorithm once no
∆ + 1 tuple will increase the minimum intersecting radius
(significantly). The running time of the algorithm follows
from the same arguments as in Theorem 1.2. A centerc
such that the ball of radius(1 + ε)r(L′) intersects all sets
in L can be found using Lemma 2.1 (convex programming).
The careful reader may have noticed that the running time of
our algorithm for general∆ is greater than that implied by
standard convex programming (Lemma 2.1). Indeed this is
the case, however, in our algorithm in addition to returning
an approximate centerc, we also return the coresetL′ whose
existence should be viewed as the main contribution of this
Theorem.


